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Abstract

We focus on mixtures of factor analyzers from the perspective of a method for model-based
density estimation from high-dimensional data, and hence for the clustering of such data. This
approach enables a normal mixture model to be 5tted to a sample of n data points of dimension
p, where p is large relative to n. The number of free parameters is controlled through the
dimension of the latent factor space. By working in this reduced space, it allows a model for
each component-covariance matrix with complexity lying between that of the isotropic and full
covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a
practical example that considers the clustering of cell lines on the basis of gene expressions
from microarray experiments. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Finite mixtures of distributions have provided a mathematical-based approach to
the statistical modelling of a wide variety of random phenomena; see, for example,
McLachlan and Peel (2000a). For multivariate data of a continuous nature, attention
has focussed on the use of multivariate normal components because of their computa-
tional convenience. With the normal mixture model-based approach to density estima-
tion and clustering, the density of the (p-dimensional) random variable Y of interest
is modelled as a mixture of a number (g) of multivariate normal densities in some
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unknown proportions �1; : : : ; �g. That is, each data point is taken to be a realization of
the mixture probability density function (p.d.f.),

f(y;�) =
g∑
i=1

�i	(y; �i ;�i); (1)

where 	(y; �;�) denotes the p-variate normal density function with mean � and co-
variance matrix �. Here the vector � of unknown parameters consists of the mixing
proportions �i, the elements of the component means �i, and the distinct elements of
the component-covariance matrix �i.
The normal mixture model (1) can be 5tted iteratively to an observed random sam-

ple y1; : : : ; yn by maximum likelihood (ML) via the expectation-maximization (EM)
algorithm of Dempster et al. (1977); see also McLachlan and Krishnan (1997). The
number of components g can be taken suGciently large to provide an arbitrarily ac-
curate estimate of the underlying density function; see, for example, Li and Barron
(2000). For clustering purposes, a probabilistic clustering of the data into g clusters
can be obtained in terms of the 5tted posterior probabilities of component membership
for the data. An outright assignment of the data into g clusters is achieved by assign-
ing each data point to the component to which it has the highest estimated posterior
probability of belonging.
The g-component normal mixture model (1) with unrestricted component-covariance

matrices is a highly parameterized model with 1
2p(p + 1) parameters for each

component-covariance matrix �i (i= 1; : : : ; g). Ban5eld and Raftery (1993) introduced
a parameterization of the component-covariance matrix �i based on a variant of the
standard spectral decomposition of �i (i = 1; : : : ; g). A common approach to reducing
the number of dimensions is to perform a principal component analysis (PCA). But as
is well-known, projections of the feature data yj onto the 5rst few principal axes are
not always useful in portraying the group structure; see McLachlan and Peel (2000a,
p. 239). This point was also stressed by Chang (1983), who showed in the case of
two groups that the principal component of the feature vector that provides the best
separation between groups in terms of Mahalanobis distance is not necessarily the 5rst
component.
Another approach for reducing the number of unknown parameters in the forms for

the component-covariance matrices is to adopt the mixture of factor analyzers model,
as considered in McLachlan and Peel (2000a, 2000b). This model was originally pro-
posed by Ghahramani and Hinton (1997) and Hinton et al. (1997) for the purposes of
visualizing high dimensional data in a lower dimensional space to explore for group
structure; see also Tipping and Bishop (1997, 1999) and Bishop (1998) who considered
the related model of mixtures of principal component analyzers for the same purpose.
Further references may be found in McLachlan and Peel (2000a, Chapter 8).
In this paper, we investigate further the modelling of high-dimensional data through

the use of mixtures of factor analyzers, focussing on computational issues not addressed
in McLachlan and Peel (2000a, Chapter 8). We shall also demonstrate the usefulness
of the methodology in its application to the clustering of microarray expression data,
which is a very important but nonstandard problem in cluster analysis. Initial attempts
on this problem used hierarchical clustering, but there is no reason why the clusters
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should be hierarchical for this problem. Also, a mixture model-based approach enables
the clustering of microarray data to be approached on a sound mathematical basis.
Indeed, as remarked by Aitkin et al. (1981), “when clustering samples from a popu-
lation, no cluster analysis method is a priori believable without a statistical model”.
For microarray data, the number of tissues n is usually very small relative to the
number of genes (the dimension p), and so the use of factor models to represent the
component-covariance matrices allows the mixture model to be 5tted by working in
the lower dimensional space implied by the factors.

2. Single-factor analysis model

Factor analysis is commonly used for explaining data, in particular, correlations
between variables in multivariate observations. It can be used also for dimensionality
reduction. In a typical factor analysis model, each observation Yj is modelled as

Yj = � + BUj + ej (j = 1; : : : ; n); (2)

where Uj is a q-dimensional (q¡p) vector of latent or unobservable variables called
factors and B is a p× q matrix of factor loadings (parameters). The Uj are assumed
to be i.i.d. as N (0; Iq), independently of the errors ej, which are assumed to be i.i.d.
as N (0;D), where D is a diagonal matrix,

D = diag(�21 ; : : : ; �
2
p)

and where Iq denotes the q×q identity matrix. Thus, conditional on Uj=uj, the Yj are
independently distributed as N (�+Buj;D). Unconditionally, the Yj are i.i.d. according
to a normal distribution with mean � and covariance matrix

�= BBT +D: (3)

If q is chosen suGciently smaller than p, representation (3) imposes some constraints
on the component-covariance matrix � and thus reduces the number of free parameters
to be estimated. Note that in the case of q¿ 1, there is an in5nity of choices for
B, since (3) is still satis5ed if B is replaced by BC, where C is any orthogonal
matrix of order q. One (arbitrary) way of uniquely specifying B is to choose the
orthogonal matrix C so that BTD−1B is diagonal (with its diagonal elements arranged
in decreasing order); see Lawley and Maxwell (1971, Chapter 1). Assuming that the
eigenvalues of BBT are positive and distinct, the condition that BTD−1B is diagonal
as above imposes 1

2q(q− 1) constraints on the parameters. Hence then the number of
free parameters is pq+ p− 1

2q(q− 1).
The factor analysis model (2) can be 5tted by the EM algorithm and its variants

as to be discussed in the subsequent section for the more general case of mixtures of
such models. Note that with the factor analysis model, we avoid having to compute the
inverses of iterates of the estimated p × p covariance matrix � that may be singular
for large p relative to n. This is because the inversion of the current value of the p×p
matrix (BBT +D) on each iteration can be undertaken using the result that

(BBT +D)−1 =D−1 −D−1B(Iq + BTD−1B)−1BTD−1; (4)
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where the right-hand side of (4) involves only the inverses of q× q matrices, since D
is a diagonal matrix. The determinant of (BBT +D) can then be calculated as

|BBT +D|= |D|=|Iq − BT(BBT +D)−1B|:
Unlike the PCA model, the factor analysis model (2) enjoys a powerful invariance
property: changes in the scales of the feature variables in yj, appear only as scale
changes in the appropriate rows of the matrix B of factor loadings.

3. Mixtures of factor analyzers

A global nonlinear approach can be obtained by postulating a 5nite mixture of linear
submodels for the distribution of the full observation vector Yj given the (unobservable)
factors uj. That is, we can provide a local dimensionality reduction method by assuming
that the distribution of the observation Yj can be modelled as

Yj = �i + BiUij + eij with prob: �i (i = 1; : : : ; g) (5)

for j = 1; : : : ; n, where the factors Ui1; : : : ;Uin are distributed independently N (0; Iq),
independently of the eij, which are distributed independently N (0;Di), where Di is a
diagonal matrix (i = 1; : : : ; g).
Thus the mixture of factor analyzers model is given by (1), where the ith component-

covariance matrix �i has the form

�i = BiBT
i +Di (i = 1; : : : ; g); (6)

where Bi is a p×q matrix of factor loadings and Di is a diagonal matrix (i=1; : : : ; g).
The parameter vector � now consists of the elements of the �i, the Bi, and the Di,
along with the mixing proportions �i (i = 1; : : : ; g− 1), on putting �g = 1−∑g−1

i=1 �i.

4. Maximum likelihood estimation of mixture of factor analyzers models

The mixture of factor analyzers model can be 5tted by using the alternating expecta-
tion–conditional maximization (AECM) algorithm (Meng and van Dyk, 1997). The
expectation–conditional maximization (ECM) algorithm proposed by Meng and Rubin
(1993) replaces the M-step of the EM algorithm by a number of computationally
simpler conditional maximization (CM) steps. The AECM algorithm is an extension
of the ECM algorithm, where the speci5cation of the complete data is allowed to
be diMerent on each CM-step. To apply the AECM algorithm to the 5tting of the
mixture of factor analyzers model, we partition the vector of unknown parameters �
as (�T

1 ;�
T
2 )

T, where �1 contains the mixing proportions �i (i = 1; : : : ; g − 1) and the
elements of the component means �i (i = 1; : : : ; g). The subvector �2 contains the
elements of the Bi and the Di (i = 1; : : : ; g).
We let �(k) = (�(k)T

1 ;�(k)T

2 )T be the value of � after the kth iteration of the AECM
algorithm. For this application of the AECM algorithm, one iteration consists of two
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cycles, and there is one E-step and one CM-step for each cycle. The two CM-steps
correspond to the partition of � into the two subvectors �1 and �2.

For the 5rst cycle of the AECM algorithm, we specify the missing data to be just
the component-indicator vectors, z1; : : : ; zn, where zij = (zj)i is one or zero, according
to whether yj arose or did not arise from the ith component (i= 1; : : : ; g; j = 1; : : : ; n).
The 5rst conditional CM-step leads to �(k)i and �(k)i being updated to

�(k+1)
i =

n∑
j=1

�i(yj;�
(k))=n (7)

and

�(k+1)
i =

n∑
j=1

�i(yj;�
(k))yj

/
n∑
j=1

�i(yj;�
(k)) (8)

for i = 1; : : : ; g, where

�i(yj;�) = �i	(yj; �i ;�i)

/
g∑
h=1

�h	(yj; �h;�h) (9)

is the ith component posterior probability of yj.
For the second cycle for the updating of �2, we specify the missing data to be

the factors u1; : : : ; un, as well as the component-indicator vectors, z1; : : : ; zn. On setting
�(k+1=2) equal to (�(k+1)T

1 ;�(k)T

2 )T, an E-step is performed to calculate Q(�;�(k+1=2)),
which is the conditional expectation of the complete-data log likelihood given the
observed data, using � =�(k+1=2). The CM-step on this second cycle is implemented
by the maximization of Q(�;�(k+1=2)) over � with �1 set equal to �(k+1)

1 . This yields
the updated estimates B(k+1)

i and D(k+1)
i . The former is given by

B(k+1)
i = V (k+1=2)

i �(k)i (�(k)
T

i V (k+1=2)
i �(k)i + !(k)

i )−1; (10)

where

V (k+1=2)
i =

∑n
j=1 �i(yj;�

(k+1=2))(yj − �(k+1)
i )(yj − �(k+1)

i )T∑n
j=1 �i(yj;�

(k+1=2))
; (11)

�(k)i = (B(k)
i B

(k)T

i +D(k)
i )−1B(k)

i (12)

and

!(k)
i = Iq − �(k)

T

i B(k)
i (13)

for i = 1; : : : ; g. The updated estimate D(k+1)
i is given by

D(k+1)
i = diag {V (k+1=2)

i − B(k+1)
i H (k+1=2)

i B(k+1)T

i }

= diag {V (k+1=2)
i − V (k+1=2)

i �(k)i B
(k+1)T

i }; (14)
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where

H (k+1=2)
i =

∑n
j=1 �i(yj;�

(k+1=2))E(k+1=2)
i (UjUT

j | yj)∑n
j=1 �i(yj;�

(k+1=2))
;

= �(k)
T

i V (k+1=2)
i �(k)i + !(k)

i (15)

and E(k+1=2)
i denotes conditional expectation given membership of the ith component,

using �(k+1=2) for �.
Direct diMerentiation of the log-likelihood function shows that the ML estimate of

the diagonal matrix Di satis5es

D̂i = diag(V̂ i − B̂iB̂T
i ); (16)

where

V̂ i =
n∑
j=1

�i(yj; �̂)(yj − �̂i)(yj − �̂i)T
/

n∑
j=1

�i(yj; �̂): (17)

As remarked by Lawley and Maxwell (1971, p. 30) in the context of direct computation
of the ML estimate for a single-component factor analysis model, Eq. (16) looks
temptingly simple to use to solve for D̂i, but was not recommended due to convergence
problems.
On comparing (16) with (14), it can be seen that with the calculation of the ML

estimate of Di directly from the (incomplete-data) log-likelihood function, the uncon-
ditional expectation of UjUT

j , which is the identity matrix, is used in place of the
conditional expectation in (15) on the E-step of the AECM algorithm. Unlike the di-
rect approach of calculating the ML estimate, the EM algorithm and its variants such as
the AECM version have good convergence properties in that they ensure the likelihood
is not decreased after each iteration regardless of the choice of starting point.
It can be seen from (16) that some of the estimates of the elements of the diagonal

matrix Di (the uniquenesses) will be close to zero if eMectively not more than q
observations are unequivocally assigned to the ith component of the mixture in terms
of the 5tted posterior probabilities of component membership. This will lead to spikes
or near singularities in the likelihood. One way to avoid this is to impose the condition
of a common value D for the Di,

Di =D (i = 1; : : : ; g): (18)

An alternative way of proceeding is to adopt some prior distribution for the Di as
in the Bayesian approaches of FokouOe and Titterington (2000), Ghahramani and Beal
(2000) and Utsugi and Kumagai (2001).
The mixture of probabilistic component analyzers (PCAs) model, as proposed by

Tipping and Bishop (1997), has form (6) with each Di now having the isotropic
structure

Di = �2i Ip (i = 1; : : : ; g): (19)
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Under this isotropic restriction (19) the iterative updating of Bi and Di is not necessary
since, given the component membership of the mixture of PCAs, B(k+1)

i and �(k+1)2

i
are given explicitly by an eigenvalue decomposition of the current value of Vi.

5. Initialization of AECM algorithm

We can make use of the link of factor analysis with the probabilistic PCA model (19)
to specify an initial value �(0) for � in the ML 5tting of the mixture of factor analyzers
via the AECM algorithm. On noting that the transformed data D−1=2

i Yj satis5es the
probabilitistic PCA model (19) with �2i = 1, it follows that for a given D(0)

i and �(0)
i ,

we can specify B(0)
i as

B(0)
i =D(0)1=2

i Ai(�i − �̃2i Iq)1=2 (i = 1; : : : ; g); (20)

where

�̃2i =
p∑

h=q+1

�ih=(p− q):

The q columns of the matrix Ai are the eigenvectors corresponding to the eigenvalues
�i1¿ �i2¿ · · ·¿ �iq of

D(0)−1=2

i �(0)
i D

(0)−1=2

i (21)

and �i=diag(�i1; : : : ; �iq). The use of �̃2i instead of unity is proposed in (20), because it
avoids the possibility of negative values for (�i− Iq), which can occur since estimates
are being used for the unknown values of Di and �i in (21).
To specify �(0)

i for use in (21), we can randomly assign the data into g groups and
take �(0)

i to be the sample covariance matrix of the ith group (i=1; : : : ; g). Concerning
the choice of D(0)

i , we can take D(0)
i to be the diagonal matrix formed from the diagonal

elements of �(0)
i (i=1; : : : ; g). In this case, the matrix (21) has the form of a correlation

matrix.
The eigenvalues and eigenvectors for use in (21) can be found by a singular value

decomposition of each p × p sample component-covariance matrix �(0)
i . But if the

number of dimensions p is appreciably greater than the sample size n, then it is much

quicker to 5nd them by a singular value decomposition of the ni × ni matrix �̃
(0)
i , the

sample matrix formed by taking the observations to be the rows rather than the columns
of the p×ni data matrix whose ni columns are the p-dimensional observations assigned
initially to the ith component (i = 1; : : : ; g). The eigenvalues of this latter matrix are
equal to those of �(0)

i apart from a common multiplier due to the diMerent divisors in
their formation.
A formal test for the number of factors can be undertaken using the likelihood

ratio �, as regularity conditions hold for this test conducted at a given value for the
number of components g. For the null hypothesis that H0 : q= q0 versus the alternative
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H1 : q= q0 + 1, the statistic −2 log � is asymptotically chi-squared with d= g(p− q0)
degrees of freedom. However, in situations where n is not large relative to the number
of unknown parameters, we prefer the use of the BIC criterion of Schwarz (1978).
Applied in this context, it means that twice the increase in the log-likelihood (−2 log �)
has to be greater than d log n for the null hypothesis to be rejected.

6. Example: colon data

In this example, we consider the clustering of tissue samples on the basis of two
thousand genes for the colon data of Alon et al. (1999). They used AMymetrix oligonu-
cleotide arrays to monitor absolute measurements on expressions of over 6500 human
gene expressions in 40 tumour and 22 normal colon tissue samples, These samples
were taken from 40 diMerent patients so that 22 patients supplied both a tumour and
normal tissue sample. Alon et al. (1999) focussed on the 2000 genes with highest
minimal intensity across the samples, and it is these 2000 genes that comprised our
data set. The matrix A of microarray data for this data set thus has p=2000 rows and
n=62 columns. Before we considered the clustering of this set, we processed the data
by taking the (natural) logarithm of each expression level in the matrix A. Then each
column of this matrix was standardized to have mean zero and unit standard deviation.
Finally, each row of the consequent matrix was standardized to have mean zero and
unit standard deviation.
We are unable to proceed directly with the 5tting of a normal mixture model to

these data in this form. But even if we were able to do so, it is not perhaps the
ideal way of proceeding because with such a large number p of feature variables,
there will be a lot of noise introduced into the problem and this noise is unable to
be modelled adequately because of the very small number (n = 62) of observations
available relative to the dimension p=2000 of each observation. We therefore applied
the screening procedure in the software EMMIX-GENE of McLachlan et al. (2001).
With this screening procedure, the genes are ranked in decreasing size of −2 log �,
where � is essentially the likelihood ratio statistic for the test of g = 1 versus g = 2
component t distributions 5tted to the 62 tissues with each gene considered individually.
If the value of −2 log � were greater than some threshold (here taken to be 8) but the
minimum size of the implied clusters was less than some threshold (here taken to
be 8 also), this value of � was replaced by its value for the test of g = 2 versus 3
components. This screening of the genes here resulted in 446 genes being retained.
We 5rst clustered the n = 62 tissues on the basis of the retained set of 446 genes.

We 5tted mixtures of factor analyzers for various levels of the number q of factors
ranging from q=2 to 8. Using 50 random and 50 k-means-based starts, the clustering
corresponding to the largest of the local maxima obtained gave the following clustering
for q= 6 factors,

C1 = {1− 12; 20; 25; 41− 52} ∪ {13− 39; 21− 24; 26− 40; 53− 62}: (22)

Getz et al. (2000) and Getz (2001) reported that there was a change in the proto-
col during the conduct of the microarray experiments. The 11 tumour tissue samples
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(labelled 1–11 here) and 11 normal tissue samples (41–51) were taken from the 5rst
11 patients using a poly detector, while the 29 tumour tissue samples (12–40) and
normal tissue samples (52–62) were taken from the remaining 29 patients using total
extraction of RNA. It can be seen from (22) that this clustering C1 almost corresponds
to the dichotomy between tissues obtained under the “old” and “new” protocols. A
more detailed account of mixture model-based clustering of this colon data set may be
found in McLachlan et al. (2001).
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