
Ž .Pattern Recognition Letters 18 1997 913–922

Face detection by direct convexity estimation
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Abstract

We suggest a novel attentional mechanism for detection of smooth convex and concave objects based on direct
processing of intensity values. The operator detects the regions of the eyes and hair in a facial image, and thus allows us to
infer the face location and scale. Our operator is robust to variations in illumination, scale, and face orientation. Invariance to
a large family of functions, serving for lighting improvement in images, is proved. An extensive comparison with
edge-based methods is delineated. q 1997 Elsevier Science B.V.
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1. Introduction

Edge detection was, so far, the core of most state
of the art techniques for attentional mechanisms as

Ž Žwell as face detection see Jacquin and Eleftheri-
..adis, 1995; Reisfeld et al., 1995 . This excludes

some recent work which utilize neural networks
Ž .Sung and Poggio, 1994; Rowley et al., n.d. , color

Žhistograms Dai and Nakano, 1995; Schiele and
. ŽWaibel, 1995 , or shape statistics Burl et al., 1995;

.Moghaddam and Pentland, 1995 for face detection.
Though one cannot disregard their advantages, edge
maps sustain severe flaws such as: sensitivity to
changes in illumination, strong effect of surrounding
objects, and inability to delineate objects in a clut-
tered scene. We overcome these problems of edge-
based approaches by a novel attentional operator
which detects smooth three-dimensional convex or
concave objects in the image. The operator is robust
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to face orientation, scale, and illumination, and is
capable of detecting the subject in a strongly tex-
tured background. It is employed for face detection,
namely to detect the eyes and hair, from which the
scale of the face can be inferred. The operator an-
swers the above problems as a whole, demands a
relatively short running time, and its robustness leads
to reliable results.

2. Y-Phase: Attentional operator for detection of
convex regions

We refer to faces as three-dimensional objects
with convex and concave regions, and take advan-
tage of this structure.

2.1. Defining the argument of gradient

Ž .Let us estimate the gradient map of image I x, y
by

= I x , y f D x G y ) I x , y ,Ž . Ž . Ž . Ž .Ž s s

G x D y ) I x , y ,Ž . Ž . Ž . .s s
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Ž . Ž . 2 2 Ž . Ž .Fig. 1. a The spheric gray-levels: I x, y s10 x q10 y . b The argument of gradient of a . The discontinuity ray is at 1808 from the
Ž . Ž . Ž . Ž . Ž .positive x-axis. c derivation of b in 908. d Rotation of b , so that the discontinuity ray is at 458 from the positive x-axis. e Derivation

Ž . Ž .of d in 3158. f Response of D-Phase, the isotropic operator.

Ž .where G t is the one-dimensional Gaussian withs

Ž .zero mean and standard deviation s , and D t iss

the derivative of that Gaussian. We turn the Carte-
sian representation of the intensity gradient into a

Žpolar representation. The argument also denoted
Ž ..‘‘phase’’, and usually marked by u x, y , is defined

by

u x , y sarg = I x , yŽ . Ž .Ž .
E E

sarctan I x , y , I x , y ,Ž . Ž .ž /E y Ex

where the two-dimensional arc tangent is defined by

°arctan yrx if xG0,Ž .
~arctan yrx qp if x-0, yG0,Ž .arctan y , x sŽ . ¢arctan yrx yp if x-0, y-0Ž .

Ž .and the one-dimensional arctan t denotes the in-
Ž . Ž . w xverse function of tan t so that arctan t : y`,` ¨

w xypr2,pr2 . While the term ‘‘phase’’ is widely
Ž Žused in the literature see Fischer and Bigun, 1995;¨
. .Fleet and Jepson, 1990 , for example , we use it in a

completely different manner: the term ‘‘phase’’ in
this article refers to the argument of the intensity
gradient.

The attentional mechanism is simply the deriva-
tive of the argument map with respect to the y-direc-
tion:

E
u x , y f G x D y )u x , y .Ž . Ž . Ž . Ž .s s

E y

Ž . Ž .We denote ErE y u x, y as Y-Phase.

2.2. Mathematical formulation of Y-phase reaction to
paraboloids

The projection of concave and convex objects can
be estimated by paraboloids, since paraboloids are

Ž . Ž Ž Ž Ž .... Ž Ž Ž Ž ....Fig. 2. Top row: The original image I x, y is compared to log log log I x, y and exp exp exp I x, y . Y-Phase is invariant under log
and exp. Bottom row: Y-Phase. Similarity among Y-Phase of original image and Y-Phases of transformed images is obvious.
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Ž Ž ..arbitrarily curved surfaces see Zucker et al., 1992 .
Our mathematical formulation refers to a general

Ž . Ž .2 Žparaboloid of the form: f x, y sa xy´ qb yy
.2 Ž .h , where a)0, b)0 are constants, and ´ ,h is

the center of the paraboloid. The first-order deriva-
Ž . Ž . Žtives of the paraboloid are: ErEx f x, y s2 a xy

. Ž . Ž . Ž .´ and ErE y f x, y s2b yyh . The gradient ar-
Ž . Ž Ž . Žgument is therefore: u x, y sarctan b yyh ,a x

..y´ . Deriving it with respect to y yields:

E ab xy´Ž .
u x , y s .Ž . 2 22 2E y a xy´ qb yyhŽ . Ž .

However, this derivative exists in the whole plane
�Ž . 4except for the ray: x, y N ysh and xF´ . At this

Ž . Žray, u x, y has a first-order discontinuity in the
.y-direction , so its derivative there tends to infinity.

Ž . Ž .The fact that for a paraboloid, ErE y u x, y ™` at
the negative ray of the x-axis, while continuous at

Ž .the rest of the plane can be clearly seen in Fig. 1 c
Žwe define our coordinate system at the horizontal

.and vertical axes of the sphere .

2.3. D-Phase: The isotropic Õariant

We also define an isotropic variant of Y-Phase,
whose reaction is to all axes of the paraboloid, rather

than merely the negative part of the x-axis. We do so
by rotating the gradient argument by

°u x , y q pyaŽ . Ž .
if u x , y q pya Fp ,Ž . Ž .~u x , y sŽ .a
u x , y q pya y2pŽ . Ž .¢if u x , y q pya )p ,Ž . Ž .

so the ray of discontinuity of Y-Phase is transformed
to a ray from the origin forming an angle of a

radians with the positive part of the x-axis. We then
derive the rotated argument of the gradient in the

Ž .direction: aypr2 or: aqpr2 , to get the re-
Ž Ž .sponse to the ray of discontinuity see Fig. 1 d and

.Fig. 1 . Repeating this rotation with angles: as
08,908,1808,2708 and summing their responses results

Žin an isotropic operator called: D-Phase see Fig.
Ž ..1 f . It is evident that D-Phase is more general than

Y-Phase, but as we shall show, Y-Phase is effective
and robust for face detection.

3. Features of Y-Phase

Two-dimensional objects of constant albedo form
a linear gray-level function, and are usually of no

Ž . 2 2Fig. 3. The eye exhibits strong similarity to the artificial paraboloidal gray-levels: I x, y s10 x q30 y . The gradient argument of the eye
is similar to that in Fig. 1. A clear response of Y-Phase at the negative part of the x-axis is observed.
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Ž .interest for example, walls . It can be easily shown,
that the Y-Phase attentional mechanism has zero
response to planar objects. In addition, it can be
shown that the response of Y-Phase to edges of
planar objects is finite, and is therefore smaller than
its response to paraboloids. Another provable charac-
teristic of Y-Phase is its linear dependence on scale.
We now present several invariants of Y-Phase, fol-
lowed by a practical discussion and demonstration
from real-life scenes.

( ) (Theorem 1. Let f x,y the original gray-leÕel func-
) ( )tion be a deriÕable function at each pixel x ,y0 0

( ) ( )with respect to x and y. Let T z the transform be a
( )function deriÕable at point z s f x ,y , whose0 0 0

deriÕatiÕe there is positiÕe in the strong sense. De-
( ) ( ( )) (note the composite function by g x,y sT f x,y the
)transformed gray-leÕel function . The y-deriÕatiÕes
( ) ( )of the gradient arguments of f x,y and g x,y at

( )point x ,y are identical:0 0

Eu x , y Eu x , yŽ . Ž .g 0 0 f 0 0
s .

E y E y

Proof. By the chain rule, the composite function:
Ž . Ž Ž ..g x, y sT f x, y is derivable with respect to both

Ž .x and y at point x , y , and its derivatives are:0 0

g x , y sT X f x , y f x , y ,Ž . Ž . Ž .Ž .x 0 0 0 0 x 0 0

g x , y sT X f x , y f x , y .Ž . Ž . Ž .Ž .y 0 0 0 0 y 0 0

0 Ž . 0 Ž . 0We denote f s f x , y , f s f x , y , f s0 0 x x 0 0 y
Ž .f x , y . The argument of the gradient at pointy 0 0

Ž .x , y can be written as0 0

u x , y sarctan T X f 0 f 0 ,T X f 0 f 0 .Ž . Ž . Ž .Ž .g 0 0 y x

XŽ 0.Since we have required that T f )0, the point
Ž XŽ 0. 0 XŽ 0. 0.T f f ,T f f lies in the same quarter of thex y

Ž 0 0.plane as point f , f . It follows that:x y

u x , y sarctan T X f 0 f 0 ,T X f 0 f 0Ž . Ž . Ž .Ž .g 0 0 y x

sarctan f 0 , f 0 su x , y .Ž .Ž .y x f 0 0

The last equation states that the phase of the gradient
is invariant under the transformation T. Deriving the
gradient argument with respect to y preserves this
invariance:

Eu x , y Eu x , yŽ . Ž .g 0 0 f 0 0
s . I

E y E y

Fig. 4. Robustness to lighting. Illumination comes from a single
point light source. Each row relates to the corresponding azimuth:
908, 608, 308, 08, y308, y608, y908. Detection by mirrored
auto-correlation is marked.
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Let us rephrase Theorem 1 in the following man-
ner:

Y-Phase is inÕariant under any deriÕable mono-

( )tonically increasing in the strong sense transforma-
tion of the gray-leÕel function.

The practical meaning of the theorem is that

Fig. 5. Robustness to scale. Several scales of the face. The Y-Phase image strongly reacts to the eyes and hair regions, regardless of the
scale. Largest face is about 6 times larger than smallest face. Detection by mirrored auto-correlation is marked.
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Y-Phase is invariant, for example, under linear trans-
Ž Ž . .formations, positive powers where f x, y )0 , log-

arithm, and exponent. Y-Phase is also invariant un-
Ž .der linear combinations with positive coefficients

and compositions of these functions, since such com-
binations are also derivable and strongly monotoni-
cally increasing. The functions mentioned above and
their combinations are common in image processing
for lighting improvement. This implies that Y-Phase
is invariant under a large variety of lighting condi-
tions. Fig. 2 demonstrates Y-Phase invariance to

Ž Ž Ž ... Ž Ž Ž ...log log log z and exp exp exp z in a real-life
scene.

In view of Y-Phase invariants, the suggested
model is not only a paraboloidal gray-levels detector,

Ž .but also a detector of any derivable strongly mono-
tonically increasing transformation of paraboloids.
This makes Y-Phase particularly attractive for usage
in various scenes in which the environment is un-
known beforehand.

4. Face detection using Y-Phase

4.1. Approximation by paraboloids

One of the underlying ideas of the theoretical
model is the estimation of the gray-levels describing
convex and concave objects, in our case – the eyes
and hair, using paraboloids or a derivable monotoni-

Ž .cally increasing transformation in the strong sense
of paraboloids. Fig. 3 shows such a synthetic
paraboloid along with a magnified eye. The eye
gray-levels are similar to those of a paraboloid. The
Y-Phase of the eye strongly reacts to the x-axis; this
behavior resembles that of Y-Phase of paraboloids.

Figs. 4–6 demonstrate the robustness to three
factors: illumination direction, scale, and orientation
of the head, respectively. Mirrored auto-correlation
serves to detect the face, i.e., choose the window
with the best cross correlation between left and right

Ž .halves mirroring one of them among all possible
window positions; the window is of the same height
as the image. Y-Phase robustness to illumination,
scale, and orientation is mainly due to the fact that
Ž . Ž .ErE y u x, y ™` for paraboloids, which is a very
stable feature. The areas of strong Y-Phase response
enable the heuristic detection of the face scale.

Fig. 6. Robustness to orientation. Capability to detect oblique
faces. Y-Phase strongly reacts to the eyes and hair, even though
the face is slanted. Detection by mirrored auto-correlation is
marked.
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Fig. 7. A face vs. smiley. Edge-based methods locate the larger object, which is the flat smiley. Y-Phase detects the three-dimensional face,
although it is smaller.

4.2. Superiority of Y-Phase on edge detection

In this section, we briefly delineate the results of
an extensive comparison between Y-Phase and the

Ž .edge map taken as gradient modulus . Following the
operation of each method, mirrored auto-correlation
attempts to detect the face.
1. Reaction to 3D objects: Y-Phase detects 3D ob-

Fig. 8. Small objects with strong edges divert edge-based methods from the real subject. Y-Phase reacts to gradual variations rather than to
sharp color changes.
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Ž . Ž .Fig. 9. a The background is better lit than the face. Y-Phase is capable of detecting the face despite the poor illumination. b Illumination
improved by applying logarithm. Edge methods as well as Y-Phase now detect the subject.
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Fig. 10. A texture of asterisks. Facial edges look negligible near texture edges. In the Y-Phase map, facial regions attain higher values than
textural areas.

Ž .jects, so the Y-Phase of a smiley 2D object is
Žrelatively low, as opposed to edge methods Fig.

.7 .
2. InsensitiÕity to strong edges: Sharp color changes

are likely to appear due to different object colors
Ž . Ž .or albedo Fig. 8 . These variations lead to
strong edges, which distract edge-based methods
from the subject. Y-Phase does not react strongly
to sharp changes, but rather, to gradual changes
of intensity of the kind exhibited by the eyes and

Ž Ž ..hair see also Graf et al., 1995 .
Ž .3. Robustness to lighting: In Fig. 9 a , the back-

ground is better lit than the subject. Y-Phase
detects the subject, while edge methods detect the
background. The improvement of the image by

Ž Ž ..the logarithm Fig. 9 b makes edge-based meth-
ods too detect the subject. Note, that the decision

Ž .to apply this specific log function was made by
a human. Y-Phase robustness to illumination re-
leases the automatic face detector from the need
to decide which illumination it is facing.

4. Stability in textured background: The existence of
texture in an image makes the task of discriminat-
ing the subject from the background very hard.
The difficulties emanate from the large amount of
edges covering a substantial image area, and the

Ž .periodicity of the usually symmetric pattern

Ž .composing the texture. As Fig. 10 e shows, Y-
Phase is much more robust than edge based meth-
ods, and is capable of separating the face from
dominant textures.

5. Conclusions

ŽWe introduce a novel attentional operator Y-
.Phase for detection of regions emanating from

smooth convex or concave three-dimensional ob-
jects. We use it to detect the eyes and hair, and thus,
the face. Y-Phase is proved invariant under any

Ž .derivable strongly monotonically increasing trans-
formation of the image gray-levels, which practically
means robustness to illumination changes. Robust-
ness to orientation and scale is also described. The
operator is not based on edge maps, and thus free of

Žtheir flaws e.g., Y-Phase is robust in dominant
.textures . An extensive comparison with edge-based

methods is depicted.

References

Burl, M., Leung, T., Perona, P., 1995. Face localization via shape
Ž .statistics. In: Bichsel, M. Ed. , Proc. 1st Internat. Workshop

on Automatic Face- and Gesture-Recognition, Zurich, Switzer-
land, pp. 154–159.



( )A. Tankus et al.rPattern Recognition Letters 18 1997 913–922922

Dai, Y., Nakano, Y., 1995. Extraction of facial images from
complex background using color information and SGLD ma-

Ž .trices. In: Bichsel, M. Ed. , Proc. 1st Internat. Workshop on
Automatic Face- and Gesture-Recognition, Zurich, Switzer-
land, pp. 238–242.

Fischer, S., Bigun, J., 1995. Texture boundary tracking with gabor¨
Ž .phase. In: Borgefors, G. Ed. , Proc. 9th Scandinavian Conf.

on Image Analysis, Uppsala, Sweden, pp. 877–884.
Fleet, D.J., Jepson, A.D., 1990. Computation of component image

velocity from local phase information. Internat. J. Comput.
Vision, pp. 77–104.

Graf, H.P., Chen, T., Petajan, E., Cosatto, E., 1995. Locating
Ž .faces and facial parts. In: Bichsel, M. Ed. , Proc. 1st Internat.

Workshop on Automatic Face- and Gesture-Recognition,
Zurich, Switzerland, pp. 41–46.

Jacquin, A., Eleftheriadis, A., 1995. Automatic location tracking
of faces and facial features in video sequences. In: Bichsel, M.
Ž .Ed. , Proc. 1st Internat. Workshop on Automatic Face- and
Gesture-Recognition, Zurich, Switzerland, pp. 142–147.

Moghaddam, B., Pentland, A., 1995. Maximum likelihood detec-
Ž .tion of face and hands. In: Bichsel, M. Ed. , Proc. 1st

Internat. Workshop on Automatic Face- and Gesture-Recogni-
tion, Zurich, Switzerland, pp. 122–128.

Reisfeld, D., Wolfson, H., Yeshurun, Y., 1995. Context free
attentional operators: the generalized symmetry transform. In-
ternat. J. Comput. Vision, pp. 119–130.

Ž .Rowley, H.A., Baluja, S., Kanade, T., n.d. . Human face detec-
tion in visual scenes. Advances in Neural Information Process-
ing Systems 8, to appear.

Schiele, B., Waibel, A., 1995. Gaze tracking based on face-color.
Ž .In: Bichsel, M. Ed. , Proc. 1st Internat. Workshop on Auto-

matic Face- and Gesture-Recognition, Zurich, Switzerland, pp.
344–349.

Sung, K.-K., Poggio, T., 1994. Example-based learning for view-
based human face detection. In: Proc. Image Understanding
Workshop, vol. II, Monterey, Canada, pp. 843–850.

Zucker, S., Langer, M., Iverson, L., Breton, P., 1992. Shading
flows and scenel bundles: A new approach to shape from

Ž .shading. In: Sandini, G. Ed. , Proc. 2nd European Conf. on
Computer Vision ’92, Santa Margherita Ligure, Italy. Springer,
Berlin.


