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Abstract

Performance in many very-large-scale-integrated (VLSI) systems such as digital signal processing (DSP)
chips, is predominantly determined by the speed of arithmetic modules like adders and multipliers. Even
though redundant arithmetic algorithms produce significant improvements in performance through the
elimination of carry propagation, efficient circuit implementations of these algorithms have been tradition-
ally difficult to obtain. This work presents a survey of circuit implementations of redundant arithmetic
algorithms. The described implementations are divided into three main groups: (1) conventional binary logic
circuits, which encode the multivalued digits of redundant arithmetic into two or more binary digital signals;
(2) current-mode multiple-valued logic circuits, which directly represent multivalued redundant digits using
non-binary digital current signals; and (3) heterostructure and quantum electronic circuits, intended for very
compact designs capable of operating at extremely high speeds. For each of the circuits, the operating
principle is described and the main advantages and disadvantages of the approach are discussed and
compared. © 2000 Published by Elsevier Science B.V.

Keywords: Redundant number systems; Redundant binary logic; Current-mode logic; Multiple-valued logic; Quantum
electronic circuits

1. Introduction

Increasing the speed of arithmetic logic circuits is of extreme importance in the field of
computing and signal processing circuits. On one hand, throughputs of the order of
few gigaoperations per second are now conventional in large scientific vector processors and
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supercomputers [1]. This kind of performance is usually achieved by means of fast, densely
integrated circuit technologies and highly parallel organizations. On the other hand, advanced
signal processors with clock rates of the order of gigahertz are required for future system
applications such as digital microwave receivers [ 1]. Speed in these processors is usually limited by
the latency of their arithmetic units, especially that of multipliers.

Carry signals propagating through long chains of logic, as is the case in conventional ripple-
carry adders, significantly hurt performance in arithmetic systems. In conventional adders, the
worst-case latency is proportional to the number of digits involved in the operation, that is, the size
of the operands. Moreover, multiplier circuits cascade a number of adders to sum the partial
products. The importance of carry propagation effects is evident, considering that operand sizes
tend to increase with the constant strive for greater processor power and precision. A standard for
floating point arithmetic [2], for example, specifies 52-bit mantissas for the double-precision
floating-point operands. Having addition latency proportional to 52 times the delay of an adder
cell is obviously unacceptable, considering that the length of logic paths between latches is highly
constrained in modern pipelined high-performance microprocessors.

Redundant number systems reduce or eliminate carry propagation chains in digital arithmetic
circuits. In these number systems, redundancy is owed to the fact that, contrary to the case of
conventional systems, redundant numbers can have more than one representation. For instance, in
a radix-4 system with the digit set { — 2, — 1,0, 1,2}, numbers 0020, 0100, 1020, and 1100 all have
arithmetic value 8. Redundancy allows addition algorithms in which carry propagation is com-
pletely eliminated. In these algorithms, a proper intermediate representation of the operand digit
summation, x; + y;, is selected so that the final addition result can be generated using half-adders
that do not require nor generate carry signals. More details on redundant arithmetic systems are
given in Section 2.

Even though redundant addition techniques offer great improvements in computing perfor-
mance, efficient circuit implementations of these algorithms have been traditionally difficult to
achieve. A simple way to understand these difficulties is by noting the fact that digits in redundant
systems are often not binary. This forces a departure from traditional binary logic circuits and
conventional circuit techniques and technologies. In this work, we survey digital circuit implemen-
tations of redundant arithmetic algorithms. Conventional binary logic circuit techniques, described
in Section 3, have been applied in redundant arithmetic systems by encoding redundant multi-
valued digits into two or more binary signals. It is interesting to study the evolution of circuit
implementations of redundant arithmetic systems and appreciate the different circuit techniques
that have been inspired. Such circuit techniques often explore non-traditional areas of digital
circuit design. Section 4 presents multiple-valued logic and current-mode circuits. These circuits are
intend as a better match of the need for operation with non-binary digits. Heterostructure and
quantum devices are used in alternative circuit techniques, described in Section 5, intended for very
compact designs capable of operating at extremely high speeds.

2. Redundant number systems

This section presents the basic concepts of redundant arithmetic. Signed-digit arithmetic [3],
a special case of redundant arithmetic, is described in more detail and is used to introduce the
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properties that characterize redundant arithmetic systems. Such properties include, among others,
the number format, the addition algorithm, the valid digit set, and the proper radix values. Other
redundant number systems are addressed using Parhami’s unifying generalized signed-digit number
representation [4].

2.1. Signed-digit number representations

Signed-digit systems were conceived with the purpose of implementing fotally parallel addition
[3], where carry propagation is eliminated. Carry propagation is eliminated by making each digit
of the resulting sum a function of only two input digits. This is made possible by the redundancy of
the number representation since a proper intermediate representation of the operand digit summa-
tion, x; + j, is selected so that the final addition result can be generated using half-adders that do
not require nor generate carry signals. The totally parallel addition algorithm can also be used to
perform subtraction operations. The following paragraphs present the most important character-
istics of signed-digit systems and the basic principles of the corresponding addition algorithm.

2.1.1. Properties of signed-digit number systems
The algebraic value of a signed-digit number is given by

where r is a positive integer called the radix. In a redundant representation with radix r, each digit
can assume more than r values, whereas in conventional number representations digits can assume
exactly r values. The values of the radix and the number digits, z;, should satisfy the condition of
a unique representation for the algebraic value Z = 0. It is then easy to prove that the algebraic
value Z is zero if, and only if, all digits of its signed-digit representation have the value z; = 0. It is
also evident that the sign of the algebraic value Z is determined by the sign of the most significant
non-zero digit. Similarly, the signed-digit representation of — Z, the additive inverse of Z, is
obtained by changing the sign of every non-zero z; digit of Z.

Fig. 1 depicts the totally parallel addition approach in the signed-digit arithmetic system. The
addition of two digits x; and y; is totally parallel if two conditions are satisfied. First, the sum digit

X y‘I x‘i-1 y\i 1
"""" X y x y
Step 1
rrrrrrrr c w c w
Wis1 G Wi Ci-1 Wi
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w c w c
Step 2
S S |
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Fig. 1. Totally parallel addition approach in signed-digit number representation [3].
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s; 1s function only of the operand digits, x; and y;, and the carry digit ¢;—; from the adjacent digit
position. Second, the carry digit to the next position c¢; is function only of the operand digits, x; and
y;. Totally parallel subtraction x; — y; is realized as the totally parallel addition of x; and the
additive inverse of y;, that is, x; — y; = x; + (— »;).

Totally parallel addition of two digits is performed in two steps, as depicted in Fig. 1. In the first
step, a transfer digit output ¢; and an interim sum output w; are generated such that

X; + Vi = 1¢; + w;. (1)
In the second step, the final sum digit s; is obtained as
Sp =W; + ¢i—1. 2)

The required and allowed digit values for each of the variables involved in the two-step addition
process can be derived from the definition of totally parallel addition and from the addition
algorithm described by (1) and (2). The most important results of such derivation are as follows (for
a complete analysis see [3]):

The smallest sufficient set of values for the carry digit is ¢; = {— 1,0,1}.

The upper bound for the magnitude of the interim sum is |w;| <r — 2.

The lower bound for the radix value is r > 2.

For an odd radix, r, > 3, the required (minimum) set of values for operand digits x; and
y; consists of the sequence of r, + 2 integers

el S e

{—3(ro +1),...,— 1,0, 1,....5(ro + 1)}

5. For an even radix, r. > 4, the minimum set of values for operand digits x; and y; consists of the
sequence of r, + 3 integers

1 1
{— <§re + 1>,..., — 1,0,1,...,§re + 1}.

Minimum sets are the only allowed for radix-3 and radix-4 systems. For r > 4, however, there is
more than one valid set of digit values. The sequence of integers

{—a,—(@—1),...,—1,0,1,...,a — 1,a}
meets the requirements for signed-digit number representations, where
Yo+ <a<r,—1 or 3rc+1<a<r.—1,

1, is an odd integer r, > 3, and r. is an even integer r. > 4. All signed-digit number representations
can be described in terms of the allowed radix values and the allowed z; digit values. The
redundancy of a signed-digit system is said to be minimal when a = 1/2(r, + 1) or a = 1/2r, + 1,
and the redundancy is maximal whena=r, — 1l ora=r. — 1.
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2.1.2. Signed-digit addition and subtraction

Two signed-digit numbers are added by means of the totally parallel addition algorithm
described by (1) and (2). The rules for obtaining wj, ¢;, and s; can be determined given the set of
allowed values of wy, wy;, and wp,,,, as follows. From (1),

wi = (x; + i) — rei,

where
0 if Wein < X5 + Vi < Winaxs
¢ =11 if X; + Vi > Wiax
—1 if x; + ¥ < Wnin
and

S; = Wj + Cj—1-

Example 2.1. Signed-digit addition(Radix 10).
The allowed values for the digits are

wi: 5,4,3,2,1,0,1,2,3,4,5,
¢: 1,0,1;

Si» Xi, Vi- 6, 5,4, 3, 2, 1,0, 1,2, 3, 4, 5, 6

Digits with negative values are identified with a bar above the integer. The addition operands are

x = 4.25143 (algebraic value X = 3.75137), and y = 2.33021 (algebraic value Y = — 2.32979). The
addition procedure is as follows:

augend x: 4 2 5 1 4 3
addend y: 2 3 3 0 2 1
Step (1): 0+2 0+5 1042 0O+1 10+4 0+2
Step (2): 0 1 0 1 0

Sum s: 2 6 2 2 4 2

The resulting sum is s = 2.62242, which as an algebraic value S = 1.42158 = 3.75137 — 2.32979.
2.2. Other redundant number systems

Stored-carry, stored-borrow, and the binary signed-digit (BSD) number systems are examples of
other useful redundant arithmetic systems. In [4], Parhami proposed a generalized signed-digit
number representation (GSD) where Avizienis’ signed-digit system is named the ordinary signed-
digit number system (OSD). In the generalized number system, the OSD and BSD systems are
unified and other useful redundant number representations such as stored-carry and stored-
borrow are included as special cases.
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The generalized signed-digit number system is a positional system (a weight is associated with
each digit position) with the digit set { —a, —a+1,..., 8 —1, B}, where >0, >0,
o+ f+ 1>r and r is the radix of the number representation. The excluded case « + f + 1 =7
results in non-redundant number representation systems which cover the conventional radix-r
system with « =0, f = r — 1 as a special case. GSD number systems cover the following special
cases.

Binary stored-carry (BSC). r =2, 0 =0, = 2.

Radix-r stored-carry (SC): a =0, f =r.

Binary stored-borrow (BSB or BSD): r =2, 0 = ff = 1.
Radix-r stored-borrow (SB). oo =1, f =r — 1.

Binary stored-carry-or-borrow (BSCB). r =2, =1, f = 2.
Radix-r stored-carry-or-borrow (SCB): oo =1, f =r.
Minimally redundant symmetric signed-digit: 20 = 2 =r > 4.
Ordinary signed-digit (OSD): r =3, r <o = p <r.
Minimally redundant: o« = 8 = 3r | + 1.

Maximally redundant: ¢ = f =r — 1.

Sl A e

Radix-r stored-carry number representation systems use the digit set {0,1,2,...,r}. The special
case r = 2 leads to the binary stored-carry (BSC) number system. The main use of BSC numbers is
in multioperand addition (multiplication). A BSC number can be added to a conventional binary
number, producing a BSC result, using a set of full adders without carry propagation. The
stored-carry number systems have been adopted in many implementations [ 5-8]. Radix-r stored-
borrow number systems use the digit set {1,0,1,...,r — 1}. The special case r = 2 leads to the
binary stored-borrow (BSB) number system, also known as binary signed-digit (BSD) number
system. BSD numbers have been used for representing intermediate temporary values in high-
speed multiplication and division algorithms such as Booth’s recoding algorithm for multiplication
[9]. Two BSD numbers can be added by a limited carry circuit. Implementations using the BSD
number system are described in [10-13].

3. The redundant binary approach

In redundant binary logic, each redundant digit is encoded by two or more bits and computation
is performed by means of conventional binary logic families such as static or dynamic CMOS.
A radix-2 redundant digit, for example, can be encoded by two binary digits as seen in Table 1. The
digit set {1,0,1} has two well-known encodings, namely, sign-mag and borrow-save [14]. In
sign-mag the two bits represent a magnitude and a sign, respectively, whereas in borrow-save one
bit is positive (sum) and the other is negative (borrow). This section describes implementations of
redundant arithmetic algorithms by means of conventional binary logic circuits.

The main use of redundant binary logic is in multipliers. In high-performance (parallel) multi-
pliers, most of the circuit area is dedicated to adder blocks which sum together partial products to
generate the final multiplication result. Consequently, the performance of this type of systems
depends heavily on the speed of the adder circuits. Multipliers are very suitable for redundant
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Table 1
Radix-2 redundant binary encodings

Encoding Bit Values

Sign-mag Sign 0 0 1 1
Mag. 0 1 0
Digit value 0 1 -1 X

Borrow-save Borrow 0 1 1
Sum 0 1 1
Digit value 0 0 1 —1

Carry-save Carry 0 0 1 1
Sum 0 1 0 1
Digit value 0 1 1

addition techniques because several stages of addition can be performed without conversion to the
standard binary representation. Most high-performance multipliers use a tree structure to increase
parallelism in the addition of partial products [15].

3.1. Early tree multipliers

In 1964, Wallace [15] proposed a fully combinational multiplier in which partial products are
added by a tree of pseudoadders. A pseudoadder sums together three binary numbers and produces
two output numbers whose sum equals that of the three inputs. The pseudoadder operates without
carry propagation and it can be implemented using full adders, with the third input number being
fed to the carry inputs of the full adders and the second output number being formed by the set of
carry outputs of the adder cells. By arranging a group of pseudoadders in a tree structure, several
additions are performed in parallel. This improves the speed of multiplication and makes the delay
proportional to the logarithm of the number of partial products. Fig. 2 depicts a 20-input Wallace
tree made of 18 pseudoadders. The pseudoadder is also named a 3:2 compressor because it has
three inputs and two outputs. A lot of work has been done on the implementation of compressor-
based multipliers, and the 4: 2 compressor approach is one of the most popular at the present time
[16-19].

The Wallace tree approach and other carry-save implementations [6] use redundant binary
representation. In these schemes, addition results are expressed as the sum of two numbers.
A quantity can therefore be represented in several different ways, thus making the system
redundant. If the pair of output numbers is considered as the addition result, it is easy to verify that
the pseudoadder implements totally parallel addition by noting that each digit of the result is
function only of the input digits of the corresponding compressor.

To obtain the normal binary representation of the result, it is necessary to use a conventional
adder to sum the pair of resulting numbers. This step involves carry propagation, which implies a
penalty on performance. In multipliers this problem is compensated by accumulating the speed-up



20 A.F. Gonzalez, P. Mazumder | INTEGRATION, the VLSI journal 30 (2000) 13-53

2019 181716 151413 121110 9 8 7

vty | | |
iv vy

ch ch ch s

v Hv l

.

H

Cd L e L)
L]

Yy v ‘
l bovel 4
' 1 l
Level 3
S
S

4 38 21 Partial products
l \ | \ Level 7

Level 6

-

Level 5

[¢]

"
=

i

Carry Propagating Adder ‘

Level 2

Level 1

\J

Final Sum

Fig. 2. Wallace tree for a 20-input adder.

of several compression steps before a single conventional addition takes place at the end of the
process. The process in which the two resulting numbers are added together can be regarded as
a conversion from redundant representation to normal binary representation [11].

In [6], a carry-save multiplication algorithm similar to the Wallace tree approach is described.
The basic difference between these schemes is that the carry-save adder produces the carry-save
sum of two carry-save inputs, while the Wallace tree pseudoadder produces the addition of three
binary numbers represented by the sum of two binary numbers. In a unifying way of describing the
algorithms one could say that Wallace uses 3:2 compressors and Vuillemin uses 4:2 compressors
as the basic addition elements.

Another type of redundant adder tree implementation is based on borrow-save or sing-mag
representations [11]. The main distinguishing characteristic of this approach is that digits can
assume negative values. While the digit set in the carry-save scheme is {0, 1,2}, the set of digit values
in the borrow-save and sign-mag approaches is {1,0, 1}. This digit set is characteristic of a radix-2
signed-digit number system, which was named a modified signed-digit number system in [3]. Again,
the functional characteristics of this type of algorithms are not very different from those of the
carry-save methods. The signed-digit redundant binary adder can also be regarded as a 4:2
Compressor.

Compressor-based multioperand addition schemes are very similar to each other. The main
difference is in their theoretical basis and the way this drew the path to the corresponding addition
algorithm itself. The rest of this section presents practical VLSI implementations of redundant
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binary arithmetic schemes. The designs described involve parallel multipliers that implement
redundant arithmetic by means of conventional binary logic. There are two main classes of
multiplier implementations, taking the theoretical treatment of the arithmetic as the classification
criterion, namely, carry-save multipliers and redundant binary multipliers.

3.2. Carry-save multipliers

Most of the implementations under this category are based on Wallace’s approach [15]. Here,
we describe four of the most representative multiplier designs that have been reported. All of the
implementations are based on some type of MOS process (NMOS and CMOS), and all of them use
some form of the carry-save adder basic cell.

3.2.1. Pipelined multiplier

The first multiplier circuit to be discussed was published in 1986 by Noll et al. [20]. The
multiplier is organized as an array of carry-save adders (3:2 compressors). As seen in Fig. 3, the tree
architecture is not followed in this implementation. Avoiding the tree architecture allows for
a much more regular layout, which helps reducing the design cycle time and increasing integration.
However, using the array architecture comes at the cost of increased latency. This implementation
offers a high throughput because the system is maximally pipelined, which means that there is
a storage element after each adder level in the array. In this way, the clock period has to be
sufficiently large to allow the propagation of the signal only through a single compressor cell. This
multiplier can operate up to 330 MHz; a very good performance, considering the technology being
used. According to the authors, high performance is achieved by making a more efficient use of the
hardware. In the maximal pipelining approach, at any given time, all the compressor levels are
performing a computation. This contrasts with the non-piped approach, where only one of the
compressor levels is active at a time.

Noll’s approach was demonstrated by means of an 8 x 8-bit multiplier prototype. Fig. 3 depicts a
block diagram of the test chip. Note that the circuit only computes the most significant 8 bits of the
16-bit result. One of the contributions of this work is an improved carry-save cell design (shown in
Fig. 4). This cell design excludes the time for charging and discharging the multiplier lines (inputs
x and y) from the critical path. The test circuit was developed using a 1 um NMOS technology. The
circuit consists of 5480 MOSFET transistors, and the active area is 0.6 mm?. The power dissipa-
tion is 1.5 W, with a supply voltage of 3 V. An operating frequency of 330 MHz at room
temperature was achieved, and a latency time of 55 ns is produced by the 18 pipeline stages.

3.2.2. Stanford pipelined iterative multiplier

Another interesting implementation of the carry-save approach is the Stanford pipelined iter-
ative multiplier (SPIM), presented by Santoro et al. in 1989 [16]. In this case, the main goal of the
design effort was to develop a multiplier architecture which was faster and more area efficient than
a conventional array. Santoro’s architecture combines the pipelined Wallace tree approach using
4:2 compressors and an iterative accumulation approach to implement a 64 x 64-bit multiplier. By
using iterative accumulation, the size of the circuit is significantly reduced while performance
specifications are still met. SPIM was able to provide twice the performance of a comparable
conventional full array at one-fourth the silicon area [16].
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Fig. 3. Block diagram of an 8 x §-bit multiplier in Noll’s implementation.

Fig. 5(a) shows the block diagram of the SPIM datapath. Booth encoders reduce the number of
partial products by half [9] - in this implementation the circuit encodes 16 bits per cycle. The
Booth-encoded bits control the Booth MUXSs in blocks A and B. The A and B MUX outputs drive
an eight-input Wallace-tree of 4:2 compressors. Each pipe stage uses one 4:2 compressor. The
D block is a carry-save accumulator which also contains a 16-bit hard-wired right shift to align the
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Carry P X Sum

Fig. 4. Novel carry-save cell with pipelined partial product bit.

partial sum from the previous cycle to the current partial sum to be added. The pipeline registers
are indicated as black bars in the block diagram of Fig 5(a), and the multiplication process can be
appreciated in Fig. 5(b).

The latency of the multiplier is 7 cycles, but the circuit can be clocked at high speed due to the
short length of each pipe stage. The combined result of the approach is a somewhat better
multiplication delay, as compared to other designs, using a very compact circuit. Needing only
one-fourth of the area used by its counterparts, this design achieves significant savings in hardware.
This factor is very important in VLSI systems like microprocessors, where as many complex
systems as possible have to be integrated in a single chip. For Santoro’s scheme to work, it is
necessary to clock the multiplier at a higher rate than the rest of the system. To solve this problem,
the multiplier uses a controllable on-chip clock generator.

SPIM was implemented using a 1.6 um CMOS process. The core of the chip has 41,000
transistors and a size of 3.8 x 6.5 mm?. The on-chip clock generator runs at 85 MHz, and the
latency for a 64 x 64-bit multiply is under 120 ns with a pipeline rate of one multiply every 47 ns.
The latter rate is obtained considering that a multiply operation can be started every four cycles.
Fig. 6 shows the design of the basic 4:2 compressor cell. One possible implementation of this cell is
based on using two 3:2 carry-save adder cells. This design is used to ease the analysis of
performance and comparison with other multiplier designs.

3.2.3. CMOS multiplier with improved parallel structure

An important category of multiplier design is that in which the main objective is to achieve
high-performance, without having strong constraints in resources (circuit area) as is the case in
SPIM. An important instance of this type of multiplier is the work by Nagamatsu et al. [17,18].
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The main characteristic of these implementations is that the complete Wallace tree of compressors
is built and it is operated in a fully combinational fashion. In this way, the latency of the
multiplication operation is reduced to the minimum because a single step is required, and because
there is no extra delay introduced by pipeline latches.

Nagamatsu et al. built a 32 x 32-bit multiplier [17] applying the modified Booth algorithm to
reduce the number of partial products by half, and using a Wallace tree of 4:2 compressors to sum
the partial products as seen Fig. 7(a). The 64-bit adder used to obtain the final result relies on the
carry-select technique which helps reducing carry propagation. Fig. 7(b) shows the logic circuit of
the 4:2 compressor. With this approach, the authors were able to obtain a multiply time of 15 ns,
the best reported performance up to that time. The test chip has a core of 27,704 transistors in an
area of 2.68 x 2.71 mm?, and it was fabricated in a 0.8 um, triple-level interconnect CMOS process.
The power dissipation reported by the authors was 277 mW at an operating frequency of 10 MHz
(clock for input and output registers).

Mori et al. presented an improved version of their previous work in [18]. In this case, the size of
the multiplier was increased to 54 x 54 bits, but the basic approach remained the same. The
organization of the multiplier also consisted of a tree of 4:2 compressors that sum the set of partial
products. Booth encoding of the multiplier operand was also adopted. The main architectural
difference lies on the design of the 108-bit final adder. Instead of using only the carry-select
approach for reducing carry propagation, the new version of the multiplier implemented a combi-
nation of the carry-select and the carry lookahead (CLA) addition methods. Three main innova-
tions helped the new version of the multiplier achieving better performance. These innovations are
(a) the use of a more advanced fabrication process technology with reduced minimum feature size
(0.5 um), (b) an improved 4:2 basic compressor cell circuit design based on pass transistor logic,
and (c) a modified 108-bit final adder design. Fig. 8 depicts the 4:2 compressor circuit. An improved
circuit design for the logic gate, shown in Fig. 8, was used to reduce the propagation delay of the 4:2
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Fig. 8. Circuit design of the basic compressor cell. (a) XOR circuit. (b) 4:2 compressor design.
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compressor basic cell. Besides shortening the simulated gate delay to 87.5% of that in the
conventional approach, the number of transistors is reduced from 10 to 7. Using the proposed
approach, the new multiplier achieved a multiplication delay time of 10 ns. The test chip required
81,600 transistors, and its circuit area was 3.62 x 3.45 mm?. The test circuit dissipated 870 mW
when clocking the input and output registers at 100 MHz.

3.2.4. Regularly structured tree multiplier

Another multiplier implementation which uses the Wallace tree approach is the 54 x 54-bit
regularly structured tree multiplier [19], proposed by Goto et al. From the architectural point of
view, this multiplier is very similar to those that have been described here [17,18]. Goto’s multiplier
uses Booth recoding and a Wallace tree of 4:2 compressors. An important distinction of this
implementation, from the architectural point of view, is the use of a Manchester adder scheme in the
final adder (CPA). The main contribution of this work stems from the proposed layout design
methodology. To simplify the design process, the authors divide the tree into subcircuit modules
that are reused in the construction of the complete tree. The key of the approach is that the wiring
scheme is repeated in the modules. In this way, the proposed design method solves one of the most
serious problems of Wallace tree multipliers, that is, complicated layout and wiring design. The
Wallace tree used to have the drawback of being difficult to layout, due to the irregularity of
interconnection among the compressors of the tree. This drawback is eliminated in Goto’s
implementation, however, by the design of subcircuits that include a wiring scheme that allows
them to be replicated in the circuit layout. Two important improvements are obtained by this
approach. First, the design cycle is significantly reduced by using tightly coupled, recurring blocks.
Second, the resulting layout is better because it features shorter interconnect lengths, reduced
circuit area, and higher speed performance. Fig 9 shows the division scheme of the multiplier and
depicts the building blocks devised by the authors. In the figure, block 7D is the basic block, and
two of them are used to construct block 14D. Similarly, two 14D blocks constitute the complete
tree.

?@f?? e ??@f? ?? ?? ? 1 ???? ??? |

‘3w‘ |3w

|3W§ |

“ 4W: 4-2 compressor
. 3W: 1-bit full adder
CPA (®: partial product bit
generator
Product

Fig. 9. Block diagram of the 54 x 54-bit tree multiplier. Division scheme of partial-product-bit generators and adders.
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Table 2
Summary of carry-save multiplier characteristics

Approach Ref Size (bits) Speed Technology Power Transistors
Pipelined array [20] 8x8 330 MHz 1.0 pm NMOS  1.5W 5,480 (core)
SPIM [16] 64 x 64 47 ns 1.6 pm CMOS 360 mW 41,000 (core)
@ 85 MHz
Parallel structure [17] 32x32 15 ns 0.8 um CMOS 277 mW 27,704 (core)
@ 10 MHz
Parallel structure [18] 54 x 54 10 ns 0.5 pm CMOS 870 mW 81,600
@ 100 MHz
Regular structure [19] 54 x 54 13 ns 0.8 um CMOS 875 mW 82,500
@ 40 MHz

As in the previous examples, Goto’s multiplier was demonstrated using a test chip. In this case,
fabrication was done using a 0.8 pm, triple metal, CMOS process. The 3.36 x 3.85 mm? circuit
included 82,500 transistors. A multiplication delay time of 13 ns was obtained in the experiments.
This result compares well to the fastest multiplication delay of a 0.5 pm implementation, which is
of 10 ns. Goto’s design is expected to perform even faster than 10 ns with an implementation using
the more advanced 0.5 pm CMOS process. In the experiments, power dissipation was 875 mW,
with a clock frequency of 40 MHz. An important difference in circuit implementation, with respect
to the multiplier in [18], is that Goto’s circuits [19] are designed using fully static CMOS logic
gates, while the other design uses pass transistor gates. Using fully static CMOS allows Goto’s
design to reduce power consumption.

Table 2 summarizes the most important characteristics of the carry-save multiplier implementa-
tions presented.

3.3. Redundant binary architectures

The redundant binary architecture is very similar to a Wallace tree approach. Takagi et al.
pointed out these similarities in [11], and referred to Vuillemin’s algorithm [6]. The main
difference with respect to Vuillemin’s work is that Vuillemin uses the carry-save number repres-
entation, with digit set {0, 1,2}, and Takagi uses the redundant binary representation, with digit set
{—1,0,1}. The redundant binary representation allows an easier implementation of two’s comp-
lement integer multiplication.

3.3.1. High-speed multiplier using a redundant binary adder tree

Harata et al. presented the first integrated circuit implementation of a multiplier using a redund-
ant binary architecture in 1987 [12]. Harata’s circuit uses the redundant binary multiplication
algorithm described in [11]. The basic idea of the algorithm is to speed-up multiplication by using
a tree of redundant binary adders to realize the addition of the partial products as seen in Fig. 10.
This approach makes the multiply delay proportional to the logarithm of the operand size, while in
array multipliers this proportion is linear. The proposed idea is very similar to the Wallace tree
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Fig. 10. Diagram of a 16 x 16-bit integer multiplier [12]. (a) Block diagram. (b) Redundant binary adder cell.

approach, and it can be said that Harata’s multiplier actually is a Wallace tree. The distinctive
characteristic, however, is the realization of the compressor by a redundant binary adder. Accord-
ing to the authors, using a tree of redundant binary adders allows a regular cell array layout
implementation, which solves the drawback of layout irregularity in Wallace tree implementations.
There is no significant difference between the two approaches in terms of speed performance.

Fig. 10(a) shows the basic architecture of the multiplier clearly depicting the tree structure of the
organization. Using this architecture, n partial products are added together in a time proportional
to log, n. Note that even though the multiplier operands are 16-bits long, the partial product
generator block generates only eight, instead of 16, partial products because it uses Booth’s
recoding technique [9]. This multiplier internally uses a redundant binary representation as
described in Section 2.2. Redundant binary adders (RBA) perform addition of two n-digit redund-
ant binary numbers in a constant delay time, irrespective of n, due to the totally parallel addition
characteristic of the number representation. The last block in the organization (CLA) is a carry
lookahead adder which converts the resulting sum represented by a redundant binary number into
the two’s complement representation of the result. The conversion adder has carry propagation
and that is why a fast addition approach such as carry lookahead (log, n delay) is used.

The redundant binary adder cell, seen in Fig. 10(b), determines the performance and the size of
the multiplier because it constitutes the delay path of the multiplier and it is the most instantiated
cell in the design. The implementation of this adder cell makes Harata’s multiplier a redundant
binary design because it uses binary signals to represent signed digits of the set { — 1,0, 1}. Since the
input redundant signals (x;, y;, and ¢;-¢) are encoded in binary format, standard binary gates
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perform the computations and generate redundant output signals (z; and ¢;) encoded in the
assumed binary format. The schematic diagram in Fig. 10(b) shows how the carry output signal is
generated without any involvement of the carry input signal — this eliminates the carry signal
propagation path usually present in arithmetic circuits.

The approach was demonstrated using a 16 x 16-bit multiplier test chip. The authors considered
and evaluated three options for realizing the layout of the circuit — they selected the layout
topology which allows simple signal flow, makes good use of repeatability, and has good extensibil-
ity. The chip was fabricated using a standard enhancement/depletion NMOS process with a 2.7 um
design rule. The transistor count of the multiplier is 10,600. The authors report a multiplication
time of 120 ns.

3.3.2. High-speed MOS multiplier using redundant binary representation

Kuninobu et al. implemented a high-speed multiplier and divider using redundant binary
representation [217]. This multiplier is actually an improved version of the work presented in
[11,12]. The approach is basically the same: a multiplier using Booth recoding where the partial
products are added together by means of a binary tree of redundant binary adders. This multiplier
is part of the floating point unit for a microprocessor built by the authors. This work is interesting
because it shows the importance of the multiplication algorithm proposed by Takagiin [11]. There
are three main innovations that help this algorithm to keep up to date in the high-performance
VLSI world. First, the new circuit implementation uses a 0.8 um, 2-layer metal CMOS technology
which is far superior to the initial 2.7 pm E/D NMOS process technology. Second, the authors use
an extended Booth recoding which they call redundant binary Booth algorithm. And third, the
redundant binary adder cell uses a redesigned logic circuit which is smaller and faster. Fig. 11
presents the logic circuit schematic diagram of the RBA cell in the new multiplier implementation.
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Fig. 11. Logic circuit of the redundant binary adder cell used in [21].
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According to the authors, the fabricated microprocessor performs single- and double-precision
floating point multiplication in 100 ns.

3.3.3. An 8.8 ns 54 x 54-bit multiplier using redundant binary architecture

Makino et al. presented important work on redundant binary arithmetic in [13,22]. Makino’s
multiplier became the fastest multiplier of the time with an 8.8 ns multiply delay. The implementa-
tion is very similar to other redundant binary designs that we have discussed here. The design uses
a tree of redundant binary adders to add partial products in a parallel fashion which allows a delay
proportional to the logarithm of the operand size. However, the authors identified three problems
that affect the performance of redundant binary multipliers. First, additional circuits are used to
convert binary numbers to their redundant binary representation. Second, most of the redundant
binary adder (RBA) designs are not superior to the 4:2 compressor cells used in non-redundant
implementations. And third, the carry propagate adder that converts the redundant binary result
into the final binary product is as slow as the conversion adder used in non-redundant approaches.
By attacking these problems, the authors obtained a multiplier design of improved performance.
The three problems were attacked in the following ways.

Using the borrow-save representation, seen in Table 1, helped solving the problem of normal-to-
redundant conversion. In borrow-save representation, the digit is represented by the sum of
a positive (sum) and a negative (borrow) bits. In this way, two partial products paired together form
a redundant binary number. The conversion process only requires a set of inverters to obtain the
complement of the borrow partial product. It is necessary to perform this inversion of bits because
the inherent sign of the borrow bits is negative. The bit-wise inversion of the borrow partial
product only gives the one’s-complement of the number, and the two’s-complement is necessary to
invert the sign of the number. The authors solve this problem by forming an additional partial
product with all the sign bits of the inverted partial products.

Makino proposed and improved design of the redundant binary adder cell in order to attack the
problem of inferior redundant binary adder circuits. Fig. 12 depicts the logic diagram of the
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Fig. 12. Schematic diagram of the redundant binary adder cell proposed in [22].
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Fig. 13. Block diagram of carry generation circuit in the final output conversion.

Table 3
Summary of redundant binary multiplier characteristics

Approach Ref Size (bits) Speed Technology Power Transistors
RBA Tree [12] 16 x 16 120 ns 2.7 um NMOS N/A 10,600
RB Representation [21] 54 x 60 100 ns* 0.8 um CMOS 4W° 1,000,000°
RB Architecture [22] 54 x 54 8.8 ns 0.5 pum CMOS 540 mW 78,800

@ 100 MHz

*For a floating point multiplication.
®Maximum for the whole processor.
°In the whole processor.

proposed redundant binary adder cell. The adder cell design was improved by eliminating or gates
and multi-input complex gates. The authors also took advantage of CMOS circuits by using
pass-transistor logic.

Finally the problem of the final representation conversion was solved by designing a conversion
method specialized for the redundant-to-normal conversion. The new method uses a carry
generation circuit constructed only with simple selector circuits. The design is a kind of carry-select
method. Fig. 13 shows a block diagram of the carry generation circuit. Besides its reduced delay
and transistor count, the new conversion method has the advantage of being easy to layout because
the circuit has a regular structure with simple interconnection.

The authors built a 54 x 54-bit multiplier chip for demonstration of the multiplication scheme.
The circuit uses 78,800 transistors, which is the lowest transistor count reported for this applica-
tion. The measured multiplication delay was 8.8 ns. Power dissipation was 540 mW with 100 MHz
clock speed. The chip was fabricated with a 0.5 um, triple metal CMOS process technology.

Table 3 presents the most important characteristics of the redundant binary multiplier circuits
described in this section.
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4. Current-mode multiple-valued logic designs

In current-mode circuits, signal values are represented by levels of current rather than voltage.
Current-mode circuits allow wired current summation, where the sum of two or more digits
is obtained by the simple connection of wires in a summing node. In this way, the addition
of two multivalued current-mode signals is realized without using active elements. Wired
current summation is the main motivation for the use of current-mode circuits in arithmetic
applications.

4.1. Early current-mode implementations

In 1977, Dao et al. [ 23] presented one of the first current-mode circuits for multiple-valued logic.
In that work, integrated injection logic (I2L) was used for implementing a functionally complete set
of multiple-valued functions. Even though no mention is made of redundant arithmetic, the work is
a precursor of later current-mode implementations. The main advantages of multiple-valued logic
identified in [23] are: high logic density, reduced interconnection area, and high production yields.
Dao decided to implement a four-valued logic instead of the more popular three-valued logic due
to the better convertibility between four-valued and binary representations. The operating prin-
ciple is based on threshold logic. Several implementations were proposed, ranging from basic
multivalued functions (max, min, complement, successor, and literals) to arithmetic functions
(quaternary adder and full product generator) and storage circuits (latches and flip-flops).

Other precursor current-mode implementations are [24,25]. In [24], Freitas et al. presented
circuits for conversion of four-valued current-mode signals to and from standard binary signals. In
[25], Current et al. described four-valued full adder circuits. Although the circuits proposed do not
involve redundant arithmetic, they are very significant because of two reasons. First, the authors
identified the advantage of wired summation of logical currents for compact implementation of
addition operations [25]. Second, Current and Freitas recognized the importance of making
multivalued circuits more practical by using standard fabrication technologies such as CMOS and
by using simple operation principles.

Yamakawa developed current-mode circuits for multivalued logic [26] and fuzzy logic [27]. He
also recognized the advantage of an easy implementation of addition through current signal
summing in current-mode circuits. In [26], an approach for quaternary logic circuits based on
MOS devices is described. The approach was named a hybrid mode of operation because signals are
represented as currents but voltages are used internally in the threshold switches to control pass
transistors. Among the various circuits proposed in [26] are a quaternary multiplier and a quater-
nary divider but these arithmetic circuits do not exploit redundant or signed-digit number systems.
In [27], a comprehensive set of fuzzy logic operators was developed using a MOS-based current-
mode approach.

The first work on current-mode redundant arithmetic circuits was presented by Kawahito et al.
in [28]. Kawahito et al. described the design of a totally parallel adder based on a radix-4,
signed-digit, redundant arithmetic system using standard MOS devices. The authors named this
circuit a signed-digit full adder (SDFA). An important characteristic of the circuits proposed in [ 28]
is the use of bidirectional currents, that is, currents flowing in two directions. Bidirectional currents
are necessary because the signed-digit number system has positive and negative digits, and the
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Fig. 14. (a) Block diagram of the signed-digit addition approach developed by Kawahito et al. in [28]. (b) Output
functions of the radix-4 signed-digit full adder.

direction of current flow efficiently represents the sign. The work developed by Kawahito et al. is
the most comprehensive on current-mode redundant arithmetic circuits [7,8,10,29-39].

4.2. Current-mode redundant arithmetic in Japan

The following paragraphs summarize the work conducted by Shoji Kawahito, Tatsuo Higuchi,
and Michitaka Kameyama on current-mode circuit implementations of redundant arithmetic
systems.

One of the most important building blocks in redundant arithmetic systems is what Avizienis
called a totally parallel adder [3]. Kawahito et al. developed a current-mode, radix-4 adder which
performs totally parallel addition (signed-digit full adder) [10,28-30,32]. Fig. 14(a) shows a block
diagram of the addition approach proposed in [28]. The signed-digit full adder (SDFA) circuit
implements the functionality of the generic totally parallel adder described in Section 2.1.1.
Specifically, the authors proposed current-mode circuits that realize output functions ¢; and
w; according to (1) with r = 4. The outputs of the circuit are bidirectional current-mode signals.
Therefore, Step 2 of the addition process seen in Fig. 1 and described by Eq. (2) is achieved by
simple wired current summation of signals w; and ¢;_ ;. The output functions of the SDFA cell are
depicted in Fig. 14(b), and they are obtained using the expressions given in Section 2.1.2 (with
Wmin = — 2 and wy,, = 2). Note that the input to the SDFA cell is z; = x; + y;, and that this signal
is also obtained by means of current summation.

Fig. 15(a) shows the block diagram of the current-mode signed-digit adder cell proposed by
Kawahito. Block BDI is a bidirectional current input circuit whose generic circuit implementation is
shown in Fig. 15(b). This block is used to decompose the bidirectional current-mode input signal
into a couple of unidirectional current-mode output signals. There is one output (x*) for positive
input flow (I") and another output (x~) for negative input flow (I"7). Block TD is a threshold
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Fig. 15. Current-mode signed-digit full adder design. (a) SDFA block diagram. (b) BDI circuit. (c) TD circuit. (d) n and
p current mirrors.

detector circuit whose circuit is shown in Fig. 15(c). This block provides a current output of m units
when its input current is greater than the threshold current, T. Finally, blocks n and p are NMOS
and PMOS current mirrors whose circuits are shown in Fig. 15(d). Besides inverting the direction
of the input current signal, current mirrors n and p can be used to scale the current level of the input
signal or to replicate the input signal so that it can be applied to different nodes. The latter use is
required since fanout is restricted to one in current-mode circuits.

The operation of the SDFA circuit is very simple. The TD blocks in Fig. 15(a) detect the
conditions for the generation of the carry signal. One threshold detector works when the input
current is positive and the other works when the input current is negative. The interim sum output,
w, is obtained by transferring the input current, z, to the output and conditionally adding or
subtracting four current units when the output carry is — 1 or 1, respectively. In this way, the
transfer function shown in Fig. 14(b) is generated using three regions of operation in the circuit.
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(a) (b)
Fig. 16. Signed-digit quantizer. (a) Input and (b) Output.

Other important circuits were necessary to have a complete solution to the signed-digit
multivalued implementation problem. The SDFA circuit has very low noise immunity because any
variation of input z is reflected at output w. To solve this problem, Kawahito et al. designed
a signed-digit quantizer (SDQ) [28]. The function of the quantizer is to recover current levels for
signals that have been transmitted through several arithmetic modules. With the signed-digit
quantizer, output function w of the adder cell is converted from what is shown in Fig. 16(a) to the
function depicted in Fig. 16(b). Another important circuit described in [ 28] is the current-to-binary
voltage converter, which obtains the binary sign-magnitude representation of a number in radix-4
current-mode multivalued representation. No separate binary voltage-to-current converter circuit
was described in [28]. Instead, since the proposed SDFA cell is intended for building a signed-digit
multiplier, the binary-to-current conversion is performed by the product generator circuit.

The circuits developed by Kawahito et al. [ 28] offer a simple, clean, and efficient approach. The
proposed SDFA cell is very compact, but it is not clear that the quantizer can be excluded from the
SDFA cell and regarded only as an occasional element in a system. An important problem of the
implementation, which is also present in other current-mode circuits, is power consumption. Since
the signals are represented as currents, current-mode implementations can consume significant
amounts of power. Another problem of the design is in the implementation of the threshold
functions. The method for threshold detection used by Kawahito does not provide the gain and
noise immunity of voltage-mode binary logic gates and it can be potentially very slow.

A subsequent SDFA design [29] included changes in the transfer functions which allowed for
a simplification of the circuit. Using the redundancy of the number system, it was possible to

modify the SDFA transfer functions, ¢ and w, at operating points z = — 2 and 2. For z = — 2, the
change consisted of making w =2 and ¢ = — 1 instead of the original w = — 2, ¢ = 0 (see Fig.
14(b)). Similarly, for z = 2 the change consisted of making w = — 2 and ¢ =1 instead of the

original w = 2, ¢ = 0. Note that Eq. (1) still holds for the modified transfer functions. Notice also
that, unlike its predecessor, the modified transfer function is an odd function, which allowed the
aforementioned circuit simplification. For details on the modified circuit see [29,30]. In addition to
refining the initial designs and constructing prototypes to demonstrate their feasibility, the authors
also achieved improvements on the device technology aspect. While the first design [28] used a
standard CMOS technology, later versions employed a special CMOS process incorporating
p-channel depletion MOSFETs [29]. The p-channel depletion MOSFETs are used to implement
very compact current sources (see [29]). The authors fabricated a current-mode 32 x 32-bit
multiplier [32] using the ideas described in the previous sections.
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4.2.1. Improvements and evolution of the approach

After presenting the first multivalued current-mode circuits for redundant arithmetic,
Kameyama et al. further developed their initial circuits and ideas in order to improve the appeal of
the approach. Their efforts were focused at improving characteristics such as speed, noise immun-
ity, power dissipation, and circuit complexity. This section describes two of the approaches aimed
at improving multivalued current-mode circuits: source-coupled logic and positive-digit arithmetic.

Source-coupled logic. Multiple-valued logic current-mode circuits such as those described in the
previous section have some disadvantages which become more prominent in deep submicron MOS
technologies. First, the delay of a multivalued logic circuit is larger than that of a conventional
binary digital circuit because the current in MOS transistors is proportional to the square of the
gate voltage. In deep submicron technologies, this problem is aggravated by reduced operating
voltages. A second important problem is related to power dissipation, which designers always try
to keep as low as possible. Hanyu et al. recognized the necessity of developing new multivalued
current-mode circuits with high switching speeds and low operating voltages [ 37]. Since the largest
portion of the delay in current-mode circuits is due to current threshold gates such as the one
shown in Fig. 15(c)), the authors proposed a new approach named dual-rail source-coupled logic
which was specifically developed to improve the operation of threshold gate circuits.

Fig. 17(b) shows the new threshold detector presented in [37] while Fig. 17(a) shows the original
design. These circuits use depletion p-type MOSFETs for implementing better current sources. The
new threshold detector is very similar to the original version of the circuit. The main difference is
that current logic signals are represented as differential pairs in the source-coupled threshold
detector. Unfortunately, the dual-rail source-coupled design requires routing two wires for each
logic signal. Also, in the current threshold detector circuit, it is necessary to have two current
comparator transistors (M4 and M5 in Fig. 17(b)) and two output current switches (M7 and MS).

The modified threshold detector circuit has a reduced switching delay due to the current source
transistor M6 always being on. In the conventional threshold detector circuit, the largest switching
delay is generated in the falling transition of the input current, x. In this transition, the capacitance
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Fig. 17. Current-mode threshold detector circuits. (a) Conventional circuit. (b) Dual-rail source-coupled circuit.



38 A.F. Gonzalez, P. Mazumder | INTEGRATION, the VLSI journal 30 (2000) 13-53

at the gate node of the output switch (M3 in Fig. 17(a)) is charged to a high voltage, which should
eventually turn off the PMOS current switch. In this operation, the voltage at the gate of M3
should be large enough to turn off M2 and M3. That is, V, = Vpp + Vpsmz + Vas.mz, Where
Vpsmz = 0 because the output current y =0 and Vgsms = — V. Here, — V1 represents the
threshold voltage of the PMOS transistor M3. Therefore, the capacitance at the gate of M3 should
be charged to a voltage level V, = Vpp — V1, and the switching delay is proportional to this
voltage level. On the other hand, in the source-coupled threshold detector circuit, the voltage at the
gate of the output switch being turned off, M7 or M8, is not required to turn off the current source
device, M6, because the operation consists simply of diverting its current to the alternative current
switch, M8 or M7. Then, V, = Vpp + Vbs.me + Vaosm7, where Vpsms = — |Vrul, Vru is the thre-
shold voltage of the PMOS transistor M6, and Vs y7 = — V. Therefore, V, = Vpp — Vi — [Vrul,
which is reduced by |Vry| as compared to the conventional threshold detector design and. Note
that the switching delay is directly proportional to V.

As it was mentioned, the main advantage of the dual-rail source-coupled approach is on
switching delay reduction. It is important to note, however, that this improvement is subject to
conditions of matching of the coupled devices and symmetry of the rising and falling input signals,
x and x'. Also note that the speed advantage of the new approach comes at the expense of increased
circuit and interconnect complexities. The authors evaluated the characteristics of their approach
through the implementation of a radix-2 signed-digit adder circuit. This adder was verified by
means of simulation, and its performance characteristics were compared to those of the conven-
tional current-mode implementation and binary implementations.

Positive-digit current-mode implementations. A further step in the evolution of current-mode
implementations of redundant arithmetic systems consisted of modifying the signed-digit arithme-
tic proposed in [3]. Kawahito et al. [7] proposed redundant arithmetic circuits based on
positive-digit number representations. This type of number representation uses digit sets including
only positive digits (e.g., {0,1,2,3} in radix 2) instead of the symmetric digit sets used by
signed-digit systems (e.g., { — 1,0, 1} in radix 2). In positive-digit number systems, the redundancy
needed for achieving totally parallel addition is obtained by using more digits than the required by
conventional radix-r number systems. In other words, the radix-r positive-digit number representa-
tions use digit sets of ¢ + 1 values of the form {0,1,...,r —1,...,q}, where g >r. The main
advantage of the positive-digit approach is that it eliminates the use of bidirectional current-mode
circuits, thus making the designs more simple. Fig. 18(a) shows a current-mode circuit which
implements radix-2, ¢ = 3, positive-digit addition. The positive-digit adder cell uses 28 transistors,
and the simulation experiments showed a reduction in delay time.

4.3. Multivalued current-mode circuits in France

Even though a significant portion of the research on current-mode redundant arithmetic circuits
has been developed in Japan by Kameyama et al., researchers in other parts of the world have made
important contributions to the field. We have developed a current-mode, radix-2, signed-digit
adder using MOS devices and resonant-tunneling diodes [40]. That work is discussed in Section 5.
The following paragraphs describe other current-mode circuits which have been developed in
France.
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Fig. 18. Schematic circuit diagrams of a (a) radix-2 positive-digit adder cell and (b) its corresponding signed-digit
implementation.

Etiemble et al. developed current-mode circuits for redundant arithmetic applications [41,42]. In
[41], Etiemble et al. proposed the limited-carry addition. This approach is based on the binary
stored-carry number system. The proposed implementation uses multiple-valued logic and signal
representation based on current levels, hence the use of current-mode logic circuits. The binary
stored-carry number system is a special case of redundant number representations with radix 2 and
the digit set {0,1,2} (see Section 2.2). The basic approach followed by Etiemble et al. for the
implementation of limited-carry adders consists of using a basic functional block, several copies of
which can be combined together to form a binary stored-carry adder cell. This approach makes the
design task an easy one because only one relatively simple circuit has to be developed and then
instantiated several times.

The simplest example of a limited-carry adder is the two-input adder described in [41]. In the
binary stored-carry number system, the two inputs of the adder are three-valued current-mode
signals. Since the sum p of the two three-valued input signals produces a six-valued result, it is then
necessary to first decompose the three-valued operands into their binary components. This task is
performed by the three-valued current input to binary current output converter (3BC) block. This
block is the basic functional unit used to build the two-input binary stored-carry adder. Fig. 19(a)
shows the symbol of the 3BC block and the corresponding functional operation. The function table
for the 3BC block shows that outputs x* and x° are, respectively, the carry and sum components of
input x. The two-input binary stored-carry adder is built using five 3BC cells, as shown in
Fig. 19(b). This design is based on the following expression for the sum of the input operands:

p=x+4y =20 + 2ou + W. 3)

Where w is the interim sum and ¢2,, and cJ,, are carry output signals. Notice that p is a six-valued
signal, and that its binary decomposition works out as follows:

p=2p' +p° (4)
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Fig. 19. Current-mode limited-carry adder implementation by Etiemble et al. [41]. (a) 3BC cell, the basic building block
of a two-operand adder. (b) Block diagram of the two-input adder. (¢c) Current-mode CMOS implementation of the 3BC
cell. (d) Current-mode ECL 3BC circuit.

=22p" +p°)' +2p" +p°)° (%)
=4p"t +2p°! + 2p'% 4 p°°. (6)
From (3) and (6), the expressions for the carry output signals and the interim sum obtained as

Cou =P, (7)
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This is the functionality implemented by the top four 3BC cells of the adder shown in
Fig. 19(b). The fifth 3BC cell is used to sum w, ci,, ¢, and t;,, and to generate transfer output signal
tout‘

Circuits implementing the 3BC cell in CMOS and ECL technologies are shown in Figs. 19(a) and
19(b), respectively. Please note that the CMOS 3BC cell circuit is very similar to the current-mode
threshold detector in [28]. Actually, two threshold detectors are used in the circuit, one for each of
the outputs of the 3BC cell, x! and x°. The ECL implementation is shown in Fig. 19(d), and it has
the disadvantage of requiring voltage references Vzo and Vg;.

One of the most important contributions of the work presented in [41] is the simplicity and
modularity of the design. Circuit complexity has traditionally been one of the drawbacks of
multiple-valued logic implementations. The two-input binary stored-carry adder proposed by
Etiemble et al. fully exploits the concept of current-mode wired summation. Wired summation of
current signals is the only function used in the circuit besides the required multivalued current to
binary current conversion performed by the 3BC cells.

Table 4 presents a comparison between current-mode redundant adder implementations. The
information contained in the table was obtained from [7,37]. Unfortunately there was no perfor-
mance information available for the implementations developed by Etiemble et al. [5]. Hanyu
reported the construction of layout prototypes for different types of radix-2 signed-digit adders in
[37]. Using these prototypes and circuit simulation, Hanyu was able to compare a conventional
34-transistor signed-digit adder with a source-coupled 50-transistor adder built using the same
process technology. Rows one and three of Table 4 correspond to the results obtained by Hanyu in
his comparison experiment. In [ 7], the propagation delay of the redundant positive-digit adder is
given in terms of equivalent gate delays. Since that work presents a comparison with the delay of
the conventional signed-digit current-mode adder, it was possible to estimate the propagation
delay of the positive-digit implementation in a 0.8 um CMOS process using the delay information
for the conventional signed-digit adder presented in [37]. The estimated delay value for the
positive-digit adder using a 0.8 um CMOS process is included in the second row of Table 4. From
the table it is clear that the positive-digit redundant adder has clear advantages over its counter-
parts, in terms of propagation delay and device count.

Table 4
Comparison of current-mode redundant adder implementations

Approach Ref Delay Technology Power Transistors
Conventional SD [28] 2.3 ns 0.8 pm CMOS 10.04 mW 34
Positive-digit [71 ~ 1.3 ns 28

Source-coupled SD [37] 1.6 ns 0.8 pm CMOS 10.52 mW 50
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5. Other implementations

With MOS technology nearing the limits of device shrinking, the study of alternative fabrication
technologies for integrated electronics becomes essential. It is very important to build ultrafast
arithmetic circuits. Advanced signal processors with clock rates of the order of gigahertz are
required for future system applications such as digital microwave receivers, digital signal proces-
sors, and digital RF memories [ 1]. Carry propagation chains are especially detrimental in ultrafast
computation, and they can be completely eliminated by means of redundant arithmetic techniques.
However, the sole elimination of carry propagation chains is not sufficient in ultrafast applications
like the ones mentioned. It is thus necessary to resort to high-speed integrated circuit technologies
and circuit techniques, such as emitter-coupled logic, compound semiconductor devices, and
resonant-tunneling quantum electronic devices. This section is divided in two parts. The first part
describes emitter-coupled logic implementations of redundant arithmetic. The second part surveys
redundant arithmetic circuits based on resonant-tunneling quantum devices and heterostructure
devices.

5.1. Implementations using emitter-coupled logic

The emitter-coupled logic (ECL) family was for a long time predominant in high-speed binary
logic applications. ECL circuits achieve high speed due to the use of non-saturating transistor
operation in differential (emitter-coupled) transistor pairs. Some researchers explored the applica-
tion of ECL techniques in the implementation of very fast redundant arithmetic circuits [1,43].

In 1987, Luo et al. [43] proposed bipolar ECL circuits for implementing redundant carryless
adders using a three-valued logic with the digit set {— 1,0,1}. The basic logic building block
devised in that work was called the J-operator, which takes one three-valued input and generates
one binary output. Depending on the type of J-operator, the output signal is high for one or two of
the logic voltage levels at the input of the gate. Consequently, in a three-valued system there can be
six different types of J-operators. The voltage levels of the binary output of the J-operator equal the
maximum and minimum voltage levels defined for the three-valued logic system. It is easy to
observe that described functionality of the J-operator matches that of the multivalued logic literal
described by other authors [44]. Luo et al. analyzed the redundant adder functions and found
expressions for them in terms of logic combinations of J-operations of the primary inputs (x;, y;,
Xi—1, ¥i—1)- A redundant adder circuit was proposed which uses five J-gates and four anpor
combinational blocks. The authors report the final redundant adder design using 20 ECL gates,
including J-operators, anp, and or gates. Considering that each of these gates requires at least six
transistors and a number of resistors, it is easy to find out that the cost of implementation is rather
high. The work by Luo et al., however, is a good example of the early search for fast redundant
adder implementations using alternative high-speed circuit techniques.

Another application of emitter-coupled circuits in redundant arithmetic was proposed by Lutz J.
Micheel in [1]. Searching for very fast arithmetic circuits, Micheel applied ultrafast integrated
circuit technologies to multiple-valued ECL circuits in positive-digit and signed-digit arithmetic.
Micheel studied the feasibility of pipelined, carry-propagation-free adders and multipliers operat-
ing at clock frequencies of the order of two to ten gigahertz using heterojunction bipolar transistors
(HBTs) implemented in I1I/V semiconductor compounds.
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Fig. 20. P2,4 positive-digit adder arithmetic system. (a) Block diagram. (b) PDFA output functions.

A block diagram of the positive-digit adder circuit proposed in [1] is shown in Fig. 20(a).
Micheel’s ECL circuit implements a P2,4 arithmetic, which was introduced by Kawabhito et al.
in [7]. The algorithm P2,4 is a positive-digit arithmetic using the digit set {0, 1,2, 3} with internal
operations performed in radix 2. The system shown in Fig. 20(a) accomplishes addition in three
steps using two carry transfer digits, C! and C?. In order to implement addition correctly, the
positive-digit full adder (PDFA) should have the output functions depicted in Fig. 20(b). As seen in
the block diagram, the final summation digit S; is obtained by adding the interim sum output
W? and one carry transfer digit from each of the two contiguous lower-significance cells, C{_; and
C%_ ,. Micheel proposed the circuit depicted in Fig. 21 to implement the three PDFA output
functions. The circuit is based on the threshold operation of emitter-coupled pairs. In the schematic
diagram, the triangular symbol corresponds to a simple emitter-coupled pair comparing the input
voltage (left input) to the reference voltage (right input). The larger symbols with two reference
inputs represent multivalued logic literal generators made by combining two emitter-coupled pairs.
The output pulse (low or high) occurs when the input voltage level lies between the two input
threshold voltages. The output pulse is low or high depending on which transistor of the
emitter-coupled pair (left or right) the output is taken from. The operating principle of the PDFA
circuit is now easy to explain. A ladder of resistors and transistors generates all the threshold
voltages which correspond to switching transitions in the output functions. The threshold emitter-
coupled pairs and the literal generators then draw current levels which are combined together by
resistors to convert the current summation from the related literals and threshold pairs to voltages.

Based on circuit simulation, Micheel estimated the PDFA operating clock rates of 1.4-1.6 GHz
using an AlGaAs/GaAs HBT system. GaAs HBT devices, however, have a large bandgap of 1.52
eV, a base-emitter turn-on voltage above 1.2 V, and large minimum emitter sizes. As shown in the
circuit diagram, it is necessary to connect several base-emitter junctions in series, making high
supply voltages necessary and, consequently, increasing power consumption. The authors pro-
posed indium phosphide (InP) technology to solve the problem. With the new technology, the
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Fig. 21. Positive-digit adder circuit schematic.

base-emitter turn-on voltage can be reduced by 780 millivolts with respect to the GaAs system. The
expected operating clock frequencies in the new technology are of the order of 4-10 GHz. Another
important disadvantage of the the circuit proposed by Micheel is that it uses a large number of
devices.

5.2. Redundant arithmetic using quantum electronic devices

Quantum devices with resonant-tunneling characteristics offer ultrahigh switching speed and
dense functionality that can lead to compact, ultrafast circuit implementations [45]. The high
functional density of devices such as resonant-tunneling diodes (RTDs) is due to their fold-back
I-V characteristics. The effect associated with every folded I-V characteristic is called negative
differential-resistance (NDR): a section of the curve where the device current decreases with
increasing voltage across the terminals. The presence of one NDR region originates two positive
differential-resistance (PDR) regions. Since each PDR region can support one stable circuit state,
the RTD is inherently bistable. By stacking several RTDs in an epitaxial process, the devices are
connected in series and a multiple-peak characteristic with several PDR regions [46] is obtained.
This makes RTDs an important asset in the design of multiple-valued logic circuits where digits
assume more than simply two values, as is the case in redundant arithmetic. Many multivalued
logic circuits using resonant-tunneling devices have been developed [46-50]. The rest of
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this section describes redundant arithmetic implementations using resonant-tunneling quantum
devices.

5.2.1. Multivalued redundant arithmetic using nanoelectronic devices

Lutz Micheel et al. described circuit applications of quantum and heterojunction devices in
redundant arithmetic logic [51]. Their work concentrates on three-terminal multiple-peak devices
such as resonant-tunneling bipolar transistors (RTBTs) and resonant-tunneling field effect transis-
tors (RTFETs). These devices are fabricated by placing resonant-tunneling diodes in the emitter
epitaxial stack terminals of heterojunction bipolar or hot electron transistors, respectively. Micheel
et al. described a very compact circuit that implements the radix-2 positive-digit algorithm (PD2,4)
using multiple-peak RTDs and field effect transistors.

One of the circuits described in [51] implements positive-digit addition of type PD2,4. This
algorithm, illustrated in Fig. 20, is identical to the one used in [1]. Fig. 22 shows a simplified
schematic diagram of the PD2,4 adder circuit using multiple-peak resonant-tunneling field effect
transistors (M-RTFETs). The circuit consists of three identical multilevel folding amplifiers whose
inputs are connected by a binary-weighted resistor ladder. Output function W; is generated by the
folding amplifier which is closest to the input. As the input voltage Z; increases from Vg, the
three output voltages start low because Vggr turns on the gate voltage of the input FETs in the
three folding amplifiers. In the W; amplifier, when the first valley voltage of the MRTD is reached,
the resulting reduction in current flow causes the input FET to switch off. The active load depletion
FET then pulls W; high to Vpp. As the input voltage Z; further increases, this cycle is repeated for
all the peak and valley voltages of the MRTD. In this way, the proper interim sum transfer function
is generated. Output signals C;;, and C;;, are obtained in a similar fashion. The resistor ladder,
however, divides Z; so that two and four times the input voltage are required to generate the
switching transitions of C;,; and C;; ,, respectively.

Since the redundant arithmetic circuits proposed by Micheel et al. are at early stages of
development, there is no experimental information available on the performance of the proposed
circuits yet. The idea proposed by Micheel is to implement these powerful arithmetic circuits using

Fig. 22. Positive-digit adder circuit using multiple-peak resonant-tunneling FETs.
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Fig. 23. Totally parallel addition algorithm implemented in [40]. (a) Block diagram. (b) SDFA output functions.

ultrafast devices with concentrated functionality such are resonant-tunneling diodes and hot
electron transistors. This concentrated functionality leads to very efficient circuit implementations
requiring few devices. The combination of all these factors is expected to yield very fast, power-
efficient redundant arithmetic circuit implementations.

5.2.2. Signed-digit adder using MOS transistors and quantum devices

A new multivalued signed-digit adder uses resonant-tunneling diodes and MOS transistors [40].
A radix-2 arithmetic system was implemented using a three-valued logic with the digit set
{—1,0,1}. Even though it is not currently possible to cointegrate RTDs and MOS devices, various
efforts towards a technology which will integrate NDR and MOS elements are being conducted
[52-54]. Tt is therefore necessary to develop and study circuits combining the two types of
technologies in order to learn how the leading technology can be enhanced by quantum devices.

Fig. 23(a) depicts a block diagram of the signed-digit addition approach used in [40]. Symbols
Xi, Vi, Ci» Wi, and s; represent three-valued, current-mode signals. The addition of x; and y; is
achieved by wired summation of currents. The function of the SDFA block is to convert the
summation input signal, z, to a two-digit representation of the sum using digits ¢ and w as follows:
rc + w = z, where r = 2. The final sum output, s;, is obtained by wired current summation of the
interim sum output, w;, and the incoming carry signal, ¢;_ ;. Fig. 23(b) shows the transfer functions
for the interim sum w and the carry c outputs of the SDFA cell. All the digits in the diagram are
positive because the circuit uses only positive currents. In this case, the digit O is represented by
a current level “3”, digit — 2 is represented by current “1”, and so on. There are two pairs of
transfer functions, and the working pair is selected by the value of z;_ . Signal z;_, is used to
determine if ¢;_; # — 1, so that the SDFA cell is allowed to generate an output w = — 1 without
causing invalid s current levels to be produced by the output wired current summation.
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Fig. 24. Circuit diagram of the complete SDFA cell.

As seen in Fig. 23(b), literals lit1, lit2, and lit3 contain all the switching threshold points that
describe output functions w and c. The three required literal signals are generated in different
blocks of the circuit as seen in Fig. 24. These literal signals are then used to control switched current
sources, which in turn synthesize the SDFA output functions. Signal V, indicatesif z;_; < — 1 and
its behavior is identical to literal lit2, which also reduces circuit complexity. Fig. 24 shows a circuit
diagram of the proposed signed-digit adder. Please note that the circuit includes three literal-
generating blocks and two output function synthesizing blocks. There is one current switching
block for the interim sum output and one for the carry output. It can be seen in the diagram
that literal lit1 is generated using only a two-peak RTD, a resistor, and a CMOS inverter. This
is a very compact implementation considering the sophisticated behavior defined for lit1 in
Fig. 23(b).

The main advantage of the proposed design when compared to other redundant adder imple-
mentations is compactness, which is primarily due to the non-linear characteristics of RTDs. Also,
current-mode of circuit operation, in which digits are summed by merely connecting their wires
together [55], enabled us to reduce the transistor count. Using only 13 CMOS transistors, five
resistors, and a two-peak RTD, the total number of active and passive devices used in the proposed
SDFA circuit is only 19. From the simulation result, the estimated propagation delay for the circuit
is 3.5 ns.

Table 5 presents the most important characteristics of the redundant adder circuits described in
this section.



48 A.F. Gonzalez, P. Mazumder | INTEGRATION, the VLSI journal 30 (2000) 13-53

Table 5
Summary of redundant arithmetic circuits using alternative technologies

Approach Ref Speed Technology Device Count
RB2 [43] N/A Silicon Bipolar ECL 150*

PD24 [1] 1.6 GHz GaAs HBT 530

PD24 [51] N/A M-RTFETs 21

SDFA [40] 3.5 ns RTD + CMOS 19

*Conservative estimate from available information in the paper.
®Estimated from simplified circuit diagrams.

6. Discussion and conclusions

The preceding sections survey implementations of redundant arithmetic algorithms. For each of
the implementations, the operating principle is presented and the main advantages and disadvan-
tages of the approach are discussed. The designs are classified in three main categories, namely,
conventional binary logic circuits, current-mode multivalued logic circuits, and circuits based on
heterostructure and quantum electronic devices. For each of the identified implementation catego-
ries, the designs are evaluated and compared with each other in terms of their speed, power
consumption, and the number of devices they require. In this section, we present a general
comparison of the implementations which is independent of the design classification.

To compare the implementations of different design categories with each other, it is necessary to
adopt a subject of comparison which is common to all the identified design categories. This
common element is the single-digit adder cell because it contains similar functional power in all the
implementations. In conventional binary logic designs, the single-digit cell corresponds to a 4:2
compressor or a carry-save adder cell (both used in multiplier circuits). In current-mode multi-
valued logic designs and in heterostructure and quantum electronic implementations, the single-
digit cell finds the form of a signed-digit or a positive-digit adder. Table 6 presents the attributes of
the different single-digit adder cells surveyed. The table indicates the type of implementation for
each entry by separating groups of designs with horizontal lines.

With the possible exception of the algorithm descriptors in the second column, the meaning of
the entries in Table 6 should be clear. In the first three rows of the table a specific acronym indicates
the type of implementation, where CSA stands for carry-save adder and WTC stands for Wallace-
tree compactor. The other rows use an algorithm descriptor consisting of a two-letter acronym
followed by a digit and, optionally, the letter “M”. The two-letter acronym describes the type of
algorithm as follows: RB stands for redundant binary, SD stands for signed-digit, and PD stands
for positive digit. The digit in the descriptor specifies the radix of the number system being used.
Finally, the optional letter “M”, when present, indicates that the implementation uses multiple-
valued logic. For example, the algorithm descriptor in the last row of the table specifies a signed-
digit, radix-2, multivalued logic implementation.

Some designs were excluded from the comparison in Table 6 because no details of the
implementation of the adder cells are included in the original work. Similarly, there were perfor-
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Table 6
Comparative summary of redundant adder cells

Delay Power Device Year
Algorithm Reference ~ Technology (ns) (mW) count published
CSA [20] 1.0-u NMOS 3 *? 45 1986
WTC [17] 0.8-u CMOS 1.9 * 56 * 1990
WTC [18] 0.5-u CMOS 1.2 58 1991
RB-2 [12] 2.7-u E/D-NMOS 23 * 74 1987
RB-2 [21] 0.8-u CMOS 1.3 * 42 1993
RB-2 [22] 0.5-u CMOS 0.89 56 1996
SD-2-M [28] 0.8-u CMOS 2.3 2.51 34 1986
PD-2-M [7] 0.8-u CMOS 1.3 * 28 1991
SD-2-M [37] 0.8-u CMOS 1.6 2.63 50 1994
RB-2 [43] Si Bipolar ECL 150 * 1987
PD-4-M [1] GaAs HBT 0.62 53 * 1992
PD-2-M [51] M-RTFETs 21 * 1993
SD-2-M [40] 2-u CMOS 3.5 23 19 1997

+ RTD

* Asterisks indicate values inferred from published information.

mance characteristics in some of the designs which were not specified, and it was necessary to infer
their values from information contained in the paper. Inferred parameter values are marked with
an asterisk. It was necessary to leave some blank entries in the table since, in some cases, it was not
possible to infer with confidence all the parameters for all the designs and, in other cases [43,51],
the designs were only described at the functional and operating principle levels and were not
demonstrated experimentally.

Table 6 displays the three types of single-digit cell implementations. The top group in the table
corresponds to conventional binary logic designs, the second group includes current-mode MOS
implementations, and the bottom group clusters implementations based on heterostructure and
quantum devices. Please observe that, as one could expect, there have been many more implemen-
tations relying on conventional binary logic than on each of the other two approaches. While six
implementations belong to the conventional binary logic group, only three are in the current-mode
multivalued logic group. Another interesting observation is that a great majority of the designs
surveyed involve MOS-related technologies. In the table, 10 out of 13 designs, 78%, use MOS
devices. This is also an expected result given the predominance enjoyed by MOS technology in the
world of integrated electronics.

In general, alternative implementations based on current-mode multivalued logic, heterostruc-
ture devices, or quantum electronic circuits can be helpful in reducing the number of circuit
elements required to build an arithmetic circuit while, at the same time, increasing the speed
performance. Moreover, in multivalued logic circuits, the number of interconnecting wires required
to achieve certain data bandwidth is reduced. This is of particular importance in VLSI and ULSI
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systems where there is an ever-increasing predominance of interconnections on circuit area, speed,
and power consumption [47,56]. While alternative techniques offer good prospects for improve-
ment, their development is still at early stages. Being more mature, MOS technology has the
advantage of a greater integration capacity and a constant ongoing improvement of its state-of-
the-art. It is therefore not possible to conclude from the comparison made in Table 6 that
conventional binary logic implementations in MOS technology will be replaced by alternative
circuit techniques in the immediate future.
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