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Annotated Content

I§0 Introduction

[We review background and some definitions and theorems on abstract ele-
mentary classes.]

I§1 The Framework

[We define types, stability in λ,S (M) and Eµ: equivalence relations on
types all whose restrictions to models of cardinality ≤ µ are equal. We
recall that categoricity in λ implies stability in µ ∈ [LS(K), λ).]

I§2 Variant of Saturation

[We define <ℓ
µ,α and “N is (µ, κ)-saturated over M” and show universality

and uniqueness.]

I§3 Splitting

[We note that stability in µ implies that there are not so many µ-splittings.]

I§4 Indiscernibility and E.M. models

[We define strong splitting and dividing, and connect them to the order
property and unstability.]

I§5 Rank and Superstability

[We define one variant of superstability; in particular categoricity implies
it.]

I§6 Existence of many non-splitting

[We prove (e.g. for K categorical in λ = cf(λ)) that if M0 <
1
µ,κ M1 ≤K N ∈

K<λ and p ∈ S (M) does not µ-split over M0, then p can be extended to
q ∈ S (N) which does not µ-split over M0.
(Note: up to Eµ-equivalence the extension is unique). Secondly, if 〈Mi : i ≤
δ〉 is ≤1

µ,κ-increasing continuous in Kµ and p ∈ S (Mδ) then for some i we
have: p does not µ-split over Mi.]

I§7 More on Splitting

[We connect non-splitting to rank and to dividing.]

II§8 Existence of nice Φ

[We try to successively extend the Φ we use which is proper for linear orders
such that we have as many definable automorphisms as possible. We also
relook at omitting types theorems over larger model (so only restrictions
will appear).]
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II§9 Small Pieces are Enough and Categoricity

[The main claim is that for some not too large χ, if p1, p2 ∈ S (M) are
Eχ-equivalent, ‖M‖ < λ where K is categorical in λ we have p1Eχ p2 ⇔
p1 = p2.
Lastly, we derive that categoricity is downward closed for successor cardinals
large enough above LS(K).]

§0 Introduction

We try to find something on

CatK = {λ : K categorical in λ}

for K an abstract elementary class with amalgamation (see 0.1 below).
The Los conjecture = Morley theorem deals with the case where K is the class
of models of a countable first order theory T . See [Sh:c] for more on first order
theories. What for T a theory in an infinitary language? (For a theory T , K is
the class KT = {M : M |= T } we may write CatT instead of CatKT

= CatK).
Keisler gets what can be gotten from Morley’s proof on ψ ∈ Lℵ1,ℵ0 . Then see
[Sh 48] on categoricity in ℵ1 for ψ ∈ Lℵ1,ℵ0 and even ψ ∈ Lℵ1,ℵ0(Q), and [Sh
87a], [Sh 87b] on the behaviour in the ℵn’s. Makkai Shelah [MaSh 285] proved:
if T ⊆ Lκ,ℵ0, κ a compact cardinal then CatT ∩ {µ+ : µ ≥ i(2κ+|T |)+} is empty

or is {µ+ : µ ≥ i(2κ+|T |)+} (it relies on some developments from [Sh 300] but is

self-contained).

It was then reasonable to deal with weakening the requirement on κ to measur-
ability. Kolman Shelah [KlSh 362] proved that if µ ∈ CatT , then (after cosmetic
changes), for the right ≤T the class {M : M |= T, ‖M‖ < λ} has amalgamation
and joint embedding property. This is continued in [Sh 472] which gets results on
categoricity parallel to the one in [MaSh 285] for the “downward” implication.

In [Sh 88] we deal with abstract elementary classes (they include models of
T ⊆ Lκ,ℵ0 , see 0.1), prove a representation theorem (see 0.5 below), and investigate
categoricity in ℵ1 (and having models in ℵ2, limit models, realizing and materializ-
ing types). Unfortunately, we do not have anything interesting to say here on this
context. So we add amalgamation and the joint embedding properties thus getting
to the framework of Jonsson [J] (they are the ones needed to construct homoge-
neous universal models). So this context is more narrow than the ones discussed
above, but we do not use large cardinals. We concentrate here, for categoricity on
λ, on the case “λ is regular”. See for later works [Sh 576], [Sh 600] and [ShVi 635].
We quote the basics from [Sh 88] (or [Sh 576]).

We thank Andres Villaveces and Rami Grossberg for much help.

0.1 Definition. K = (K,≤K) is an abstract elementary class if for some vocabulary
τ = τ(K) = τ(K),K is a class of τ(K)-models, and the following axioms hold.



4 SAHARON SHELAH

Ax0: The holding ofM ∈ K,N ≤K M depends on N,M only up to isomorphism
i.e. [M ∈ K,M ∼= N ⇒ N ∈ K], and [if N ≤K M and f is an isomorphism from
M onto the τ -model M ′ mapping N onto N ′ then N ′ ≤K M

′].

AxI: If M ≤K N then M ⊆ N (i.e. M is a submodel of N).

AxII: M0 ≤K M1 ≤K M2 implies M0 ≤K M2 and M ≤K M for M ∈ K.

AxIII: If λ is a regular cardinal,Mi (for i < λ) is a ≤K-increasing (i.e. i < j < λ
implies Mi ≤K Mj) and continuous (i.e. for limit ordinal δ < λ we have

Mδ =
⋃

i<δ

Mi) then M0 ≤K

⋃

i<λ

Mi ∈ K.

AxIV : If λ is a regular cardinal, Mi(i < λ) is ≤K-increasing continuous and

Mi ≤K N then
⋃

i<λ

Mi ≤K N .

AxV : If M0 ⊆M1 and Mℓ ≤K N for ℓ = 0, 1, then M0 ≤K M1.

AxV I: LS(K) exists1; see below Definition 0.3.

0.2 Definition. 1) Kµ =: {M ∈ K : ‖M‖ = µ}.
2) We say h is a ≤K-embedding of M into N is for some M ′ ≤K N, h is an isomor-
phism from M onto M ′.

0.3 Definition. 1) We say that µ is a Skolem Lowenheim number of K if
µ ≥ ℵ0 and:

(∗)µK for every M ∈ K,A ⊆M, |A| ≤ µ there is M ′, A ⊆M ′ ≤K M and
‖M ′‖ ≤ µ.

2) LS′(K) = Min{µ : µ is a Skolem Lowenheim number of K}.
3) LS(K) = LS′(K) + |τ(K)|.

0.4 Claim. 1) If I is a directed partial order, Mt ∈ K for t ∈ I and
s <I t⇒Ms ≤K Mt then

(a) Ms ≤K

⋃

t∈I

Mt ∈ K for every s ∈ I

(b) if (∀t ∈ I)[Mt ≤K N ] then
⋃

t∈I

Mt ≤K N .

2) If A ⊆M ∈ K, |A|+ LS′(K) ≤ µ ≤ ‖M‖, then there is M1 ≤K M such that
‖M1‖ = µ and A ⊆M1.
3) If I is a directed partial order, Mt ≤ Nt ∈ K for t ∈ I and s ≤I t ⇒ Ms ≤K

Mt & Ns ≤K Nt then
⋃

t

Mt ≤K

⋃

t

Nt.

1We normally assume M ∈ K⇒ ‖M‖ ≥ LS(K), here there is no loss in it. It is also natural to
assume |τ(K)| ≤ LS(K) which just means increasing LS(K).
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0.5 Claim. Let K be an abstract elementary class. There are τ+,Γ such that:

(a) τ+ is a vocabulary extending τ(K) of cardinality LS(K)

(b) Γ is a set of quantifier free types in τ+ (each is an m-type for some m < ω)

(c) M ∈ K iff for some τ+-model M+ omitting every p ∈ Γ we have
M =M+ ↾ τ

(d) M ≤K N iff there are τ+-models M+, N+ omitting every p ∈ Γ such that
M+ ⊆ N+,M =M+ ↾ τ(K) and N = N+ ↾ τ(K).
We can replace M ≤K N by Mi ≤K N for a family {Mi : i ∈ I} (getting
τ+-expansions M+

i , N
+ of Mi, N respectively, such that M+

i ⊆ N+ and
M+

i , N
+ omit every p ∈ Γ for every i ∈ I) if for any ā ∈ ω>M for some

i, ā ∈ ω>(Mi) and ā ∈ ω>(Mj) ⇒Mi ⊆Mj

(e) if M ≤K N and M+ is an expansion of M to a τ+-model omitting every
p ∈ Γ then we can find a τ+-expansion of N omitting every p ∈ Γ such that
M+ ⊆ N+.

0.6 Claim. Assume K has a member of cardinality ≥ i(2LS(K))+ (here and else-
where we can weaken this to: has a model of cardinality ≥ iα for every α <
(2LS(K))+). Then there is Φ proper for linear orders (see [Sh:c, Ch.VII,§2]) such
that:

(a) |τ(Φ)| = LS(K)

(b) for linear orders I ⊆ J we have
EMτ (I,Φ) ≤K EM(J,Φ)(∈ K).

(c) EMτ (I,Φ) has cardinality |I|+LS(K) (so K has a model in every cardinality
≥ LS(K)).
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PART 1

§1 The Framework

1.1 Hypothesis.

(a) K = (K,≤K) an abstract elementary class (0.1) so
Kλ = {M ∈ K : ‖M‖ = λ}

(b) K has amalgamation and the joint embedding property

(c) K has members of arbitrarily large cardinality, equivalently: K has a mem-
ber of cardinality at least i(2LS(K))+ .

1.2 Convention. 1) So there is a monster C (see [Sh:a, Ch.I,§1] = [Sh:c, Ch.I,§1]).

1.3 Definition. We say K (or K) is categorical in λ if it has one and only one
model of cardinality λ, up to isomorphism.

1.4 Definition. 1) We can define tp(ā,M,N) (when M ≤K N and ā ⊆ N), as
(ā,M,N)/E whereE is the following equivalence relation: (ā1,M1, N1)E (ā2,M2, N2)
iff M ℓ ≤K N

ℓ, āℓ ∈ α(N ℓ) (for some α) and M1 =M2 and there is N ∈ K satisfy-
ing M1 = M2 ≤K N and ≤K-embedding f ℓ : N ℓ → N over M ℓ (i.e. f ↾ M ℓ is the
identity) for ℓ = 1, 2 and f1(ā1) = f2(ā2).
2) We omit N when N = C (see 1.2) and may then write ā

M
= tp(ā,M,C). We

can define N is κ-saturated (when κ > LS(K)) by: if M ≤K N, ‖M‖ < κ and p ∈
S <ω(M) (see below) then p is realized inM , i.e. for some ā ⊆ N, p = tp(ā,M,N).
3) S α(M) = {tp(ā,M,N) : ā ∈ αN,M ≤K N}; we define p ↾M when
M ≤K N & p ∈ S (N) as tp(ā,M,N1) when N ≤K N1, p = tp(ā, N,N1). Let
p ≤ q mean p ∈ S (M), q ∈ S (N), p = q ↾M ; see [Sh 300, Ch.II] or [Sh 576, §0].

4) S (M) = S 1(M) (could just as well use S <ω(M) =
⋃

n<ω

S
n(M)).

5) If M0 ≤K M1 and pℓ ∈ Sα(Mℓ) for ℓ = 1, 2, then p0 = p1 ↾ M0 means that for
some ā, N we have M1 ≤K N and ā ∈ αN and pℓ = tp(ā,Mℓ, N) for ℓ = 1, 2.

1.5 Definition. Let K stable in λmean: ‖M‖ ≤ λ⇒ |S (M)| ≤ λ and λ ≥ LS(K).

1.6 Convention. If not said otherwise, Φ is as in 0.6.

1.7 Claim. If K is categorical in λ and λ ≥ LS(K), then

(a) K is stable in every µ which satisfifes LS(K) ≤ µ < λ, hence

(b) the model M ∈ Kλ is cf(λ)-saturated (if cf(λ) > LS(K)).

Proof. Like [KlSh 362].
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1.8 Definition. Eµ is the following relation,

p Eµ q iff for some M ∈ K,m < ω we have

p, q ∈ S
m(M) and [N ≤K M & ‖N‖ ≤ µ⇒ p ↾ N = q ↾ N ].

Obviously it is an equivalence relation.

1.9 Remark. 1) In previous contexts ELS(K) is equality, e.g. the axioms of NF in
[Sh 300, Ch.II,§1] implies it; but here we do not know — this is the main difficulty.
We may look at this as our bad luck, or inversely, a place to encounter some of the
difficulty of dealing with Lµ,ω (in which our context is included).
2) In the cases we shall deal with we can define “M ∈ KLS(K)” is saturated.

1.10 Claim. 1) There is no maximal member in K, in fact for every M ∈ K there
is N,M <K N ∈ K, ‖N‖ ≤ ‖M‖+LS(K), hence for every λ ≥ ‖M‖+LS(K) there
is N ∈ Kλ such that M <K N ∈ Kλ.
2) If p2 ∈ S α(M2) and M1 ≤K M2 ∈ K then for one and only one p1 ∈ S α(M1)
we have p1 = p2 ↾M1.
3) If p1 ∈ S α(M1) and M1 ≤K M2 ∈ K then for some p2 ∈ S α(M2) we have
p1 = p2 ↾M1.
4) If M1 ≤K M2 ≤K M3 and pℓ ∈ S α(Mℓ) for ℓ = 1, 2, 3 then p3 ↾ M2 = p2 &
p2 ↾M1 = p1 ⇒ p3 ↾M1 = p2.

Proof. 1) Immediate by clause (c) of the hypothesis 1.1 and claim 0.6.
2) Straightforward.
3) By amalgamation.
4) Check. �1.10

1.11 Claim. If 〈Mi : i ≤ ω〉 is ≤K-increasing continuous and pn ∈ S α(Mn) and
pn = pn+1 ↾Mn for n < ω, then there is pω ∈ S α(Mω) such that n < ω ⇒ pω ↾n=
pn.

Proof. Straight chasing diagrams.

1.12 Remark. In 1.11 we do not claim uniqueness and not existence replacing ω for
δ of uncountable cofinality. In general not true [Saharon add].
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§2 Variant of Saturated

2.1 Definition. Assuming K stable in µ and α is an ordinal < µ+, µ+ × α means
ordinal product.
1)M <◦

µ,α N if: M ∈ Kµ, N ∈ Kµ,M ≤K N and there is a ≤K-increasing sequence

M̄ = 〈Mi : i ≤ µ × α〉 which is continuous, M0 = M,Mµ×α ≤K N and every
p ∈ S 1(Mi) is realized in Mi+1.
2) We say M <1

µ,α N iff M ∈ Kµ, N ∈ Kµ,M ≤K N and there is a ≤K-increasing

sequence M̄ = 〈Mi : i ≤ µ × α〉,M0 = M,Mµ×α = N and every p ∈ S 1(Mi) is
realized in Mi+1.
3) If α = 1, we may omit it.

2.2 Lemma. Assume K stable in µ and α < µ+.
0) If ℓ ∈ {0, 1} and α1 < α2 < µ+ and there is b ⊆ α2 such that otp(b) = α1

and [ℓ = 1 ⇒ b unbounded in α2] then <ℓ
µ,α2

⊆<ℓ
µ,α1

.

1) If M ∈ Kµ, then for some N we have M <◦
µ,α N and for some N,M <1

µ,α N .

2) (a) If M ∈ Kµ,M ≤K M
′ ≤ℓ

µ,α N then M ≤ℓ
µ,α N .

(b) If M ∈ Kµ,M ≤K M
′ ≤◦

µ,α N
′ ≤K N ∈ Kµ then M ≤◦

µ,α N .

3) If 〈Mi : i < α〉 is ≤K-increasing sequence in Kµ,Mi ≤
◦
µ Mi+1 and α < µ+ is a

limit ordinal, then M0 ≤1
µ,α

⋃

i<α

Mi.

4) If M ≤◦
µ N then:

(a) any M ′ ∈ Kµ can be ≤K-embedded into N (here we can waive ‖M‖ = µ)

(b) If M ′ ≤K N ′ ∈ K≤µ, h is a ≤K-embedding of M ′ into M then h can be
extended to a ≤K-embedding of N ′ into N .

5) If M ℓ ≤1
µ,κ N

ℓ for ℓ = 1, 2, h an isomorphism from M1 into [onto] M2 then h

can be extended to an isomorphism from N1 into [onto] N2.
6) If M ≤1

µ,κ N
ℓ for ℓ = 1, 2 then N1 ∼= N2 (even over M).

7) If M ≤◦
µ,κ N , M ≤K M

′ ∈ Kµ then M ′ can be <K-embedded into N over M .

8) If µ ≥ κ > LS(K) and M <1
µ,κ N then N is cf(κ)-saturated.

Proof. See [Sh 300, Ch.II,3.10,p.319] and around, we shall explain and prove part
(8) below.

2.3 Discussion: There (in [Sh 300, Ch.II,3.6]) the main point was that for κ >
LS(K), the notions “κ-homogeneous universal” and κ-saturation (i.e. every “small”
1-type is realized) are equivalent.

Not hard, still [Sh 300, Ch.II,3.6] was a surprise to some. In first order the
equivalence saturated ≡ homogeneous universal for ≺ seemed a posteriori natural
as the homogeneity used was anyhow for sequences of elements realizing the same
first order formulas so (forgetting about the models) to some extent this seemed
natural; i.e. asking this for any type of 1-element was very natural.

But here, types of 1-element are really meaningful only over a model. So it seems
that if over any small submodel every type of 1-element is realized (say in A) and
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we want to embed N ≥K N0, N0 ≤K A into A over N0, we encounter the following
problem: we cannot continue this as after ω stages, as we get a set which is not a
model (if LS(K) > ℵ0 this absolutely necessarily fails; and if LS(K) = ℵ0 at best
the situation is as in [Sh 87a]).

This explains a natural preconception making you not believe; i.e. psychological
barrier to prove. It does not mean that the proof is hard.

2.4 Remark. Note that ≤1
µ,κ, κ regular are the interesting ones. Still ≤0

µ,κ is enough

for universality (2.2(4)) and is natural, ≤1
µ,κ is natural for uniqueness. BUT

<1
µ,ℵ0

=<1
µ,ℵ1

can be proved only under categoricity (or something like supersta-

bility assumptions). LOOK at first order T stable in µ. Then, M <1
µ,κ N is

equivalent to:

‖M‖ = ‖N‖ = µ,M,N |= T

and there is 〈Mi : i ≤ κ〉 which is ≺-increasing continuous such that

M0 =M Mκ = N

(Mi+1, c)c∈Mi
is saturated.

Question: Now, is N saturated when M <1
µ,κ N?

Answer: It is iff cf(κ) ≥ κr(T ). See [Sh:c, Ch.III,§3].

See on limit and superlimit models in [Sh 88].

Before we prove 2.2(8), recall

2.5 Definition. M ∈ K is κ-saturated if κ > LS(K) and:
N ≤K M, ‖N‖ < κ, p ∈ S 1(N) ⇒ p realized in M .

Proof of 2.2(8).

Statement: If M <1
µ,κ N (κ regular) then N is κ-saturated.

Note: if κ ≤ LS(K) the conclusion is essentially empty, but there is no need for the
assumption “κ > LS(K)”.

Proof. Let M̄ = 〈Mi : i ≤ µ × κ〉 witness M ≤1
µ,κ N so M0 = M,Mµ×κ =

N,Mi ≤K-increasing continuous and every p ∈ S (Mi) is realized in Mi+1.
Assume

(∗) N ′ ≤K N, ‖N ′‖ < κ, p ∈ S (N ′).

We should prove that “p is realized in N”. But 〈Mi : i ≤ µ × κ〉 is increasing
continuous

cf(µ× κ) = κ > ‖N ′‖
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so N ′ ≤K Mµ×κ =
⋃

i<µ×κ

Mi implies there is i(∗) < µ × κ, such that N ′ ⊆ Mi(∗)

hence by Axiom V we haveN ′ ≤K Mi(∗). So p has (by amalgamation!) an extension
p∗ ∈ S (Mi(∗)) and p

∗ is realized in Mi(∗)+1 so in Mµ×κ = N . �2.2

Comment: Hence length µ (instead of µ× κ) suffices.
But for the uniqueness it does not. See 2.2(4) + (5).

Comment: The definition of ≤0
µ,κ,≤

1
µ,κ is also essentially taken from

[Sh 300, Ch.II,3.10]. We need the intermediate steps to construct models so we
have to have µ of them in order to deal with all the elements.

2.6 Claim. If K is categorical in λ,M ∈ Kλ and cf(λ) > µ then:
if N <K M ∈ Kλ, N ∈ Kµ, N

′ <K M,h an isomorphism from N onto N ′, then h
can be extended to an automorphism of M .

Proof. By 1.4 we have LS(K) ≤ µ < λ ⇒ K stable in λ. We can find 〈Mi : i < λ〉
which is <K-increasing continuous, ‖Mi‖ = |i|+ LS(K),
Mi <

1
|i|+LS(K),|i|+LS(K) Mi+1. By the categoricity assumption without loss of gen-

erality M =
⋃

i<λ

Mi. As cf(λ) > µ for some i0 < λ we have N,N ′ ≺Mi0 .

By 2.2 we can build an automorphism. �2.6

2.7 Definition. For µ ≥ LS(K), we say N ∈ Kµ is (µ, κ)-saturated if for some M
we have M <1

µ,κ N (so κ is ≤ µ, normally regular).

2.8 Claim. 1) The (µ, κ)-saturated model is unique (even over M) if it exists at
all.
2) If M is (µ, κ)-saturated, κ = cf(κ), cf(κ) > LS(K) then M is κ-saturated.
3) If M is (µ, κ)-saturated for every κ = cf(κ) ≤ µ and µ > LS(K) then M is
µ-saturated.

Discussion: It is natural to define saturated as ‖M‖-saturated. (I may have confu-
sions using the other being (µ, κ)-saturated for every regular κ ≤ µ.) This is partic-
ularly reasonable when the cardinal is regular, e.g. if K categorical in λ, λ = cf(λ)
the model in Kλ is λ-saturated.

Part of the program is to prove that all the definitions are equivalent.
For now in Definition 2.7 we are not sure that such a model exists.
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§3 Splitting

Whereas non-forking is very nice in [Sh:c], in more general contexts, non first order,
it is not clear whether we have so good a notion, hence we go back to earlier notions
from [Sh 3], like splitting. It still gives for many cases p ∈ S (M), a “definition” of
p over some “small” N ≤K M . We need µ-splitting because ELS(K) is not known
to be equality (see 1.8).

3.1 Context. Inside the monster model C.

3.2 Definition. p ∈ S (M) does µ-split over N ≤K M if:

‖N‖ ≤ µ, and there are N1, N2, h such that:
‖N1‖ = ‖N2‖ ≤ µ and N ≤K Nℓ ≤K M , for ℓ = 1, 2
h an elementary mapping from N1 onto N2 over N such that
the types p ↾ N2 and h(p ↾ N1) are contradictory and N ≤K Nℓ ≤K M .

3.3 Claim. 1) Assume K is stable in µ, µ ≥ LS(K). If M ∈ K≥µ and p ∈ S 1(M),
then for some N0 ⊆M, ‖N0‖ = µ, p does not µ-split over N0 (see Definition 3.2).
2) Moreover, if 2κ > µ, 〈Mi : i ≤ κ+ 1〉 is <K-increasing, ā ∈ m(Mκ+1),
tp(ā,Mi+1,Mκ+1) does (≤ µ)-split over Mi, then K is not stable in µ.

Proof of 3.3. 1) If not, we can choose by induction on i < µ Ni, N
1
i , N

2
i , hi such

that:

(a) 〈Ni : i ≤ µ〉 is increasing continuous, Ni <K M , ‖Ni‖ = µ

(b) Ni ≤K N
ℓ
i ≤K Ni+1

(c) hi is an elementary mapping from N1
i onto N2

i over Ni,

(d) p ↾ N2
i , hi(p ↾ N1

i ) are contradictory, equivalently distinct (we could have
defined them for i < µ+).

Let χ = Min{χ : 2χ > µ} so 2<χ ≤ µ. Now contradict stability in µ as in part (2).
2) Similar to [Sh:a, Ch,I,§2] or [Sh:c, Ch.I,§2] (by using models), but we give details.
Without loss of generality Mi ∈ K≤µ for i ≤ κ + 1. For each i < κ let Ni,1, Ni,2

be such that Mi ≤K Ni,ℓ ≤K Mi+1, gi an isomorphism from Ni,1 onto Ni,2 over Mi

and tp(ā, Ni,2) 6= gi(tp(ā, Ni,1)). Without loss of generality 2<κ ≤ µ. We define by
induction on α ≤ κ a model M∗

α and for each η ∈ α2, a mapping hη such that:

(a) M∗
α ∈ Kµ is ≤K-increasing continuous

(b) for η ∈ α2, hη is a ≤K-embedding of Mα into M∗
α

(c) if β < α, η ∈ α2, then hη↾β ⊆ hη

(d) if α = β + 1, ν ∈ β2, then hνˆ<0>(Ni,1) = hνˆ<1>(Ni,2).

There is no problem to carry the definition (we are using amalgamation only in
K≤µ and if we start with M0 ∈ Kµ only in Kµ). Now for each η ∈ κ2 we can
find M∗

η ∈ Kµ,M
∗
κ ≤K M∗

η and ≤K-embedding h+η of Mκ+1 into M∗
η extending
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hη =
⋃

α<κ

hη↾α. Now {tp(h+η (ā),M
∗
κ ,M

∗
η ) : η ∈ κ2} is a family of 2κ > µ distinct

members of S m(M∗
κ) and recall M∗

κ ∈ Kµ so we are done. �3.3

3.4 Conclusion. If p ∈ S m(M),M is µ+-saturated, κ = cf(κ) ≤ µ, then for some
N0 <

◦
µ,κ N1 ≤K M , (so ‖N1‖ = µ) we have:

p is the Eµ-unique extension of p ↾ N1 which does not µ-split over N0.
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§4 Indiscernibles and E.M. Models

4.1 Definition. Let hi : Y → C for i < i∗.
1) 〈hi : i < i∗〉 is an indiscernible sequence (of character < κ) (over A) if for every
g, a partial one to one order preserving map from i∗ to i∗ (of cardinality < κ)
there is f ∈ AUT (C), such that

g(i) = j ⇒ hj ◦ h
−1
i ⊆ f

(and idA ⊆ f).

2) 〈hi : i < i∗〉 is an indiscernible set (of character κ) (over A) if: for every g partial
one to one map from i∗ to i∗ (with |Dom g| ≤ κ) there is f ∈ AUT (C), such that

g(i) = j ⇒ hj ◦ h
−1
i ⊆ f

(and idA ⊆ f).

3) 〈hi : i < i∗〉 is a strictly indiscernible sequence, if i∗ ≥ ω and for some Φ, proper
for linear orders (see [Sh:a, Ch.VII] or [Sh:c, Ch.VII]) in vocabulary τ1 = τ(Φ)
extending τ(K), there is M1 = EM1(i∗,Φ) such that M1 is the Skolem Hull of
{xi : i < i∗}, and a sequence of unary terms 〈σt : t ∈ Y 〉 such that:

σt(xi) = hi(t) for i < i∗, t ∈ Y

M1 ↾ τ(K) <K C.

4) Let hi : Yi → C for i < i∗ we say that 〈hi : i < i∗〉 has characteristic σ if:

(∗) if h′i : Yi → C for i < i∗ and for every u ∈ [i∗]<σ there is an automorphism
fu of C such that fu ↾ A = idA and i ∈ u ⇒ fu ◦ hi = h′i, then there is an
automorphism f of C such that f ↾ A = idA and i < i∗ → f ◦ hi = h′i.

4.2 Notation. We can replace hi by the sequence 〈hi(t) : t ∈ Y 〉.

4.3 Definition. 1) K has the (κ, θ)-order property if for every α there are A ⊆ C

and 〈āi : i < α〉, where āi ∈ κC and |A| ≤ θ such that:

(∗) if i0 < j0 < α, i1 < j1 < α then for no f ∈ AUT (C) do we have
f ↾ A = idA, f(āi0ˆāj0) = āj1ˆāi1 .

If A = ∅ i.e. θ = 0, we write “κ-order property”.
2) K has the (κ1, κ2, θ) order property if for every α there are A ⊆ C satisfying
|A| ≤ θ, 〈āi : i < α〉 where āi ∈

κ1C and 〈b̄i : i < α〉 where b̄i ∈
κ2C such that

(∗) if i0 < j0 < α, i1 < j1 < α, then for no f ∈ AUT(C) do we have
f ↾ A = idA, f(āi0) = āj1 , f(b̄j0) = b̄i1 .
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4.4 Observation. So we have obvious monotonicity properties and if θ ≤ κ we can
let A = ∅; so the (κ, θ)-order property implies the (κ+ θ)-order property.

4.5 Claim. 1) Any strictly indiscernible sequence (over A) is an indiscernible se-
quence (over A).
2) Any indiscernible set (over A) is an indiscernible set (over A).

4.6 Claim. 1) If µ ≥ LS(K) + |Y | and hθi : Y → C, for i < θ < i(2µ)+ (e.g.

hθi = hi) then we can find 〈h′j : j < i∗〉, a strictly indiscernible sequence, with
h′j : Y → C such that:

(∗) for every n < ω, j1 < · · · < jn < i∗ for arbitrarily large θ < i(2µ)+ we can

find i1 < · · · < in < θ and f ∈ AUT (C) such that h′jℓ ◦ (h
θ
iℓ
)−1 ⊆ f .

2) If in part (1) for each θ, the sequence 〈hθj : j < θ〉 is an indiscernible sequence
of character ℵ0, in (∗) any i1 < · · · < in < i∗ will do.
3) In Definition 4.3 we can restrict α to α < i(2κ+θ+LS(K))+ and get an equivalent
version.
4) In Definition 4.3 we can demand 〈āˆāi : i < α〉 is strictly indiscernible (where ā
lists A) and get an equivalent version.
5) If µ ≥ LS(K) + |Y |, N ≤K C and hθi : Y → N for i < θ < i(2µ)+ and N1

is an expansion of N with |τ(N1)| ≤ µ, then for some expansion N2 of N1 with
|τ(N2)| ≤ µ and Ψ we have:

(a) τ(Ψ) = τ(N2)

(b) for linear orders I ⊆ J we have
EMτ(K)(I,Ψ) ≤K EMτ(K)(I,Ψ) ∈ K
and the skeleton of EMτ(K)(I,Ψ) is 〈āt : t ∈ I〉, āt = 〈at,y : y ∈ Y 〉

(c) for every n < ω for arbitrarily large θ < i(2µ)+ for some i0 < . . . in−1 < θ,
for every linear order I and t0 < · · · < tn−1 in I, letting J = {t0, . . . , tn−1}
there is an isomorphism g from EM(J,Ψ) ⊆ EM(I,Ψ) (those are τ(N2)-

models) onto the submodel of N2 generated by
⋃

ℓ<n

Rang(hθiℓ) such that

hθiℓ(y) = g(at,y).

Proof. As in [Sh:c, Ch.VII,§5] and [Sh 88] [Saharon read], see 8.6 for a similar
somewhat more complicated proof.

4.7 Lemma. 1) If there is a strictly indiscernible sequence which is not an in-
discernible set of character ℵ0 called 〈āi : i < ω〉, then K has the |ℓg(ai)|-order
property.
2) If there is 〈āi : i < i∗〉 is a strictly indiscernible sequence over A of character θ+

but is not an indiscernible set over A of character θ+ and i∗ ≥ θ+, then K has the
(ℓg(ā0), |A|+ θ × ℓg(ā0)-order property.

Remark. Permutation of infinite sets is a more complicated issue.
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4.8 Claim. 1) If K has the κ-order property then:

I(χ, κ) = 2χ for every χ > (κ+ LS(K))+

(and other strong non-structure properties).
2) If K has the (κ1, κ2, θ)-order property and χ ≥ κ = κ1 + κ2 + θ then for some
M ∈ Kχ, we have |S κ2(M)/Eκ| > χ.

Proof. 1) By [Sh:e, Ch.III,§3] (preliminary version appears in [Sh 300, Ch.III,§3])
(note the version on e.g. △(Lλ+,ω)).
2) Straight. �4.8

4.9 Definition. 1) Suppose M ≤K N and p ∈ S m(N). Then p divides over M if
there are elementary maps 〈hi : i < κ̄〉, Dom(hi) = N , hi ↾ M = idM , 〈hi : i < κ̄〉
is a strictly indiscernible sequence and {hi(p) : i < κ̄} is contradictory i.e. no
element (in some C′,C <K C′) realizing all of them; recall κ̄ is the cardinality of C.
Let µ-divides mean no elements realize ≥ µ of them.
2) κµ(K) [or κ

∗
µ(K)] is the set of regular κ such that for some ≤K-increasing contin-

uous 〈Mi : i ≤ κ+1〉 in Kµ and b ∈Mκ+1 for every i < κ we have: tp(b,Mκ,Mκ+1)
[or tp(b,Mi+1,Mκ+1)] divides over Mi; so κ ≤ µ.
3) κµ,θ(K) [or κ∗µ,θ(K)] is the set of regular κ such that for some ≤K-increasing

continuous sequence 〈Mi : i ≤ κ+ 1〉 in Kθ and b ∈Mκ+1 for every i < κ we have:
tp(b,Mκ,Mκ+1) [or tp(b,Mi+1,Mκ+1)], µ-divides overMi, so κ ≤ θ (see Definition
4.12 below).

4.10 Remark. 1) A natural question: is there a parallel to forking?
2) Note the difference between κµ(K) and κ

∗
µ(K). Note that now the “local charac-

ter” is apparently lost.

4.11 Fact. 1) In Definition 4.9(1) we can equivalently demand: no element realizing
≥ i(2χ)+ of them, where χ = ‖N‖.

2) If κ ∈ κ∗µ(K), θ = cf(θ) ≤ κ then θ ∈ κ∗µ(K) and similarly of κ∗µ,θ(K).

3) κ∗µ(K) ⊆ κµ(K) similarly κ∗µ,θ(K) ⊆ κµ,θ(K).

4.12 Definition. Suppose M ≤K N, p ∈ S (N),M ∈ K≤µ, µ ≥ LS(K).
1) We say p does µ-strongly splits over M , if there are 〈āi : i < ω〉 such that:

(i) āi ∈ γ≥C for i < ω, γ < µ+, 〈āi : i < ω〉 is strictly indiscernible over M

(ii) for no b realizing p do we have tp(ā0ˆ〈b〉,M,C) = tp(ā1ˆ〈b〉,M,C).

2) We say p explicitly µ-strongly splits over M if in addition ā0 ∪ ā1 ⊆ N .
3) Omitting µ means any µ (equivalently µ = ‖N‖).

4.13 Claim. 1) Strongly splitting implies dividing with models of cardinality ≤ µ
if (∗)µ holds where (∗)µ = (∗)µ,ℵ0,ℵ0 and

(∗)µ,θ,σ If 〈āi : i < i∗〉 is a strictly indiscernible sequence, āi ∈ µC, b̄ ∈ σ>C, then for
some u ⊆ i∗, |u| < θ and the isomorphism type of (C, āiˆb̄) for all i ∈ i∗\u
is the same.
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4.14 Claim. 1) Let µ(∗) = µ + σ + LS(K). Assume 〈āi : i < i∗〉 and b̄ form
a counterexample to (∗)µ,θ,σ of 4.13 and θ ≥ i(2µ(∗))+ then K has the µ(∗)-order
property.
2) We can also conclude that for χ ≥ µ + LS(K), for some M ∈ Kχ we have

|S ℓg(b̄)(M)| > χ.
3) If we have “θ < i(2µ(∗))+” we can still get that for every χ ≥ µ+ σ +LS(K) + θ

for some M ∈ Kχ, we have |S ℓg(b̄)(M)| ≥ χθ.
4) In part (1) it suffices to have such an example for every θ < i(2µ(∗))+ , of course,

for fixed µ(∗).

Proof. Straight, using 4.15 below.

4.15 Claim. Assume M = EM(I,Φ), LS(K) + ℓg(āi) ≤ µ, µ ≥ |α| + LS(K) and
M ≤K N, b̄ ∈ αN and

(∗) for no J ⊆ I, |J | < i(2µ)+ do we have for all t, s ∈ I\J ,

tp(ātˆb̄, ∅, N) = tp(āsˆb̄, ∅, N).

Then

(A) we can find Φ′ proper for linear orders and a formula ϕ (not necessarily
first order, but ±ϕ is preserved by ≤K-embeddings) such that for any linear
order I ′

M = EM(I ′,Φ′), āt = ātˆb̄t, ℓg(ā
t) ≤ µ, ℓg(b̄t) = α and

M |= ϕ[āt, b̄s] ⇔ t < s
(if α < ω, this is half the finitary order property)

(B) this implies instability in every µ′ ≥ µ if α < ω

(C) this implies the (µ+ |α|)-order property and even the (µ, |α|, 0)-order prop-
erty

(D) if b̄ ∈ αM then “|J | < µ+” or just “|J | < |α|+ + ℵ0” in (∗) suffices

(E) if χ ≥ µ, for some M ∈ Kχ, then |S α(M)| > χ moreover |S α(M)/Eµ| >
χ.

Proof. As we can increase I, without loss of generality the linear order I is dense
with no first or last element and is (i(2µ)+)

+-strongly saturated, see Definition
4.17 below. So for some p and some interval I0 of I, the set Y0 = {t ∈ I0 :
tp(ātˆb̄, ∅, N) = p} is a dense subset of I0. Also for some q ∈ S α(M)\{p}, the set
Y1 = {t ∈ I : tp(ātˆb̄, ∅, N) = q} has cardinality ≥ i(2µ)+ and let Y ′

1 ⊆ Y1 have
cardinality i(2µ)+ . As we can shrink I0 without loss of generality I0 is disjoint from

Y ′
1 and as we can shrink Y1 without loss of generality (∀s ∈ Y ′

1)(∀t ∈ I0)(s <
I t) or

(∀s ∈ Y ′
q )(∀t ∈ I0)(t <

I s).

By the Erdös-Rado theorem, for every θ < i(2µ)+ there are sθα ∈ Y ′
1 for α < θ

such that 〈sθα : α < θ〉 is strictly increasing or strictly decreasing; without loss of
generality the case does not depend on θ, so as we can invert I without loss of
generality it is increasing. Let t∗α ∈ Y ′

1 for α < i(2µ)+ be strictly increasing. Hence
(try (p1, p2) = (p, q) and (p1, p2) = (q, p), one will work)
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(∗) we can find p1 6= p2 such that

(∗∗) for every θ < i(2µ)+ there is an increasing sequence 〈tθα : α < θ + θ〉 of
members of I such that

(i) α < θ = tp(ātθαˆb̄, ∅, N) = p0

(ii) θ ≤ α < θ + θ ⇒ tp(ātθαˆb̄, ∅, N) = p1.

[Note that we could have replaced “increasing” by

(iii) α < β < θ ⇒ tθα <I t
θ
β <I t

θ
θ+α <I t

θ
θ+β.

Why? Let I1 = {t ∈ I : (∀α < i(2µ)+) t
∗
α < t}, so every A ⊆ I1 of cardinality

≤ i(2µ)+ has a bound from below, so for some q1 ∈ S α(M) the set I2 = {t ∈ I1 :

tp(ātˆb̄, ∅, N) = q1} is unbounded from below in I1. If q1 6= p then q1, p can serve
as p1, p2, so assume q1 = p, so q, q1 can serve as p1, p2.]

Now we apply 4.6(5) with hθi listing āθαˆā
θ
θ+αˆb̄ and letting N1 be EM(I,Φ) (so

τ(N1) = τ(Φ)) and we get Ψ as there. Now for any linear order I∗, look at
EM(I∗,Ψ) and its skeleton 〈ā∗t : t ∈ I∗〉. Clearly ā∗t = ā1tˆā

2
tˆb̄

∗, and letting M∗

be the submodel of EMτ(Φ)(I
∗,Ψ) generated by {a1t , a

2
t : t ∈ I∗} ∪ b̄, it is iso-

morphic to EM(I∗ + I∗,Ψ), so without loss of generalityM =M∗ ↾ τ(K) ≤K C, so
tp(ā1t ˆb̄, ∅,M) = p1, tp(ā

2
t ˆb̄, ∅,M) = p2. Now for any χ we can choose I∗ = I∗χ such

thatD = {J : J an initial segment of I∗ and J ∼= I∗ and I∗\J is isomorphic to I∗}
has cardinality > χ.

So we have proved clause (E) and clause (B), by easy manipulations we get clause
(A) and so (C).

We are left with clause (D). Clearly there is t̄ = 〈ti : i < i∗〉 satisfying i∗ < |α|++
ℵ0 such that b̄ = 〈bβ : β < α〉, bβ = τβ(āti(β,0)

, . . . , āti(β,n(β)−1)
) where i(β, ℓ) < i∗, τβ

a τ(Φ)-term.
Let J = {ti : i < i∗} so by the version of (∗) used in clause (D), necessarily for
some s1, s2 ∈ I\J we have:

p1 6= p2 where

p1 = tp(ās1ˆb̄, ∅, N)

p2 = tp(ās2ˆb̄, ∅, N)

Clearly s1 6= s2. By renaming without loss of generality s1 <
I s2 and 0 = i0 ≤

i1 ≤ i2 ≤ i3 = i∗ and ti <
I s1 ⇔ i < i1 and s1 <

I ti <
I s2 ⇔ i1 ≤ i < i2 and

s2 <
I ti ⇔ i2 < i < i3.

As I is (i(2µ)+)
+-strongly saturated we can increase J so renaming without loss of

generality i(β, ℓ) /∈ {i1, i2}, and replace ti1 , ti2 by s1, s2. So for every linear order
I ′ we can define a linear order I∗ with a set of elements

{ti : i < i1 or i2 < i < i∗} ∪ {(s, i) : s ∈ I ′, i1 ≤ i < i2}
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linearly ordered by:

tj1 < tj2 if j1 < j2 < i1

tj1 < tj2 if i2 < j1 < j2 < i∗

tj1 < (s′, j′) < (s′′, j′′) < tj2 if j1 < i1, i2 < j2 < i∗,

s′, s′′ ∈ I ′, j′, j′′ ∈ [i1, i2]

(s′ <I′

s′′) ∨ (s′ = s′′ & j′ < j′′).

In M = EM(I∗,Φ) define, for s ∈ I ′

c̄s,i is āti if i < i1 ∨ i > i2,

c̄s,i = ā(s,i) if i ∈ [i1, i2]

b̄s = 〈τβ(c̄s,i(β,0), c̄s,i(β,1), . . . , c̄s,i(β,n(β)−1)) : β < α〉.

Easily

s′ <I′

s′′ ⇒ tp(ā(s′,i1)ˆb̄s′′ , ∅,M) = p1

s′′ ≤I′

s′ ⇒ tp(ā(s′,i1)ˆb̄s′′ , ∅,M) = p2.

By easy manipulations we can finish. �4.15

4.16 Claim. Assume K is categorical in λ and

(a) 1 ≤ κ and LS(K) < θ = cf(θ) ≤ λ and
(∀α < θ)(|α|κ < θ)

(b) āi ∈
κ
C for i < θ.

Then for some W ⊆ θ of cardinality θ, the sequence 〈āi : i ∈ W 〉 is strictly indis-
cernible.

Proof of 4.16. Let M ′ ≺ C, ‖M ′‖ = θ and α < θ ⇒ āα ⊆ M ′. There is M ′′,M ′ ≺
M ′′ ≺ C, ‖M ′′‖ = λ. So M ′′ ∼= EM(λ,Φ) and without loss of generality equality
holds. So there is u ⊆ λ, |u| ≤ θ such that M ′ ⊆ EM(u,Φ). So without loss of
generality M ′ = EM(u,Φ). So aα ∈ EM(vα,Φ) for some vα ⊆ u, |vα| ≤ κ.
Without loss of generality: otp(vα) = j∗, so for α < β, OPuα,uβ

the order preserving

map from vβ onto vα induces fα,β : EM(uβ,Φ)
iso
−→
onto

EM(uα,Φ), and without loss

of generality fα,β(āβ) = āα.
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Now as u is well ordered and the assumption (a), (or see below) for some w ∈ [θ]θ

the sequence 〈vα : α ∈ w〉 is indiscernible in the linear order sense (make them a
sequence). Now we can create the right Φ.

[Why? Let uα = {γα,j : j < j∗} where γα,j increases with j. For α < θ, let

Aα = {γβ,j : β < α, j < j∗} ∪ {
⋃

β<α,j

γβ,j + 1}. Let γ∗β,j = Min{γ ∈ Aα : γβ,j ≥ γ}

and for each α ∈ S∗
0 = {δ < θ : cf(δ) > κ} let h(δ) = Min{β < δ : γ∗δ,j ∈ Aβ}

(defining 〈Aβ : β ≤ δ〉 as increasing continuous, cf(δ) > κ ≥ |j∗| and γ∗δ,j ∈ Aδ by

definition).

By Fodor’s lemma for some stationary S1 ⊆ S0, h ↾ S1 is constantly β∗. As
(∀α < θ)(|α|κ < θ = cf(θ)) for some S2 ⊆ S1 for each j < j∗ and for all δ ∈ S2,
the truth value of “γδ,j ∈ Aδ” (e.g. γδ,j = γ∗δ,j) is the same and 〈γ∗δ,j : δ ∈ S2〉 is

constant. Now 〈uδ : δ ∈ S2〉 is as required. See more [Sh 620, §7].] �4.16

4.17 Definition. A model M is λ-strongly saturated if:

(a) λ-saturated

(b) strongly λ-homogeneous: if f is a partial elementary mapping from M to
M , |Dom(f)| < λ
then (∃g ∈ AUT (M))(f ⊆ g).

Note: if µ = µ<λ, I a linear order of cardinality ≤ µ, then there is a λ-strongly
saturated dense linear order J, I ⊆ J .

Remark. We can even get a uniform bound on |J | (which only depends on µ).
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§5 Rank and Superstability

5.1 Definition. For M ∈ Kµ, p ∈ S m(M) we define R(p) an ordinal or ∞ as
follows: R(p) ≥ α iff for every β < α there are M+,M ≤K M+ ∈ Kµ, p ⊆ p+ ∈
S 1(M+), R(p+) ≥ β & [p+ µ-strongly splits over M ]. In case of doubt we write
Rµ. This is well defined and has the obvious properties:

(a) monotonicity,

(b) if M ∈ Kµ, p ∈ S m(M) and Rk(p) ≥ α then for some N, q satisfying
M ≤K N ∈ Kµ and q ∈ S m(N) we have: q ↾M = p and Rk(q) = α

(c) automorphisms of C preserve everything

(d) the set of values is [0, α) or [0, α) ∪ {∞} for some α < (2µ)+, etc.

5.2 Definition. We say K is (µ, 1)-superstable if

M ∈ Kµ & p ∈ S (M) ⇒ R(p) <∞

(

equivalently < (2µ)+
)

.

5.3 Claim. If (∗)µ from 4.13 above fails, then (µ, 1)-superstability fails.

Proof. Straight.

5.4 Claim. If K is not (µ, 1)-superstable, then there are a sequence
〈Mi : i ≤ ω + 1〉 which is <K-increasing continuous in Kµ and m < ω and
ā ∈ m(Mω+1) such that (∀i < ω)

[

ā
Mi+1

does µ-strongly split over Mi

]

.

Also the inverse holds.

Proof. As usual.

5.5 Claim. 1) If K is not (µ, 1)-superstable then K is unstable in every χ such
that χℵ0 > χ+ µ+ 2ℵ0 .
2) If κ ∈ κ∗µ(K) and χκ > χ ≥ LS(K), then K is not χ-stable, even modulo Eµ.
3) If κ ∈ κµ(K) and χκ > χ = χκ ≥ LS(K) or just there is a tree with χ nodes and
> χκ-branches and χ ≥ LS(K), then K is not χ stable even modulo Eµ.

Remark. We intend to deal with the following elsewhere; we need stable amalga-
mation

(∗) if κ ∈ κµ(K), cf(χ) = κ,
∧

λ<χ

λµ ≤ χ,

then K is not χ-stable.

5.6 Remark. 1) In (1) this implies I(LS(K)+(ω(α0+α)+n),K) ≥ |α| when µ = ℵα0 .
We conjecture that [GrSh 238] can be generalized to the content of (1) with cardinals
which exists by ZFC.
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2) Note that for FO stable theory T,K = MOD(T ), for κ regular we have (∗)κ1 ⇔
(∗)κ2 where

(∗)κ1 for any increasing chain 〈Mi : i < κ〉 of λ-saturated models of length

κ, the union
⋃

i<κ

Mi is λ-saturated,

(∗)κ2 κ ∈ κr(K).

In [Sh:e], (∗)κ2 is changed to

(∗∗) κ < κr(T )
(really κr(K) (i.e. κr(T )) is a set of regular cardinals)).

From this point of view, FO theory T is a degenerated case: κr(T ) is an initial
segment so naturally we write the first regular not in it. This is a point where [Sh
300] opens our eyes.
3) In fact in 5.5 not only do we get ‖M‖ = χ, |S (M)| > χ but also |S (M)/Eµ| > χ.
4) Let me try to explain the proof of 5.5, of course, being influenced by the first
order case. If the class is superstable, one of the consequences of not having the
appropriate order property is that (see 4.15) for a strictly indiscernible sequence
〈āt : t ∈ I〉 over A each āt of length at most µ and b̄, singleton for simplicity, for
all except few of the āt’s, the type of āt ∼= b̄ realizes the same type. Of course,
we can get better theorems generalizing the ones for first order theories: we can
use κ /∈ κµ(C) and/or demand that after adding to A, c̄ and few of the āt’s the
rest is strictly indiscernible over the new A, but this is not used in 5.5. Now if C
is (µ, 1)-superstable the number of exceptions is finite, however, the inverse is not
true: for some non (µ, 1)-superstable class C still the number of exceptions in such
situations is finite. In the proof of 5.5(1) this property is used as a dividing line.

Proof. 1)

Case I There are M,N, p, 〈āi : i < i∗〉 as in 4.13(∗)µ and c̄, (in fact ℓg(c̄) = 1) such
that c̄ realizes hi(p) for infinitely many i’s and fails to realize hi(p) for infinitely
many i’s.

Let I be a i(χ+ i(2µ)+)
+-strongly saturated dense linear order (see Definition

4.17) such that even if we omit ≤ i(2µ)+ members, it remains so. By the strict
indiscernibility we can find 〈āt : t ∈ I〉, c as above.

So there is u ⊆ I, |u| < i(2µ)+ such that q = tp(ātˆc̄, ∅,C) is the same for all
t ∈ I\u; without loss of generality q = tp(ātˆc̄, ∅,C) ⇔ t ∈ I\u, so u is infinite. So
we can find in ∈ i∗ ∩ u such that in < in+1. Let I ′ = I\(u\{in : n < ω}), so that
I ′ is still χ+-strongly saturated. Hence for every J ⊆ I ′ of order type ω for some
cJ(∈ C) we have

t ∈ I ′\J ⇒ tp(ātˆc̄J , ∅,C) = q

t ∈ J ⇒ tp(ātˆc̄J , ∅,C) 6= q.

This clearly suffices.
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Case II Not Case I.
As in [Sh 3] (the finitely many finite exceptions do not matter) or see part (2).
2) If χ < 2κ the conclusion follows from 3.3(2). Possibly decreasing κ (allowable as
κ ∈ κ∗µ(K) rather than κ ∈ κµ(K) is assumed) we can find a tree T ⊆ κ≥χ, so closed
under initial segments such that |T ∩ κ>χ| ≤ χ but |T ∩ κχ| > χ. (The cardinal
arithmetic assumption is needed just for this). Let 〈Mi : i ≤ κ + 1〉, c ∈ Mκ+1

exemplify κ ∈ κ∗µ(K) and let T ′ = T ∪ {ηˆ〈0〉 : η ∈ κOrd and i < κ⇒ η ↾ i ∈ T }.

Now we can by induction on i ≤ κ+ 1 choose 〈hη : η ∈ T ′ ∩ iχ〉, such that:

(a) hη is a ≤K-embedding from Mℓg(η) into C

(b) j < ℓg(η) ⇒ hη↾j ⊆ hη

(c) if i = j+1, ν ∈ T ∩jχ, then 〈hη(Mi) : η ∈ SucT (ν)〉 is strictly indiscernible,
and can be extended to a sequence of length κ̄ such that 〈hη(p ↾ Mi) : η ∈
SucI(ν)〉 is contradictory (i.e. as in Definition 4.9(1)).

There is no problem to do this. Let M ≤K C be of cardinality χ and include
⋃

{hη(Mi) : i < κ and η ∈ T ∩ iχ} hence it includes also hη(Mκ) if η ∈ T ∩ κχ as

Mκ =
⋃

i<κ

Mi.

For η ∈ T ∩ κχ let cη = hηˆ<0>(c) and Mη = hη(Mi) when η ∈ T ∩ iOrd and
i ≤ κ+ 1, so by 4.15 clearly (by clause (C))

(∗) if i < κ, η ∈ T ∩ iχ, and η ⊳ η1 ∈ T ∩ κχ, then
{ρ ∈ SucT (η) : for some ρ1, ρ ⊳ ρ1 ∈ T ∩ κχ and

cρ1 realizes tp(cη1 , hη1↾(i+1)(mi+1))}
has cardinality < i(2µ+LS(K))+ .

Next define an equivalence relation e on T ∩ κχ:

η1 e η2 iff tp(cη1 ,M) = tp(cη2 ,M).

or just

η1eη2 iff (∀ν)[ν ∈ T ⇒ tp(cη1 ,Mν) = tp(cη2 ,Mν)].

Now if for some η ∈ T ∩ κχ, |η/e| > i(2µ+LS(K))+ then for some η∗ ∈ T ∩ κ>χ, we
have

{ν ↾ (ℓg(η∗ + 1)) : ν ∈ η/e} has cardinality > i(2µ+LS(K))+

which contradicts (∗); so if χ ≥ i(2µ+LS(K))+ , we are done.

But if for some η ∈ T ∩ κ>χ the set in (∗) has cardinality ≥ κ, then we can
continue as in case I of the proof of part (1) replacing “infinite” by “of cardinality
≥ κ”, so assume this never happens. So above if |η/e| > 2κ, we get again a
contradiction. So if |T ∩ κχ| > 2κ, we conclude |T ∩ κχ/e| = |T ∩ κχ|, so we are
done. We are left with the case χ < 2κ, covered in the beginning (note that for
χ < 2κ the interesting notion is splitting).
3) Proof similar to part (2). �5.5
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5.7 Claim. If λ > µ+, µ ≥ LS(K,K), K is categorical in λ then
1) K is (µ, 1)-superstable.
2) κ∗µ(K) is empty.

Proof. 1) Assume the conclusion fails. If λ > µ+ω, we can use 5.5 + 1.7 so
without loss of generality cf(λ) > LS(K).

By 1.7 if M ∈ Kλ then M is cf(λ)-saturated. On the other hand from the
Definition of (µ, 1)-superstable we get a non-µ+-saturated model.

Let χ = i(2λ)+ . Assume K is not (µ, 1)- superstable so we can find in Kµ

an increasing continuous sequence 〈Mi : i ≤ κ + 1〉 and c ∈ Mω+1 such that
pn+1 = tp(c,Mn+1,Mω+1) µ-strongly splits over Mn for n < ω. For each n < ω
let 〈āni : i < ω〉 be a strictly indiscernible sequence over Mn exemplifying pn+1

does µ-strongly splits over Mn (see Definition 4.12). So we can define āni ∈ C for
i ∈ [ω, χ) such that 〈āni : i < χ〉 is strictly indiscernible over Mn. Let Tn = {η ∈
2nχ : η(2m) < η(2m+ 1) for m < n}. For n < ω, i < j < χ let hni,j ∈ AUT(C) be

such that hni,j ↾ Mn = id, hni,j(ā
n
0 ˆā

n
1 ) = āni ˆā

n
j . Now we choose by induction on

n < ω, 〈fη : η ∈ Tn〉, 〈gη : η ∈ Tn〉, 〈ani : i < χ, η ∈ Tn〉 such that:

(a) fη, gη are restrictions of automorphisms of C

(b) Dom(fη) =Mn

(c) gη ∈ AUT(C)

(d) āni = gη(ā
n
i ) if η ∈ Tn

(e) f<> = idM0 ,

(f) fη ⊆ gη

(g) if η ∈ 2nχ,m < n then fη↾(2m) ⊆ fη

(h) if η ∈ 2nχ and i < j < χ then fηˆ<i,j> = (gη ◦ hni,j) ↾Mn+1.

There is no problem to carry the induction. Now choose by induction on n,M∗
n, ηn, in, jn

such that

(α) in < jn < χ and ηn = 〈i0, j0, . . . , in−1, jn−1〉 so ηn ∈ Tn

(β) Mn ∈ Kλ,M
∗
n <

1
µ,ω M

∗
n+1

(γ) Rang(fηn
) ⊆Mn

(δ) āηn

i , āηn

j realizes the same type over Mn

(ε) āηn

i , āηn

j ⊆M∗
n+1.

There is no problem to carry the induction (using the theorem on existence of
strictly indiscernibles to choose in < jn).

So
⋃

n<ω

fηn
can be extended to f ∈ AUT(C). Let c∗ = f(c),M∗

ω =
⋃

n

M∗
ηn
,M∗

ω+1 =

f(Mω+1). Clearly tp(c,M∗
n+1,M

∗
ω+1) does µ-split over Mn hence Mω is not µ+-

saturated (as cf(λ) > µ) (see 5.8); contradiction.
2) Follows. �5.7
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5.8 Claim. If µ ≥ LS(K), 〈Mi : i ≤ δ〉 is ≤K-increasing continuous,
p ∈ S ≤µ(Mδ), p µ-strongly splits over Mi for all i (or just µ-splits over Mi) and
δ < µ+ then Mδ is not µ+-saturated.

Proof. Straight.

5.9 Claim. Assume there is a Ramsey cardinal > µ + LS(K). If K is not (µ, 1)-
superstable, then for every χ > µ + LS(K) there are 2χ pairwise non-isomorphic
models in Kχ.

Proof. By [GrSh 238] for χ regular; together with [Sh:e] for all χ.

5.10 Lemma. 1) If for some M, |S (M)/Eµ| > χ ≥ ‖M‖+i(2µ)+ and µ ≥ LS(K)
then K is not (µ, 1)-superstable.
2) If χκ ≥ |S (M)/Eµ| > χ<κ ≥ χ ≥ ‖M‖+i(2µ)+ , µ ≥ LS(K)+κ then κ ∈ κ∗µ(K).

Proof. No new point when you remember the definition of Eµ (see 1.8).
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§6 Existence of Many Non-Splitting

6.1 Question. Suppose κ + LS(K) ≤ µ < λ and N̄ = 〈Ni : i ≤ δ〉 is <1
µ,κ-

increasing continuous (we mean for i < j, j non-limit Ni <
1
µ,κ Nj), δ < µ+ and

p ∈ S m(Nδ). Is there α < δ such that for every M ∈ K≤λ, Nδ ≤K M,p has an
extension q ∈ S m(M) which does not µ-split over Nα (and so in particular p does
not µ-split over Nα).

6.2 Remark. If p ↾ Nα+1 does not µ-split over Nα, then p ↾ Nα+1 has at most one
extension mod Eµ which does not µ-split over Nα because Nα+1 ∈ Kµ is universal
over Nα, Nα+1 ≤K M ∈ Kλ. So in 6.1 if p does not µ-split over Nα, then there is
at most one q/Eµ.

6.3 Lemma. Suppose K is categorical in λ, cf(λ) > µ ≥ LS(K). Then the answer
to question 6.1 is yes.

6.4 Remark. We intend later to deal with the case λ > µ ≥ cf(λ) + LS(K) as in
[KlSh 362].

Notation. I × α is I + I + . . . (α times) (with the obvious meaning).

Proof. Let Φ be proper for linear order, |τ(Φ)| ≤ LS(K), EMτ (I,Φ) ∈ K (of power
|I| + µ(K)) where I is a linear order, of course and I ⊆ J ⇒ EMτ (I,Φ) ≤K

EMτ (J,Φ). So EMτ (λ,Φ) is µ+-saturated (by 1.7). Let I∗ be a linear order of
power µ such that I∗ × (α+ 1) ∼= I∗ for α < µ+ and I∗ × ω ∼= I∗. By 1.7 we know
that EMτ (I

∗ × λ,Φ) is µ+-saturated.

Now we choose by induction on i an ordinal αi < µ+ and an isomorphism hi
from N1+i onto EM(I∗×αi,Φ), both increasing with i where Ni+1 is from 6.1 and
cf(αi) = ℵ0 for i nonlimit.

For i = 0, use the proof of the uniqueness of N1 over N0 (see 2.6 and reference
there); more specifically using the back and forth argument we can find J0 ⊆
λ, |J0| = µ and isomorphism h0 from N1 = N0+1 onto EM(I∗×J0,Φ) ⊆ (I∗×λ,Φ).
Now let J0 = J0 ∪ {α < λ : (∀β ∈ J0)β < α} so J0 ∼= λ (note: J0 is bounded in λ
as cf(λ) > µ ≥ |J0|) and also EMτ (I

∗ × J0,Φ) is µ+-saturated (being isomorphic
to EMτ (I

∗ × λ,Φ)), so without loss of generality J0 is some ordinal α0 < µ+.
So we have h0. The continuation is similar.

Now hδ is defined hδ : Nδ
onto
→ EMτ (I

∗ × αδ,Φ), so as EMτ (I
∗ × λ,Φ) is µ+-

saturated, hδ(p) is realized say by ā, so let ā = σ̄(x(t1,γ1), . . . , x(tn,γn)) where σ̄ is
a sequence of terms in τ(Φ) and (tℓ, γℓ) is increasing with ℓ (in I∗ × λ). Let β < δ
be such that:

{

γ1, . . . , γn
}

∩ αδ ⊆ αβ .

Let

γ′ℓ =

{

γℓ if γℓ < αδ

λ+ γℓ if γℓ ≥ αδ
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Then in the model N = EMτ(K)(I
∗×λ+λ,Φ), we shall show that the finite sequence

σ̄1 = σ̄
(

x(t1,γ′
1)
, . . . , x(tnγ′

n)

)

realizes a type as required overM = EMτ(K)(I
∗×λ,Φ).

Why? Let Mγ = EMτ(K)(I
∗ ×αγ ,Φ) for γ < δ. Assume toward contradiction that

(∗) tp(ā′,M,N) does µ-split over Mβ+1.

Let c̄, b̄ ∈ µM realize the same type over Mβ+1 but witness splitting.
We can find w ⊆ λ, |w| ≤ µ such that c̄, b̄ ⊆ EM(I∗ × w,Φ). Choose γ such

that

sup(w) < γ < λ.

Let M− = EMτ(K)(I
∗ × (αδ ∪w ∪ [γ, λ)),Φ) <K M .

Let N− = EMτ(K)(I
∗ × (αδ ∪ w ∪ [γ, λ) ∪ [λ, λ+ λ)),Φ) <K N .

So still c̄, b̄ witness that tp(ā′,M−, N−) does µ-split over Mβ+1.

There is an automorphism f of the linear order I∗ × (αδ ∪ w ∪ [γ, λ)) ∪ [λ, λ + λ))
such that

f ↾ (I∗ × αβ+1) = the identity

f ↾ (I∗ × [γ + 1, λ+ λ)) = the identity

Rang
(

f ↾ (I∗ × w)
)

⊆ I∗ × [αβ+1, αβ+2).

Now f induces an automorphism of N− naturally called f̂ .
So

f̂ ↾Mβ = identity

f̂(ā′) = ā′

f̂(M−) =M−

As f̂ is an automorphism, f̂(c̄), f̂(b̄) witness that tp(f̂(ā′), f̂(M−), f̂(N−)) does µ-

splits over f̂(Mαβ+1
); i.e. tp(ā′,M−, N−) does µ-splits overMαβ+1

. So tp(ā′,Mαβ+2
, N)

does µ-splits over Mαβ+1
.

Now choose αγ < µ+ for γ ∈ (δ, µ+], increasing continuous by

αδ+i = αδ + i

Mγ = EMτ(K)(I
∗ × αγ ,Φ).

So 〈Mγ : γ ≤ µ〉 is increasing continuous. So for γ1 ∈ [β, µ+) there is f ∈ AUT (I∗×
(λ+ λ)) such that
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f ↾ I∗ × αβ = identity

f takes I∗ × [αβ , αβ+1) onto I
∗ × [αβ , αγ1+1)

f takes I∗ × [αβ+1, αβ+2) onto I
∗ × {αγ1+1}

f takes I∗ × [αβ+2, αγ1+2) onto I
∗ × {αγ1+2}

f ↾ I∗ × [αγ1+2, λ+ λ) = identity.

As before this shows (using obvious monotonicity of µ-splitting)

tp(ā1,Mγ1+2N)µ-splits over Mγ1+1.

So {γ < µ : tp(ā′,Mγ+1, N) does µ-split over Mγ} has order type µ, so without
loss of generality is µ. By 3.3(2) we get a contradiction. �6.3

6.5 Theorem. Suppose K categorical in λ and the model in Kλ is µ+-saturated
(e.g. cf(λ) > µ) and LS(K) ≤ µ < λ.
1) M <1

µ,κ N ⇒ N is saturated if LS(K) < µ.

2) If κ1, κ2 and for ℓ = 1, 2 we have Mℓ <
1
µ,κℓ

Nℓ, then N1
∼= N2.

3) There is M ∈ Kµ which is saturated.

6.6 Remark. 1) The model we get by (2) we call the saturated model of K
in µ.
2) Formally — we do not use 6.3.
3) By the same proof M ≤1

µ,κℓ
Nℓ ⇒ N1

∼=M N2 and we call N saturated over

M .

Proof. 1) By the uniqueness proofs 2.2 as M <1
µ,κ N there are

〈Mi : i ≤ κ〉,Mi <
1
λ,κ Mi+1, <K-increasing continuous M0 =M,Mκ = N and as in

the proof of 6.3 without loss of generality Mi = EM(αi,Φ) where αi < µ+.
To prove N = Nκ is µ-saturated suppose p ∈ S 1(M∗),M∗ ≤K N, ‖M∗‖ < µ;

as we can extend M∗ (as long as its power is < µ and it is <K N), without loss of
generality M∗ = EM(J,Φ), J ⊆ ακ, |J | < µ.

So for some γ we have [γ, γ + ω) ∩ J = ∅ and γ + ω ≤ ακ. We can replace
[γ, γ + ω) by a copy of λ; this will make the model µ-saturated [alternatively, use
I∗× ordinal as in a previous proof].
But easily this introduces no new types realized over M∗. So p is realized.
2) Follows by part (1) or its proof.
3) Follows from the proof of part 1). Left to the reader.

Remark. In part (1) we have used just cf(λ) > µ > LS(K). �6.5
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6.7 Claim. Assume K categorical in λ, cf(λ) > µ > LS(K). If Ni ∈ Kµ is

saturated, increasing with i for i < δ and δ < µ+ then N =
⋃

i<δ

Ni ∈ Kµ is

saturated.

Proof. We prove this by induction on δ, so without loss of generality 〈Ni : i <
δ〉 is not just ≤K-increasing and also contradicts the conclusion but is increasing
continuous and eachNi saturated. Without loss of generality δ = cf(δ). If cf(δ) = µ
the conclusion clearly holds so assume cf(δ) < µ. Let M ≤K N, ‖M‖ < µ and p ∈
S (M) be omitted in N and let θ = δ+ ‖M‖+LS(K) < µ, and let p ≤ q ∈ S (N).
Now we can choose by induction on i ≤ δ,Mi ≤ Ni and M+

i ≤K N such that
Mi ∈ Kθ,M

+
i ∈ Kθ,Mi is ≤K-increasing continuous and M ∩ Ni ⊆ Mi, j < i ⇒

M+
j ∩ Ni ⊆ Mi+1 and Mi <

1
θ,ω Mi+1 and if q does θ-split over Mi then q ↾ M+

i

does θ-split over Mi.
So by 6.3, 6.5 we know that Mδ is saturated, and for some i(∗) < δ we have:

q ↾Mδ does not θ-split over Mi(∗). But M
+
i(∗) ⊆ N =

⋃

i<δ

Ni,M
+
i(∗) ∩Nj ⊆Mj+1 so

M+
i(∗) ⊆Mδ. So necessarily q ∈ S (N) does not θ-split over Mi(∗).

Now we choose by induction on α < θ+,Mi(∗),α, bα, fα such that:
Mi(∗),α ∈ Kθ,Mi(∗) ≤K Mi(∗),α ≤K Ni(∗),Mi(∗),α is ≤K-increasing continuous in
α, bα ∈ Ni(∗) realizes q ↾ Mi(∗),α, fα is a function with domain Mδ and range
⊆ Ni(∗) such that the sequences c̄ = 〈c : c ∈Mδ〉 and c̄α =: 〈fα(c) : c ∈Mδ〉 realize
the same type overMi(∗),α and {bα}∪ Rang(fα) ⊆Mi(∗),α+1. As Ni(∗) is saturated
we can carry the construction; if some bα realizes q ↾ Mδ we are done (as bα ∈ N
realizes p). Let d ∈ C realize q so

(∗)1 α < β < θ+ ⇒ c̄βˆ〈bα〉 does not realize tp(c̄ˆ〈d〉,Mi(∗),C).
[Why? As c̄ˆ〈bα〉 does not realize tp(c̄ˆ〈d〉,Mi(∗),C) because d realizes p ↾ c̄
whereas bα does not realize p ↾ c̄.]

On the other hand as q does not θ-split over Mi(∗) we have
tp(c̄ˆ〈d〉,Mi(∗),C) = tp(c̄αˆ〈d〉,Mi(∗),C) so by the choice of bβ:

(∗)2 if α < β < θ+ then c̄αˆ〈bβ〉 realizes tp(c̄ˆ〈d〉,Mi(∗),C).

We are almost done by 4.15.
[Why only almost? We would like to use the “θ-order property fail”, now if we could
define 〈c̄βˆ〈bβ〉 : for β < (2θ)+〉 fine, but we have only α < θ+, this is too short.]
Now we will refine the construction to make 〈c̄βˆ〈bβ〉 : β < θ+〉 strictly indiscernible
which will be enough. As Ni(∗) is saturated without loss of generalityNi(∗) =
EMτ(K)(µ,Φ) and Mi(∗) = EMτ(K)(θ,Φ) (using 6.8 below). As before for some

γ < θ+ there are sequences c̄′, b̄′ in EMτ(K)(µ + γ,Φ) realizing tp(c̄, Ni(∗),C), q ↾

Ni(∗) respectively, here we use cf(λ) > µ rather than just cf(λ) ≥ µ. For each

β < θ+ there is a canonical isomorphism gβ from EMτ(Φ)(β ∪ [µ, µ + γ),Φ) onto
EMτ(Φ)(β+ γ,Φ). So without loss of generalityMi(∗),α = EMτ(K)(θ+ γα,Φ), c̄

α =
gθ+γα

(c̄′), bα = gθ+γα
(b′). So (∗)1 + (∗)2 gives the order property. �6.7

We really proved, in 6.5 (from λ categoricity):
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6.8 Subfact. Assume K is categorical in λ.
1) If I ⊆ J are linear order, of power < cf(λ);

(∗) t ∈ J\I ⇒

(

∃ℵ0s ∈ J

)

[s ∼I t] where s ∼I t means “s, t realize the same

Dedekind cut”,

then every type over EMτ(K)(I,Φ) is realized in EMτ(K)(J,Φ).
2) Adding more Skolem functions we can omit (∗), for a suitable Φ we can make
even the extension µ-saturated over EMτ(K)(I,Φ).

Proof. Why? Use the proof of 6.5(1).
Replace the cut of t in I by λ: we get cf(λ)-saturated model. �6.8
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§7 More on Splitting

7.1 Hypothesis. As before + conclusions of §6 for µ ∈ [LS(K), cf(λ)).
So

(∗)(a) K has a saturated model in µ.

(b) union of increasing chain of saturated models in Kµ of length ≤ µ
is saturated.

(c) if 〈Mi : i ≤ δ〉 increasing continuous in Kµ, each Mi+1 saturated over Mi

(the previous one), p ∈ S (Mδ) then for some i < δ, p does not µ-split over
Mi.

7.2 Conclusion. If p ∈ S m(M) and M ∈ Kµ is saturated, then for some
M− <1

µ,ω M,M− ∈ Kµ is saturated and p does not µ-split over M−.

Proof. We can find 〈Mn : n ≤ ω〉 in Kµ, each Mn saturated Mn ≤1
µ,ω Mn+1 and

Mω =
⋃

n<ω

Mn so as Mω is saturated, without loss of generality Mω = M . Now

using (∗)(c) of 7.1 some Mn is O.K. as M−. �7.2

7.3 Fact. If M0 ≤1
µ,ω M2 ≤1

µ,ω M3, p ∈ S m(M3), p does not µ-split overM0, then
R(p) = R(p ↾M2).

Proof. We can find (by uniqueness) M1 ∈ Kµ such that M0 ≤1
µ,ω M1 ≤1

µ,ω M2 and

we can find M4 ∈ Kµ such that M3 ≤1
µ,ω M4.

We can find an isomorphism h1 from M3 onto M2 over M1 (by the uniqueness
properties <1

µ,ω). By uniqueness there is an automorphism h of M4 extending h1.
Also by uniqueness there is q ∈ S (M4) which does not µ-split overM0 and extend
p ↾ M1. As p, p ↾ M2 does not µ-split over M0 and have the same restriction to
M1 and M0 ≤µ,ω M1 clearly p = q ↾ M2. Consider q and h(q) both from S (M3),
both do not µ-split over M0 and have the same restriction to M1; as M0 <

1
µ,ω M1

it follows that q = h(q).
So R(p ↾M1) = R(q ↾M1) = R(h(q ↾M2)) = R(q ↾M2) = R(p) as required.

�7.3

7.4 Claim. [K categorical in λ, cf(λ) > µ > LS(K)].
Suppose m < ω,M ∈ Kµ is saturated, p ∈ S m(M),M ≤K N ∈ Kµ, p ≤ q ∈

S m(N), N saturated over M, q not a stationarization of p (i.e. for no M− <◦
µ,ω M ,

q does not µ-split over M−). Then q does µ-divide over M .

Proof. By 7.5 below and 6.3 (just p does not µ-split over some Nm where
〈Nα : α ≤ ω〉 witness N0 <

1
µ,ω M).
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7.5 Claim. [Assumptions of 7.5] Assume M0 <
1
µ,ω M1 <

1
µ,ω M2 all saturated. If

q ∈ S (M2) does not µ-split over M1 and q ↾ M1 does not µ-split over M0, then q
does not µ-split over M0.

Proof. Let M3 ∈ Kµ be such that M2 <
1
µ,ω M3 and c ∈ M3 realizes q. Choose

a linear order I∗ such that I∗ × (µ + ω∗) ∼= I∗ ∼= I∗ × µ, remember that on the
product we do not use lexicographic order. I∗ has no first nor last element
(see [Sh 220, AP]).

Let I0 = I∗ × µ, I1 = I0 + I∗ × Z, I2 = I1 + I∗ × Z, I3 = I2 + I∗ × µ.
Clearly without loss of generalityMℓ = EMτ(K)(Φ, Iℓ), let c = τ(āt0 , . . . , atk) so
t0, . . . , tk ∈ I3; let I1,n = I0 + I∗ ×{m : Z |= m < n} and I2,n = I0 + I∗ ×{m : Z |=
m < n} and I0,α = α × I∗. So we can find a (negative) integer n(∗) small enough
and m(∗) ∈ Z large enough such that {t0, . . . , tn} ∩ I2,n(∗)+1 ⊆ I1,m(∗)−1. Let

M1,n = EMτ(K)(I1,n,Φ) and M2,n = EMτ(K)(I2,n,Φ). Clearly M0 <
1
µ,ω M1,n <

1
µ,ω

M1 <
1
µ,ω M2,n <

1
µ,ω M2. Clearly (use automorphism of I3)

(∗)0 q ↾M2,n does not µ-split over M1,m if Z |= n < n(∗),m(∗) ≤ m ∈ Z.

By 7.3 with q,M1,M2,n,M2, q here standing for M0,M2,M3, p there we get

(∗)1 R(q) = R(q ↾M2,n) if n ∈ Z.

Similarly

(∗)2 R(q ↾M1) = R(q ↾M1,m) if m ∈ Z.

By (∗)0 and 7.3 we have

(∗)3 R(q ↾M2,n(∗)) = R(q ↾M1,m(∗)).

Similarly we can find a successor ordinal α(∗) < µ and k(∗) ∈ Z such that

{t0, . . . , tk} ∩ I1,k(∗)+1 ⊆ I0,α(∗)−1

and then prove

(∗)4 R(q ↾M0) = R(q ↾M0,α) if α(∗) ≤ α < µ

(∗)5 R(q ↾M1,ℓ(∗)) = R(q ↾M0,α) if α(∗) ≤ α < µ.

Together R(q) = R(q ↾M0), hence q does not µ-split over M0 as required. �7.5
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PART II

§8 Existence2 of nice Φ

We build EM models, where “equality of types over A in the sense of the exis-
tence of automorphisms over A” behaves nicely.

8.1 Context.

(a) K is an abstract elementary class with models of cardinality ≥ i(2LS(K))+ ;
it really suffices to assume:

(a)′ K is a class of τ(K)-models, which is PCκ+,ω with a model of cardinality
≥ i(2LS(K))+ .

8.2 Definition. 1) Let κ ≥ LS(K), now Υ or
κ = Υ or

κ,τ is the family of Φ proper for
linear orders (see [Sh:c, Ch.VII]) such that:

(a) |τ(Φ)| ≤ κ

(b) EMτ(K)(I,Φ) = EM(I,Φ) ↾ τ(K) ∈ K

(c) I ⊆ J ⇒ EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ).

2) Υ or is Υ or
LS(K).

8.3 Definition. We define partial orders ≤⊕
κ and ≤⊗

κ on Υ or
κ (for κ ≥ LS(K)):

1) Ψ1 ≤⊕
κ Ψ2 if τ(Ψ1) ⊆ τ(Ψ2) andEMτ(K)(I,Ψ1) ≤K EMτ(K)(I,Ψ2) andEM(I,Ψ1) ⊆

EMτ(Ψ1)(I,Ψ2) and EM(I,Ψ1) = EMτ(Ψ1)(I,Ψ1) ⊆ EMτ(Ψ1)(I,Ψ2) for any lin-
ear order I.
Again for κ = LS(K) we may drop the κ.
2) For Φ1,Φ2 ∈ Υor

κ , we say Φ2 is an inessential extension of Φ1,Φ1 ≤ie
κ Φ2 if

Φ1 ≤⊕
κ Φ2 and for every linear order I, we have

EMτ(K)(I,Φ1) = EMτ(K)(I,Φ2).

(note: there may be more functions in τ(Φ2)!)

3) Φ1 ≤⊗
κ Φ2 iff there is Ψ proper for linear order and producing linear orders such

that:

(a) τ(Ψ) has cardinality ≤ κ,

(b) EM(I,Ψ) is a linear order which is an extension of I: in fact
[t ∈ I ⇒ xt = t]

(c) Φ′
2 ≤ie

κ Φ2 where Φ′
2 = Ψ ◦ Φ1, i.e.

EM(I,Φ′
2) = EM(EM(I,Ψ),Φ1).

(So we allow further expansion by functions definable from earlier ones (composition
or even definition by cases), as long as the number is ≤ κ).

2Done end of Oct.1988
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8.4 Claim. 1) (Υ or
κ ,≤⊗

κ ) and (Υ or
κ ,≤⊕) are partial orders (and ≤⊗

κ⊆≤⊕
κ ).

2) Moreover, if 〈Φi : i < δ〉 is a ≤⊗
κ -increasing sequence, δ < κ+, then it has a

<⊗
κ -l.u.b. Φ; EM1(I,Φ) =

⋃

i<δ

EM1(I,Φi).

3) Similarly for <⊕
κ .

8.5 Lemma. 1) If N ≤K M, ‖M‖ ≥ i(2χ)+ , χ ≥ ‖N‖ + LS(K), then there is Φ
proper for linear order such that:

(a) EMτ(K)(∅,Φ) = N

(b) N ≤K EMτ(K)(I,Φ), moreover
I ⊆ J ⇒ EMτ(K)(I,Φ) ≤K EMτ(K)(I,Φ)

(c) EMτ(K)(I,Φ) omits every type p ∈ S (N) which M omits, moreover if I is
finite then EMτ(K)(I,Φ) can be ≤K-embedded into M .

Proof. Straight by [Sh 88, 1.7] or deduce by 4.6 or use 8.6 with N1 = N0.

8.6 Lemma. Assume

(a) LS(K) ≤ χ ≤ λ

(b) N0 ≤K N1 ≤K M

(c) ‖N0‖ ≤ χ, ‖N1‖ = λ and ‖M‖ ≥ i(2χ)+(λ)

(d) Γ0 = {p0i : i < i∗0} ⊆ S (N0) each p0i omitted by M

(e) Γ1 = {p1i : i < i∗1 ≤ χ} ⊆ S (N1) such that for no i < i∗i any c ∈ M does c
realizes p′i/Eχ [i.e. realizes each p′i ↾M,M ≤K N1,M ∈ K≤χ].

Then we can find 〈N ′
α : α ≤ ω〉,Φ and 〈q1i : i < i∗1〉 such that

(α) Φ proper for linear order

(β) N ′
α ∈ K≤χ is ≤K- increasing continuous (for α ≤ ω)

(γ) N ′
0 = N0 and N ′

α ≤K N1

(δ) q1i ∈ S (N ′
ω)

(ǫ) EMτ(K)(∅,Φ) is N ′
ω

(ζ) for linear order I ⊆ J we have
EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(η) for each n, there is a ≤K-increasing sequence 〈Nn,m : m < ω〉 with union
EMτ(K)(n,Φ) and a ≤K-embedding fn,m of Nn,m into M with range N ′

n,m

such that

(i) N ′
m = N ′

0,m,

(ii) fn,m ↾ N0 is the identity, Rang(f0,m) ⊆ N1

(iii) fn,m(q1i ↾ N ′
m) = p1i ↾ Rang(fn) for i < i∗1

(θ) EMτ(K)(I,Φ) omits every p0i for i < i∗0 and omits every q1i in a strong sense:
for every a ∈ EMτ(K)(I,Φ) for some n we have

q1i ↾ N ′
n 6= tp(a,N ′

n, EMτ(K)(I,Φ)).
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Remark. 1) So we really can replace q1i by 〈q1i ↾ N ′
n : n < ω〉, but for ω-chains by

chasing arrows such limit (q1i ) exists.
2) Clause (ζ) follows from Clause (η).

Proof. By [Sh 88, 1.7] (and see 0.5) we can find τ1, τ(K) ⊆ τ1, |τ1| ≤ χ (here we can
have |τ1| ≤ LS(K) ≤ χ) and an expansion M+ of M to a τ1-model and a set Γ of
quantifier free types (so |Γ| ≤ 2ℵ0+|LS(K)|) such that:

(A) M+ omits every p ∈ Γ and if M∗ is a τ1-model omitting every p ∈ Γ then
M∗ ↾ τ(K) ∈ K and N∗ ⊆M∗ ⇒ N∗ ↾ τ(K) ≤K M

∗ ↾ τ(K)

(B) for ā ∈ ω>M we letM+
ā =M+ ↾ cℓ(ā,M+) thenM+

ā ↾ τ(K) ≤K M
+ ↾ τ(K),

Rang(ā) ⊆ Rang(b̄) ⇒M+
ā ↾ τ(K) ≤K M

+
b ↾ τ(K) where

ā ∈ ω>(Nℓ) ⇒ |M+
ā | ⊆ Nℓ.

Note: Further expansion ofM+ to M∗, as long as |τ(M∗)| ≤ χ preserves (A)+ (B)
so we can add

(C) N0,M
+
〈〉 have the same universe

and let for ℓ = 0, 1, M+
ā,ℓ =M+

ā ↾ (|Nℓ| ∩ |M+
ā |), ℓ = 1, 2

(D) M+
ā,0 ↾ τ(K) ≤K M

+
ā,1 ↾ τ(K) ≤K M

+
ā ↾ τ(K)

(E) for i < i∗1, the type p1i ↾ (M+
ā,1 ↾ τ(K)) is not realized in M+

ā ↾ τ(K).

Now we choose by induction on n, sequence 〈fn
α : α < (2χ)+〉 and N ′

n such that:

(i) fn
α is a one-to-one function from iα(λ) into M

(ii) 〈fn
α (ζ) : ζ < iα(λ)〉 is n-indiscernible in M+

(iii) moreover, if α, β < (2χ)+, and m ≤ n and ζ1 < . . . < ζm < iα(λ) and
ξ1 < . . . < ξm < iβ(λ) then: the sequences ā = 〈fn

α (ζ1), . . . , f
n
α (ζm)〉,

b̄ = 〈fm
β (ξ1), . . . , f

m
β (ξm)〉 realize the same quantifier free type in M+ over

N+
1 , so there is a natural isomorphism gb̄,ā from M+

ā onto M+
b̄

(mapping

fα(ζℓ) to fβ(ξ1)), moreover

i < i∗1 ⇒ gb̄,ā(p
1
i ↾ (M+

ā,1 ↾ τ(K))) = p1i ↾ (M+
b̄,1

↾ τ(K))

and

N ′
m =M+

ā,1 ↾ τ(K).

The rest should be clear. �8.6

8.7 Claim. Suppose

(a) Φ ∈ Υ or
κ

(b) n < ω, u, u1, u2 are subsets of {0, 1, ..., n− 1} and σ1(..., x̄ℓ, ...)ℓ∈u1 ,
σ2(..., x̄ℓ, ...)ℓ∈u2 are τ(Φ)-terms.

(c) for every α < (2LS(K))+ (or at least iα < µ(κ) - see [Sh:c, Ch.VII,§4] but
for this we should be careful as to omit only ≤ LS(K) types) there are linear
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orders I ⊆ J, I ℵ0-homogeneous inside3 J, I of cardinality ≥ iα, such that
for some (equivalently every) t0 < t1 < · · · < tn−1 of I we have:

⊕ for some automorphism f of EMτ(K)(J,Φ),
f ↾ EMτ (I\{tℓ : ℓ < n, ℓ /∈ u},Φ) is the identity and

f

(

σ1(..., ātℓ , ...)ℓ∈u1

)

= σ2(..., ātℓ , ...)ℓ∈u2 .

THEN for some Φ′, Φ ≤⊕
κ Φ′ and even Φ ≤⊗

κ Φ′ we have

⊗ for every linear order I and t0 < · · · < tn−1 from I, there is an automor-
phism f of EMτ (I,Φ

′) such that:

(α) f ↾ EM(I\{tℓ : ℓ < n, ℓ /∈ u},Φ′) is the identity and

(β) f

(

σ1(..., ātℓ , ...)ℓ∈u1

)

= σ2(..., ātℓ , ...)ℓ∈u2

(γ) f = F (−, āt0 , . . . , ātn−1) for some F ∈ τ(Φ′).

Proof. Expand M = EM(J,Φ) by the predicates Q1 = {āt : t ∈ I}, Q2 = {āt : t ∈
J} if α = ℓg(āt) is finite, in any case we useQℓ,i,j = {(at,i, at,j) : t ∈ I} for ℓ ∈ {1, 2}
and i ≤ j < α; and without loss of generality t 6= s ⇒ at,0 6= as,0 and we identify
t ∈ J with at,0. For t0 < . . . < tn−1 ∈ I, let ft0,...,tn−1 ∈ AUT (EMτ(K)(J,Φ)) be
as in (⊕) and let gℓ (for ℓ < ω) be functions from M into {āt : t ∈ J} such that
∀x ∈ M,x = σx(g0(x) . . . gn−1(x)) such that gℓ(x) <

J gℓ+1(x) if ℓ < n − 1 and
gℓ(x) = gℓ+1(x) otherwise. Lastly, let Pσ = {x : σx = σ}.

Let F be an (n+1)-ary function, F (āt0 , . . . , ātn−1 , b) = ft0...tn−1(b) when defined.
The model we get we call M+. Now use the omitting types theorem, e.g. 8.5. So
there is a model N+ and 〈b̄n : n < ω〉 indiscernible in it such that N+ ≡ M+, N+

omits all types which M+ omits, for every m < ω for some s0 < . . . < sn−1 from I
the type of b̄0ˆ . . . b̄n−1 in N+ is equal to the type of ās0ˆ . . . ˆāsn−1 in M+. Define
Φ′ such that EM(I∗,Φ′) is a τ(N+)-model generated by {āt : t ∈ I∗} such that
t0 < . . . < tn−1 ∈ I∗ ⇒ type of āt0ˆ . . . ˆātn−1 in EM(I∗,Φ′) is equal to type of

b̄0ˆ . . . ˆb̄n−1 in N+.

Why is Φ <⊗ Φ′ and not just Φ <⊕ Φ′?
Here we use4 Q1, Q2 in M+ we have

(∗) every c ∈M+ is in the τΦ-Skolem Hull of QM+

2 = {āt : t ∈ J}.

So

(∗)′ M+ omits the type

p(x) =
{

¬(∃ȳ0, . . . , ȳn−1)(
∧

ℓ<n

Q2(ȳℓ) & x = σ(y0, . . . , yn) : σ ∈ τΦ)
}

.

�8.7

3this means that every partial order preserving function h from I to I can be extended to an
automorphism of J .

4if ℓg(āt) is infinite, slightly more complicated
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8.8 Conclusion. For κ ≥ LS(K) there is Φ∗ ∈ Υ or
κ (in fact for every Φ ∈ Υ or

κ there
is Φ∗,Φ ≤⊗

κ Φ∗ ∈ Υ or
κ ) satisfying:

(a) if Φ∗ satisfies the assumptions of 8.7 for some I, J (playing the role of Φ
there) then it satisfies its conclusion (i.e. playing the role of Φ′ there)

(b) moreover if κ ≥ 2LS(K), for some χ(Φ∗) < µ(κ) (see [Sh:c, Ch.VII,§4]), we
can weaken the assumption α < i(2κ)+ to iα ≤ χ(Φ∗)

(c) moreover, in 8.7 we can omit “I is ℵ0-homogeneous inside J”

(d) also we can replace clause (α) of ⊗ (of 8.7) by: f extends some automor-
phism of EM(I\{tℓ : ℓ < n, ℓ /∈ u},Φ∗) definable as in clause (γ) of ⊗ of
8.7.

(e) we can deal similarly with automorphisms extending a given
f ↾ EM(I ↾ {tℓ : ℓ < n}) and having finitely many demands.

Proof. For (a) iterate 8.7, by bookkeeping looking at all 〈σ1, σ2, u, u1, u2〉 and use
8.4 for noting that the iteration is possible. Now (b) holds as cf(µ(κ)) > κ, and
the number of terms is ≤ κ. For (c) we can let Ψ be such that EM(I,Ψ) is an
ℵ0-homogeneous linear order, |τ(Ψ)| = ℵ0 and use Ψ ◦ Φ∗. The rest are easy, too.

�8.8

8.9 Lemma. Let Φ∗ be as in 8.8, and I be a linear order of cardinality χ(Φ∗)
(where χ(Φ∗) is from 8.8). Assume σ(x̄0, . . . , x̄n−1) is a term in τ(Φ∗), for ℓ = 1, 2
we have tℓ0 < · · · < tℓn−1 and u ⊆ {ℓ : t1ℓ = t2ℓ}, and there is no automorphism f
of EM(I,Φ∗) such that f ↾ EM(I\{t1i , t

2
i : ℓ < n, ℓ /∈ u},Φ∗) is the identity, and

f
(

σ
(

āt10 , . . . ,
))

= σ
(

āt20 , . . . ,
)

.
Then

(1) for χ > χ(Φ∗)+ we have I(χ,K) = 2χ.

(2) We have the χ(Φ∗)-order property in the sense of Definition 4.3 (see more
[Sh 300, Ch.III,§3] or better [Sh:e, Ch.III,§3].)

Proof. Without loss of generality I is dense.
We can find t30 < . . . < t3n−1 such that

ℓ ∈ u⇒ t3ℓ = t1ℓ ,

ℓ /∈ u⇒ t3ℓ /∈ {t1m, t
2
m : m < n}.

Now

⊗

1 there is no automorphism f of EM(I,Φ∗) such that
f ↾ EMτ (I\{t1ℓ , t

2
ℓ , t

3
ℓ : ℓ < n, ℓ /∈ u},Φ) is the identity and

f(σ(āt10 , . . . )) = σ(āt20 , . . . )

[Why? If there is, easily some Φ contradicts 8.8(a)]
⊗

2 for some k ∈ {1, 2}, there is no automorphism f of EM(I,Φ) which is
the identity of EM(I\{t1ℓ , t

2
ℓ , t

3
ℓ : ℓ < n, ℓ /∈ u},Φ) and f(σ(ātk0 , . . . )) =
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σ(āt30 , . . . )

[Why? If not such f1, f2 exists and f−1
2 ◦ f1 contradict (∗)2].

⊗

3 for some k ∈ {1, 2} there is no automorphism f of EM(I,Φ) which is the

identity on EM(I\{tkℓ , t
3
ℓ : ℓ < n, ℓ /∈ u},Φ) and f(σ(ātk0 , . . . )) = σ(at30 , . . . )

[Why? We negate a stronger demand than in (∗)2].

By renaming we get that without loss of generality

t1ℓ = t2k ⇒ ℓ = k ∈ u.

By the transitivity of “there is an automorphism” we can assume that just for a
singleton ℓ(∗), t1

ℓ(∗) 6= t2
ℓ(∗). Now if we increase u, surely such isomorphism does not

exist so without loss of generality u = {ℓ < n : ℓ 6= ℓ(∗)} and t1
ℓ(∗) <I t

2
ℓ(∗), by

symmetry. Let I0 = {t ∈ I : t <I t
1
ℓ(∗)}, I

1 = {t ∈ I : t1
ℓ(∗) ≤I t <I t

2
ℓ(∗)}, I

2 = {t ∈

I : t2
ℓ(∗) <I t} (yes: <I not ≤I).

Now for every linear order J we can define I(J) as follows: I(J) is a linear

order which is the sum I0 +
∑

t∈J

I1t (J) + I2, I1t (J) is isomorphic to I1, so let

ft : I1 → I1t (J) be such an isomorphism. Let b̄t list EM(I0 + I1t (J) + I2)
(such that for t, s,

(

idI0 + fsf
−1
t + idI2

)

induces a mapping from b̄t onto b̄s). Let

c̄t = ft
(

σ(t10, . . . , t
1
n−1)

)

. Now

(∗)1 if s0 <J r <J s1 then there is no automorphism f of EMτ (I(J),Φ
∗) over

b̄r mapping c̄s0 to c̄s1 ,

(∗)2 if J is ℵ0-homogeneous (or just 2-transitive) and r <J s0 & r <J s1 or
s0 <J r & s1 <J r then there is an automorphism f of EMτ (I(J),Φ

∗)
over br mapping c̄s0 to c̄s1 .

So by [Sh:e, Ch.III,§3] (or earlier version [Sh 300, Ch.III,§3]), we have the order
property for sequences of length χ(Φ∗); the formula appearing in the definition of
the order is preserved by automorphisms of the model; though it looks as second
order, it does not matter. So conclusion (2) holds and (1) follows. �8.9

8.10 Claim. Assume

(a) K is categorical in λ

(b) the M ∈ Kλ is χ+-saturated (holds if cf(λ) > χ)

(c) χ ≥ LS(K).

Then every M ∈ K of cardinality ≥ i(2χ)+ (or just ≥ iµ(χ) if χ ≥ 2LS(K)) is

χ+-saturated.

Proof. If M is a counterexample, let N ≤K M, ‖N‖ ≤ χ and p ∈ S (N) be omitted
by N . By the omitting type theorem for abstract elementary classes (see 8.5, i.e.
[Sh 88]), we get M ′ ∈ Kλ, N ≤K M ′,M ′ omitting p a contradiction. �1.9
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8.11 Claim. Assume

(a) LS(K) ≤ χ

(b) for every α < (2χ)+ there are Mα <K Nα (so Mα 6= Nα), ‖Mα‖ ≥ iα and
p ∈ S (Mα) such that c ∈ Nα ⇒ ¬pEχ tp(c,Mα,C).

1) For every θ > χ there are M <K N in Kθ and p ∈ S (Mα) as in clause (b).
2) Moreover, if Φ is proper for orders as usual, |τ(Φ)| ≤ χ,i(2χ)+ ≤ λ,K categorical
in λ and I a linear order of cardinality θ, then we can demand M = EMτ(K)(I,Φ).

Proof. Straight.
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§9 Small Pieces are Enough and Categoricity

9.1 Context.

(i) K an abstract elementary class

(ii) K categorical in λ, λ > LS(K)

(iii) some (≡ any) M ∈ Kλ is saturated (if λ is regular this holds)

(iv) Φ∗ is as in 8.8.

Hence

9.2 Fact. For µ ∈ [LS(K), λ), there is a saturated model of cardinality µ,
(why? by 6.5(3)) and there is also Φ∗ ∈ Υ or

µ as in 8.8.

9.3 Main Claim. If M ∈ K is a saturated model of cardinality χ,
χ(Φ∗) < χ < cf(λ) ≤ λ then S (M) has character ≤ χ(Φ∗), i.e. if p1 6= p2 are in
S (M) then for some N ≤K M,N ∈ Kχ(Φ∗) we have p1 ↾ N 6= p2 ↾ N .

Proof. We can find I ⊆ J, |I| = χ, |J | = λ,M = EMτ(K)(I,Φ
∗) ≤K N∗ =

EMτ(K)(J,Φ
∗) and I, J are ℵ0-homogeneous. So by 6.7: every p ∈ S (M) is real-

ized in N∗ and say p is realized by σp(ātp,0 , ātp,1 , . . . , ātp,np−1) where tp,0 < tp,1 <

. . . < tp,np−1. If the conclusion fails, then we can find q 6= p in S (M) such that

(∗) N ≤K M, ‖N‖ ≤ χ(Φ∗) ⇒ p ↾ N = q ↾ N .

Choose I ′ ⊆ J, |I ′| = χ(Φ∗) such that I ⊆ I ′ and {tp,ℓ : ℓ < np} ⊆ I ′ and
{tq,ℓ : ℓ < nq} ⊆ I ′ and let M ′ = EMτ(K)(I

′ ∩ I,Φ∗) ≤K M .

So p ↾ M ′ = q ↾ M ′; so 8.7 becomes relevant (i.e. 8.8(b)) considering the
ℵ0-homogeneity of J) hence by the choice of Φ∗, p = q contradiction. �9.3

9.4 Conclusion. Let I be a directed partial order. Assume M ∈ Kχ is saturated,
χ(Φ∗) ≤ χ < λ, 〈Mt : t ∈ I〉 is a ≤K-increasing family of ≤K-submodels of M , each
saturated and [t < s ⇒ Mt saturated over Ms] and ‖Mt‖ ≤ χ(Φ∗), then for every

p ∈ S

(

⋃

t∈I

Mt

)

for some t∗ ∈ I:

(∗) p does not µ-split over Mt∗

(and even does not χ-split over Mt∗).

Proof. Clear by the proof of 9.3.
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9.5 Claim. If T is categorical in λ, LS(K) ≤ χ(Φ∗) ≤ µ < λ and 〈Mi : i < δ〉 an

<K-increasing sequence of µ+-saturated models then
⋃

i<δ

Mi is µ+-saturated.

Remark. 1) Hence this holds for limit cardinals > LS(K).
2) The addition compared to 6.7 is the case cf(λ) = µ+, e.g. λ = µ+.

Proof. LetMδ =
⋃

i<δ

Mi and assumeMδ is not µ
+-saturated. So there areN ≤K Mδ

of cardinality ≤ µ and p ∈ S (N) which is not realized in Mδ. Choose p1 ∈ S (Mδ)
such that p1 ↾ N = p.
Without loss of generality N is saturated.

Let χ = χ(Φ∗), without loss of generality δ = cf(δ).
We claim

⊗

there are i(∗) < δ and N∗ ≤K Mi(∗) of cardinality χ such that p does not
χ-split over N∗.
Why? Assume toward contradiction that this fails. The proof of

⊗

splits
to two cases.

Case I: cf(δ) ≤ χ.
We can choose by induction on i < δ,N0

i , N
1
i such that

(a) N0
i ≤K Mi has cardinality χ

(b) N0
i is increasingly continuous

(c) N0
i <

1
χ,ω N

0
i+1

(d) N0
i ≤K N

1
i ≤K Mδ

(e) N1
i has cardinality ≤ χ

(f) p1 ↾ N1
i does χ-split over N0

i

(g) for ε, ζ < i,N1
ε ∩Mζ ⊆ N0

i .

There is no problem to carry the definition and then N1
i ⊆

⋃

j<δ

N0
j and

〈N0
i : i < δ〉, p1 ↾

⋃

i<δ

N0
i contradicts 6.3.

Case II: cf(δ) > χ.
Now by 3.3

(∗) for some N∗ ≤K Mδ of cardinality χ we have p1 does not χ-split over N∗.

As δ = cf(δ) ≥ µ > χ, for some i(∗) < δ we have N∗ ≤K Mi(∗). This ends the
proof of

⊗

.
So i(∗), N∗ are well defined. Without loss of generality N∗ is saturated. Let c ∈ C

realize p1. We can find a ≤K-embedding h of EMτ(K)(µ
++µ+,Φ) into C such that

(a) N∗ is the h-image of EMτ(K)(χ,Φ)

(b) h maps EMτ(K)(µ
+,Φ) onto M ′ ≤K Mi(∗)

(c) every d ∈ N and c belong to the range of h.
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By renaming, h is the identity, clearly for some α < µ+ we have
N ∪ {c} ⊆ EMτ (α ∪ [µ+, µ+ + α)), so some list b̄ of the members of N is
σ̄(. . . , āi, . . . , aµ++j)i<α,j<α (assume α > µ for simplicity) and
c = σ∗(. . . , āi, . . . , aµ++j , . . . )i∈u,j∈w (u,w ⊆ µ+ finite as, of course, only finitely
many āi’s are needed for the term σ∗).

For each γ < µ+ we define b̄γ = σ̄(. . . , āi, . . . , a(1+γ)α+j, . . . )i<α,j<α and

cγ = σ∗(. . . , āi, . . . , a(1+γ)α+j , . . . )i,j and stipulate b̄µ
+

= b̄, cµ
+

= c and let q =

tp(b̄ˆc,N∗,C). Clearly 〈b̄γˆcγ : γ < µ+〉ˆb̄ˆc is a strictly indiscernible sequence
over N∗ and ⊆Mδ ∪{c}, so also {b̄γ : γ ≤ µ} ⊆Mδ is strictly indiscernible over N .
[Why? Use I ⊇ µ+ + µ+ which is a strongly µ++ saturated dense linear order and
use automorphisms of EM(I,Φ) induced by an automorphism of I.]
As c realizes p1 clearly tp(c,Mδ) does not χ-split over N

∗ hence by 9.3 necessarily

tp(b̄γˆc,N∗,C) is the same for all γ ≤ µ+, hence γ < µ+ ⇒ tp(b̄γˆcµ
+

, N∗,C) = q,
so by the indiscernibility β < γ ≤ µ+ ⇒ tp(b̄βˆcγ , N∗,C) = q.

Similarly for some q1,

β < γ ≤ µ+ ⇒ tp(b̄γˆcβ , N∗,C) = q1.

If q 6= q1, then tp(c0, b̄
1,C) 6= tp(c2, b̄

1,C), but Rang(b̄γ) is a model N∗
γ ≤K

Mi(∗), N
∗ ≤K N

∗
γ , so by 8.9, for some v ⊆ ℓg(b̄γ) of cardinality χ,

tp(c0, b̄
1 ↾ ν,C) 6= tp(c2, b̄

1 ↾ v,C). So clearly we get the (χ, χ, 1)-order property
contradiction to 4.15.
Hence necessarily β ≤ µ+ & γ ≤ µ+ & β 6= γ ⇒ tp(b̄βˆcγ , N∗,C) = q. For
β = µ+, γ = 0 we get that cγ ∈ Mi(∗) ≤K Mδ realizes tp(cγ , N,C) = p1 ↾ N as
desired. �9.5

We could have proved earlier

9.6 Observation. 1) If M is θ-saturated, θ > LS(K) and θ < λ and N ≤K M,N ∈
K≤θ then there is N ′, N ≤K N ′ ≤K M,N ′ ∈ Kθ and every p ∈ S (N) realized in
M is realized in N ′.
2) Assume 〈Ni : i ≤ δ〉 is ≤K-increasingly continuous, δ < θ+ is divisible by
θ,Ni ∈ K≤θ, Ni ≤K M,M is θ-saturated, and every p ∈ S (Ni) realized in M is
realized in Ni+1 then

(a) if δ = θ × σ, LS(K) < σ = cf(σ) ≤ θ, then Nδ is σ-saturated

(b) if δ = θ × θ, θ > LS(K), then Nδ is saturated.

9.7 Theorem. (The Downward  Los theorem for λ successors).
If λ is successor ≥ µ(χ(Φ∗)) = µ < χ < λ, then K is categorical in χ.

9.8 Remark. 1) We intend to try to prove in future work that also in K>λ we have
categoricity and deal with λ not successor. This calls for using P−(n)-diagrams as
in [Sh 87a], [Sh 87b], etc.
2) We need some theory of orthogonality and regular types parallel to [Sh:a, Ch.V]
= [Sh:c, Ch.V], as done in [Sh:h] and then [MaSh 285] (which appeared) and then



42 SAHARON SHELAH

(without the upward categoricity) [KlSh 362], [Sh 472]. Then the categoricity can
be proved as in those papers.

Proof. Let K ′ = {M ∈ K :M is χ(Φ∗)-saturated of cardinality ≥ χ(Φ∗)}. So

(∗)0 there is M ∈ Kλ which is λ-saturated
[why? by 2.6, 1.7, as λ is regular]

(∗)1 K ′ is closed under ≤K-increasing unions

(∗)2 if χ ≥ i(2LS(K))+(χ(Φ
∗)) and M ∈ Kχ then M ∈ K ′

χ, moreover M is

i(2LS(K))+(χ(Φ
∗))-saturated

[Why? Otherwise by 8.5 there is a non LS(K)+-saturated M ∈ Kλ contra-
dicting (∗)0, or use 8.10. For the “Moreover” use 8.6 instead of 8.5]

(∗)3 if M ∈ K ′, p ∈ S (M) then for some M0 ≤K M,M0 ∈ K ′
χ(Φ∗) and p does

not χ(Φ∗)-split over M0

[why? by 3.3, 1.7]

(∗)4 Definition: for χ ∈ [χ(Φ∗), λ) and M ∈ K ′
χ and p ∈ S (M) we say p is

minimal if

(a) p is not algebraic which means p is not realized by any c ∈M

(b) if M ≤K M
′ ∈ K ′

χ and p1, p2 ∈ S (M ′) are non-algebraic extending p,
then p1 = p2

(∗)5 Fact: if M ∈ K ′
χ is saturated, χ ∈ [χ(Φ∗), λ), then some p ∈ S (M) is

minimal
[Why? If not, we choose by induction on α ≤ χ for every η ∈ α2 and triple
(Mη, Nη, aη) and hη,η↾β for β ≤ α such that:

(a) Mη <K Nη and aη ∈ Nη\Mη

(b) 〈Mη↾β : β ≤ α〉 is ≤K-increasingly continuous

(c) Mη↾β <
1
µ,ω Mη↾(β+1)

(d) hη,η↾β is a ≤K- embedding of Nη↾β into Nη which is the identity on
Mη↾β and maps aη↾β to aη

(e) if γ ≤ β ≤ α, η ∈ α2, then hη,η↾γ = hη,η↾β ◦ hη↾β,η↾γ

(f) Mηˆ〈0〉 =Mηˆ〈1〉 but
tp(aηˆ〈0〉,Mηˆ〈0〉, Nηˆ〈0〉) 6= tp(aηˆ〈1〉,Mηˆ〈1〉, Nηˆ〈1〉)

(g) Mη <K C.

No problem to carry the definition and let κ = Min{κ : 2κ > χ} and
choose M <K C, ‖M‖ ≤ χ, η ∈ κ>2 ⇒ Mη ⊆ M hence η ∈ κ2 ⇒ Mη ⊆ M
so {tp(aη,M,C) : η ∈ κ2} is a subset of S (M) of cardinality 2κ > χ. So
then we can get a contradiction to stability in χ].

(∗)6 Fix M∗ ∈ K ′
χ(Φ∗) and minimal p∗ ∈ S (M∗)

(∗)7 if M∗ ≤K M ∈ K ′
<λ, then p∗ has a non-algebraic extension p ∈ S (M),

moreover, if M is saturated, it is unique and also p is minimal
[Why? Existence by 6.3, uniqueness modulo Eχ(Φ∗) follows hence unique-
ness by locality lemma 9.3. Applying this to a saturated extension M ′ of
M of cardinality ‖M‖ we get p is minimal].
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Let λ1 be the predecessor of λ.

(∗)8 there are no M1,M2 such that:

(a) M∗ ≤K M1 ≤K M2

(b) M1,M2 are saturated of cardinality λ1

(c) M1 6=M2

(d) no c ∈M2\M1 realizes p∗

[Why? If there are, we choose by induction on ζ < λ,Nζ ∈ Kλ1 is ≤K-
increasingly continuous, each Nζ is saturated, N0 = M1, Nζ 6= Nζ+1 and

no c ∈ Nζ+1\Nζ realizes p∗. If we succeed, then N =
⋃

ζ<λ

Nζ is in Kλ (as

Nζ 6= Nζ+1!) but no c ∈ N\Nζ realizes p∗

(why? as {ζ : c /∈ Nζ} is an initial segment of λ, non-empty as 0 is in so it
has a last element ζ, so c ∈ Nζ+1\Nζ so realizes p∗, contradiction); hence
N is not saturated, contradiction. For ζ = 0, N0 = M1 is okay by clause

(b). If ζ is limit < λ, let Nζ =
⋃

ε<ζ

Nε, clearly Nζ ∈ Kλ1 and it is saturated

by 9.5. If ζ = ε + 1, note that as Nε,M1 are saturated and in Kλ1 and
≤K-extends M

∗ which has smaller cardinality, there is an isomorphism fζ
fromM1 onto Nε which is the identity onM∗. We define Nζ such that there
is an isomorphism f+

ζ from M2 onto Nζ extending fζ. By assumption (b),

Nζ ∈ Kλ1 is saturated by assumption (c), Nζ 6= Nζ+1, and by assumption
(d), no c ∈ Nζ+1\Nζ realizes p∗ (as f ↾ M∗ = the identity). So as said
above, we have derived the desired contradiction].

(∗)9 ifM ∈ K ′
<λ and M∗ ≤M <K N,M has cardinality ≥ θ∗ = i(2χ(Φ∗))+ , then

some c ∈ N\M realizes p∗.
[Why? By (∗)2, M,N are θ∗-saturated. So we can find saturated M ′ ≤K

M,N ′ ≤K N of cardinality θ∗ such that M ′ = N ′ ∩M,M∗ 6= N ′ (why? by
observation 9.6). So still no c ∈ N ′\M ′ realizes p∗. We would like to transfer
the appropriate omitting type theorem of this situation from θ∗ to λ1; the
least trivial point is preserving the saturation. But this can be expressed
as: “is isomorphic to EM(I,Φ) for some linear order I” for appropriate Φ,
and this is easily transferred].

(∗)10 if M ∈ K ′
≤λ has cardinality ≥ θ∗ = i(2χ(Φ∗))+ then it is θ∗-saturated

(so ∈ K ′
≤λ)

[why? included in the proof of (∗)9]

(∗)11 if M ∈ K ′
≤λ has cardinality ≥ θ∗, then M is saturated

[why? Assume not; by (∗)10, M is θ∗-saturated let θ be such that M is θ-
saturated but not θ+-saturated; by (∗)10, θ ≥ θ∗, without loss of generality
M∗ ≤K M . Let M0 ≤K M be such that M0 ∈ Kθ and some q ∈ S (M0) is
omitted by M and without loss of generalityM∗ ≤K M0.
Now choose by induction on i < θ+ a triple (N0

i , N
1
i , fi) such that:

(a) N0
i ≤K N

1
i belong to Kθ and are saturated

(b) N0
i is ≤K-increasingly continuous

(c) N1
i is ≤K-increasingly continuous

(d) N0
0 =M0 and d ∈ N1

0 realizes q
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(e) fi is a ≤K-embedding of N0
i into M and f0 = idM0

(f) for each i, for some ci ∈ N1
i \N

0
i we have ci ∈ N0

i+1

(g) fi is increasing continuous.
If we succeed, let E = {δ < θ+ : δ limit and for every i < δ and c ∈ N1

i

we have (∃j < θ+)(cj = c) → (∃j < δ)(cj = c)}. Clearly E is a club

of θ+, and for each δ ∈ E, cδ belongs to N1
δ =

⋃

i<δ

N1
i so there is i < δ

such that cδ ∈ N1
i , so for some j < δ, c = cj so cδ = cj ∈ N0

j+1 ≤K N
0
δ ,

contradiction to clause (f).
So we are stuck for some ζ, now ζ 6= 0 trivially. Also ζ not limit
by 9.5, so ζ = ε + 1. Now if N0

ε = N1
ε , then fε(d) ∈ M realizes q

a contradiction, so N0
ε <K N1

ε . Also fε(N
0
ε ) <K M by cardinality

consideration. Now by (∗)9 some cε ∈ N1
ε \N

0
ε realizes p∗.

We can find N ′
ζ ≤K M such that fε(N

0
ε ) <K N ′

ζ ∈ Kθ, N
′
ζ saturated

(why? by 9.6).
Again by (∗)9 we can find c′ζ ∈ N ′

ζ\fε(N
0
ε ) realizing p

∗. By (∗)5 clearly

tp(c′ε, fε(N
0
ε ),M) = fε(tp(cε, N

0
ε , N

1
ε )) so we can find N1

ζ ∈ Kθ which

is a ≤K-extension of N1
ε and a ≤K-embedding gε of N ′

ζ into N1
ζ which

extends f−1
ε and maps c′ε to cε. Without loss of generality N1

ζ is

saturated. Let N0
ζ = gε(N

′
ζ) and N1

ζ , cε were already defined. So we

can carry the construction, contradiction, so (∗)11 holds].

(∗)12 Kλ is categorical in every χ ∈ [i(2χ(Φ∗))+ , λ)

[why? by (∗)11 every model is saturated and the saturated model is unique].
�9.7
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