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1. Introduction

This paper is concerned with the design and implementation of frequency-
selective recursive filters in which the filtered output is incorporated on the
input side, at various lags, via a series of feedback terms. Such devices are
commonly described as infinite impulse response (IIR) filters. Filters that are
devoid of feedback are apt to be described as finite impulse response (FIR)
filters.

Relatively little attention has been paid to the design of such IIR digital
filters, with the result that there are few clear design principles that can be
followed. Part of the reason for this deficiency lies in the success of the FIR
filters which are usually preferred when one wishes to avoid inducing non linear
phase effects in the output. Also, some of the digital IIR filters that have
been derived by translating classical analogue designs have proved eminently
successful; and this has reduced the incentive for innovation.

In this paper, our purpose is to design filters with very few coefficients,
which show a rapid transition from the pass band to the stop band. Improve-
ments in the rate of transition are usually secured by increasing the number of
coefficients within a given family of filters; but we wish to avoid this recourse
which is liable to exacerbate the start-up problems that affect the processing
of short nonstationary sequences
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In our case, the rapid transition is achieved via a filter that operates close
to the borders of instability. This can lead to the rapid propagation of numerical
rounding error when the filter is realised in low-precision arithmetic—i.e. 16 bits
or less. The filters become increasingly unstable as their poles approach the
perimeter of the unit circle; and, therefore, we need to pay particular attention
to the location of the poles and to the values of their moduli.

The filter designs presented in this paper are derived with reference to
Wiener–Kolmogorov principle of signal extraction which is expounded briefly
in section 3 of this paper. (For the original expositions, see Kolmogorov (1941)
and Wiener (1950). For an accessible modern treatment of the theory see
Whittle (1983).) Filters that fulfil this principle unconditionally are of the
bidirectional variety, which must be applied in at least two passes which run
forwards and backwards through the data. The forward pass, which uses a
causal or backwards-looking filter, induces a phase lag in the output. The
reverse pass, which is applied to the intermediate output, induces an equal and
opposite phase lag in reversed time; and the two phase lags cancel each other.

In many practical circumstances, where signal processing must take place
in real time, there may be no possibility of implementing a backwards pass.
In that case, if there is no disadvantage in a nonlinear phase effect, one might
consider applying the filter in only one direction via a single forward pass.

Wiener–Kolmogorov filters are usually derived from a statistical model
which depicts the data as a combination of a signal and a noise component,
both of which have well-defined statistical properties. One of the advantages
of this approach is that the finite-sample versions of the resulting filters can
be implemented via the Kalman filter for which computer programs are readily
available. (See, for example, Brown and Hwang (1992) and Koopman, Shephard
and Doornick (1999).)

The Kalman filter is a relatively complex device, which is aimed at gener-
ating the minimum-mean-square-error estimates at each point in an accumu-
lating information set—see Pollock (1999). The associated smoothing filter,
which is applied in a backward pass, effects the retrospective enhancement of
the estimates using the information that has accumulated since they were first
calculated. If one can take the information set as given, as is the case in all
off-line processing, then there are some simpler ways of proceeding. The al-
gorithm presented in section 7 of the paper, which is based on a Cholesky
decomposition, is simpler than the Kalman Filter.

In some cases, the quality of the Wiener–Kolmogorov filter depends upon
the degree of realism of the underlying statistical model. In this paper, there
will be no intention of creating realistic statistical models of the data com-
ponents; and the models, which are no more than heuristic devices, will be
determined solely with a view to ensuring that the resulting signal-extraction
filters have certain preconceived properties.

Our object, in the first instance, will be to design a prototype highpass
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filter with a rapid transition between the pass band and the stop band, which
occurs in the vicinity of the frequency value of ωc = π/2 which divides the
range of the digital frequencies. Our point of departure will be the classical
Butterworth digital filter; and we shall seek to improve on its performance.
Sections 4 and 5 of the paper are devoted to this purpose.

Once the prototype filter is available, it can be transformed easily into
a filter with an alternative cut-off point. In fact, it can be transformed just
as easily into a lowpass filter, a bandpass filter or a bandstop filter. In sixth
section of the paper, we shall outline the methods of transforming the filter.

In the final section of the paper, we shall show how to apply a lowpass
filter to the task of extracting a trend from a short nonstationary sequence.

2. Filtering in Econometrics

In econometric analysis, linear filters are widely used for removing trends from
data series and for removing seasonal fluctuations. They are also used for ex-
tracting a range of so-called unobserved components into which an econometric
time series can be decomposed. (For an excellent but little-know account of
the methods of seasonal adjustment, see Stier (1980).)

There are no settled opinions on how the filters should be constructed.
Their designs are affected by differing views on how the components of a time
series have originated and how they are related to each other. Nevertheless,
a common starting point is to model the aggregate time series as an ARIMA
process. Such processes are generated by applying a rational filter that has unit
roots in its denominator to a white-noise process, which is the forcing function
that provides the motive power.

In one perception, a macroeconomic trend represents a long-run growth
path, which is affected by the disturbances that impinge upon the economy.
In data that has been purged of any seasonal component, the fluctuations
that surround the trend will be taken to represent the processes by which the
trajectory of the economy converges to the growth path. In this view, both the
trend and the fluctuations share the same motive power.

If the aggregate non-seasonal series is modelled as an ARIMA process,
then the trend and the fluctuations can be separated via a partial-fraction de-
composition of the ARIMA operator. The decomposition produces an unstable
filter that has the unit roots in its denominator and a stable filter that com-
prises the remaining roots of the ARIMA denominator. The unstable filter, in
conjunction with the white-noise forcing function, accounts for the trend. (A
positive constant is liable to be added to the forcing function to create an up-
wards drift.) The stable filter, in conjunction with the same white-noise forcing
function, accounts for the transitory fluctuations. A detailed exposition of this
approach is given in the seminal paper of Beveridge and Nelson (1989), and
the underlying concepts have been elucidated in a recent paper of Morley et al.
(1999).
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In another view, the trend of a series is an autonomous component that
has its own independent motive power, and the fluctuations, which may include
seasonal fluctuations, have no effect on its long-term trajectory. The trend is
liable to be attributed to an ARIMA process which is independent of the ARMA
process generating the transitory fluctuations, and of any seasonal ARIMA
process that may be included. Adding these processes creates the ARIMA
process that models the aggregate series.

In this case, the trend and the fluctuations can be estimated from the data
by using the Wiener–Kolmogorov method of signal extraction that is pursued
in the present paper. The first stage in the process is to find a partial-fraction
decomposition of the autocovariance generating function of data, which creates
a set of independent autocovariance structures for its unobserved components.
The filter for extracting an individual component can be derived by forming
the ratio of the autocovariance generating function of the component and the
autocovariance generating function of the data. The technique is represented
in the present paper by equation (8).

Amongst the filters most commonly used by economists for the purposes of
estimating trends is the Hodrick–Prescott filter (1980), which is closely related
to the smoothing spline of Reinsch (1976). This filter, which has a single ad-
justable parameter, is derivable by applying the Wiener–Kolmogorov principle
to an abbreviated model in which the trend, which is generated by a second-
order random walk, has white-noise disturbances added to it. This filter is the
subject of a recent treatise by Kaiser and Maravall (2001).

The model that underlies the Hodrick–Prescott filter often provides an
inadequate representation of the processes generating the data. Therefore it
is unusual to determine the parameter of the filter by fitting the model to the
data. Instead, its value is commonly determined by rule of thumb.

To avoid the arbitrariness of a rule of thumb, it has been proposed that
trend estimation and seasonal adjustment in economic time series should be
conducted within the framework of a fully-featured model of the data, which
attributes separate ARIMA processes to each of the data components. It is
argued that, if the model is properly constructed, then the parameters of the
various signal-extraction filters will emerge automatically from the process of
fitting the model to the data. This approach has been advocated in a recent
survey by Gómez and Maravall (2001), and it is also the basis of the model-
based methodology of Harvey (1989).

The implication of depicting the components of an aggregate series as the
products of ARIMA processes of low orders is that one expects to find a sub-
stantial overlap in the frequency spectra of the individual components. When
the spectra do overlap, there is bound to be difficulty in separating the compo-
nents. The gain profiles of filters aimed at extracting the various components
will show very gradual transitions from the pass band to the stop band; and
the effect is that the same sinusoidal elements of the data will find their way,

4



with varying degrees of attenuation, into more than one of the estimated com-
ponents.

Contrary to the presuppositions of the ARIMA-model-based approach,
there is evidence that the components of some econometric time series re-
side in well-defined frequency bands that have little or no overlap. In the
most favourable circumstances, the components are separated by spectral dead
spaces where there are no elements of any significant power. If the tools are
sharp enough, then the components can be extracted without loss or confu-
sion. In such cases, we should use other methods in preference to those of the
model-based approach.

The ideal filter for isolating the spectral components of a time series that
fall within a particular range of frequencies is a rectangular window in which
the transition from the pass band to the stop band occurs at a point. Baxter
and King (1999) have recently investigated the use of moving-average FIR
approximations to the ideal filter. However, for a good approximation, such
filters must have a wide span involving many coefficients.

The use of a wide-span filter presupposes a lengthy data sequence of which
the ends, that the filter cannot reach, can be left unprocessed. In econometric
analysis, however, the data sequences are often of a strictly limited duration
and they are liable to be strongly trended. In such circumstances, we cannot
afford to use a wide-span filter.

The Wiener–Kolmogorov filters that are proposed in this paper go much
of the way towards meeting the objective of the ideal frequency-selective filter,
and they do so at the cost of only a handful of parameters. The manner in
which we propose to implement the filters overcomes the problems of processing
nonstationary series, and it does not suffer from any impediment in processing
the ends of the data sequence.

3. Wiener–Kolmogorov Filters

The purpose of a Wiener–Kolmogorov filter is to extract an estimate of a signal
sequence ξ(t) from an observed data sequence

(1) y(t) = ξ(t) + η(t)

which is afflicted by the noise η(t). According to the classical assumptions,
which we shall later amend, the signal and the noise are generated by sta-
tionary stochastic processes that are mutually independent. It follows that the
autocovariance generating function of the data is the sum of the autocovariance
generating functions of its two components. Thus

(2) γyy(z) = γξξ(z) + γηη(z) and γyξ(z) = γξξ(z).

The signal sequence ξ(t) is estimated via a linear transformation of the
data sequence which may be denoted by

(3) x(t) = βξ(L)y(t).
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Here, βξ(L) =
∑
j βjL

j is a power-series operator which forms a linear combi-
nation of the data elements. The symbol Lj stands for the jth power of the
lag operator, the effect of which is that Ljy(t) = y(t− j). The negative powers
of the operator have the opposite effect of reaching forward in time. Thus,
L−jy(t) = y(t + j).

Depending on the practical circumstances affecting its implementation, the
filter βξ(L) may be a causal FIR filter (with j ∈ [0, p]), a symmetric two-sided
FIR filter (with j ∈ [−p, p]), a causal IIR filter with j ∈ [0,∞], or a bidirectional
IIR filter (with no bounds on j).

The principle of minimum-mean-square-error estimation indicates that the
sequence formed from the errors of interpolation must be orthogonal to the data
sequence, which is to say that the two sequences must be statistically uncorre-
lated. In the case of a bidirectional IIR filter, the condition of orthogonality is
expressed by writing

(4) y(t) ⊥ e(t) = ξ(t)− x(t) or, equivalently, γye(z) = 0,

where

(5)
γye(z) = γyξ(z)− γyx(z)

= γξξ(z)− γyy(z)βξ(z)

is the generating function of the covariances of the errors and the data. Setting
this to zero and rearranging gives the normal equations

(6) γyy(z)βξ(z) = γξξ(z).

The positive definite autocovariance generating functions within equation
(6) are both subject to a so-called Cramér–Wold decomposition which allows
them to be written as

(7) γyy(z) = φ(z−1)φ(z) and γξξ(z) = δ(z−1)δ(z).

For the bidirectional filter, the solution to equation (6) is therefore

(8) βξ(z) =
γξξ(z)
γyy(z)

=
δ(z−1)δ(z)
φ(z−1)φ(z)

.

When z is identified with L and z−1 is identified with L−1 = F , this corresponds
the product of a real-time filter δ(L)/γ(L) and a reverse-time filter δ(F )/γ(F ).

The principle of minimum-mean-square-error estimation can also be ap-
plied in finding the Wiener–Kolmogorov filter for extracting the noise compo-
nent of the data sequence. This is given by

(9) βη(z) =
γηη(z)
γyy(z)

= 1− βξ(z).
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The condition of complementarity, whereby βξ(z) + βη(z) = 1, is amongst the
defining characteristics of the Wiener–Kolmogorov filters.

In the case of a causal filter, where β(z) contains only nonnegative powers
of z, the normal equations take the form of

(10)
[
φ(z−1)φ(z)β(z)

]
+

=
[
γξξ(z)

]
+
,

where the subscripted + is to indicate that only the part of the series which
contains nonnegative powers of z is to be taken. (This is Whittle’s (1983)
notation.) The equations imply that

(11) φ(z)β(z) =
[
γξξ(z)
φ(z−1)

]
+

,

where the subscripted + is missing from the left hand side on account of the
fact that it contains only non-negative powers of z. Dividing the equation on
both sides by φ(z) gives a solution for β(z) in the form of

(12) β(z) =
1

φ(z)

[
γξξ(z)
φ(z−1)

]
+

.

If the symmetric function γξξ(z) has only a finite number of nonzero coefficients,
then the term bearing the + sign will represent the numerator of the rational
function denoted by β(z).

The minimum-mean-square-error criterion, which the filter of (12) is de-
signed to fulfil, is concerned as much with the avoidance of an excessive phase
effect as with the accuracy of the frequency selection. Therefore, for the pur-
poses of frequency-selective filtering, the filter of (12) is liable to be a poor
substitute for the bidirectional filter of (8). Moreover, if one is prepared to
overlook its phase effect, then the unidirectional filter δ(z)/φ(z), which is, so to
speak, one half of the bidirectional filter, is liable to provide a superior device
for the purposes of frequency selection.

In the econometric analysis of time series, it is common to model a nonsta-
tionary process via an autoregressive operator with roots of unit value, which
are on the boundary of instability. Thus, if ξ(t) represents a nonstationary
trend component within the equation y(t) = ξ(t) + η(t), then it can be spec-
ified that (I − L)dξ(t) = ζ(t), where ζ(t) is a stationary process, as is η(t).
Multiplying the equation throughout by the operator (1− L)d, gives

(13)
(1− L)dy(t) = ζ(t) + (1− L)dη(t)

= ζ(t) + κ(t) = g(t).

The procedure for extracting estimates of ξ(t) and η(t) begins by estimat-
ing their differenced versions ζ(t) and κ(t) by applying the filters described
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above to the stationary sequence g(t) = (1−L)dy(t). Thereafter, the estimates
can be obtained by cumulating their differenced versions. Observe, however,
that, since (I − L)dη(t) = κ(t), there is

(14) ξ(t) = y(t)− κ(t)
(1− L)d

,

and so, in principle, only one of the estimates—that of κ(t)—needs to be cu-
mulated. The other estimate—that of ξ(t)—can be obtained by subtraction.

Ostensibly, the process of cumulation is in need of some initial conditions
or constants of integration. However, the unconditional expectations of the
elements of the sequence κ(t) are zeros, and these can be used as the starting
values. Moreover, it transpires that, even in the case of a finite-sample proce-
dure discussed in section 7, there is no need to find explicit starting values.

4. Designing the Prototype Filter

An ideal frequency-selective filter is a phase-neutral square-wave filter for which
the gain is unity over a certain range of frequencies, described as the passband,
and zero over the remaining frequencies, which constitute the stopband. In
a lowpass filter βL, the passband covers a frequency interval [0, ωc) ranging
from zero to a cut-off point. In the complementary highpass filter βH , it is the
stopband which stands on this interval. Thus

(15) |βL(eiω)| =
{ 1, if ω < ωc

0, if ω > ωc
and |βH(eiω)| =

{ 0, if ω < ωc

1, if ω > ωc.

The object in constructing a practical frequency-selective filter is to find a
rational function, embodying a limited number of coefficients, whose frequency
response is a good approximation to the square wave.

In this section, we shall derive a pair of complementary filters that fulfil
the specifications of (15) approximately for a cut-off frequency of ωc = π/2.
Once we have designed these prototype filters, we shall be able to apply a
transformation that shifts the cut-off point from ω = π/2 to any other point
ωc ∈ (0, π).

A preliminary step in designing a pair of complementary filters is to draw
up a list of specifications which can be fulfilled in practice. We shall be guided
by the following conditions:

(16)

(i) βL(z−1) = βL(z), βH(z−1) = βH(z), Phase-Neutrality

(ii) βL(z) + βH(z) = 1, Complementarity

(iii) βL(−z) = βH(z), βH(−z) = βL(z), Symmetry

(iv) |βH(1)| = 0, |βH(−1)| = 1, Highpass Conditions

(v) |βL(1)| = 1, |βL(−1)| = 0. Lowpass Conditions
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Figure 1. The pole–zero diagram of the fourth-order prototype unidirectional But-

terworth filter with a nominal cut off point of 90 degrees.
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Figure 2. The gain of the bidirectional prototype fourth-order Butterworth filter

with a nominal cut off point of 90 degrees.
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Figure 3. The phase response of the prototype fourth-order unidirectional Butter-

worth filter with a nominal cut off point of 90 degrees.
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As we have already noted, a bidirectional rational filter in the form of (8)
fulfils already the condition (i) of phase neutrality. Given the specification of
(8), the condition of complementarity under (ii) implies that the filters must
take the form of

(17) βL(z) =
δL(z−1)δL(z)
φ(z−1)φ(z)

and βH(z) =
δH(z−1)δH(z)
φ(z−1)φ(z)

.

where

(18) φ(z−1)φ(z) = δL(z−1)δL(z) + δH(z−1)δH(z).

The roots of this polynomial come in reciprocal pairs and, upon the factorisation
of the RHS, the poles that lie outside the unit circle are assigned to φ(z) whilst
those that lie inside are assigned to φ(z−1).

Next, the condition of symmetry under (iii) implies that, when it is re-
flected about the axis of ω = π/2, the frequency response of the lowpass filter
becomes the frequency response of the highpass filter. This implies that the
cut-off point ωc must be located at the mid-point frequency of π/2. The con-
dition requires that φ(z) = φ(−z), which implies that every root of φ(z) = 0
must be a purely imaginary number. The condition also requires that

(19) δL(z) = δH(−z) and δH(z) = δL(−z).
It remains to fulfil the conditions (iv) and (v). Condition (iv) indicates

that δH(z) must have a zero at z = 1, which is to say that it must incorporate
a factor in the form of (1− z)n. Condition (v) indicates that δL(z) must have
a zero at z = −1, which is to say that it must incorporate a factor in the form
of (1 + z)n.

These conditions (iv) and (v) do not preclude the presence of further factors
in δL(z) and δH(z); but, if λ is a root of δH(z), then −λ must be a root of
δL(z). Thus, in general, the polynomials can take the forms of

(20)

δL(z) = (1 + z)n
m∏
i=1

(1 + λiz) and

δH(z) = (1− z)n
m∏
i=1

(1− λiz),

where set of the parameters {±λ−1
i ; i = 1, . . . ,m}, which are roots of the poly-

nomials, contains conjugate pairs of complex numbers.
The resulting filters are identical to those which would arise from applying

the Wiener–Kolmogorov principle of signal extraction to the task of isolating
the components ξ(t) and η(t) of the model

(21)

y(t) = ξ(t) + η(t)

= (I + L)n
m∏
i=1

(I + λiL)ν(t) + (1− L)n
m∏
i=1

(I − λi)ε(t),
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wherein ν(t) and ε(t) are independent white-noise processes with a common
variance.

Some simple and convenient forms of the filters are obtained by setting

(22) δL(z) = (1 + z)n and δH(z) = (1− z)n.

On putting the specification of (22) into (17) and (18), we find that

(23)

βL(z) =
(1 + z−1)n(1 + z)n

(1 + z−1)n(1 + z)n + (1− z−1)n(1− z)n

=
1

1 +
(
i
1− z

1 + z

)2n

and that

(24)

βH(z) =
(1− z−1)n(1− z)n

(1 + z−1)n(1 + z)n + (1− z−1)n(1− z)n

=
1

1 +
(
i
1 + z

1− z

)2n .

These will be recognised as instances of the digital translation of the Butter-
worth analogue filter which is familiar in electrical engineering—see, for exam-
ple, Roberts and Mullis (1987). The translation from the analogue domain to
the digital domain is by virtue of the bilinear transformation

(25) s(z) =
z − 1
z + 1

,

which is a mapping from the z-plane, which contains the poles and zeros of
the discrete-time digital filter, to the s-plane, which contains the poles of the
continuous-time analogue filter. The Butterworth filter represents the simplest
way of fulfilling the design features listed under (16)(i)–(v).

We may note that Gómez (1999) has recently discussed the Butterworth
filter from the point of view of econometric analysis as has Pollock (1997).

5. The Frequency Response of the Filters

We may begin the analysis of the filters by examining the attributes of the
Butterworth filter. Figure 1 is the pole–zero diagram for a fourth-order unidi-
rectional digital Butterworth filter. This is for the reverse-time filter, which has
its poles inside the unit circle. Figure 2 shows the spectral density functions
of the low-frequency signal ξ(t) = (I + L)nν(t) and the high-frequency noise
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Figure 4. The pole–zero diagram of the unidirectional prototype sharp filter of order

n = 6 with a nominal cut off point of 90 degrees.
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Figure 5. The gain of the bidirectional prototype sharp filter of order n = 6 with a

nominal cut off point of 90 degrees.
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Figure 6. The phase response of the unidirectional prototype sharp filter of order

n = 6 with a nominal cut off point of 90 degrees.
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component η(t) = (I−L)nε(t) for the case where V {ν(t)} = V {η(t)}, together
with the gain of the resulting highpass bidirectional filter. Figure 3 shows the
phase response of the unidirectional fitler.

The transition in the gain of this highpass filter occurs in the middle of
the frequency range where the low-frequency spectrum of ξ(t) gives way to the
high-frequency spectrum of η(t), which is its mirror image.

The advantage of the Butterworth filter is the ease with which analytic
expressions can be obtained for the poles of the filter. The availability of these
expressions means that the Crámer–Wold factorisation γD(z) = φ(z−1)φ(z),
upon which implementation of the filter depends, is readily available. In the
case of the more general filters which we shall propose, there are no available
analytic expressions for the poles, which means that the Crámer–Wold factori-
sation must be obtained by a numerical method.

The algorithm of Wilson (1969), which is based on the Newton–Raphson
procedure, is an effective way of achieving the factorisation; and versions which
are coded in C and in Pascal have been provided by Pollock (1999)—see, also,
Laurie (1989, 1982).

The disadvantage of the digital Butterworth filter is in the relatively slow
rate of transition between the pass band and the stop band, which is due to the
substantial overlap of the spectra of the low-frequency and the high-frequency
components of y(t). The greater the overlap of the spectra, the more gradual
will be the transition.

The overlap can be reduced, and the rate of transition increased, by in-
creasing the order of the Butterworth filter, which means increasing the number
of zeros located at z = 1, in the case of the highpass filter, or at z = −1, in the
case of the lowpass filter. However, the rate of transition can be increased more
effectively by locating the additional zeros at other points within the stopband
which are nearer to the cut-off point.

Consider the case of a high pass filter which is designed to fulfil the condi-
tions of complementarity and symmetry. Then it is easy to see that placing a
zero on the unit circle at the frequency angle of ω = 1

2π− ε will ensure that the
transition from stop band to pass band will occur within a band of 2ε radians
centered on the cut-off frequency of ωc = π/2.

Figure 4 shows the pole-zero diagram of a unidirectional sixth-order digital
filter in which two zeros are located on the unit circle where it intersects the
horizontal axis and in which the remaining four zeros are in conugate pairs
located at angles of 70 degrees and 85 degrees from the horizontal. Figure 5
show the gain of the bidirectional filter which is formed by compounding the
causal filter with the reverse-time filter. It is notable that the rate of transition
is far more rapid than it is for the Butterworth filter.

If a zero of the prototype filter is located on the unit circle, then its argu-
ment is bound to be less than the cut-off frequency of ωc = π/2. A zero of δL(z)
at z = e−π/2 would be accompanied by a zero in δH(z) at the same location. In
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that case, the denominator polynomial γD(z) = δL(z−1)δL(z) + δH(z−1)δH(z)
would also have a zero of unit modulus at ω = π/2. This is in violation of
the stability condition which requires that the poles of the causal filter must
fall outside the unit circle and that the poles of the reverse-time filter must
fall inside. It is clear that the narrowing of the transition band is inevitably
accompanied by a worsening problem of dynamic instability.

There are two recourses for mitigating the problem of instability. The first
is to place the zeros on the unit circle but to constrain their arguments to
keep some distance from the critical value of ω = π/2. This may result in a
transition band which is wider than is desired. Another recourse is to allow
the arguments of the zeros to come close to the critical value, but to reduce
the values of their moduli as they do so, causing them to retreat from the unit
circle.

Amongst the desiderata that affect the design of the filter is the question
of the precision with which the filter coefficients and the filter output can be
represented. Low-precision arithmetic can lead to the imprecise location of
the poles and zeros of the filter. It can also lead to errors in the filter output
which will be propagated via the feedback, and it invites the risk of numerical
overflow. The precise location of the zeros that bound the transition band is
a matter for experimentation. The optimal design is elusive, but satisfactory
designs are easy to come by.

Having determined the width of the transition band, there remains the
task of ensuring that the gain of the filter is close to zero in the stop band.
According to the condition of symmetry, this will also guarantee that the gain
is close to unity in the passband. The objective may be achieved with a single,
carefully placed, zero. Its placement in the interval (0, 1

2π− ε) can be governed
by a formal mathematical criterion, such as the minimisation of the integral of
the difference, or the squared difference, of the gain of the practical filter and
that of the ideal square-wave filter. In practice, the location may be determined
by interacting with a computer program that provides a visual representation
of the gain of the filter.

6. Frequency Transformations

The object of the highpass filter βH(z) is to remove from a time series the
components whose frequencies range from ω = 0 to a cut-off value of ω = ωc.
The prototype version of the filter has a cut-off at the frequency ω = π/2.
In order to convert the prototype filter to one which will serve the purpose,
a means must be found for mapping the frequency interval [0, π/2] into the
interval [0, ωc]. This can be achieved by replacing the argument z, wherever it
occurs in the filter formula, by the argument

(26) g(z) =
z − α

1− αz
,

where α = α(ωc) is an appropriately specified parameter.
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The function g(z) fulfils the following conditions:

(27)

(i) g(z)g(z−1) = 1,

(ii) g(z) = z if α = 0,

(iii) g(1) = 1 and g(−1) = −1,

(iv) Arg
{
g(z)

}
≥ Arg{z} if α > 1,

(v) Arg
{
g(z)

}
≤ Arg{z} if α < 1.

The conditions (i) and (ii) indicate that the modulus of the function is
invariably unity. Thus, as z encircles the origin, g = g(z) travels around the
unit circle. The conditions of (iii) indicate that, if z = eiω travels around the
unit circle, then g and z will coincide when ω = 0 and when ω = π—which are
the values which bound the positive frequency range over which the transfer
function of the filter is defined. Finally, conditions (iv) and (v) indicate that, if
g �= z, then g either leads or lags behind z uniformly as the two travel around
the unit circle from z = 1 to z = −1.

The value of α is completely determined by any pair of corresponding
values for g and z. Thus, from (26), it follows that

(28)
α =

z − g

1− gz

=
g1/2z−1/2 − g−1/2z1/2

g1/2z1/2 − g−1/2z−1/2
.

Imagine that the cut-off of a prototype filter is at ω = θ and that it is
desired to shift it to ω = κ. Then z = eiθ and g = eiκ will be corresponding
values; and the appropriate way of shifting the frequency would be to replace
the argument z within the filter formula by the function g(z) wherein the
parameter α is specified by

(29)
α =

ei(κ−θ)/2 − e−i(κ−θ)/2

ei(κ+θ)/2 − e−i(κ+θ)/2

=
sin{(κ− θ)/2}
sin{(κ + θ)/2} .

In general, the application of the frequency transformation to a filter with
p poles and q zeros will result in filter r = max(p, q) poles and zeros. In the
case of a Wiener–Kolmogorov filter with p poles and p zeros, the frequency
transformation will leave the filter orders unchanged. It follows that, in this
case, one can find the specification of the transformed filter by transforming
each of the poles and zeros in isolation. The filter coefficients can be found by
knitting together the transformed poles and zeros.
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Figure 7. The pole-zero digarams of the unidirectional higpass filters of order r = 6
when the cut-off point is at ω = π/2 (left) and ω = π/4 (right).
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Figure 8. The gain of the bidirectional prototype filter of order r = 6 with a nominal
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Figure 9. The gain of the bidirectional filter of order r = 6 with a nominal cut off

point of ω = π/4.

16



Consider the generic factor within the denominator of the prototype. This
is z− ρ, where ρ is one of the poles. Replacing z by g(z) and setting the result
to zero gives the following condition:

(30)
z − α

1− αz
− ρ = 0.

This indicates that the pole at z = ρ will be replaced by a pole at

(31) z =
α + ρ

1 + αρ
=

α + ρ + α2ρ∗ − αρρ∗

1 + α(ρ + ρ∗) + α2ρρ∗
.

The final expression, which comes from multiplying top and bottom of its
predecessor by 1 + αρ∗, where ρ∗ is the conjugate of ρ, has a real valued
denominator.

Figure 7, displays the pole-zero diagram of the unidirectional prototype
filter and of a filter with a cut-off frequency of π/4, obtained by applying a
frequency transformation to the prototype. The prototype filter has two zeros
at located on the unit circle where it intersects the positive horizontal axis.
The remaining roots, which are in conjugate pairs, are located on radii at 45
degrees and 75 degrees from the horizontal. Those at 45 degrees lie on the unit
circle whereas those at 75 degrees are at a distance of 0.95 from the origin.
Figures 8 and 9 show the gain functions of the filters.

The comparison of the two filters suggests that one of the effects of applying
a frequency transformation to the prototype filter is to bring some of poles closer
to the perimeter of the unit circle. The example highlights the need to check
the values of the moduli of the poles of the transformed filter to confirm that
they remain sufficiently remote from unity.

7. Filtering Short Nonstationary Sequences

In this section, we shall describe how the finite-sample version of the rational
filter may be implemented. For this purpose, we shall adopt the heuristic
assumption that the data vector y, which has T elements, is generated by a
process that is described by the equation

(32)

(1− L)dy(t) = (1 + L)n
m∏
i=1

(1 + λiL)ν(t) + (1− L)n
m∏
i=1

(1− λiL)ε(t)

= (1− L)dξ(t) + (1− L)dη(t)
= ζ(t) + κ(t) = g(t),

where n ≥ d ≥ 0. Here ν(t) and ε(t) are assumed to be Gaussian white-noise
processes of unit variance. The autocovariance generating functions of ζ(t) and

17



η(t) are

(33)

γζζ(z) = (1 + z−1)n(1 + z)n
m∏
i=1

(1 + λiz
−1)(1 + λiz),

γηη(z) = (1− z−1)n−d(1− z)n−d
m∏
i=1

(1− λiz
−1)(1− λiz).

To find the finite-sample counterpart of equation (32), we need to represent
the d-th difference operator (1 − L)d in terms of a matrix. Therefore, let the
identity matrix of order T be denoted by IT = [e0, e1, . . . , eT−1], where ej
represents a column vector with a unit in the j-th position, counting from
zero, and with zeros elsewhere. Then the finite-sample lag operator is the
matrix LT = [e1, . . . , eT−1, 0], which has units on the first subdiagonal and
zeros elsewhere. This matrix is formed by deleting the leading vector of the
identity matrix and by appending a zero vector to the end of the array.

The matrix which takes the d-th difference of a vector of order T is obtained
from ∆ = (I − LT )d = [Q∗, Q]′. The submatrix Q′, which comprises all but
the first d rows of ∆, serves to find the differenced version q = Q′y of the data
vector y. If d = 0, then Q = ∆ = I, and so our subsequent formulations will
cover both the nonstationary case and the stationary case where there are no
differencing operations.

Using this notation, the differenced data can be represented by

(34)
Q′y = Q′ξ + Q′η

= ζ + κ = g.

Let D(ζ) = Γζ and D(η) = Γη be the variance–covariance matrices of the
vectors ζ and η respectively for which the generating functions are given by
(33). Then, to signify that the vectors have normal distributions, we may write

(35) Q′ξ = ζ ∼ N(0,Γζ) and η ∼ N(0,Γη);

and the joint probability density function of these statistically independent
vectors will be given by

(36) N(ζ, η) = (2π)−(2T−d)/2|ΓζΓη|−1/2 exp
{
− 1

2
(ξ′QΓ−1

ζ Q′ξ + η′Γ−1
η η)

}
.

The maximum-likelihood estimate x of the signal vector ξ can be found by
minimising the following function, which is obtained from the exponent of the
density function by setting η = y − ξ:

(37) S(ξ) = ξ′QΓ−1
ζ Q′ξ + (y − ξ)′Γ−1

η (y − ξ).
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The minimising value is

(38) x = (QΓ−1
ζ Q′ + Γ−1

η )−1Γ−1
η y.

The matrix inversion lemma, which has been expounded, for example, by
Rao (1973, p. 33) and by Pollock (1999, p. 228), indicates that

(39) (QΓ−1
ζ Q′ + Γ−1

η )−1 = Γη − ΓηQ(Q′ΓηQ + Γζ)−1Q′Γη;

and it follows that

(40)
x =

{
I − ΓηQ(Q′ΓηQ + Γζ)−1Q′

}
y

= y − h,

where h is the maximum-likelihood estimate of η.
The task of computing h can be accomplished by a handful of direct mul-

tiplications and recursions. Consider

(41)
h = ΓηQ(Q′ΓηQ + Γζ)−1g

= ΓηQb.

The first task is to calculate b by solving the equation

(42) (Q′ΓηQ + Γζ)b = g.

The solution is found via a Cholesky decomposition which sets Q′ΓηQ + Γζ =
GG′, where G is a lower-triangular matrix. The system GG′b = g can be cast
in the form of Gp = q and solved for p. Then G′b = p can be solved for b.
These are the recursive operations. Finding h = ΓηQb thereafter entails only
direct multiplications.

Notice that, in the case where d = 0 and where Q = I, the resulting filter
matrix B = Γη(Γη + Γζ)−1 has a form which is evidently related to the filter
function β(z) = γηη(z){γηη(z)+γζζ(z)}−1, which is of the form specified under
(9).

We should comment briefly on the methods that are available for filtering
short nonstationary sequences that rely upon the Kalman filter. The two prin-
cipal methods are due to Ansley and Kohn (1985) and to De Jong (1991). In
so far as its treatment of the starting-value problem is concerned, the method
of Ansley and Kohn, which relies upon a prior transformation of the data, re-
sembles the method proposed in this section. The method of De Jong involves
an extension of the Kalman fitler which is know as the diffuse Kalman filter.

The complexities of handling the starting-value problem by the method of
De Jong are due to the essential nature of the Kalman filter algorithm, which
is designed to absorb the data points one after another as they arrive in real
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time. This means that, in setting the starting value, the algorithm cannot afford
to look ahead to the end of the sample. Therefore, the initial starting-value
solution is inevitably subject to iterative updating as the sample unfolds.

If one has the advantage of working off-line, then it it is unnecessary to
proceed in this way. In that case, the start-up problem can be handled at the
end of the sequence of calculations, as it is in the method proposed in this
section.

A Computer Program

The computer program that has been used in implementing the methods de-
scribed in this paper, together with its code, is available from the author who
may be contacted via the email address

stephen pollock@sigmapi.u-net.com
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