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Surprisingly simple local learning algorithms are known to outperform
many other global non-linear machines. Unfortunately, these algorithms
are computationally costly. A means of assembling both learning ap-
proaches is proposed in this letter and shown to enhance performance.
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1 Introduction

Human beings are capable of learning from examples. Compelling evidence
can be found in a recent paper by Saffran, Aslin and Newport (1996) where
8-month-old infants are found to qualify as excellent statistical learners. The
mathematical analysis of this ability is scarcely a 40-year-old discipline that
dates back to Rosemblatt’s Perceptron (Rosenblatt (1960)). Although much
work has been done since then, learning machines are still poor classifiers as
compared to human beings. There are a number of reasons which compromise

performance and a corresponding number of ways to enhance it.

First of all, feature design is more of an engineering art than a science. Some-
what discouragingly, its relevance in pattern recognition may be dramatic as
Simard, Le Cun and Denker (1993) demonstrate with a smart concept of dis-
tance that takes invariances into account and turns classification into simple

template matching.

Preprint submitted to Elsevier Preprint 6 July 1998



Secondly, in a high-dimensional feature space it is hardly possible to have
enough examples so as to cover the space properly. As a consequence the
boundary among classes may end up being unnecessarily ambiguous. There is
an obvious way to address this problem: fill in the gaps. Here the symmetries of
the feature space can be used to great advantage: we can either generate extra
patterns through transformations of the available ones (Drucker, Schapire and
Simard (1993)) or alter the very structure of the algorithm to incorporate
invariances. The first way is always feasible but makes training slower. The
latter is more subtle and has to be worked out for each algorithm. There
are ways in between these two schemes. For example, Schélkopf, Burges and
Vapnik (1996) try to enhance Support Vector Machine networks by applying
transformations only to certain patterns, the so-called support vectors, instead

of transforming the whole training set.

In the third place, every single learning algorithm suffers from limitations.
For example, most global optimization methods can not guarantee to reach
a global minimum. Different local minima may be viewed as corresponding
to different ways of learning the training set. Mainly for this reason, Hansen
and Salamon (1990) propose letting an ensemble of different networks decide.
This battery of machines can be trained over the same data base or different
sets of training examples. Record performance has been attained by a special
boosting ensemble of networks trained over an enlarged training set (Drucker,
Schapire and Simard (1993)). Another way to escape the global optimiza-
tion problem consists in training local machines (Vapnik and Bottou (1993)).
These devices are very suggestive but also time consuming since local training
involves searching for nearest neighbors. Branch and bound methods (Jiang

and Zhang (1993)) can help to alleviate this kind of calculation.

In this letter a new step to enhance performance is taken. Guided by the suc-
cess of local learning machines, and in order to alleviate the computational

burden, ensembles of global and local networks have been constructed (Giirgen



et al. (1994)). Interestingly enough, the drastically different training nature
of these machines makes their combination surprisingly profitable: not only
the speed problem is addressed but the joint performance is found to surpass
the original ones. The structure of the letter is as follows. Global and local
approaches to learning are reviewed in section 2. The procedure that com-
bines both learning methods is introduced in section 3. The efficiency of this

construction is exemplified in the last section of the letter.

2 Global and Local Learning Machines

Standard practice dictates training learning machines by minimizing the em-
pirical risk, i. e., the mean square error incurred by a trial function. The global
minimization of this risk is a very ambitious task. It implies the estimation
of a function over the whole feature space. In general, a non-linear function
is required for this purpose, as in the back-propagation trained multi-layer
perceptron (MLP) and the support vector machine network (SVM). However,
the minimization of the risk can also be accomplished locally, in the neigh-
borhood of each test pattern (Vapnik and Bottou (1993)). This problem is
much easier to solve and a simple linear function is now enough. Although
this approach circumvents non-linearity it is not free from limitations. Train-
ing is slow and takes place while performing, as in the regularized local linear
regression (RLR) used in this letter. Later a procedure will be introduced to
take advantage of both learning approaches simultaneously. We now show the
results of a set of experiments conducted on a NIST data base of handwritten
digits containing 40,000 training and 10,000 test examples. The resolution of
the images is 20x20 pixels. Throughout this article a fast Karhunen Loeve

expansion (Oja (1983)) in a 40 dimensional feature space is used.

Following Rumelhart, Hinton and Williams (1986) a multi-layer perceptron

with sigmoid maps can be easily trained. In this letter a two hidden layer
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architecture 40-80-60-10 is used. The raw error reached by this machine on

the test set is 3.82 %.

Support Vector Machine networks (Vapnik (1995)) perform a mapping from
the feature space into a high dimensional Hilbert space where a separating
hyper-plane is searched for. In this letter 10 different binary machines of this
type have been constructed based on degree 2 polynomial scalar products. For
non-separable training sets like the one used in this letter, Cortes and Vapnik
(1995) propose to constraint the values of the coefficients in terms of which
the hyper-plane is written. A restriction equal to 0.005 has been found to be

the optimal one. The raw error for this machine on the test set is 3.04 %.

A regularized local linear regression with k nearest neighbors has also been
constructed (Bottou and Vapnik (1992)). Adding a regularization factor vy to
the empirical risk avoids the singularity that appears when too few nearest
neighbors are considered, particularly in a high dimensional feature space. Al-
ternatively, a singular value decomposition could have been applied. Training
yields the following optimal values: £ = 16 and v = 8.6. The raw error at-
tained on the test set with these parameters is 2.48 %. This figure is 35 %
better than the MLP’s one and 18% better than the SVM’s one.



Figure 1 shows the error-rejection curves on the test set for all of the learning
algorithms described above. The local regression behaves clearly better than
both global algorithms. The SVM machine is outperformed by the perceptron
for rejection rates above 10 %, although it has a lower raw error. This obser-
vation is important since it is the global method’s rejection ability that will

be used to construct ensembles as described in the next section.

3 A general procedure to construct a semi-global ensemble

We have seen that local classifiers are surprisingly accurate but slow. This
is due to the fact that training takes place during classification and involves
searching for nearest neighbors. Global machines are considerably faster but
most of them do not guarantee global solutions. The question addressed in this
section is: can both types of machines be assembled so as to make them benefit
from each other? Interestingly enough, the answer is yes and the procedure

involved very simple (see figure 2):

(i) Apply a global machine with a tuned error rejection rate.
(ii) Classify by means of a local machine those patterns rejected by the global

learning algorithm.
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The reason why this construction works is the following. In order to general-
ize, global learning methods tend to overlook local singularities. Local learning
methods, for obvious reasons, do not suffer from this limitation and are better
suited for classification of patterns close to class boundaries, where local struc-
ture becomes most important. A properly trained global method is expected
to reject patterns in these ambiguous areas if asked to. We only have to learn
the proper rejection rate to be applied and throw rejected patterns to a local
classifier. Applying a local classifier everywhere throughout the feature space
would be a waste of time. Most of the patterns can be accurately classified by
a fast global method that can also spot those patterns that need further local

treatment.

4 Examples

In this section two different ensembles are constructed. Figure 3 shows the
ensemble’s error rate versus the global method’s rejection rate for both of

them on the NIST training (left) and test sets (right).

— MLP+RLR: Multi-layer perceptron followed by Local Linear Regression.
The back-propagation trained multi-layer perceptron of section 2 is used as
global method in this first example. The test curve starts at the MLP raw
error (3.82 %) when no rejection is present and tends to the RLR raw error
(2.48 %) for 100 % MLP rejection rate. There is a value in between these
two for which the ensemble performs better than both individual learning
methods. The training curve yields a value around 5 % while the test one
suggests a significantly higher MLP rejection rate: 15 %. This is due to the
fact that the perceptron has adjusted particularly well to training patterns
during the training process. The local algorithm, however, behaves similarly
with both training and test sets. The raw error for the ensemble with 15 %

MLP rejection rate is 2.39 % on the test set. This is close to a 40 % improve-



ment with respect to the perceptron’s performance and a 4 % enhancement

with respect to the original local machine (2.48 % raw error rate).
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— SVM+RLR: Support Vector Machine Network followed by Local Linear
Regression. The global method of this ensemble is composed of 10 differ-
ent SVM networks, one for each class of digits. Due to the fact that SVM
keeps the training risk equal to zero, the ensemble’s training error increases
monotonically for increasing SVM rejection rates. However, on unseen pat-
terns, a 9 % SVM rejection rate gives rise to an ensemble that significantly
outperforms SVM, lowering the raw error from 3.04 % down to 2.49 %. This
means an 18 % improvement. In this ensemble, the original dimension of
the feature space is globally increased by the SVM projection and locally

decreased by the regularization procedure.

We have succeeded in engineering neural network ensembles with learning ma-
chines as building blocks. These blocks are joined together by adjusting their
error-rejection rates. To be more specific, the performance of two different
state-of-the-art global methods has been enhanced by their combination with
a surprisingly simple local learning machine. The global machine resorts to the
local one only where needed, i. e., wherever it feels that local structure turns

relevant. This is an interesting way to spot locality and can be considered as an



alternative to local acceleration methods. Furthermore, the local machine per-
formance also benefits from the association. Not merely we find patterns that
only the local classifier is able to resolve, but there also exist digits that only
the global device is capable of classifying. As an example, a back-propagation
trained perceptron, performing on a handwritten digit database, achieves a
40 % improvement by means of its association with a regularized local linear
regression. Cross-validation is used in order to tune the perceptron’s thresh-
old. The overall classification speed does not suffer too much since the local
classifier is used for only 15 % of the patterns. Several global methods can be
mixed together in order to further reduce the need of a local algorithm. This

will be part of future research.
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