
On the Finiteness of the Recursive Chromatic Number

William I Gasarch ∗ Andrew C.Y. Lee†

Abstract

A recursive graph is a graph whose vertex and edges sets are recursive. A highly
recursive graph is a recursive graph that also has the following property: one can
recursively determine the neighbors of a vertex. Both of these have been studied
in the literature. We consider an intermediary notion: Let A be a set. An A-
recursive graph is a recursive graph that also has the following property: one can
recursively-in-A determine the neighbors of a vertex. We show that, if A is r.e.
and not recursive, then there exists A-recursive graphs that are 2-colorable but
not recursively k-colorable for any k. This is false for highly-recursive graphs but
true for recursive graphs. Hence A-recursive graphs are closer in spirit to recursive
graphs then to highly recursive graphs.

Keywords: Recursive graph, Highly recursive graph, recursive coloring.

AMSI codes: 03D25

1 Introduction

This paper grows out of an attempt to understand the finiteness of the recursive chromatic
number of different classes of recursive graphs. A recursive graph G = (V, E) is an infinite
graph such that the vertex set V and the edge set E are recursive and every node has finite
degree [Bea76]. The recursive chromatic number χr(G) is defined as the least number k
such that there exists a recursive function f such that f is a proper coloring of the vertices
of G with range {1, . . . , k} [Bea76]. In [Bea76], Bean shows that there exists a planar,
connected recursive graph which is 3-colorable but not recursively k-colorable for any
natural number k. By an easy modification [Sch80], one can construct a planar recursive
graph which is 2-colorable but not recursively k-colorable for any natural number k.
However, the graph is not connected in that case.

∗ Department of Computer Science and Institute of Advanced Computer Studies, University of Mary-
land, College Park MD 20742

† Department of Mathematics, University of Maryland, College Park MD 20742

1

The neighbor function nbd(G) of a recursive graph G is the function which will, given
a vertex v of G, return the set of neighbors of v. Note that if G is a recursive graph then
nbd(G) ≤T K, where K is a complete r.e. set. A recursive graph G is highly recursive
if nbd(G) is recursive [Bea76]. It is known that [Sch80, CP83] if G is highly recursive
then χr(G) ≤ 2χ(G)− 1 and the bound is tight [Sch80]. Equivalently, we may restate the
above results as

nbd(G) ≤T ∅ ⇒ χr(G) ≤ 2χ(G)− 1

nbd(G) ≤T K ⇒ (no information).

A natural question is to see, for various sets A with ∅ <T A <T K, whether or not
nbd(G) ≤T A implies any finite bound on χr(G). In this paper we prove that Bean’s result
can be generalized to the class of recursive graphs whose neighbor function is recursive in
A, where A is any non-recursive r.e. set. Such graphs are called A-recursive. Formally,
we prove that if A is a non-recursive r.e. set, then there exists an A-recursive graph G
such that G is 2-colorable but not recursively k-colorable for any natural number k.

2 Notations and Basic Definitions

Let {e} denote the eth Turing Machine via a standard enumeration and 〈−,−〉 denote a
recursive bijection from N× N to N. {e}s denotes the machine that runs {e} for s steps.
We write {e}s(z)↓ if on input z the machine {e} converges to a value within s steps and
{e}(z)↓ if (∃s)({e}s(z)↓). For any X ⊆ N, {e}(X) = {y ∈ X : {e}(y)↓}. The symbol ∃∞
is intended to be read as “there exist infinitely many”.

We begin with a brief review on the notions of recursive graphs.

Definition 1 A graph G = (V, E) is said to be recursive if the following hold:

1. V ⊆ N and E ⊆ N× N are recursive.

2. Every node of G has a finite number of neighbors.

In addition, let nbd(G) denote the function which, given a node v of G, produces all the
neighbors of v. If nbd(G) is recursive, then the corresponding graph is said to be highly
recursive.

We refine the above two notions by introducing A-recursive graphs.

Definition 2 Let A be any set. A graph G = (V, E) is A-recursive if G is recursive and
nbd(G) ≤T A.

2

Note that every recursive graph is K-recursive and every highly recursive graph is
∅-recursive. Our interest will be graphs that are A-recursive with ∅ <T A <T K. For
such graphs our main interest is to see whether their recursive chromatic number can be
uniformly bounded. The main theorem answers this question for nonrecursive r.e. sets A.
Its proof combines a variant of Bean’s original construction with a permitting argument.
The former enables us to show that the graph is 2-colorable but not recursively k-colorable
for any k. The latter allows us to show that the neighbor function is recursive in the r.e.
set A. For a discussion of the permitting method, see [Soa87].

3 Main Theorem

Theorem 3
Let A be a non-recursive r.e. set. There exists an A-recursive graph G such that G is

2-colorable but not recursively k-colorable for any natural number k.

Proof: The major part of this proof is the construction of a recursive graph G which
satisfies the required conditions. Recall that 〈−,−〉 denotes a recursive bijection from N×
N to N. We first recursively partition the set of natural numbers as N =

⋃
e,i∈N X〈e,i〉 ∪X−1,

where all X’s are infinite. For each 〈e, i〉 ≥ 0, let R〈e,i〉 be the requirement:

R〈e,i〉: {e} total ⇒ {e} is not an i-coloring of G.

Each requirement R〈e,i〉 is associated with a family of finite graphs {L〈e,i〉(j)}j≥0, where
each L〈e,i〉(j) is a graph with 2i isolated vertices. The vertices of the graphs L〈e,i〉(j), j ≥ 0,
are obtained from a recursive partition of X〈e,i〉 into an infinite number of sets of size 2i.
All other vertices that are introduced during the construction come from X−1 in increasing
order.

Our construction will proceed in stages. Let A = ∪∞s=0As be a fixed enumeration
of A. We denote by Ls

〈e,i〉(j) the jth finite graph associated with R〈e,i〉 at stage s, with

L0
〈e,i〉(j) = L〈e,i〉(j) . We shall see that during the construction Ls

〈e,i〉(j) 6= Ls+1
〈e,i〉(j) at

finitely many stages s. Hence the subgraph T〈e,i〉(j) = ∪∞s=0L
s
〈e,i〉(j) will be finite. The

resulting graph after stage s is denoted by Gs. Then our final graph will be G = ∪s≥0Gs

or equivalently, G = ∪{T〈e,i〉(j) : e, i, j ≥ 0}. Note that G is not connected in our case.
G can be viewed as the union of an infinite array of finite graphs T〈e,i〉(j), e, i, j ≥ 0.

For each e, i, j ≥ 0, T〈e,i〉(j) can be thought of as a finite graph with (possibly) several
layers of vertices. The sequence of subgraphs {T〈e,i〉(j)}j≥0 is intended to witness the fact
that {e} is not an i-coloring of G, while there is still some way to 2-color G.

3.1 Construction of G

Recall that A is a r.e. set. We assume that {a0, a1, . . .} is a recursive enumeration of A.

3

Let s, e, i, j ∈ N. We will now define two different notions: what it means for the
subgraph Ls

〈e,i〉(j) to need attention and what it means for Ls
〈e,i〉(j) to deserve attention.

Just because the subgraph Ls
〈e,i〉(j) needs attention does not mean that it will get it. It

has to also deserve attention. Ls
〈e,i〉(j) will deserve attention if A permits it to.

Definition 4 We say the finite subgraph Ls
〈e,i〉(j) needs attention at stage s + 1 when

{e}s(z)↓ for all vertices z in the subgraph. In addition, if

as ≤ max {z : z ∈ Ls
〈e,i〉(j)},

then we say Ls
〈e,i〉(j) deserves attention with A’s permission at stage s + 1 .

So, for any s, e, i, j, Ls
〈e,i〉(j) will belong to one of the following categories:

(a) Ls
〈e,i〉(j) does not need attention at stage s + 1.

(b) Ls
〈e,i〉(j) needs attention at stage s + 1 but Ls

〈e,i〉(j) does not deserve any attention
at stage s + 1. It is clear that Ls

〈e,i〉(j) may deserve attention at some later stages.
This depends on our enumeration of the r.e. set A.

(c) Ls
〈e,i〉(j) deserves attention during stage s + 1.

Construction

Stage 0: Set

1) L0
〈e,i〉(j) = L〈e,i〉(j) ∀e, i, j ≥ 0;

2) G0 =
⋃{L0

〈e,i〉(j) : e, i, j ≥ 0}.

All requirements are declared unsatisfied.

Stage s + 1: Compute As+1. Examine all the requirements R〈e,i〉 with 〈e, i〉 ≤ s
which are not yet satisfied and attempt to satisfy each of these R〈e,i〉 by working with the
following s + 1 finite graphs:

Ls
〈e,i〉(0), Ls

〈e,i〉(1), . . . , Ls
〈e,i〉(s).

For each such 〈e, i〉 we do the following:

1. For each j such that Ls
〈e,i〉(j) does not deserve attention, define Ls+1

〈e,i〉(j) = Ls
〈e,i〉(j).

2. For each j such that Ls
〈e,i〉(j) deserves attention, apply the procedure stated in part

2 of Lemma 10 to Ls
〈e,i〉(j) once. Denote this expansion by Ls+1

〈e,i〉(j).

4

3. Declare R〈e,i〉 satisfied when it in fact becomes satisfied. Note that it is possible to
effectively determine when R〈e,i〉 becomes satisfied.

Set Gs+1 =
⋃{Ls+1

〈e,i〉(j) : e, i, j ≥ 0}. Go to stage s + 2.

End of Construction

The remaining part of the proof will be divided into three lemmas. First we show that
G is 2-colorable. Second, we give an algorithm for nbd(G) which is recursive in A. Finally
we demonstrate that all requirements are satisfied.

Lemma 5 G is planar and 2-colorable.

Proof: It suffices to note that G = ∪{T〈e,i〉(j) : e, i, j ≥ 0}. Each T〈e,i〉(j) is obtained
from L〈e,i〉(j) through a finite number of expansions and via part 2 of Lemma 10. As all
Lk’s (k ≤ r) are planar and 2-colorable, so are all of the T〈e,i〉(j)’s and therefore G is
planar and 2-colorable.

Lemma 6 nbd(G) ≤T A

Proof: We state the following algorithm for nbd(G).

Algorithm for nbd(G)

(This algorithm returns all the neighbors of vertex x in graph G via queries to A.)

1. Input x.

2. By running the construction, find e, i, j, s such that x ∈ Ls
〈e,i〉(j)− Ls−1

〈e,i〉(j).

(L−1
〈e,i〉(j) is the empty graph, by convention. This step is to find e, i, j so that

x ∈ T〈e,i〉(j).)

3. We focus on the subgraph Ls
〈e,i〉(j) and search for a stage s′ such that if y is a

neighbor of x in G then y is a neighbor of x in Gs′ .

Set t = s.

Loop:

a) Compute m(t) = max {z: z is a vertex of Lt
〈e,i〉(j) }.

b) (via query to A) Find n(t) = the least stage t′ such that

At′ ∩ {0, 1, ...,m(t)} = A ∩ {0, 1, ...,m(t)}.

c) Run the construction up to stage n(t).

5

d) If Lt
〈e,i〉(j) = L

n(t)
〈e,i〉(j), then set s′ = n(t) and exit the loop.

e) If Lt
〈e,i〉(j) 6= L

n(t)
〈e,i〉(j), then set t = n(t) and go to step a.

4. Return all neighbors of x in the graph Gs′ .

End of Algorithm

Let x be a vertex of G. Step 2 determine the values of e, i, j, s such that x ∈
Ls
〈e,i〉(j) − Ls−1

〈e,i〉(j). Since every time the requirement R〈e,i〉 deserves attention, we ap-
ply the procedure stated in part 2 of Lemma 10 once and the sequence of finite graphs
given by Lemma 10 has finite length, the loop in the algorithm will terminate. It remains
to show that ∀s > s′, Ls

〈e,i〉(j) = Ls′

〈e,i〉(j). Note that we can exit the loop only when

Lt
〈e,i〉(j) = L

n(t)
〈e,i〉(j) and s′ = n(t). By the definition of n(t), all the elements in A which

are less than or equal to m(t) were enumerated. Hence ∀s > n(t), Ls
〈e,i〉(j) does not

deserve attention. Hence, ∀s > s′, Ls
〈e,i〉(j) = Ls′

〈e,i〉(j).

Lemma 7 ∀〈e, i〉 ≥ 0 , R〈e,i〉 is satisfied.

Proof: We shall show that if R〈e,i〉 is not satisfied for some 〈e, i〉, then for any a we
can effectively find a stage s0 such that

As0 ∩ {0, 1, ..., a} = A ∩ {0, 1, ..., a}.

It follows that A is recursive. Note that e and i are fixed.
Let 〈e, i〉 be such that R〈e,i〉 is not satisfied. Each subgraph T〈e,i〉(j) (j ≥ 0) must need

attention but does not deserve attention and never will from a certain stage onwards. Let

αj = number of times T〈e,i〉(j) deserved attention during the course of the construction.

β〈e,i〉 = maximum {k : (
∞
∃j)[k = αj]}.

β〈e,i〉 exists because the sequence of finite graphs given by Lemma 10 has finite length.
We shall now state a family of algorithms parametrized by h such that when h = β〈e,i〉,
this is an algorithm for A.

Algorithm ALG(h)

1. Input a.

6

2. Run the construction of graph G. Look for a stage s0 which is large enough so that
if

m = max { z : z is a vertex of Ls0

〈e,i〉(j) , Ls0

〈e,i〉(j) is requiring attention at stage
s0 + 1, T〈e,i〉(j) has deserved attention h times during stages s ≤ s0 and j ≤ s0 },
then m ≥ a.

3. Enumerate A up to the stage s0 + 1. If a is enumerated, then return a ∈ A.
Otherwise return a 6∈ A.

End of Algorithm

Since R〈e,i〉 is not satisfied, stage s0 + 1 as described in part 2 of the algorithm exists.
Let h = β〈e,i〉. We remark that at stage s0 + 1, the only reason that Bean’s lemma does
not succeed is because A does not permit it. Formally, it means

As0+1 ∩ {0, 1, ...,m} = A ∩ {0, 1, ...,m}.

As m ≥ a, therefore

As0+1 ∩ {0, 1, ..., a} = A ∩ {0, 1, ..., a}.

Thus algorithm ALG(β〈e,i〉) is a recursive algorithm for A.

This completes the proof of the main theorem.

Of particular interest are the low sets since they are close to recursive.

Corollary 8 For any nonrecursive low r.e. set A there exists an A-recursive graph G
with χ(G) = 2 and χr(G) = ∞.

4 Conclusions and Further Remarks

We have demonstrated that for any nonrecursive r.e. set A, we can construct an A-
recursive graph G such that χ(G) = 2 but χr(G) is not even finite. An obvious open
question is to generalize the construction to any set A with ∅ <T A <T ∅′. Note that
the construction will be difficult without permitting and we may begin to look at special
cases such as when A is a 2-r.e. set ([Ers68a, Ers68b, Ers70, EHK81]).

Another interesting direction is to investigate what kinds of conditions we may impose
on recursive graphs so that we can obtain better uniform bounds. We generalize the notion
of decidable graphs ([Bea76]) as follows:

7

Definition 9 Let G = (V, E) be a recursive graph. Define the first order query language
L as the collection of well-formed formulae using the usual logical symbols (including =)
and

1. constant symbols 0, 1, 2, . . . , n, . . . , intended to represent the vertices.

2. variable symbols x0, . . . , xn,

3. A single (binary) predicate symbol R, interpreted as the adjacency relation.

Let f : L → {0, 1} be the function defined as

f(φ) =

{
1 if φ is true,
0 if φ is false.

G is said to be A-decidable if f ≤T A. When A is recursive, G is said to be decidable.

It is shown [Bea76] that there are highly recursive graphs which are not decidable, and
for every k ≥ 3, there exists a k-colorable, decidable graph with no recursive k-colorings.
By combining the techniques in [Bea76] and the construction of a highly recursive graph
G with χr(G) = 2χ(G) − 1 (see [Sch80, BG89]), one can construct a decidable graph G
which satisfies the same equality. It will be of interest to determine the bounds for various
sets A and query languages.

Acknowledgement We would like to thank Kalvis Apsitis, Mark Changizi, April Lee
and the anonymous referee for proofreading and helpful suggestions.

5 Appendix: Bean’s construction

We now state the following technical lemma, which is a variant of Bean’s original con-
struction. A similar version of this lemma was stated in [BG89] and we include the proof
here for completeness.

Lemma 10
Let L0 = (V, E) be the graph with 2i isolated vertices, {e} be a Turing machine. Then

there exists a finite sequence of finite graphs L0, . . . , Lr such that the following conditions
hold. (For notation Lj = (Vj, Ej).)

1. For 1 ≤ j ≤ r, Lj is an extension of Lj−1.

2. For every j, 0 ≤ j < r, Lj+1 can be obtained recursively from Lj, the values of
{e}(x) for every x ∈ Vj, and an index of an arbitrary infinite recursive set X. The
new vertices introduced to Lj+1 are all from X and we may assume that if x is a
new vertex, then x > y for any vertices y ∈ Vj.

8

3. There exists a nonempty set W ⊆ Vr of vertices such that W witnesses the fact that
{e} is not an i-coloring of Lr in one of the following way:

(a) {e} is not total on W (so {e} is not a coloring of Lr and W is said to be a
witness of type a), or

(b) there exist v ∈ Vr, w ∈ W such that {v, w} ∈ Er and {e}(v) = {e}(w) (so {e}
is not a coloring of Lr and W is said to be a witness of type b), or

(c) for all x ∈ W , {e}(x) ↓, and |{e}(W)| = i + 1 (so {e} is not an i-coloring of
Lr and W is said to be a witness of type c).

4. ∀i ≥ 0, χ(Li) ≤ 2. Moreover, there is a 2-coloring of Lr in which W is 1-colored.

5. ∀i ≥ 0, Li is planar.

Proof: The Turing machine {e} is fixed throughout this proof.
We prove this lemma by induction on i. Assume i = 0. Let L1 = Lr = ({x}, ∅) and

W = {x}. If {e}(x) ↑, then W is a witness of type a. If {e}(x)↓, then W is a witness of
type c. In either case conditions 1–5 are easily seen to be satisfied.

Assume this lemma is true for i. We show it is true for i + 1. Let X be an arbitrary
infinite recursive set and X = X1 ∪ X2 be a recursive partition of X into two infinite
recursive sets such that indices for X1 and X2 can be obtained from indices for X. By
the induction hypothesis, we obtain the following:

1) a sequence of graphs L11, L21, · · · , Lr11, and a set W1 such that the sequence together
with witness set W1 satisfies 1–5 (note that all the vertices are in X1), and

2) a sequence of graphs L12, L22, · · · , Lr22, and a set W2 such that the sequence together
with witness set W2 satisfies 1–5 (note that all the vertices are in X2).

Assume r1 ≤ r2. We define graphs L1, L2, . . . , Lr′ that satisfy the lemma (r′ will be either
r1, r2 or r2 + 1). For 1 ≤ j ≤ r1 let

Lj = Lj1 ∪ Lj2.

If for all x, x a vertex of Lr11, {e}(x)↓, then for r1 + 1 ≤ j ≤ r2 let

Lj = Lr11 ∪ Lj2.

(If this does not occur, then Lr1 is the final graph and W1 is the witness set.) In this
case we obtain witness sets as follows. If W1 (W2) is a witness of type a or b, then Lr2 is
our final graph and W = W1 (W2). The 2-coloring of the final graph with the witnesses
1-colored can be obtained by combining such colorings from Lr11 and Lr22. It is easy to
see that the sequence of graphs and the witness set W all satisfy conditions 1–5.
If both W1 and W2 are witnesses of type c, then there are two cases:

9

(Case 1) If {e}(W1) 6= {e}(W2), then either there is some element w ∈ W1 such that
{e}(w) /∈ {e}(W2), or there is some element w ∈ W2 such that {e}(w) /∈ {e}(W1). We
examine the latter case, the former is similar. Our final graph is Lr2 and we let W =
W1∪{w}. By the induction hypothesis and the fact that W1 is of type c, |{e}(W1)| = i+1.
Since w /∈ W1 and {e}(w) /∈ {e}(W1), |{e}(W1 ∪ {w})| = i + 2. Hence W is a witness of
type c. The 2-coloring of the final graph with the witnesses 1-colored can be obtained by
combining such colorings from Lr11 and Lr22.

(Case 2) If {e}(W1) = {e}(W2), then let w be the least element of X that is bigger
than both any element used so far and the number of steps spent on this construction so
far (this is done to make the graph recursive). Let

Lr2+1 = Lr2 ∪ {{u, w} : u ∈ W1}
W = W2 ∪ {w}.

If {e}(w) ↑, then W is a witness of type a. If {e}(w) ↓∈ {e}(W1), then since w is
connected to all vertices in W1, W is a witness of type b. If {e}(w) ↓/∈ {e}(W1) (and
hence {e}(w) /∈ {e}(W2)) then {e}(W) = {e}(W2 ∪ {w}) = {e}(W2) ∪ {e}(w), which
has cardinality i + 2; therefore W is a witness of type c. Hence W is a witness set. A
2-coloring of Lr2+1 with W 1-colored can easily be obtained from the 2-coloring of Lr11

(that 1-colors W1) and the 2-coloring of Lr22 (that 1-colors W2).
It is easy to see that the sequence L1, L2, · · · , Lr′ and the set W satisfy 1–5.

References

[Bea76] D. Bean. Effective coloration. The Journal of Symbolic Logic, 41:469–480, 1976.

[BG89] R. Beigel and W.I. Gasarch. On the complexity of finding the chromatic numbers
of a recursive graph I: The bounded case. Annals of Pure and Applied logic,
45:1–38, 1989.

[CP83] H.G. Carstens and P. Pappinghaus. Recursive colorations of countable graphs.
Annals of Pure and Applied logic, 25:19–45, 1983.

[EHK81] Richard L. Epstein, Richard Haas, and Richard L. Kramer. Hierarchies of sets
and degrees below 0′. In Logic Year 1979–80, volume 859 of Lecture Notes in
Mathematics, pages 32–48, Berlin, 1981. Springer-Verlag.

[Ers68a] Yu. L. Ershov. A hierarchy of sets, I. Algebra i Logika, 7(1):47–74, January–
February 1968. English Translation, Consultants Bureau, NY, pp. 25–43.

[Ers68b] Yu. L. Ershov. A hierarchy of sets, II. Algebra i Logika, 7(4):15–47, July–August
1968. English Translation, Consultants Bureau, NY, pp. 212–232.

[Ers70] Yu. L. Ershov. A hierarchy of sets, III. Algebra i Logika, 9(1):34–51, January–
February 1970. English Translation, Consultants Bureau, NY, pp. 20–31.

10

[Sch80] J. Schmerl. Recursive coloring of graphs. Canadian Journal of Mathematics,
32:821–830, 1980.

[Soa87] R.I. Soare. Recursively Enumerable Sets and Degrees. Omega Series. Springer-
Verlag, 1987.

11

