
On the discovery of process models from their instances
$

San-Yih Hwang*, Wan-Shiou Yang

Department of Information Management, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan

Accepted 30 November 2001

Abstract

A thorough understanding of the way in which existing business processes currently practice is essential from the

perspectives of both process reengineering and workflow management. In this paper, we present a framework and algorithms

that derive the underlying process model from past executions. The process model employs a directed graph for representing the

control dependencies among activities and associates a Boolean function on each edge to indicate the condition under which the

edge is to be enabled. By modeling the execution of an activity as an interval, we have developed an algorithm that derives the

directed graph in a faster, more accurate manner. This algorithm is further enhanced with a noise handling mechanism to tolerate

noise, which frequently occur in the real world. Experimental results show that the proposed algorithm outperforms the existing

ones in terms of efficiency and quality. D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Process discovery; Business process reengineering; Workflow management; Data mining

1. Introduction

The unprecedented growth of computer and net-

working technologies has changed the way in which

enterprises operate. Organizations that seek to stay

competitive in a rapidly changing environment are

compelled to incorporate information technologies

into many aspects of their business operations, which

often call for the radical redesign of current business

processes. Such a revolutionary change of business

processes is termed business process reengineering,

abbreviated as BPR. Reports on the successful imple-

mentations of BPR effort that achieve major improve-

ment on organizational objectives such as high service

quality and low cost can be widely seen in the lite-

rature [12,20]. To perform BPR, several sets of guide-

lines have been proposed, including the five-step

approach by Davenport [12], the six-step approach

by Furey [13], and AT&T’s seven-step approach [18].

Regardless of differences in their subtle details, these

guidelines suggest that analysis of existing critical

business processes as well as redesign of these pro-

cesses are two essential BPR tasks. To facilitate these

two tasks, a thorough understanding of the way in

which the existing business processes currently prac-

tice is instrumental. Although organizations typically

prescribe how business processes have to be per-

formed, such prescription may not completely reflect

the reality due to the following reasons:

(1) Business processes are usually described in a

loose manner such that many aspects are left

0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0167 -9236 (02 )00008 -8

$ This work is supported in part by the National Science

Council in Taiwan under grant number NSC89-2213-E-110-047.
* Corresponding author.

E-mail addresses: syhwang@mis.nsysu.edu.tw (S.-Y. Hwang),

ryang@mis.nsysu.edu.tw (W.-S. Yang).

www.elsevier.com/locate/dsw

Decision Support Systems 34 (2002) 41–57



unspecified. This is especially common in

human-oriented processes.

(2) Some parts of the business processes are sel-

dom executed and should be considered as ex-

ceptions thereafter.

(3) The real processes are deviated from the pre-

planned business processes because of environ-

mental change.

One promising approach in improving process

efficiency and customers’ satisfaction, as advocated

by many vendors and BPR experts, is to adopt a

workflow management system (WFMS) that auto-

mates process executions [23]. A WFMS coordinates

the execution of constituent activities as planned,

enabling the tracking of ongoing process instances

and reporting the statistical figures of processes being

executed. However, current WFMSs assume that a

precise model of all processes is available, whereas it

has been widely recognized that defining a workflow

type which totally represents all properties of the un-

derlying business process is a difficult job [12]. Cur-

rent practices for identifying a process model are

usually performed in ad hoc manners, involving nu-

merous meetings and discussions with authorized and

knowledgeable persons.

Our primary objective in this paper is to propose a

framework and develop algorithms for modeling the

existing processes automatically. Specifically, we

assume the existence of unstructured executions of a

process, called instances. Taking the process instance

data as the input, our algorithms will derive the control

flow and the associated conditions of the underlying

process. Instance data of a process may be collected in

various ways. On one hand, in a traditional human-

coordinated, document-driven process, instance data

can be found in a collection of documents, each of

which describes the execution information of a process

instance, such as the completion time and the identity

of the responsible person for each step involved. In this

case, the discovered process model may help ease the

introduction of a workflow management system. On

the other hand, in an environment where a workflow

system has been employed for coordinating process

executions, detailed workflow logs are already avail-

able electronically (e.g., see Ref. [16] for a list of

commercial WFMSs and the log information they

provide). In this case, the discovered process model

serves as a feedback from the practical process execu-

tions and will help the evolution of the current process.

In addition, commercial project management tools are

also capable of recording some historical information

about process executions. Some research prototypes

have also been developed to monitor processes in a

specific domain, such as software development [5].

1.1. Related work

The research on process discovery traces its origin

to grammar discovery in the early 1970s [4]. The goal

was to identify the underlying grammar from a finite

number of sample strings. Grammars are commonly

represented as finite state machines (FSMs). After a

correct FSM is identified, it can then be used to tell the

correctness of a given input string. More recently,

researchers have started to adopt the existing grammar

discovery algorithms to the problem of process dis-

covery [9,11]. The idea was to treat an execution of a

process as a string of events, each of which represents

an execution outcome of an involving activity. With

several executions of the same process as the input,

these algorithms will be able to synthesize a process

definition that best satisfies these historical data.

Process definitions were described in the form of

FSMs. For example, consider Fig. 1(a) for an example

FSM of the program development process [9], which

involves three sequential steps: code modification,

compilation, and testing. After the code is modified

(G), the subsequent compilation is performed and

produces the result of either OK (I) or not OK (H). If

the compilation is not okay, the code has to be modi-

fied again and the procedure has to be repeated; other-

wise, a testing activity is performed. A successful test-

ing (K) ends this process, and a failed testing (J) calls

for the repetition of the entire procedure. Fig. 1(b) and

(c) show the FSMs discovered from two different

algorithms, KTAIL and Markov [9], respectively.

The original FSMs like the one shown in Fig. 1(a)

are very easy to perceive and can be converted to an

activity-based process model without much difficulty.

As a matter of fact, in Fig. 1(a), each state corresponds

to the execution of exactly one real-world activity, and

its outgoing transitions represent the possible execu-

tion results. However, in a derived FSM, such as that

in Fig. 1(b) or (c), a state may not have its clear sem-

antic meaning, and an execution outcome may appear

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5742



in the transitions of multiple states. While a derived

FSM can be used to verify the validity of a given ex-

ecution, it would be difficult to infer the underlying

process model from this FSM.

Realizing the inadequacy of FSM as a process

model, Agrawal et al. [2] took a different approach,

which produced a process definition in the form of a

directed graph, with vertices being the set of constituent

activities and edges being the set of control depend-

encies among them. As the directed graph is the main

process model adopted by most workflow systems

[27], the output of their algorithm can be readily

employed in a commercial workflow system. The idea

of their algorithm is quite simple. Each activity in a

process execution is represented as an instantaneous

event, say the start or end of it. With this simplification,

an execution of a process can be represented as a

sequence of activities. Their algorithm then tries to

locate all possible dependencies from each execution

instance. For example, the execution {ABDCE} im-

plies the following dependencies: {A!B, A!D,

A!C, A!E, B!D, B!C, B!E, D!C,

D!E, C!E}. Dependencies derived from all proc-

ess executions are first unionized, but those that appear

in both directions are then removed. That is, for any

pair of activities A and B, if both dependencies A!B

and B!A are found from some (but different) execu-

tions, then the two activities are pronounced independ-

ent. Transitive reduction is finally performed for each

process instance to induce a minimal graph. This final

step dominates the whole process in terms of running

time. The total time complexity is O(N� n3), where

N is number of instances and n is number of activities

of a process.

Their algorithm uses a simple mechanism for han-

dling cycles. Appearances of the same activity in an

execution are first treated as distinct activities. After

the algorithm described above is performed for iden-

tifying all transitions, vertices of the same activity are

finally merged as a single one. However, this simple

method may unnecessarily remove some dependencies

in some cases. Consider the example process shown in

Fig. 2, in which a cycle exists between activities B and

E, and an or-split branch follows activity B. In one

process instance, suppose B and C are executed 10

times and 4 times, respectively. In another instance, B

and C are performed 10 times and 3 times, respec-

tively. Let B10 denote the tenth occurrence of activity B

and C3 the third occurrence of activity C in a process

instance. From the first process instance, C3!B10 is

inferred, while B10!C3 is induced from the second

one. As a result, B10 and C3 are considered indepen-

dent. In the final transitive reduction step, spurious

transitions (e.g., B!E) would remain due to the

incorrect conclusion on the relationship between B

and C.

1.2. Contribution

We present a novel approach to solve the problem

of process discovery. Just as Agrawal et al.’s algo-

rithm [2] uses directed graphs as the process model for

easier interpretation, so does our approach. Our ap-

Fig. 2. An example process.

Fig. 1. (a) The underlying process definition, (b) an FSM discovered by KTAIL, (c) an FSM discovered by Markov.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 43



proach not only handles cycles correctly but also pro-

duces more information in a faster manner. Specifical-

ly, the directed graph derived by our approach em-

bodies control dependencies between activities as well

as the conditions pertaining to them. These two major

components together make our work a complete

framework for process discovery.

Unlike other work on process discovery that makes

use of only an instantaneous event for each activity

instance, our work assumes an interval for the execu-

tion of an activity instance. For those processes whose

executions are either automated (via WFMSs) or moni-

tored (through some monitoring tools), the execution

intervals of their constituent activities are already

available. However, manual processes may provide

merely partial information such as the completion times

of their activities. In this case, the starting time of an

activity instance can still be inferred by subtracting the

anticipated execution duration from its completion

time. Consequently, the derived intervals may contain

noise, which must be screened out by some noise

handling mechanism, as will be discussed in Section

5.With execution intervals of activities as the input, we

shall be able to develop an algorithm that produces a

process model closer to the real one in shorter time.

This paper is structured as follows. Section 2

describes the process model and the kind of data we

assume to be available. Section 3 presents two algo-

rithms that derive the control dependencies and the

associated conditions, respectively. Section 4 com-

pares the performance of the proposed algorithm with

that of the algorithm proposed by Agrawal et al. [2] by

applying synthetic datasets to both algorithms. In

Section 5, we consider a practical environment in

which noisy data is present. Strategies for dealing

with noise are discussed. Finally, Section 6 summa-

rizes the paper and provides potential directions for

future research.

2. Process model

Various models have been proposed in the literature

to capture the various requirements about processes.

Some models provide solid theoretical foundations

and can be used for correctness verification and analy-

sis. Petri-Net [1], State Diagram [29], and temporal

logic-based process models [3] fall into this category.

These models, though theoretically sound, are not easy

to understand from the viewpoint of enterprises’ users.

Some focus on the interaction between customer and

producer and try to captures their behavior. A typical

one is the Action Model [21]. However, process mod-

els of this kind are loose in the sense that interactions

are defined at a conceptual level and physical inter-

actions are not precisely captured. The most popular

process models, as adopted by most commercial

WFMSs, are based on directed graphs. Though differ-

ent vendors may provide slightly different process

models, a reference model that covers features pro-

vided by most vendors is available in [15]. This model,

defined by the Workflow Management Coalition

(WfMC), intends to serve as the interchange means

between process data produced by different WFMSs.

The process model assumed in this paper, as will be

briefly described in the following, is based on the ref-

erence model proposed by WfMC.

Enterprises typically have many business pro-

cesses. A business process comprises a set of activities

and the interdependencies between them. Each activity

is a logical unit of work, performed by either a human

or a computer program. Each activation of a business

process generates a process instance, which will

achieve a prescribed goal when it terminates success-

fully. A process can be modeled as a structure similar

to a directed graph, with vertices being the constituent

activities and the edges being the potential control flow

between activities. Moreover, each edge is associated

with a Boolean function, which determines whether

this control transition will be enabled during a process

execution.

We distinguish three types of transition structures.

(1) Sequential transitions: activities are executed

sequentially. In other words, an activity is followed by

exactly one other activity, and the Boolean function

associated to the transition is simply ‘‘true.’’

(2) Parallel split: following an activity, a number of

activities are executed possibly concurrently. The res-

pective Boolean function pertaining to each edge is

independently evaluated.

(3) Loops: a loop specifies a set of activities to be

repeatedly executed. The ending activity of a loop has

two outgoing edges. One connects to the starting

activity of the loop and the other leaves. Boolean

functions pertaining to these two outgoing edges must

be exclusive and determine whether the loop is exe-

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5744



cuted again or not. Furthermore, activities of the loop

body may be connected by sequential or parallel tran-

sitions, or even form a nested loop.

Note that in WfMC’s process mode, another type of

transition structure, called exclusive-or (XOR) split is

defined [17]. An XOR split is similar to a parallel split,

except that one more parameter is needed: a list of

outgoing transitions that defines the order in which

conditions on transitions are evaluated. When a condi-

tion of a transition is evaluated to be true, the following

transitions in the sequence specified by the list are

ignored to guarantee an exclusive-or transition. Never-

theless, an XOR split can be emulated by embedding

conditions on the transitions of a parallel split. There-

fore, to simplify the discussion in the remainder of the

paper, we shall consider only the three transition struc-

tures described above.

An activity execution spans a temporally extended

period and results in the occurrence of several events.

An event is an instantaneous action, and no two events

occur at the same time. Within the context of this work,

we consider three types of events: (1) start_event,

which denotes the starting of an activity instance, (2)

end_event, which indicates the ending of an activity

instance, and (3) write_event, which signifies the data

writing action performed by an activity instance.

Both start_event and end_event are characterized

by a 3-tuple (Action, ActInsNo, TS), where Action

distinguishes the start or end event, ActInsNo uniquely

identifies an activity instance, and TS is the timestamp

at which this event occurs. Similarly, a write event can

be represented by a 5-tuple (Write, ActInsNo, Var,

Value, TS), where Var is the name of a data variable

and Value records the value written to it. By combining

all the event information about the same activity

instance, we can summarize an execution of an activity

as a record shown in Table 1. In the following section,

we will develop algorithms to extract the underlying

process model from the information such as that

shown in Table 1.

3. The algorithms

In this section, we will present two algorithms that

derive the process model digraph and the conditions

pertaining to edges, respectively.

3.1. Deriving the process model digraph

Activities involved in a process instance can be

visualized as a set of intervals. For example, suppose a

process constitutes five activities A, B, C, D, and E,

and their control dependencies are shown in Fig. 3(a).

Using Time as the horizontal axis, Fig. 3(b) shows the

interval diagram of a possible execution.

For any pair of activities of the same process

instance, the relationship between their temporal du-

rations can be classified into two kinds: disjoint and

overlapped. Two activity instances are said to be

disjoint if either one starts after the end of the other.

They are said to be overlapped if they are not disjoint.

Obviously, if there is a path from an activity X to

another Y in the underlying process model digraph, X

and Y must be disjoint in any execution in which they

both appear, but the opposite is not necessarily true.

Our goal is to find all the disjoint activity pairs (X, Y)

such that Y immediately follows X in some process

instances because these pairs have the potential of

being edges in the underlying process model digraph.

Table 1

ActInsNo Start_time End_time Var1 Value1 . . . Varn Valuen

Fig. 3. (a) An example process, (b) a possible process instance.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 45



Definition 1. A process instance of a process model

digraph (V, E) is a set of 3-tuples (Vi, st, et), where

ViaV, and st and et are timestamps representing the

starting time and ending time of Vi, respectively.

Definition 2. An activity Vi is said to be followed by

Vj in a process instance I, denoted as Followed(Vi, Vj,

I), if there exist two tuples (Vi, sti, eti) and (Vj, stj, etj)

in I such that eti< stj.

Definition 3. The activity set of a process instance I,

denoted as ActSet(I), is the set of activities that appear

in I.

Definition 4. An activity Vi is said to be directly

followed by Vj in a process instance I if Followed(Vi,

Vj, I) and IaVkaActSet(I)-{Vi, Vj} such that Follo-

wed(Vi, Vk, I) and Followed(Vk, Vj, I) both hold.

DirFollowedSet(I) denotes the set of ordered pairs (Vi,

Vj) such that Vi is directly followed by Vj in I.

Obviously, DirFollowedSet(I) for an instance I

represents (part of) the potential edges in the process

model digraph. However, DirFollowedSet(I) may

contain spurious transitions. For example, from the

process instance shown in Fig. 3(b), it is determined

that C is directly followed by D, while we can see

from Fig. 3(a) that C and D are actually independent.

Besides, some transitions may be missing from Dir-

FollowedSet(I), even though the pertaining activities

both appear in I. Still, consider the process shown

in Fig. 3(a). While there exists an edge C!E, C is

not directly followed by E in the instance shown in

Fig. 3(b). To find the missing transitions, as well to

eliminate the spurious ones, we need to take into ac-

count all the available process instances.

Definition 5. The overlapped set of a process instance

I, denoted as OverlappedSet(I), is the set of activity

pairs {Vi, Vj} such that both Vi and Vj appear in I, and

Vi and Vj incur overlapped execution durations.

Property 1. Consider two instances Ii and Ij of the

same process. For any activity pair Vi and Vj, if

(Vi, Vj)aDirFollowedSet(Ii) and {Vi, Vj}a Over-

lappedSet(Ij), then (Vi, Vj)gE, where E is the set of

edges in the process model digraph.1

In other words, we can use the overlapped set of

one instance to prune the spurious transitions ap-

peared in the directly followed set of another. This

observation leads to the following definition.

Definition 6. The directly followed set of a set of

process instances S, denoted as DirFollowedSet(S), is

the set of ordered activity pairs (Vi, Vj) such that

aIaS, (Vi, Vj)aDirFollowedSet(I) and bIaS, (Vi,

Vj)gOverlappedSet(I). That is, DirFollowedSet(S)

=[IaS DirFollowedSet(I)�[IaS OverlappedSet(I).

Note that we overload the notation DirFollowed-

Set() to represent the directly followed set of both a

single instance and a set of instances. With the

sufficient number of process instances, DirFollowed-

Set(S) should be close to the set of real transitions.

We are still left with the problem of how to

efficiently compute DirFollowedSet(S) for a given

set of process instances S. To do so, we need to first

compute the directly followed set for each instance I

in S. The algorithm, named CompDirFollowedSetI(),

serves this purpose and is listed below.

We use an example to illustrate how CompDirFol-

lowedSetI(I) works. Again consider the process

instance shown in Fig. 3(b). Activities are examined

in the reverse order of their ending time, i.e., E, B, D,

C, and A. We first examine E and found B to be the

first that is directly followed (direct-follow) by E.

Thus, a pair (B, E) is inserted into DirFollowedSetI.

Following that, we can see that D is also directly

followed by E but C does not, because D starts before

C ends. Therefore, DirFollowedSetI becomes {(B, E),

(D, E)} at this point. Next, we examine B and find A

to be the only one that is directly followed. Similarly,

1 This argument is valid only when every instance is correctly

recorded. We make this assumption at this moment to simplify the

discussion. This assumption will be dropped later, and approaches

to handling noise will be discussed in Section 5.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5746



when we subsequently check D and C, C and A,

respectively, are found to be the ones that are directly

followed. Thus, DirFollowedSetI finally becomes {(B,

E), (D, E), (A, B), (C, D), (A, C)}. Computing the

overlapped set of an instance I is easier. The algo-

rithm, named CompOverlappedSetI(), is listed below.

Again, consider the same example shown in Fig.

3(b), OverlappedSetI finally becomes {(B, D), (D, B),

(B, C), (C, B)}.

Property 2. The running time of CompDirFollowed-

SetI(I) (CompOverlappedSetI(I)) is O(m), where m is

the number of activity pairs in DirFollowedSet(I).

Note that m is equal to O(n) in the best case and O(n2)

in the worst one, where n is the number of activity

instances in I.

Now computing DirFollowedSet(S) for a set of

process instances, S becomes straightforward. The

pseudo code is listed below.

Property 3. The running time of CompDirFollowed-

Set(S) is O(max(N�m, n2)), where N is the number of

process instances in S, m is the maximum number of

activity pairs in DirFollowedSet(I), IaS, and n is the

total number of activities. Note that O(N�m) is the

total time for computing DirFollowedSet and Over-

lappedSet in the algorithm, and O(n2) is that for

combining the two for the final result.

For a process model digraph that contains cycles,

our algorithm can be directly applied. At this time, the

same activity may appear multiple times in a single

process execution. Unlike Agrawal et al.’s algorithm

[2], in computing the directly followed set for a given

instance, we treat various occurrences of the same

activity as a single one. Consider the process model

digraph shown in Fig. 2. Fig. 4(a) shows three

example process instances, and Fig. 4(b) shows their

corresponding directly followed sets (DirFollowed-

dSet(I)). By unionizing them and then pruning the

spurious transitions using the overlapped sets, our

algorithm will return the result exactly the same as

that shown in Fig. 2.

The algorithm we have described so far only makes

use of the starting time and ending time of each

activity instance. The data written by activity instance

can be used for deriving conditions associated to the

edges discovered by the algorithm presented here. The

following subsection is devoted to the discussion on

how this can be achieved.

3.2. Deriving control conditions

The objective of this subsection is to find the control

conditions on the transitions obtained from the algo-

rithm described in the previous subsection. To simplify

the discussion, for now, we assume that the condition

on each outgoing edge of an activity is a function of

only the variable values written by the activity. Later,

we will discuss how to modify our proposed algorithm

if this assumption has to be dropped.

Suppose an activity A has more than one outgoing

edge, forming a transition structure of a parallel split

or a loop. To find the condition associated to an

outgoing edge A!B, we first identify two sets of

process instances S1 and S2, such that each instance in

S1 involves both A and B and each one in S2 involves

only A. From S1 and S2, we form two lists, L1 and L2

of variable values written by A. While each entry in

L1 represents a set of data values that enables B after

A completes, each entry in L2 indicates the case when

B is not followed after A completes. We can then

apply some classification technique to derive the

condition associated to the edge A!B.

We will use an example to illustrate this approach.

Suppose there are three outgoing edges of A: A!B,

A!C, and A!D, and A writes only to the variable

V1. Table 2 lists 10 process instances that involve A. It

can be seen that every instance in {I1. . .I4} enables B,

but none of the instances {I5. . .I10} does. The con-

dition pertaining to A!B can then be derived by

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 47



applying some classification technique on the output

values of V1.

Many classification techniques are available in the

literature and even in software packages. We can

roughly classify them into four categories according

to the formats of derived classification models, namely

decision tree (e.g., ID3 and its descendants [24]), de-

cision rule (e.g., AQ family [22], and CN2 [7]), discri-

mination analysis [19] and neural network approach

(e.g., backpropagation neural network [25]). The deci-

sion tree approach induces a decision tree that

describes the classification model between input attrib-

utes and decision outcomes, and the decision rule ap-

proach discovers a set of decision rules, ordered or

unordered, as its classification model. The discrimina-

tion analysis approach derives linear combination func-

tions of input attributes under normal distribution and

equal dispersion assumptions. The last approach, neu-

ral network, produces an appropriate set of weighted

links according to a predetermined network topology

that differentiates decision outcomes based on input

attribute values.

The neural network approach is known for its

noise-tolerance and fault-resistance. However, being

a holistic approach, the neural network approach

suffers from its inability to produce interpretable

knowledge [26]. The discrimination analysis is a

math-based method, however, it is not easy to fulfill

all conditions in real situations [26]. Hence, these two

methods were not considered in this research. The

decision tree or decision rule approach is capable of

generating interpretable knowledge in the form of

decision tree or rules. According to the experimental

results conducted by Clark and Boswell [6], CN2 (a

decision rule approach) significantly outperformed

C4.5 (a decision tree approach) in predictive accuracy

at the 95% confidence level. Thus, considering the

research’s purpose and generalization, CN2 was adop-

ted as the classification technique in this research. In

some cases, certainly, a practitioner could employ

another classification technique based on the concrete

situations of data. Table 3 shows the classification

result by applying CN2 to the example data. It clearly

indicates that the condition pertaining to the edge

A!B is indeed V1 > 60.

The previous description of our approach is based

on the assumption that the condition pertaining to an

edge is determined solely by the output of the source

activity. While we find this assumption valid in most

cases, our proposed approach can be applied to a more

general case. At this time, when it comes to determine

the condition pertaining to an edge, all the variables

Table 2

An example set of process instances

Instances V1 Executed activities

I1 95 B

I2 85 B

I3 75 B

I4 65 B, C

I5 55 C

I6 45 C

I7 35 C, D

I8 25 D

I9 15 D

I10 5 D

Fig. 4. (a) Three process instances, (b) the directly followed sets.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5748



that are written by the activities executed before the

source have to be taken into account. The price to pay,

of course, is the longer running time.

4. Performance evaluation

To make a sensible performance comparison, we

considered only algorithms that adopt the same proc-

ess model, i.e., directed graph. Specifically, we com-

pared the efficiency and the quality of the output result

of our algorithm with that proposed by Agrawal et al.

[2]. Since Ref. [2] does not address the problem of

deriving control conditions, in the following, only the

directed graph derivation algorithms are compared.

In terms of efficiency, recall from Property 3 that

our directed graph derivation algorithm takes O(max

(N�m, n2)) running time, where N is the number of

process instances, m is the maximum size of the

directly followed set for each instance, and n is the

total number of activities. It has been shown that the

algorithm proposed in Ref. [2] takes O(N� n3). As we

discussed in Property 2,m is equal to O(n2) in the worst

case. We thus conclude that our algorithm is better than

that proposed in Ref. [2] in terms of efficiency.

To compare the output result of the two algorithms,

we considered two measures: precision and recall.

Definition 7. The recall of an algorithm X is the ratio

of the number of correct transitions returned by X to

the total number of correct transitions. The precision

of X is the ratio of the number of correct transitions

returned by X to the total number of transitions

returned by X.

These two measures can be graphically illustrated

by Fig. 5, where A[B is the set of transitions found by

the target algorithm and B[C is the set of correct

transitions. In this case, precision of the algorithm is

jBj/jA[Bj, and its recall is jBj/jB[Cj.

4.1. General experiment information

The experiments were conducted by applying

synthetic datasets to both algorithms and comparing

the precisions and recalls computed from their output.

Table 4 summarizes the parameters and their settings

used in our experiments. Three process model

digraphs, as shown in Fig. 6(a)(b) and (c), were

considered. These digraphs represent three different

types of graph structures and were extracted from real

applications (e.g., see Refs. [8,14,15]). Fig. 6(a) (no-

loop) features a manufacture process that consists of

only sequential and parallel transition structures. Fig.

6(b) (simple-loop) is an insurance process that in-

volves several simple loops. Fig. 6(c) (composite-

loop) captures a survey process that includes a com-

posite loop (i.e., nested loop). For each process model

digraph, a number of process instances were ran-

domly generated. When an edge was enabled, the

destination activity was assumed to wait for W units

of time before executing, where W was uniformly

distributed on (1, 20). Then it executed for X units of

time, and again X was uniformly distributed on (1,

40).2 After that, if the activity happened to be the

starting activity of a parallel split, each outgoing edge

had a 0.75 probability of being enabled. The same

procedure was then repeated until the final activity

was reached. We varied two parameters in our experi-

ments: G and N, prefixed by ‘‘*’’ in Table 4, denoting

the structure of the underlying process model digraph

and the number of process instances, respectively.

Varying G allowed us to examine how the two al-

gorithms performed for different types of process

structures, and N tested the algorithms’ sensitivity to

the number of incoming process instances. Three

experiments were conducted based on these three

process model digraphs. In each experiment, we

2 BothW and X were set to be no less than 1 because we assume

no two events occur at the same time.

Table 3

Classification result by CN2

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 49



varied N to test the algorithms’ sensitivity to the size

of instance data. Each experiment was repeated sev-

eral times via different random seeds to obtain reli-

able results, and the following figures show only the

mean values of the measures.

4.2. Experimental results

Fig. 7 shows the recalls and precisions of the two

algorithms under the synthetic datasets generated from

the no-loop process. As expected, recall improves as

the number of instances increases. Besides, our algo-

rithm yields better recall with fewer number of

instances, but both algorithms find the correct set of

transitions at approximately the same number of

instances. However, in terms of precision, the curves

are unstable with smaller number of instances. This is

because the underlying directed graph includes a

parallel split. When the number of instances is

increased, more correct transitions as well as more

spurious transitions will be derived. However, our

algorithm is still superior in both recall and precision

under such a circumstance.

Fig. 8 shows the recalls and precisions of the two

algorithms under the synthetic datasets generated from

the simple-loop process. In this case, both algorithms

perform equally well. This is because simple-loop

contains no parallel constructs at all, and thus model-

ing an activity execution as an interval does not

provide more information than modeling it just as a

single event. Besides, precision is equal to 1 even for

a single instance. This is understandable because

simple-loop involves only XOR Split, and thus, every

induced transition must be correct.

Fig. 9 shows the recalls and precisions of the two

algorithms under the synthetic datasets generated from

the composite-loop process. Again, both algorithms

perform equally in terms of recall. However, an in-

teresting point is that Agrawal et al.’s algorithm [2]

never achieves precision = 1 and recall = 1 at the same

time, even for a large number of instances. This is

because, as mentioned in Section 1, Agrawal et al.’s

algorithm may not handle cycles correctly when

branches occur within cycles. Our algorithm remedies

this problem and performs well in this case.

Overall, we conclude that the proposed algorithm

always return results of equal or better quality (in

terms of both recall and precision) with the same

number of process instances. Besides, unlike Agrawal

et al.’s algorithm, our algorithm is able to find the

correct process model digraph under all the circum-

stances considered by our experiments when the

number of process instances is sufficiently large.

5. Noise

Until now, we assume each collected process

instance conforms to the underlying process model

digraph. However, this assumption may not be valid

in the real world, and there is a possibility for the

occurrence of noise. Noise may arise, for example,

because some executed activities were not collected,

the timestamps with events were mistakenly recorded,

or some exceptions whose handling requires a devia-

tion from normal processing order just happened.

Therefore, we need a way to screen out the noisy data.

5.1. An approach to handling noise

For any pair of activities A and B involved in a

process instance, there are four possible relationships

in their execution durations: (a) A immediately fol-

lowed by B, (b) B immediately followed by A, (c) A

overlaps B, and (d) A and B are neither overlapped nor

immediately followed. Note that activity pairs of

Fig. 5. A graphical representation.

Table 4

Parameters and settings

Parameter Meaning Setting

W activity waiting time uniform on (1, 20)

X activity executing time uniform on (1, 40)

*G underlying process

model digraph

no-loop, simple-loop,

composite-loop

*N number of process instances 1. . . 50

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5750



relationships (a) and (b) must appear in DirFollowed-

Set, and activity pairs of relationship (c) are recorded

in OverlappedSet. All activity pairs that are not

recorded in either DirFollowedSet or OverlappedSet

are of relationship (d). Due to the presence of noise,

we can no longer conclude that transitions appeared in

DirFollowedSet but not in OverlappedSet are edges in

the underlying process model digraph. Further analy-

sis is required.

For each pair of activities A and B, consider the

following three cases in the underlying process model

digraph:

(1) There exists an edge connecting A and B:

without losing generality, let us assume the edge to

be A!B. In this case, (A, B)’s appear as the relation-

ships (b), (c), and (d) are noise, and the total number

of their occurrences should be less than T. Obviously,

the error probability in this case is a function of T.

Fig. 6. (a) The no-loop directed graph, (b) the simple-loop directed graph, (c) the composite-loop directed graph.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 51



When T is specified to be small, noisy data could

remain and thus the error probability is higher. Spe-

cifically, the error probability in this case can be

bounded by a value P3 as follows:

PrðA is not directly followed by BÞ

V
Xk
x¼T

k

x

0
@

1
Aexð1� eÞk�xV

k

T

0
@

1
AeT ¼ P3

[10], where k is the number of instances in which

activity A and activity B both exist, and e is the noise
probability of a instance.

(2) A and B are transitively ordered: in such a case,

activity pairs of relationships (a), (b), and (c) are con-

sidered noise and their total number should be less than

T. In other words, error occur when the number

of these noisy activity pairs is no less than T. Again,

the error probability in this case is also a function of T.

We can calculate its upper bound P1 as follows:

PrðA is not transitively followed by BÞ

V
Xk
x¼T

k

x

0
@

1
Aexð1� eÞk�xV

k

T

0
@

1
AeT ¼ P1:

(3) A and B are independent: that is, A and B are

activities following the same activity through a paral-

lel split. In such a case, all four relationships described

above can possibly occur, and the approach we used

in the previous two cases can no longer apply! So just

as we used overlapping activity pairs to prune out the

spurious adjacent activity pairs in the noise-free case,

we assumed the overlapping occurrences of (A, B)

must reach a significant number T in a noise-prone

environment. In other words, the number of activity

pairs of relationships (a), (b), and (d) should be no

greater than K� T. Let h denote the probability that A

and B are found not overlapped in a process instance.

The error probability can be bounded by P2 as shown

below:

PrðA and B are not overlappedÞ

¼
Xk

x¼k�Tþ1

k

x

0
@

1
Ahxð1� hÞk�xV

k

k � T

0
@

1
Ahk�T

¼ P2:

h can be calculated once the probability distribu-

tions of the waiting time and execution time of A and

B are both known. Let WA and WB be the random

variables of the waiting time of activity A and activity

B, respectively, and let XA and XB, respectively be the

random variables of their execution time. Further-

more, the probability density functions of WA, WB,

XA and XB are denoted as fWA, fWB, fXA, and fXB,

Fig. 7. (a) Recalls of the two algorithms under no-loop process, (b) precisions of the two algorithms under no-loop process.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5752



respectively. Thus, h=Pr(WA+XA>WB)+Pr (WB+XB>

WA), and can be calculated as follows:

h ¼ PrðWA þ XB < WBÞ þ PrðWB þ XB < WAÞ

¼ 2

Z l

0

Z WB

0

Z WB�WA

0

fWA fXA fWBdXAdWAdWB:

An ideal goal is to set the value of T so that P1, P2,

and P3 are all minimized at the same time. Taking the

previous analysis into account, we can graphically

visualize P1, P2 and P3 as functions of T, as shown in

Fig. 10. The best value of T, in this case, can be

derived by solving the equation P1 (or P3) =P2, i.e.,

eT= hk� T.

Once the threshold T between two activities A and

B is computed, it can be used to determine their

relationship in the underlying process model digraph

according to the analysis described above. In sum-

Fig. 8. (a) Recalls of the two algorithms under simple-loop process, (b) precisions of the two algorithms under simple-loop process.

Fig. 9. (a) Recalls of the two algorithms under composite-loop process, (b) precisions of the two algorithms under composite-loop process.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 53



mary, we can determine whether each ordered activity

pair (A, B) in DirFollowedSet, computed by the

algorithm CompDirFollowedSet() shown in Section

3.1, is indeed an edge in the underlying process model

digraph by the following rules:

(1) if A and B of relationships (b), (c), and (d) occur

in no less than T process instances then A!B

is ignored; (Case 1)

(2) if A and B of relationships (a), (b), and (c) occur

in less than T process instances then A!B is

ignored; (Case 2)

(3) if A and B of relationships (a), (b), and (d) occur

in no more than K� T process instances then

A!B is ignored; (Case 3)

(4) otherwise, accept A!B as an edge in the un-

derlying process model digraph.

5.2. Experimenting with noisy data

We would like to see how our algorithm, after

incorporating the noise handling mechanism described

in the previous subsection, works in a noise-prone

environment. To do so, we applied noise to the syn-

thetic datasets. Specifically, a parameter e, ranging

from 0% to 16%, was set to represent the probability

that noise associated with a process instance. When it

came to synthesizing a process instance out of a pro-

cess model digraph, we first determined whether or not

the process instance should incur noise. If not, the

same procedure as described in Section 4.1 was fol-

lowed to generate this instance. Otherwise, the execu-

tion intervals of all activities except for the beginning

and ending activities were randomly generated to

mimic the result of noise.

Fig. 11 shows the recalls and precisions of our

algorithm under various noise probabilities generated

for the no-loop process. This set of experiments was

designed to see how different degrees of noise affects

performance. Overall, the trends are the same for each

different noise probability. Besides, as expected, the

lower the noise probability, the better on both recalls

and precisions. But both recalls and precisions im-

prove as the number of instances increase.

Fig. 10. Error probabilities as a function of T.

Fig. 11. (a) Recalls of our algorithm under no-loop process with different noise, (b) precisions of our algorithm under no-loop process with

different noise.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5754



The same experiments were conducted by using

Agrawal et al.’s algorithm [2], with their noise handling

mechanism incorporated, and comparedwith the exper-

imental result of our algorithm. Fig. 12 shows the recall

and the precision of the two algorithms under the

synthetic datasets with 8% noise generated from the

no-loop process.When the number of instances is large,

both algorithms perform equally well, with both recall

and precision approaching 1. As in the noise-free

environment, our algorithm still converges more quick-

ly under such a noise-prone circumstance.

Recall that the threshold T is computed from the

estimate of the noise probability e. But what if this

estimate is distant from the real value? To see the

Fig. 12. (a) Recalls of the two algorithms under no-loop process with 8% noise, (b) precisions of the two algorithms under no-loop process with

8% noise.

Fig. 13. (a) Recall of our algorithm under no-loop process with real noise 8%, (b) precision of our algorithm under no-loop process with real

noise 8%.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 55



effect of mis-estimation of e, in the following experi-

ments we set the estimate of e to range from 0% to

80%, with the real value to be set at 8%. The purpose

of this experiment set was to test the sensitivity of our

algorithm to the deviation of noise probability esti-

mate. Fig. 13 shows the experimental results. It is

clear that when deviations are within 30% from the

actual noise probability, our algorithm still performs

well. This result indicates that the extent to which our

noise handling mechanism tolerates imprecise esti-

mates of noise probability is quite large.

6. Conclusions

We have presented a novel approach to discovering

a process model from past executions. The process

model includes two components: control dependencies

represented by a directed graph and the conditions

pertaining to these dependencies. We have shown

through both theoretic analysis and experiments that

our proposed algorithm for deriving the control de-

pendencies executes faster and is able to return more

accurate results. Using intervals for modeling activity

executions contributes to this improvement. Besides,

we also developed a noise handling mechanism to be

incorporated into the control dependency derivation

algorithm. Experimental results showed that the al-

gorithm performed well under a noise-prone envi-

ronment. We have also described how to induce

conditions associated with dependencies via classifi-

cation techniques. These two major components to-

gether make our work a complete framework for

process discovery.

Many applications are eligible for generating his-

torical information in the form of interval sets. While

the framework and algorithms proposed in this paper

can be applied in some of the domains, they may not fit

perfectly in others, partly due to an important assump-

tion made by virtually all process discovery research: a

unique underlying process model that encompasses all

process instances is assumed to exist. Consider the

project execution in several occasions that aims to

achieve a similar goal. Each project execution is cha-

racterized by a Gantt Chart, which comprises a set of

intervals. Project executions carried out at different

corporations, though pursuing the same objective, may

take a significantly different approach. Thus, we can

no longer expect the existence of a single process

model to which all process instances conform. What

we can probably best hope for are some partial process

models, each of which represents features exhibited by

a significant number of process instances. To this end,

this problem becomes somewhat like those discussed

in the data mining (or knowledge discovery) commun-

ity, especially the sequential pattern discovery prob-

lem. However, most research work in the context of

sequential pattern discovery intends to find total orders

on some constituent items, whereas we are interested

in finding structures like the process model digraph

described in this paper. The intrinsic sophistication of

the process model digraph makes this problem chal-

lenging. We have embarked on a study of this problem,

and a preliminary result has been reported in Ref. [28].

References

[1] N.R. Adam, V. Atluri, W. Huang, Modeling and analysis of

workflows using Petri Nets, Journal Intelligent Information

Systems, 10 (Mar. 1998) 131–158.

[2] R. Agrawal, D. Gunopulos, F. Leymann, Mining process mod-

els from workflow logs, Proc. of the 6th Int’l Conf. on Ex-

tending Database Technology (EDBT), Valencia, Spain,

Expanded version available as IBM Research Report, RJ

10100, 1998.

[3] P.C. Attie, M.P. Singh, A. Sheth, M. Rusinkiewicz, Specifying

and enforcing intertask dependencies, Proc. of Int. Conf. on

VLDB, 1993.

[4] A.W. Biermann, J.A. Fieldman, On the synthesis of finite state

machines from samples of their behavior, IEEE Transactions

on Computers 21 (6), (Jun. 1972) 592–597.

[5] M.G. Bradac, D.E. Perry, L.G. Votta, Prototyping a process

monitoring experiment, IEEE Transactions on Software Engi-

neering 20 (10) Oct. 1994, pp. 774–784.

[6] P. Clark, P. Boswell, Rule induction with CN2: some recent

improvements, Proc. of 5th European Working Session on

Learning (EWSL ’91), (1991).

[7] P. Clark, T. Niblett, The CN2 induction algorithm, Machine

Learning Journal 3 (4), (Dec. 1989) 261–283.

[8] L. Cohen, L. Manion, Research Methods in Education, Rout-

ledge, London, New York, (1996).

[9] J. Cook, A. Wolf, Automating process discovery through

event-data analysis, Proc. 17th Intl. Conf. on Software Engi-

neering (ICSE17), (Apr. 1995).

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, MIT Press, Cambridge, MA, 1990.

[11] A. Datta, Automating the discovery of AS-IS business process

models: probabilistic and algorithmic approaches, Information

Systems Research 9 (3) (Sep. 1998), pp. 275–301.

[12] T. Davenport, Process Innovation—Reengineering Work

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–5756



through Information Technology, Harvard Business School,

Boston, MA, 1993.

[13] T.F. Furey, A six step guide to process reengineering, Planning

Review, Mar. 1993, 20–23.

[14] http://www.nhi.gov.tw/hospital/data/hospital_1.jpg.

[15] http://www.wfmc.org/standards/docs/tc003v11.pdf.

[16] http://www.workflowsoftware.com.

[17] Interface 1: Process definition interchange process model.

Workflow Management Coalition, No. TC-1016-P, Aug. 1998.

[18] I/S Analyser, The role of IT in business reengineering, I/S

Analyser 31 (8), (Feb. 1993) 1–14.

[19] R. Johnson, D. Wichern, Applied Multivariate Statistical Anal-

ysis, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[20] R.L. Manganelli, M.M. Klein, The Reengineering Handbook,

American Management Association, New York, 1996.

[21] R. Medina-Mora, H.K.T. Wong, P. Flores, ActionWorkflow as

the enterprise integration technology, IEEE Data Engineering

Bulletin, (1993) 49–52.

[22] R.S. Michalski, On the quasi-minimal solution of the general

covering problem, Proc. of the 5th International Symposium

on Information Processing (FCIP69), A3, Bled, Yugoslavia,

1969.

[23] M.E. Nissen, Redesigning reengineering through measure-

ment-driven inference, MIS Quarterly 22 (4) (Dec. 1998)

509–534.

[24] J.R. Quinlan, Induction of decision trees, Machine Learning 1,

(Jan. 1986) 81–106.

[25] D.E.Rumelhart,G.E.Hinton,R.J.Williams, in:D.E.Rumelhart,

J.L. McClelland (Eds.), Learning Internal Representations by

Error Propagation, ParallelDistributedProcessing: Explorations

in the Microstructures of Cognition, 1, MIT Press, Cambridge,

MA, 1986, pp. 318–362.

[26] T.K. Sung, N. Chang, G. Lee, Dynamics of modeling in data

mining: interpretive approach to bankruptcy prediction, Journal

of Management Information Systems 16 (1) (Summer, 1999)

63–86.

[27] The Workflow Reference Model, Workflow Management Co-

alition, No. TC-00-1003, Nov. 1994.

[28] C.-P. Wei, S.-Y. Hwang, W.-S. Yang, Mining frequent tempo-

ral patterns in process databases, Proc. of 10’th International

Workshop on Information Technologies and Systems (WIT-

S00), Australia, 2000.

[29] D. Wodtke, G. Weikum, A formal foundation for distributed

workflow execution based on state charts, Proc. of the Int.

Conf. on Database Theory, Springer LNCS 1186, 1997.

San-Yih Hwang received the BS and MS

degrees from National Taiwan University,

Taiwan, in 1984 and 1988, respectively;

and the PhD degree from the University of

Minnesota, Minneapolis, in 1994, all in

computer science.

He is presently an Associate Professor in

the Department of Information Manage-

ment, National Sun Yat-Sen University,

where he initially joined in 1995. Between

1994 and 1995, he was with the Computer and Communication

Laboratory, Industrial Technology Research Institute (CCL/ITRI),

Taiwan. His current research interests include workflow systems,

data mining, and data management aspects in mobile computing.

Wan-Shiou Yang received her MS degree

in Management Information Systems

from National Sun Yat-Sen University,

and BS degree in Computer Education

from National Taiwan Normal University.

She is currently pursuing her PhD degree

at National Sun Yat-Sen University. Her

current research interests are workflow

systems and data mining related areas.

S.-Y. Hwang, W.-S. Yang / Decision Support Systems 34 (2002) 41–57 57

 http:\\www.nhi.gov.tw\hospital\data\hospital_1.jpg 
 http:\\www.wfmc.org\standards\docs\tc003v11.pdf 
 http:\\www.workflowsoftware.com 

	Introduction
	Related work
	Contribution

	Process model
	The algorithms
	Deriving the process model digraph
	Deriving control conditions

	Performance evaluation
	General experiment information
	Experimental results

	Noise
	An approach to handling noise
	Experimenting with noisy data

	Conclusions
	References

