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Abstract

In this paper, the effects of uncertainty on multiple-objective linear programming models are studied using the concepts of

fuzzy set theory. The proposed interactive decision support system is based on the interactive exploration of the weight space.

The comparative analysis of indifference regions on the various weight spaces (which vary according to intervals of values of

the satisfaction degree of objective functions and constraints) enables to study the stability and evolution of the basis that

correspond to the calculated efficient solutions with changes of some model parameters.
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1. Introduction

Most of realistic decision-making problems, essen-

tially those stemming from complex and ill-structured

situations, are characterized by the existence of multi-

ple, conflicting and incommensurate objectives and

are subject to the unavoidable influence of distinct

sources of uncertainty. Therefore, models must take

into account vague information, imprecise require-

ments, modifications of the original input data, impre-

cision stemming from the modeling phase, needed

simplifications, unexpected occurrence of important

events and the subjective and evolutive nature of

human preference structures whenever multiple objec-

tives and trade-offs are at stake.

Interactive techniques based on the weight space

decomposition have been developed and computa-

tionally implemented as the core of a decision support

system (DSS) to deal with uncertainty in multiple-

objective linear programming (MOLP) models by

using fuzzy set theory concepts.

The decision maker (DM) has the possibility of

interactively changing the membership functions

associated with the mathematical constraint relations

and the objective functions optimization. It is then

possible to evaluate the effects of changing the model

parameters and to study alternative scenarios without

having to reformulate the problem.

The comparative analysis of the weight spaces

corresponding to distinct satisfaction degrees is a
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valuable tool to study the fuzzy efficient solution set.

Among these fuzzy solutions, the DM may choose a

satisfactory compromise one according to his/her

preference structure which may change as more

knowledge about the problem is acquired throughout

the interactive decision aid process.

This paper is organized in five sections. The intro-

duction of the main concepts of fuzzy multiple-objec-

tive linear optimization problems is made in Section 2.

The conceptual aspects of the proposed DSS are

presented in Section 3. The example presented in

Section 4 aims at illustrating the concepts presented.

Some conclusions about the potentialities of this

approach are drawn in Section 5.

2. Decision making in a fuzzy environment

In classical mathematical programming, multiple-

objective problems are concerned with the optimiza-

tion of multiple, conflicting and incommensurate

objective functions subject to constraints representing

the availability of limited resources and/or require-

ments.

The following MOLP problem is considered in this

study:

max fðxÞ ¼ Cx ð1Þ

s.t.

A xfV ¼ zgb

xz0

9=;X

where xaRn is the decision variable vector, CaRp� n

is the objective function matrix, AaRm� n is the

technological matrix and baRm is the right-hand side

vector.

Constraints separate all possible solutions into two

distinct sets: those which are feasible (X) and those

which are not feasible. Objective functions are to be

pursued to the greatest possible extent with regard to

the feasible region. However, since the objective

functions are generally in conflict, there is not usually

a solution that optimize all the objective functions at

the same time. The concept of optimal solution to a

single objective problem gives, thus, place in a multi-

ple-objective context to the concept of efficient sol-

utions: feasible solutions for which no improvement

in any objective function is possible without sacrific-

ing on at least one of the other objective functions.

These problems entail analyzing trade-offs among the

objectives in order to get a satisfactory compromise

from the set of efficient solutions.

Let us consider p objective functions f(x)=( f1(x),

f2(x), . . ., fp(x)), which are to be maximized in a

feasible region X.

x
_
aX is an efficient solution, if and only if no x̂aX

exists such that

fkðx̂Þzfkðx�Þ, for k ¼ 1, . . . , p and

fkðx̂Þ > fkðx�Þ, for at least one k ¼ 1, . . . , p ð2Þ

The concept of efficient solution generally refers to

the variable space whereas the nondominance concept

refers to the corresponding image in the objective

function space. That is, if x is efficient then f(x) is

nondominated.

In a fuzzy environment, the main purpose is to find

the ‘‘most satisfactory’’ solution under incomplete,

subjective, imprecise and/or vague information. In

the symmetric model proposed by Bellman and Zadeh

[1], there is no difference between objectives and

constraints. A fuzzy decision can be viewed as a

fuzzy set D̃ resulting from the intersection of fuzzy

goals G̃k and fuzzy problem constraints C̃i

D̃ ¼ G̃1uG̃2u . . .uG̃puC̃1uC̃2u . . .uC̃m ð3Þ
An optimal decision is an element with maximum

degree of membership to this set. Generally, the most

convenient way to model intersection is the minimum

operator. If all membership functions lj(x) are known
in a space of alternatives X (lj(x): X! [0,1]), then the

fuzzy decision is defined by:

lD̃ðxÞ ¼ minflG̃1
ðxÞ, lG̃2

ðxÞ, . . . , lG̃p
ðxÞ,

lC̃1
ðxÞ, lC̃2

ðxÞ, . . . , lC̃m
ðxÞg

¼ minfljðxÞg, for all x ð4Þ

and the optimal decision by:

max lD̃ðxÞ ¼ max½minfljðxÞg
, for all x ð5Þ

Werners [8,9] proposed the generalization of the

classical efficient solution definition for the fuzzy

multiple-objective linear programming (FMOLP)
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model with flexible constraints and crisp objective

functions.

Let m be the number of membership functions of

the constraints lC̃i
(x): X! [0,1], i = 1, 2, . . ., m.

x
_
aX is a fuzzy efficient solution, if and only if no

x̂aX exists such that

fkðx̂Þzfkðx�Þ, for k ¼ 1, . . . , p and

lC̃i
ðx̂ÞzlC̃i

ðx�Þ, for i ¼ 1, . . . , m and

½fkðx̂Þ > fkðx�Þ, for at least one k ¼ 1, . . . , p or

lC̃i
ðx̂Þ > lC̃i

ðx�Þ, for at least one i ¼ 1, . . . , m
 ð6Þ

The set of all fuzzy efficient solutions is called the

fuzzy complete solution [8,9].

By comparing the definitions of crisp (Eq. (2)) and

fuzzy (Eq. (6)) efficient solutions, this latter takes into

account that an improvement in an objective function

can only be obtained either at the expense of another

objective function or at the expense of the degree of

membership to the constraints.

The following example illustrates how this gener-

alization has been done. Let us consider the problem,

already studied by Zimmermann [12], with two objec-

tive functions, f1(x) =� x1 + 2x2, f2(x) = 2x1 + x2, and

four constraints X ¼ fxaR2Ac1 : �x1 þ 3x2 Vf 21;

c2 : x1 þ 3x2 Vf 27; c3 : 4x1 þ 3x2V45; c4 : 3x1 þ x2V
30; x1z0; x2z0g (let us consider that the first and

second constraints are fuzzy ones). Fig. 1 shows the

fuzzy region of feasible solutions in the objective

function space, where the subregion with membership

values (lc̃1
and lc̃2) between ‘0’ and ‘1’ is the union of

the vertical and horizontal hatched regions.

In case that all constraints and objectives are crisp

(as in classical optimization), PA and PD are the

individual optima of f1(x) and f2(x), respectively.

The set of efficient solutions contains all points on

the lines [PA,PB], [PB,PC] and [PC,PD].

In a fuzzy environment, feasible solutions can be

distinct by their degrees of feasibility (membership

function values). Therefore, the set of fuzzy efficient

solutions includes all points on the lines [PA,PB],

[PB,PC] and [PC,PD], as well as the hatched section

of the feasible region including the boundaries, that is

all points which can be obtained by a convex combi-

nation of {PA,PN,PM,PL,PI} and of {PC,PM,PL,PJ}.

Fig. 1. Example—fuzzy region of feasible solutions in the objective function space for a problem with fuzzy constraints.
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Definition (6) leads to fuzzy efficient solutions

which are not feasible in a crisp environment (in Fig.

1, all solutions for which 0V lc̃1
< 1 and 0V lc̃2

< 1). It

may also happen that a solution for which all objective

function values are worse than those of another sol-

ution is still fuzzy efficient, provided that at least one

membership function value of the constraints is higher.

For example, the point PI is not feasible in a crisp

environment, but it is feasible and fuzzy efficient in a

fuzzy environment. With respect to PA, PI has better

values for both objectives but a worse membership

value with respect to the first fuzzy constraint. Both are

efficient in a fuzzy environment.

3. An interactive decision support system

Unlike classical linear programming, in a fuzzy

environment there is more than just a single model

formulation.

Several authors [6,7] consider a broad distinction

in fuzzy programming: flexible and robust program-

ming problems. In flexible programming problems,

the structure of models is fixed (all coefficients

involved are known) and the mathematical relations

involved are fuzzy (fuzzy objectives and constraints).

In robust programming problems, the structure of the

models is not known exactly, that is the model

coefficients cannot be precisely given.

The solution of a fuzzy linear programming prob-

lem may be crisp [8–14] or fuzzy [2,3]. In the latter

case, a solution set is presented to the DM and he/she

must choose the ‘‘best’’ compromise one, according to

his/her preferences.

In Zimmermann’s [11–14] approach, a fuzzy linear

programming problem with fuzzy objectives and

fuzzy constraints is to be solved. All these are fuzzy

inequality constraints represented by linear member-

ship functions. If lD(x) has a unique value,

lD(x0) =max lD(x), then x0, which is an element of

the complete solution set x, can be derived by solving

a classical linear programming problem with one

more variable k. k is interpreted as the degree of

satisfaction of the fuzzy objectives and constraints. It

is suggested [11] that the use of the individual optima

as upper bounds and ‘‘least justifiable’’ solutions as

lower bounds be made to define the membership

functions associated with the objectives.

Considering the example presented in Section 2,

the maximum degree of overall satisfaction k = 0.742
is achieved for the solution x=(5.03; 7.32)T, that is

point PF in Fig. 2.

The optimal solution of Zimmermann’s model

belongs to the fuzzy efficient solution set in the

proposed approach. For specific membership func-

tions, the optimal Zimmermann’s solution can be

reached as the efficient extreme solution obtained

with maximum satisfaction degree (of the fuzzy

objectives and constraints presented in the model).

Chanas [3] showed that the complete fuzzy deci-

sion set x rather than only x0 can be derived by using

parametric programming. Instead of lD(x), lD(h) is

calculated. h is interpreted as the degree of violation

of the constraints.

The parametric approach by Carlsson and Korho-

nen [2] is applied to problems where A, b and C might

be totally or partially fuzzy. The range of the possible

parameters must be given by the DM. Although the

authors related that parametric programming is used,

in practice they set specific values within the overall

degree of satisfaction (l = 0.0, 0.1, 0.2, . . ., 0.9, 1) and
several linear programming problems are then solved

using these values.

The interactive DSS presented by Werners [8,9]

helps solving FMOLP problems with fuzzy objectives

and fuzzy constraints, but the goals are not given a

priori by the DM. The system’s main purpose is to

find the ‘‘best’’ compromise solution or to conclude

that no compromise solution satisfying those require-

ments exists.

The interactive FMOLP approach herein devel-

oped can incorporate uncertainty elements into the

optimization operation, and into the mathematical

relations of the constraints or into the constraints

right-hand sides. The aim of the proposed interactive

DSS is to help the DM to gather knowledge about the

fuzzy problem and to exploit his/her convictions and

(evolutionary) preference system, in order to make a

better informed decision, rather than converging to a

‘‘best’’ compromise solution, as in the Werners [8,9]

approach. There are no irrevocable decisions through-

out the interactive process and the DM is always

allowed to revise prior preference information and

exploit new search directions.

It is particularly suited to problems with two or

three objective functions (or those that can be con-

A.R. Borges, C.H. Antunes / Decision Support Systems 34 (2002) 427–443430



verted into problems with two or three objective

functions), in order to profit from the display of the

weight space and objective function space. Based on

the comparative analysis of the various weight spaces

and objective function spaces as well as on the

numerical information obtained in each interaction,

the DM can interactively change the membership

functions considered in the model and the relative

importance of the objectives in order to direct the

search to new regions. In this way it is possible to

compare different scenarios and study the stability and

evolution of the basis which correspond to the calcu-

lated efficient solutions.

3.1. Introductory concepts

The definition of fuzzy efficient solution for a

MOLP model with flexible constraints and crisp

objectives has been presented in Section 2. The

generalization of this definition for problems where

some objective functions are flexible is possible. The

study of all fuzzy efficient solutions can be made, in

the proposed approach, based on that generalization.

Let us consider the example presented in Section

2. In Zimmermann’s [11–14] approach, the member-

ship functions associated with the objectives are

defined by considering the individual optima as upper

bounds and the ‘‘least justifiable’’ solutions as lower

bounds. However, other values might be considered

to define them. If, for example, the decision maker

assumes that he/she is not interested in solutions with

a negative value for the first objective function the

lower bound of f1(x) is set to zero. In this situation,

the maximum degree of overall satisfaction k = 0.714
is achieved for the solution x=(4.8; 7.4)T, that is point

PH in Fig. 3.

In Fig. 4, we consider that the membership

functions associated with the objectives are defined

as those in Fig. 3 and the membership functions

associated with the constraints are defined as in

Fig. 1.

The set of fuzzy efficient solutions in the flexible

environment includes all points which are convex

combination of PA, PI, PL, PM, PG and P1V in Fig. 4.

These solutions are such that for each one it is not

possible to improve the membership degree in relation

Fig. 2. Example—fuzzy region of feasible solutions in the objective function space for a problem with fuzzy objectives.
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to one fuzzy set (corresponding to all the fuzzy

objectives and constraints) without worsening w.r.t.

another one.

If we are only interested in the fuzzy efficient

solution which has the maximum degree of overall

satisfaction k (for all the fuzzy objectives and con-

Fig. 3. Example—fuzzy region of feasible solutions in the objective function space for a problem with fuzzy objectives.

Fig. 4. Example—fuzzy region of feasible solutions in the objective function space for a problem with fuzzy objectives and constraints.

A.R. Borges, C.H. Antunes / Decision Support Systems 34 (2002) 427–443432



straints), it is achieved on point PP in Fig. 4, with

k = 0.79.
We can now define a fuzzy efficient solution for

MOLP models with flexible constraints and objective

functions as follows.

Let lG̃k
(x): X! [0,1], k = 1, 2, . . ., p, be the

objective membership functions (which are to be

maximized, without loss of generality) and lC̃i
(x):

X! [0,1], i = 1, 2, . . ., m, the constraints’ membership

functions.

Fig. 5. Block diagram of the proposed approach.
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x
_
aX is a fuzzy efficient solution, if and only if no

x̂aX exists such that

lG̃kðx̂ÞzlG̃kðx�Þ, for k ¼ 1, . . . , p and

lC̃i
ðx̂ÞzlC̃i

ðx�Þ, for i ¼ 1, . . . , m and

½lG̃kðx̂Þ > lG̃kðx�Þ, for at least one k

¼ 1, . . . , p or

lC̃i
ðx̂Þ > lC̃i

ðx�Þ, for at least one i

¼ 1, . . . , m
 ð7Þ

3.2. The interactive FMOLP approach

In what follows, we will present an interactive

FMOLP approach which has been computationally

implemented as a DSS as an extension of the TRI-

MAP method [4,5]. Fig. 4 and the block diagram

shown in Fig. 5 sketch how it works.

All membership functions used in the model pos-

sess a piecewise linear structure as those shown in

Fig. 6a, b and c.

For each ‘i’ fuzzy constraint, the DM specifies the

membership functions in the following manner:

� For a Vf constraint (submatrix A1 of A), the DM

specifies values bi
1 and b̄i

1. An excess of b̄i
1 is not

allowed in any case, and the constraint is

completely satisfied for values not above bi
1(Fig.

6a).
� For a zf constraint (submatrix A2 of A), the DM

specifies values bi
2 and b̄i

2. The constraint is

completely satisfied for values not below b̄i
2 and a

value lower than bi
2 is not allowed in any case

(Fig. 6b).
� For a ¼f constraint (submatrix A3 of A), the

membership function is determined by three

values, bi
3, bi

3 and b̄i
3. bi

3 should be met, while

a maximal deviation up to bi
3 or b̄i

3 is still

acceptable (Fig. 6c).

Because of the model formulation bi
rV bi

rV b̄i
r

always holds.

The main difference between crisp and fuzzy con-

straints is that in case of crisp constraints the DM can

strictly differentiate between feasibility and infeasibil-

ity and in case of fuzzy constraints he/she wants to

consider a certain degree of feasibility in the interval

[bi
r,b̄i

r].

The fuzzy objectives for which the DM is able to

indicate the goals and the maximally acceptable

Fig. 6. Membership functions used in the model (a–c).
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tolerance (or bi and b̄i) can be considered fuzzy

constraints in the model.

The model consists of p linear objective functions

and m constraints, where some of the objective

functions and constraints may be defined in a fuzzy

manner:

gmax fðxÞ ¼ Cx ðp objective functionsÞ ð8Þ

s.t.

A1xVf b1, b̄1 ðm1 constraintsÞ

A2xzf b2, b̄2 ðm2 constraintsÞ

A3x¼f b3, b3, b̄3 ðm3 constraintsÞ

D1xVd1

D2xzd2

D3x ¼ d3

xz0

9>>>>>>>>=>>>>>>>>;
X

where br, b̄r and br are the column vectors
associated with the membership values bi

r, b̄i
r

and bi
r, r=1, 2, 3.

In the proposed approach, there is initially a non-

interactive step aimed at offering the DM an overview

of the range of values that the objective functions can

attain within the efficient region.

Each objective function is separately optimized

with a = 1 and a = 0 in the region

A1xVb̄1 þ aðb1 � b̄1Þ ðm1 Vf constraintÞ

A2xzb2 þ aðb̄2 � b2Þ ðm2 zf constraintsÞ

A3xVb̄3 þ aðb3 � b̄3Þ ðm3 ¼f constraintsÞ

A3xzb3 þ aðb3 � b3Þ ðm3 ¼f constraintsÞ

ð9Þ

xaX

a can be interpreted as the satisfaction degree of

the fuzzy objectives and constraints in the model. The

region considered in problem (9) is the feasible region

to the initial problem considering crisp constraints

(a = 1) and considering fuzzy constraints with max-

imum fuzziness (a = 0).
Table 1 is then obtained where solutions 1� k, k = 1,

2, . . ., p, are the efficient extreme solutions for a = 1,
and solutions 0� k, k= 1, 2, . . ., p, the efficient extreme

solutions for a = 0. Table 1 is a double ‘‘pay-off’’ table,
the upper part considering crisp constraints (a = 1) and
the lower part obtained with maximum fuzziness

(a = 0). If the model contains crisp constraints only,

the lower part of the table will not exist.

In case that some optimal solutions cannot be

computed (because the linear models does not possess

a feasible solution or it is not bounded) the appropriate

information is shown on the corresponding row in

Table 1.

Based on this information, the system suggests the

membership functions of the existing objective func-

tions. The diagonal in the lower half part of the table

contains the maximally achievable objective functions

Table 2

Illustrative example—extreme solutions

Maximize f1 Maximize f2 Maximize f3

Solution 1�1 66 30 � 12

Solution 1� 2 12.5 50 25

Solution 1� 3 15 � 15 75

Table 3

Illustrative example—bounds used to define the membership

functions associated with the fuzzy objectives and constraints

Objective functions Constraints

f1 f2 f3 c1 c2 c3

[36, 66] [20, 50] [45, 75] [60, 66] [60, 84] [50, 60]

Table 1

Efficient extreme solutions

c1x c2x . . . c px

Solution 1�1 (x11)
X
j

c1jx
11
j

X
j

c2jx
11
j . . .

X
j

cpjx
11
j

]
Solution 1� p (x1p)

X
j

c1jx
1p
j

X
j

c2jx
1p
j . . .

X
j

cpjx
1p
j

Solution 0� 1 (x01)
X
j

c1jx
01
j

X
j

c2jx
01
j . . .

X
j

cpjx
01
j

]
Solution 0� p (x0p)

X
j

c1jx
0p
j

X
j

c2jx
0p
j . . .

X
j

cpjx
0p
j
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Table 4

Illustrative example

Objective functions Constraints

f1 f2 f3 c1 c2 c3

(a) Compromise solution 1

x1 = 12.17� 13.76a 61.88� 37.32a 20 + 30a 45 + 30a 66� 6a 84� 24a 56.59 + 23.12a
x2 = 9.68� 1.02a
x3 = 7.54� 3.80a [61.88, 58.03] [20, 23.09] [45, 48.09] [66, 65.38] [84, 81.53] [56.59, 58.97]

x4 = 0.61 + 12.59a
s_ f1 = 25.88� 67.32a
s_c3 = 3.41� 33.12a
0V aV 0.103093

x1 = 10.75� 8.40a 58.03� 53.15a 23.09 + 18.33a 48.09 + 18.33a 65.38� 54.25a 81.53� 14.66a 58.97� 6.11a
x2 = 9.58� 0.63a
x3 = 7.14� 22.56a [52.56, 43.95] [24.98, 27.95] [49.98, 52.95] [59.79, 51.01] [80.01, 77.64] [58.34, 57.35]

x4 = 1.91 + 17.81a
s_ f1 = 18.94� 71.48a
s_c1 = 0 + 50.59a
0.103093V aV 0.264957

(b) Compromise solution 2

x1 = 6.51 + 9.57a 36 + 30a 41.43� 47.02a 45 + 30a 50.04� 1.70a 64.85 + 53.96a 60� 10a
x2 = 6.19 + 12.34a
x4 = 10.28� 11.06a [36, 43.18] [41.43, 30.16] [45, 52.18] [50.04, 49.63] [64.85, 78.25] [60, 57.61]

s_ f2 = 21.43� 77.02a
s_c1 = 15.96� 4.30a
s_c2 = 19.15� 79.96a
0V aV 0.239489

x1 = 8.80� 1.05a 43.18 + 2.88a 30.16� 8.36a 52.18 + 2.88a 49.63 + 5.18a 78.25� 2.31a 57.61� 0.96a
x2 = 9.15 + 1.00a
x3 = 0 + 4.41a [43.88, 43.95] [28.16, 27.95] [52.88, 52.95] [50.88, 51.01] [77.70, 77.64] [57.37, 57.35]

x4 = 7.63� 3.78a
s_ f2 = 2.98� 11.25a
s_c1 = 14.93� 5.76a
0.239489V aV 0.264957

(c) Compromise solution 3

x1 = 5.21 + 14.24a 36 + 30a 20 + 30a 75.52� 79.70a 44.85 + 16.97a 83.03� 9.39a 60� 10a
x2 = 13.33� 13.33a
x4 = 7.03 + 0.61a [36, 37.99] [20, 21.99] [75.52, 70.22] [44.85, 45.98] [83.03, 82.41] [60, 59.34]

s_ f3 = 30.52� 109.70a
s_c1 = 21.15� 22.97a
s_c2 = 0.97� 14.61a
0V aV 0.06639

x1 = 6.16 + 8.94a 37.99 + 22.48a 21.99 + 22.48a 70.22� 65.20a 45.98 + 18.99a 82.41�17.99a 59.34� 7.49a
x2 = 12.45� 11.46a
x3 = 0 + 4.41a [39.48, 43.95] [23.48, 27.95] [65.90, 52.95] [47.24, 51.01] [81.21, 77.64] [58.84, 57.35]

x4 = 7.07� 1.68a
s_ f3 = 23.23� 87.68a
s_c1 = 19.63� 23.49a
0.06639V aV 0.264957
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values c̄k. The pessimistic values ck are determined by

choosing the minimum in column k (not necessarily

the worst values in the efficient region, but the worst

in the individual optima table range; however, these

values are convenient because they are very simple to

determine).

The interactive process begins at this point. The

DM can now reformulate the membership functions

associated with objectives and constraints or accept

the suggestions given by the method.

The application of parametric programming to the

p linear problems corresponding to the optimization of

each objective function in the region

Cxzcþ aðc̄� cÞ ðp objective functionsÞ

A1xVb̄1 þ aðb1 � b̄1Þ ðm1 Vf constraintsÞ

A2xzb2 þ aðb̄2 � b2Þ ðm2 zf constraintsÞ

A3xVb̄
3 þ aðb3 � b̄

3Þ ðm3 ¼f constraintsÞ

A3xzb3 þ aðb3 � b3Þ ðm3 ¼f constraintsÞ

xaX ,aa½0,1
: ð10Þ

yields a set of p fuzzy compromise solutions, which

are analytically dependent on the parameter a. The a
bounds corresponding to the same optimal basis for

each fuzzy compromise solution are ordered. That is,

the method computes, for each objective function

separately, the ranges for the satisfaction degree of

the fuzzy objectives and constraints in the model (a)
that lead to the same efficient basis.

The region defined by Eq. (10) contains all sol-

utions for which at least one of the membership

function values is not zero. In the limit situation, all

the degrees may be zero.

If the DM considers that the obtained information

is sufficient to make a decision, the process can

successfully be concluded, otherwise this interactive

step can be repeated with other membership functions

or a second interactive phase may begin.

In the second interactive phase, for each different a
a weighted sum of the objectives in region (10) is

optimized

max
Xp
k¼1

ðwkfkðxÞÞ
" #

ð11Þ

s.t.

Cxzcþ aðc̄� cÞ ðp objective functionsÞ

A1xVb̄1 þ aðb1 � b̄1Þ ðm1 Vf constraintsÞ

A2xzb2 þ aðb̄2 � b2Þ ðm2 zf constraintsÞ

A3xVb̄3 þ aðb3 � b̄3Þ ðm3 ¼f constraintsÞ

A3xzb3 þ aðb3 � b3Þ ðm3 ¼f constraintsÞ

xaXP
wk ¼ 1 and wkz0 for k ¼ 1, 2, . . . , p:

By using the TRIMAP method, it is possible to

perform a progressive and selective search of the

fuzzy efficient solutions on the weight space, for the

considered a. For each a, the TRIMAP method

automatically generates p efficient extreme points

Table 5

Illustrative example—nondominated extreme solutions with a= 0

a= 0 solutions f1 f2 f3 xB Ll

A1 61.88 20 45 x1 = 12.17, x2 = 9.68, x3 = 7.54, x4 = 0.61, s_ f1 = 25.88, s_c3 = 3.14 30.52

A2 36 41.43 45 x1 = 6.51, x2 = 6.19, x4 = 10.28, s_ f2 = 21.43, s_c1 = 15.96, s_c2 = 19.15 30.52

A3 36 20 75.52 x1 = 5.21, x2 = 13.33, x4 = 7.03, s_ f3 = 30.52, s_c1 = 21.15, s_c2 = 0.97 25.88

A4 51.52 35.48 45 x1 = 11.79, x2 = 8.17, x4 = 7.97, s_ f1 = 15.52, s_ f2 = 15.48, s_c1 = 10.34 30.52

A5 60 27 45 x1 = 12, x2 = 9, x3 = 6, x4 = 3, s_ f1 = 24, s_ f2 = 7 30.52

A6 58.25 20 53.75 x1 = 10.25, x2 = 10.75, x3 = 7.75, x4 = 1.25, s_ f1 = 22.25, s_ f3 = 8.75 21.77

A7 37.07 20 74.93 x1 = 5.6, x2 = 13.33, x4 = 6.93, s_ f1 = 1.07, s_ f3 = 29.93, s_c1 = 20.67 24.81
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corresponding to the optimum of each objective

function in the domain (10). Thereafter, the DM can

interactively select the weights and calculate different

fuzzy efficient solutions, thus, avoiding an exhaustive

search which would require a cumbersome computa-

tional burden.

In each interaction of this second interactive

phase, in addition to numerical information, two

graphs are presented to the DM for two or three

objective function problems. The first one is the

decomposition of weight space filled with the indif-

ference regions corresponding to each of the already

known fuzzy efficient solutions. The second one

displays the fuzzy efficient solutions already com-

puted on the objective function space graph (or any

of its projections).

An indifference region comprises the set of

weights that leads to the same efficient extreme

solution, and it is computed by optimizing a scalariz-

ing function consisting of a weighted sum of the

objective functions (such as in Eq. (11)). The DM can

then be indifferent to all the combinations of weights

within it because they lead to the same efficient

solution. The area occupied by each indifference

region is somehow a measure of the robustness of

the corresponding efficient solution regarding the

variation of the weights.

The decomposition of the weight space into indif-

ference regions to perform a progressive and selective

learning of the efficient solution set in MOLP has also

been used in Clı́maco and Antunes [4,5].

Special attention should be paid to the comparative

analysis of the two graphs obtained in each interac-

tion: knowing the objective functions values for

efficient extreme points corresponding to regions in

the neighborhood of not yet filled weight space

regions can be important to decide about the need to

further proceed the search in those regions.

By changing the weights associated with the

objectives and the a value, it can be visualized how

the different solutions and the corresponding optimal

basis change for the considered membership func-

tions.

Since the feasible region considered for each a is

different (with the increase of a the feasible region

shrinks), distinct extreme solutions can be obtained. In

practice, all points of the fuzzy efficient solutions set

can be obtained if modifications are made on the

membership functions.

Once a is successively greater (from 0 to amax) and

the corresponding region (10) smaller, for a = amax the

computed solution is unique.

This FMOLP approach is easy to handle compu-

tationally and is not too demanding with respect to

information required from the DM in each interac-

tion. The aim is to provide the DM a flexible

decision aid tool by means of which changes can

be easily incorporated in the model and their con-

Table 6

Illustrative example—nondominated extreme solutions with a= 0.06639

a= 0.06639 solutions f1 f2 f3 xB Ll

B1 59.40 21.99 46.99 x1 = 11.26, x2 = 9.61, x3 = 7.28, x4 = 1.45, s_ f1 = 21.41, s_c3 = 1.22 23.23

B2 37.99 38.30 46.99 x1 = 7.15, x2 = 7.01, x4 = 9.54, s_ f2 = 16.31, s_c1 = 15.67, s_c2 = 13.84 23.23

B3 37.99 21.99 70.22 x1 = 6.15, x2 = 12.45, x3 = 0, x4 = 7.07, s_ f3 = 23.23, s_c1 = 19.63 21.41

B4 49.21 34.01 46.99 x1 = 10.96, x2 = 8.44, x4 = 7.87, s_ f1 = 11.22, s_ f2 = 12.02, s_c1 = 11.62 23.23

B5 58.73 24.48 46.99 x1 = 11.20, x2 = 9.37, x3 = 6.74, x4 = 2.30, s_ f1 = 20.74, s_ f2 = 2.49 23.23

B6 58.11 21.99 50.11 x1 = 10.57, x2 = 9.99, x3 = 7.36, x4 = 1.67, s_ f1 = 20.12, s_ f3 = 3.12 20.11

Table 7

Illustrative example—nondominated extreme solutions with a= 0.103093

a= 0.103093 solutions f1 f2 f3 xB Ll

C1 58.03 23.09 48.09 x1 = 10.75, x2 = 9.58, x3 = 7.15, x4 = 1.91, s_ f1 = 18.94, s_c1 = 0 18.94

C2 39.09 36.58 48.09 x1 = 7.50, x2 = 7.46, x4 = 9.14, s_ f2 = 13.49, s_c1 = 15.51, s_c2 = 10.91 18.94

C3 39.09 23.09 67.03 x1 = 6.60, x2 = 11.89, x3 = 0.22, x4 = 6.99, s_ f3 = 18.94, s_c1 = 18.48 18.94

C4 47.93 33.19 48.09 x1 = 10.51, x2 = 8.59, x4 = 7.82, s_ f1 = 8.84, s_ f2 = 10.10, s_c1 = 12.32 18.94

C5 39.09 23.72 66.40 x1 = 6.72, x2 = 11.75, x4 = 7.19, s_ f2=.63, s_ f3 = 18.31, s_c1 = 18.63 18.94
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sequences in terms of efficient solutions are auto-

matically visualized.

4. An illustrative example

To illustrate the interactive approach, let us con-

sider the following FMOLP problem with three

objective functions:

gmax fðxÞ ¼ gmax

f1

f2

f3

0BBBB@
1CCCCA

¼ gmax

3x1 þ x2 þ 2x3 þ x4

x1 � x2 þ 2x3 þ 4x4

�x1 þ 5x2 þ x3 þ 2x4

0BBBB@
1CCCCA

s.t.

2x1 þ x2 þ 4x3 þ 3x4 fV 60 ðc1Þ

3x1 þ 4x2 þ x3 þ 2x4 f
V

60 ðc2Þ

x1 þ 2x2 þ 3x3 þ 4x4 f
V

50 ðc3Þ

x1,x2,x3,x4z0

By computing the efficient solutions which indi-

vidually optimize each objective function, Table 2 is

determined.

Let us suppose the DM establishes a numerical

tolerance of 30 with respect to each of the optimal

objective function values (diagonal values in Table 2),

and admits a tolerance of 10%, 40% and 20% on the

right-hand side of (c1), (c2) and (c3), respectively. The

bounds used to define the membership functions

associated with the fuzzy objectives and constraints

are presented in Table 3.

By applying parametric programming to each

objective in the region defined by nonnegativity

constraints and

3x1 þ x2 þ 2x3 þ x4z36þ 30a

x1 � x2 þ 2x3 þ 4x4z20þ 30a

�x1 þ 5x2 þ 1x3 þ 2x4z45þ 30a

2x1 þ x2 þ 4x3 þ 3x4V66� 6a

3x1 þ 4x2 þ x3 þ 2x4V84� 24a

x1 þ 2x2 þ 3x3 þ 4x4V60� 10a

aa½0,1


three fuzzy compromise solutions, which are analyti-

cally dependent on the parameter a, are computed

(Table 4a, b and c). s_ fk (k = 1, 2, 3) is the slack of the

kth goal, and s_ci (i = 1, 2, 3) is the slack of the ith

constraint.

These tables contain the a intervals that correspond

to the same optimal basis, the fuzzy compromise

solution values (analytically dependent on a), the

Table 8

Illustrative example—nondominated extreme solutions with a= 0.239489

a= 0.239489 solutions f1 f2 f3 xB Ll

D1 46.16 27.18 52.18 x1 = 8.88, x2 = 9.44, x3 = 2.11, x4 = 5.88, s_ f1 = 2.98, s_c1 = 11.29 2.98

D2 43.18 30.16 52.18 x1 = 8.80, x2 = 9.15, x3 = 0, x4 = 7.63, s_ f2 = 2.98, s_c1 = 14.93 2.98

D3 43.18 27.18 55.16 x1 = 8.22, x2 = 9.80, x3 = 1.02, x4 = 6.68, s_ f3 = 2.98, s_c1 = 14.20 2.98

Table 9

Illustrative example—nondominated extreme solutions with a= 0.264957

a= 0.264957 solutions f1 f2 f3 xB Ll

E1 43.95 27.95 52.95 x1 = 8.53, x2 = 9.41, x3 = 1.17, x4 = 6.62, s_ f1 = 0, s_c1 = 13.40 0
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objective functions and constraints values obtained at

this solution (analytically dependent on a), the objec-

tive functions and constraints values obtained at the

bounds of the a intervals.

If the DM is not yet satisfied with the calculated

fuzzy compromise solutions, he/she can change the

membership functions and compute other fuzzy com-

promise solutions or proceed the search in regions of

the weight space not yet investigated by using the

information given by the display of indifference

regions in the weight space as visual feedback, for

every a bounds previously computed.

Let us suppose the DM wants to compute addi-

tional solutions, in order to have a broader view of

the efficient region, for the calculated a bounds.

Tables 5–9 and Figs. 7–11 show the characteris-

tics of the various efficient extreme solutions calcu-

lated for different values of a (each indifference

region in the weight space is associated with an

efficient extreme solution obtained by optimizing a

weighted-sum scalarizing function). Ll is the Tche-

bycheff (minmax) distance to the ideal solution for

each efficient extreme solution. The so-called ideal

solution is the one which would optimize all the

objective functions simultaneously (which is not

feasible whenever the objective functions are in

conflict). The figures are copies of the computer

screens presented to the user and the f1– f2 objective

Fig. 7. Illustrative example—nondominated extreme solutions with a= 0 (Ai solutions).

Fig. 8. Illustrative example—nondominated extreme solutions with a= 0.06639 (Bi solutions).
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function projection labels corresponds to solution

identification/f3 value.

By comparing the weight spaces on Figs. 7 and 8,

it can be concluded that the indifference regions

corresponding to solutions A3 and A7 are going to

join and originate solution B3 indifference region.

That is, the set of weights with which solutions A3

and A7 are obtained for a= 0 are the same that lead to

solution B3 with a = 0.06639, a more stable solution

as far as weight changes is concerned.

By analyzing Figs. 8 and 9, it can be observed that

the (degenerate) B3 solution indifference region is

split into the indifference regions corresponding to

solutions C3 and C5. Solutions B1, B5 and B6

indifference regions are going to join and originate

the indifference region corresponding to the (degen-

erate) solution C1, a more stable solution regarding to

weight changes.

From visual inspection of the other weight spaces

(Figs. 9–11), it can be concluded that solutions C2,

C4 and C5 indifference regions are going to join and

originate (degenerate) solution D2 indifference region.

This region and the solutions D1 and D3 indifference

regions will also join and originate solution E1 indif-

ference region, which is the only efficient solution for

a= 0.264957.
For these membership functions, all the calculated

solutions are outside the original crisp feasible region.

Fig. 9. Illustrative example—nondominated extreme solutions with a= 0.103093 (Ci solutions).

Fig. 10. Illustrative example—nondominated extreme solutions with a= 0.239489 (Di solutions).
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Besides, as a grows, the solutions become nearer to

the initial crisp constraints.

Let us suppose that at this moment, the DM has

gathered sufficient information about the fuzzy effi-

cient solution set, in a way that a better informed final

decision can be made or eventually he/she concludes

that it is necessary to review the model.

In this simple illustrative example, all the weight

spaces have been filled completely with indifference

regions. However, it must be emphasized that this is

not generally the goal in actual decision situations.

The main concern being to provide the DM a flexible

decision aid tool by means of which it is possible to

gather, in a progressive and selective manner, knowl-

edge about the efficient solution set in order to make a

final decision.

5. Conclusions

Decisions to be made in complex contexts, char-

acterized by the presence of multiple evaluation

aspects, are normally affected by uncertainty, which

is essentially due to the insufficient and/or imprecise

nature of input data as well as the subjective and

evolutive preferences of the decision maker. An

interactive approach, based on the search of the

weight space, to deal with FMOLP problems has been

proposed and implemented as a DSS. Linear fuzzy

objective functions and fuzzy constraints have been

considered.

The analysis is based on the weight space which

enables to show graphical information interactively to

the DM in a way that promotes to gain new insights

into the problem and the trade-offs to be made in order

to select a satisfactory compromise solution. Special

attention has been paid to the computational simplicity

and graphical interactivity, in order to visualize dynam-

ically the behavior of the efficient solutions according

to changes in the initial model coefficients, by display-

ing the indifference regions on the weight space.

The comparative study of distinct weight space

decomposition, which changes according to the range

of the parameter a, shows the evolution of the indif-

ference regions corresponding to the calculated effi-

cient solutions, in a way that enables to understand the

shape of the fuzzy efficient feasible region and the

nature of the trade-offs to be made in selecting a final

satisfactory compromise solution.

The interactive computer environment contributes

to stimulate the DM to take a more active role in the

decision process by exploring the problem and his/her

convictions, criticizing the obtained results and care-

fully considering distinct situations that can arise

(regarding objective functions values, used resources,

intervals of values of the objective functions’ and

constraints’ satisfaction degree, etc.). The membership

functions can also be interactively changed, thus,

allowing to further study the fuzzy efficient solution

set.

Despite the fact that uncertainty elements in the

coefficients of the objective functions have not been

Fig. 11. Illustrative example—nondominated extreme solutions with a= 0.264957 (Ei solution).
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incorporated, this seems very easy to integrate in the

proposed approach both methodologically and com-

putationally. In this situation the shape and the size of

the indifference regions on the weight spaces would

change dynamically as the value of the objective

functions and constraints satisfaction degree varies.

Research is currently underway to extend this DSS

based on the weight space to incorporate uncertainty

elements in the coefficients of the objective functions.
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