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Abstract

It is well known that if a Boolean function is expressed in sum of products, each function can be implemented with one
level of AND gates followed by an OR gate. We will prove that if each desired output of a binary function is expressed in
sum of products, each desired output can be implemented with one layer of perceptron nodes followed by a perceptron node.
q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž . ŽThe multilayer feedforward structure with the backpropagation BP training algorithm Rumelhart et al.,
.1986 , has been one of the most widely used artificial neural network models and can be used to approximate

any mapping. Suppose we want to approximate a particular set of functions to a given accuracy; one thing is to
determine the number of hidden layers and the number of units per layer we need. The answer is at most two

Ž .hidden layers, with arbitrary accuracy being obtainable given enough units per layer Cybenko, 1988 . It has
Žalso been proven that only one hidden layer is enough to approximate any continuous function Cybenko, 1988;

.Hornik et al., 1989 . The utility of these results depends on how many hidden units are necessary, and this is not
known in general. On the other hand, we may think about how to use binary neural networks to realizing
discrete functions. It is well known that if a Boolean function is expressed in sum of products, it can be
implemented with one level of AND gates followed by an OR gate. We would like to know what is the case for
neural networks. In this letter, we will prove that if each desired output of a binary function is expressed in sum
of products, each desired output can be implemented with one layer of perceptron nodes followed by a
perceptron node.

Ž .It is well known that the simple perceptron algorithm Rosenblatt, 1958 is unable to represent classifications
Ž .which are not linearly separable Minsky and Papert, 1988 . However, the perceptron does exhibit two very

useful properties. First, the perceptron learning algorithm will either converge or will cycle among a series of
hyperplanes that do not fully separate the input patterns. Second, the topology of the network is not a design
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issue since there are no hidden layers. To extend perceptrons to solve the linearly nonseparable problem, one
concept is to find a suitably enhanced representation of the input data. The enhanced input vectors are composed
of original input vectors plus some expanded dimension. Methods such as the dimension expansion method
Ž . Ž .Section 2 and functional link networks next subsection make use of this concept to solve the linearly
nonseparable problem.

1.1. ReÕiew of functional link networks

Ž .The block diagram of a functional link network Pao, 1989 is shown in Fig. 1. The main idea of the
functional link network is to find a suitably enhanced representation of the input patterns. The so-called tensor
model is suitable for handling input patterns in the form of vectors. Assume the original input patterns are
represented by n-tuple vectors, x , . . . , x . The higher-order input terms are obtained as the products x x for1 n i j

all 1( i, j(n and i- j(n, the products x x x terms for all 1( i, j,k(n and i- j-k(n, . . . , and thei j k

products x x PPP x terms for all 1( i ,i , . . . ,i (n and i - i - PPP - i (n. Thus we havei i i 1 2 ny1 1 2 ny11 2 ny1

n n n nq q PPP q s2 yny1ž / ž / ž /2 3 ny1

higher-order input terms. The extremely large number of higher-order terms sometimes makes the approach
impractical. In the so-called functional model of a functional link network, the higher-order input terms may be

Ž . Ž . Ž .generated using the orthogonal basis functions. Functions such as sin p x , cos p x , sin 2p x , . . . , can be
used to enhance the representation of input x.

Ž .This letter will present a systematic method for the design of Binary Neural Networks BNNs . Our method
Ž . ŽSection 2 is similar to the functional link network. In our method, we use the training pairs include input

.patterns and desired patterns to obtain the higher-order input terms. Our method is guaranteed to converge to a
set of solution weights of the problem in finite time.

1.2. PreÕious work

Ž .There are many algorithms for modeling BNN in the past decade. Moody and Antsaklis 1996 propose an
algorithm to construct and train multilayer neural networks. A training algorithm for four-layer perceptron-type

Ž .binary feedforward neural networks was presented by Gray and Michel 1992 and was used on a feedforward
neural network for the generation of binary-to-binary mapping. The oil-spot algorithm by Mascioli and

Fig. 1. Functional link network.
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Ž . Ž .Martinelli 1995 relies on a topological approach to solve the problem. The upstart algorithm Frean, 1990
constructs a tree of nodes to enrich the possibility of finding a solution. A binary classification method proposed

Ž .by Nadal 1989 trains the perceptron with the pocket algorithm to find the best set of weights and cascades the
output unit with a new unit that receives signals from inputs and the previous output unit. The algorithm runs

Ž .until all patterns are classified correctly. The Gallant’s Tower Gallant, 1986 indicates that it adds new output
node that also receives input from previous output node, and continue training until the solution is satisfied. All
these methods are based on a multilayer structure.

To solve the problem of binary mapping with a simpler neural structure, we propose using the perceptron–
perceptron net. The proposed method extends the set of inputs of a binary input, single binary output neural
network in such a way that the resulting network can solve non-linearly separable problems, yet, can still be
trained with the perceptron learning algorithm, and yet, can be implemented with one layer of perceptron nodes
followed by a perceptron node.

The rest of this letter is organized as follows. Section 2 will describe the proposed dimension expansion
method, a theorem and its proof, and an example to illustrate the ideas. Section 3 will describe the adaptive
dimension expansion method. Finally, conclusions are presented.

2. Dimension expansion method

2.1. ReÕiew of single-layer binary bipolar perceptron networks

A perceptron neuron, which has a hard limit transfer function, is shown in Fig. 2. In Fig. 2, the output of the
perceptron, y, is given by

ys f net ,Ž .

where

n
X XX X w x w xnetsW XsX Ws w x , Xs x x . . . x and Ws w w . . . w .Ý i i 0 1 n 0 1 n

is0

Each external input X, augmented with the bias x s1, is weighted with an appropriate W and the sum of the0
Ž . Xweighted inputs is sent to the hard limit transfer function. The transfer function, f P , returns a 0 if W X-0 or

Fig. 2. A perceptron network.
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a 1 if W X X00. The hard limit transfer function enables a perceptron to classify input vectors by dividing the
input space into two regions. The output will be either 0 or 1, depending on the classification of the input. Let

Ž Ž i. w Ž i. Ž i. Ž i.xXus concentrate on the output y of the neuron. If we present a batch of p input vectors X s x x . . . x ,0 1 n
. Ž i.where is1, . . . , p to this network, then we have the sequence of outputs y , where is1, . . . , p,

yŽ1.s f W qw x Ž1.qw x Ž1.q PPP qw x Ž1. ,Ž .0 1 1 2 2 n n

Ž2. Ž2. Ž2. Ž2.y s f w qw x qw x q PPP qw x ,Ž 0 1 1 2 2 n n
1Ž ....

Ž p. Ž p. Ž p. Ž p.y s f w qw x qw x q PPP qw x .Ž .0 1 1 2 2 n n

Ž .In order to analyze further, we first try to remove the transfer function, f P . Given are p training pairs
� Ž i. Ž i.4 Ž i. w Ž i. Ž i.x Ž . Ž i.X ,d , is1,2, . . . , p, where X s 1 x . . . x is nq1 =1 and the desired output d is 1=1. Note1 n

Ž . Ž i.that a sufficient condition for 1 to hold in the training phase is that the linear actual outputs, y , is equal to
the desired outputs

dŽ1.sw qw x Ž1.qw x Ž1.q PPP qw x Ž1. ,0 1 1 2 2 n n

Ž2. Ž2. Ž2. Ž2.d sw qw x qw x q PPP qw x ,0 1 1 2 2 n n
2Ž ....

Ž p. Ž p. Ž p. Ž p.d sw qw x qw x q PPP qw x .0 1 1 2 2 n n

This condition will be used in the following sections for the discussion of the dimension expansion. In
general, we describe equations in the matrix notation form,

XWsD ,

where

wŽ1. Ž1. Ž1. 01 x x PPP x Ž1.1 2 n dw1Ž2. Ž2. Ž2. Ž2.1 x x PPP x d1 2 n
w .Xs , Ws and Ds . 3Ž .. . . . . 2 .. . . . . . .. . . . . .

Ž p..Ž p. Ž p. Ž p. d1 x x PPP x1 2 n wn

We want to know whether there exist solutions to XWsD, and if so, how to find the solutions. In linear
Ž .algebra, there are two theorems that can be applied to our equations: I Gauss elimination and solution sets:

w xSuppose that the system of equations XWsD – or, equivalently, the augmented matrix X D – is transformed
˜ ˜by a sequence of elementary row operations into the system XWsD – or, equivalently, into the augmented

˜ ˜ ˜ ˜w x Ž .matrix X D . Then the solution sets are identical: W solves XWsD if and only if W solves XWsD. II
Rank and solvability: For the system of equations XWsD, exactly one of the following three possibilities will
hold:

w x1. The system XWsD has no solution if and only if the rank of the augmented matrix X D is greater than
that of X.

w x2. The system XWsD has exactly one solution if and only if the rank of X D equals that of X, and equals
the number of unknowns.

w x3. The system XWsD has infinitely many solutions if and only if the rank of X D equals that of X, and is
strictly less than the number of unknowns.
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2.2. Dimension expansion

We know that perceptrons can only classify linearly separable sets of vectors. If a straight line or a
hyperplane can be drawn to separate the input vectors into their correct categories, the given classes are linearly
separable. If the given classes are not linearly separable, the learning process will never reach a point where all
given classes are classified properly. The dimension expansion method is to make the given classes linearly

w xXseparable before doing the perceptron learning procedure. Each external input x x . . . x is expanded to0 1 n
w xXx x . . . x x x . . . x , where kspy1, for p01. We can describe the expanded equations using0 1 n nq1 nq2 nqk

the following matrix notation:

UWsD ,

where

wŽ1. Ž1. Ž1. Ž1. Ž1. 01 x x PPP x x PPP x Ž1.1 2 n nq1 nqk dwŽ2. Ž2. Ž2. Ž2. Ž2. 1 Ž2.1 x x PPP x x PPP x1 2 n nq1 nqk d
w .Us , Ws and Ds . 4. . . . . . . Ž .2 .. . . . . . PPP . . .. . . . . . . .. Ž p..Ž p. Ž p. Ž p. Ž p. Ž p. d1 x x PPP x x . x1 2 n nq1 nqk w. n

We propose the expanded matrix U as below:

Ž .. 5

Ž .Lemma 1. It is assumed that there are more training patterns than inputs, i.e., p)n. The rank of U in 5 is
w xequal to the rank of U D .

Proof. Since only one element of any column of H is 1 and the others are all 0, the rank of H is equal to
Ž . Ž . Ž . Ž .py1. since p- nq1 q py1 , the rank of U is equal to p. Since p- nq1 q py1 q1, the rank of

w xU D is equal to p. I

w xSo, the rank of U is equal to the rank of U D , and thus the system of equations UWsD has exactly one
Ž .solution or has infinitely many solutions. This shows that if we expand the dimension of input space as 5 , then

there exist solutions for the system, i.e., suitable weights can be obtained by an appropriate learning algorithm.

Ž Ž .. Ž Ž ..Lemma 2. Training pairs with input X in 3 and output H in 5 haÕe perceptron solutions.

� Ž i. Ž i.4 Ž i. w Ž i. Ž i. Ž i.xXProof. Training pairs are X , H , where H s h h . . . h is the transpose of the ith row of H as1 2 k
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Table 1
A 2-input and 3-output truth table

x x d d d1 2 1 2 3

0 0 0 0 1
0 1 1 0 0
1 0 1 1 1
1 1 0 1 0

Ž . Ž .shown in 5 is1,2, . . . , p , and only one element of any column of H is 1 and the other elements are all 0. In
general, let us consider the augmented matrix:

Because X Ž1., . . . , X Ž iy1., X Ž iq1., . . . , X Ž p. inputs are to produce the same output 0 using a perceptron, they are
Ž Ž i.on the same side of a hyperplane. X input is to produce the output 1 using a perceptron, it is on the another

.side of the hyperplane. Training sets whose sample patterns have the above property are called linearly
Ž Ž .. Ž Ž ..separable. So, input X in 3 and output H in 5 have perceptron solutions. I

From Lemmas 1 and 2, we can conclude the following theorem.

Fig. 3. The generation of higher-order input terms.



( )S.-D. Wang, T.-C. HsurPattern Recognition Letters 19 1998 559–568 565

Fig. 4. The final network for Example 1.

Ž . Ž .Theorem 1. The mapping X™D, where X and D are arbitrary matrices of dimensions p=n and p=1 ,
respectiÕely, can be implemented with one layer of perceptron nodes followed by a perceptron node.

Ž .The design procedure is composed of two phases. Phase 1 is the generation of higher-order input terms H ,
Žin which we apply the multi-output binary perceptron training algorithm to the network. Training pairs are

� Ž i. Ž i.4 . w xXX , H . The outputs of the higher-order input terms are denoted by Ms m m . . . m . In phase 2, we1 2 k
� Ž i. Ž i.4 Ž i. Ž i.use the training pairs U , D , where U sX jM, and is1,2, . . . , p, to be learned by the multi-output

binary perceptron training algorithm.

Example 1. There are a 2-input and a 3-output truth table as shown in Table 1.
Ž1. w xXFirst, we have to generate the higher-order input terms. From Table 1, ps4, ns2, X s 1 0 0 ,

Ž2. w xX Ž3. w xX Ž4. w xXX s 1 0 1 , X s 1 1 0 , X s 1 1 1 and

0 0 0
1 0 0Hs .
0 1 0
0 0 1

� Ž i. Ž i.4Apply the multi-output binary perceptron training algorithm to this network with training pairs X , H . After
being trained for 5 epochs, the network classifies correctly, and the result is shown as in Fig. 3. In phase 2, from

Ž1. w xX Ž2. w xX Ž3. w xX Ž4. w xX Ž1. w xX Ž2. w xXTable 1, D s 0 0 1 , D s 1 0 0 , D s 1 1 1 , D s 0 1 0 , X s 1 0 0 0 0 0 , X s 1 0 1 1 0 0 ,
Ž3. w xX Ž4. w xXX s 1 1 0 0 1 0 and X s 1 1 1 0 0 1 . Apply the multi-output binary perceptron training algorithm to this

� Ž i. Ž i.4network with training pairs U , D . Trained for 4 epochs, the network classifies correctly, and the result is
w xXshown as in Fig. 4. Pick one set of data to verify the results, if the input vector is 1 0 by any chance which

w xXcoincide with the desired output values 1 1 1 . From Fig. 3, we have

m1 y0.96 y1.56 1.36 1 0
Xs f W X s f s .Ž .m y0.34 1.09 y2.13 1 12 � 0y1.93 1.36 0.77 0 0m3
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From Fig. 4, we have

° ¶1
x1d1 y0.59 0.12 0.02 0.84 1.86 y0.82 1x2d s f s .y0.18 2.06 y0.23 y0.63 1.69 1.31 12 m10.52 0.34 y0.87 0.18 0.05 y0.17 1d3 m2¢ ßm3

3. Adaptive dimension expansion

Ž .As mentioned in Section 2, we expand py1 terms for p n-input train data as shown in 5 . In the case of
large number p will make the approach impractical. We hereby propose an adaptive expansion method to
reduce the number of expanded terms. For example, if the system is linearly separable then we do not need to
expand any more. Here we used an example of a network construction to introduce the concept of adaptive
dimension expansion. The example neural network is constructed to realize the exclusive OR Boolean function.
The desired input–output mapping is given in Table 2. The X and D matrices are then

1 0 0 0
1 0 1 1Xs , Ds .
1 1 0 1
1 1 1 0

w x w xA solution to this equation exists if the rank of X is equal to the rank of X D , but A is of rank 3 and X D is
of rank 4, thus a single layer neural-network solution does not exist. Take first two rows of X, denoted by the

Ž . Ž . Ž Ž .. Žw Ž . Ž .x.form of X 1:2,: , and the first two rows of D, denoted as D 1:2 . Now rank X 1;2,: s rank X 1;2,: D 1:2
Ž .s2, so a solution to this problem does exist. Similarly, we take first three rows of X, denoted as X 1:3,: , and

Ž . Ž Ž .. Žw Ž . Ž .x.the first three rows of D, denoted as D 1:3 . Now rank X 1:3,: s rank X 1:3,: D 1:3 s3, so a solution to
Ž . Ž .this problem does exist. We know that we cannot take X 1:4,: and D 1:4 . The fourth row of X is the place

where we need to expand dimension by augmenting with a column vector. In this column vector, all are 0s
except the fourth row is 1. Thus

0 1 0 0 0
0 1 0 1 0Us X s .
0 1 1 0 0
1 1 1 1 1

So, we have got

0
0Hs .
0
1

Ž .From Lemma 2, the data pairs X, H have a perceptron solution. The single-layer solution to the problem is

Table 2
The XOR function

x x d1 2

0 0 0
0 1 1
1 0 1
1 1 0
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Fig. 5. Components of the XOR neural network.

Ž . w xshown in Fig. 5 a . From Lemma 1, the rank of U is equal to the rank of U D . The single-layer solution to the
Ž . Ž .problem is shown in Fig. 5 b . The network that realizes the XOR problem is shown in Fig. 5 c .

Fig. 6 gives the Matlab-code used to implement adaptive dimension expansion. The inputs to the algorithm
include the training patterns X and D. The outputs of the algorithm include the U and H matrices. There are
two main parts in the algorithm. The first one is to detect the redundancy of the input patterns. All redundancies
should generate the same effect to the U and H matrices. The last one is to solve a succession of subsystems of
linear equations. If the subsystem is linearly separable, then we do not need to expand anymore, otherwise we
need to expand one column of H. The algorithm’s solution is based on solving a succession of systems of linear

Ž .equations. Some methods for solving the linear equation are recommended by Moody and Antsaklis, 1996 .
These methods are guaranteed to converge in a number of steps equal to the order of the system, assuming that

Ž .the problem is sufficiently well conditioned Kincaid and Cheney, 1991 .
Another simulation has been conducted in order to show the validity of the above design concept of the

adaptive dimension expansion. The training patterns used in the simulation are 4 symbols, each being

Ž .Fig. 6. Algorithm 1 Expansion .
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Fig. 7. Four non-linearly separable patterns.

represented by a 10=10 pixel matrix as shown in Fig. 7, and the corresponding targets are binary codes as
shown under each pattern. The neural network used was the adaptive dimension expansion model with 100

Ž . Ž .inputs q 1 expansion bit and 2 phase 1 q 3 phase 2 outputs. After being trained 2 epochs, the network
classifies correctly. For a non-linearly separable case as in Fig. 7, we cannot apply the typical perceptron
network to solve it. But, it is easy to solve it by the adaptive dimension expansion method. It should be noted
that these almost trivial examples are just means to show the detailed net configurations that come out of our
design technique. The real strength of our technique can only be fully appreciated by testing mappings of
extremely large dimensions. It is our goal to show such testing results in future study.

4. Conclusion

In this letter, we have proved that for the binary function if a desired output is expressed in sum of products,
the desired output can be implemented with one layer of perceptron nodes followed by a perceptron node. This
result is similar to the digital system, but we still have the benefits of neural networks.
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