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Abstract

Much useful information in news reports is often that which is surprising or unexpected. In other
words, we harbour many expectations about the world, and when any of these expectation are violated
(i.e. made inconsistent) by news, we have a strong indicator of some information that is interesting for
us. In this paper we present a framework for identifying interesting information in news reports by find-
ing interesting inconsistencies. An implemented system based on this framework (1) accepts structured
news reports as inputs, (2) translates each report to a logical literal, (3) identifies the story of which the
report is a part, (4) looks for inconsistencies between the report, the background knowledge, and a set of
expectations, (5) classifies and evaluates those inconsistencies, and (6) outputs news reports of interest
to the user together with associated explanations of why they are interesting.

1 Introduction

As in the adage, “Man Bites Dog” is interesting news; “Dog Bites Man” is not. However, the majority of
information published is of the “Dog Bites Man” variety, particularly in the case of business, technical,
and scientific news. This information continues existing trends or confirms expected information. Unex-
pected information is often more useful to the reader. Identifying such information is beyond the current
capabilities of traditional information management technologies.

We look for interesting news based on the expectations we have about the world. If a news report violates
an expectation, this indicates the news is interesting. Furthermore, if we represent each expectation as a
classical logic formula, and the information in a news report as a classical logic formula, together with
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various kinds of background knowledge as classical logic formulae, then the violation of an expectation by
a news report can be characterized as a type of logical inconsistency.

It is straightforward to find expectations for a focussed domain. For example, data mining is a way of
generating general rules from databases, and some of these can be exploited as expectations. As another
example, in the business domain, investments analysts regularly publish expectations about the activities
and performance of companies listed on stock markets, and these expectations can be rephrased as logical
formulae. Expectations will come from a variety of sources including knowledge engineering, data mining,
and expert heuristics.

In order to manipulate news reports in this framework, we assume each report is provided in the form
of structured text. This is an idea implicit in a number of approaches to handling information such as
news reports. An item of structured text is a set of semantic labels together with a word, phrase, sentence,
null value, or a nested item of structured text, associated with each semantic label. As a simple example, a
report on a corporate acquisition could use semantic labels such as “buyer”, “seller”, “acquisition”, “value”,
and “date”. Some news agencies store news reports as structured text. In addition technologies such as
information extraction [CL96] will massively increase the amount of structured text available.

Unexpected information is not the only cause of inconsistency in news reports so it is necessary to dif-
ferentiate between inconsistencies that are indicators of interesting news and inconsistencies that arise
through errors or other “uninteresting” conflicts. Inconsistencies can be classified as one of the following
categories: (1) Typographical errors; (2) Superficial errors arising from different words or phrases used for
the same thing; (3) Content errors in the report; (4) Errors in the domain knowedge; and (5) Violations of
expectations.

Whilst violations of expectations are interesting to the client, most inconsistencies arise through errors in
the report or at the information extraction stage, or are superficial inconsistencies. Even those inconsisten-
cies that are of no interest to the user may be of interest to the system. They may provide the trigger to
correct a report, update the knowledge base or reassess expectations. In addition, uninteresting inconsisten-
cies may mask more interesting ones. We believe that no inconsistency should be automatically ignored; it
must be classified and then acted upon (even if that action is to make the decision to undertake no further
action)1. However, in this report we assume that the only inconsistencies arising are violations of expecta-
tions. This is a reasonable assumption if we eliminate the other kinds of inconsistency by harnessing spell
checkers, integrity checkers, and various other modules to preprocess the structured news reports, and to
maintain the background knowledge.

Clearly, news reports do not normally exist in isolation. They are usually part of “narratives” which relate
them to other articles that deal with the same story. For example, in the mergers and acquisitions domain,
we may find a news report announcing a takeover bid followed by a news report of the bid being accepted
by the board, followed by a report on the shareholders voting whether to accept the bid, and so on. All news
reports belong to at least one narrative. Equivalently, each narrative consists of a set of one or more reports.
To address this need, we use event models based on a variant of event calculus to represent and reason with
such information.

In this paper we present a logic-based framework called the “Man Bites Dog” (MBD) framework for
characterizing violations of expectations by unexpected information in structured news reports. An imple-
mented system based on the framework is called an MBD system.

The input to anMBD system is a report in structured text format. As such, all issues concerning information
extraction are handled upstream by an external information extraction system ([CL96]) or by the manual
creation of structured texts. The process of anMBD system is then: (1) Translate each incoming news report
into logic; (2) Identify the events featured in each report; (3) Identify inconsistencies between each report,
the relevant background knowledge, and a repository of expectations; (4) Evaluate each inconsistency for

1We are therefore adopting the approach of ”Inconsistency Implies Action” as proposed in [GH91].
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significance; and (5) Output each report highlighting violations of expectations. The activities will be the
same for a wide variety of domains but the background knowledgebase needs to be tailored for each domain.

The rest of the paper is laid out as follows. In Section 2, we review some basic definitions for classical logic.
In Section 3, we formalize the notion of structured news reports, define how they can be represented as log-
ical literals, and then present two kinds of background knowledge represented as classical logic formulae:
(1) Access rules for accessing information encoded in news reports; and (2) Domain facts. In Section 4,
we present a framework for representing and reasoning with events referred to in news reports. Then in
Section 5, we formalize the notion of expectations, and the notion of violating expectations presented as a
form of inconsistency. In Section 6, we present a framework for evaluating these inconsistencies. This is a
confirmation theoretic approach to assessing each expectation. Violations of better confirmed expectations
are interpreted as more significant, and therefore more interesting. Of course this is only one of a num-
ber of possible interpretations, but it is a potentially viable and useful interpretation. Finally, in Section 7,
we address the computational complexity problem of consistency checking by presenting an approach to
compilation of consistency checking.

2 Basic definitions

We assume the usual language of classical first-order logic using the usual symbols ∀ and ∃ for quantifica-
tion and the usual symbols ∧,∨,→ and ¬ for logical connectives and sets of predicate symbols, function
symbols, constant symbols and variable symbols.

Definition 2.1 Let F be a set of function symbols, C be a set of constant symbols and V be a set of variable
symbols. If c ∈ C then c is a term. If v ∈ V then v is a term. If f ∈ F and t1, ..., tn are terms then
f(t1, ..., tn) is a term. For all terms t, if t incorporates a variable, then t is an unground term, otherwise
t is ground term. If f(t1, ...tn) is a term, then t1 is a subterm,...and tn is a subterm. If t is a term, then
t ∈ Subterms(t), and for any term t′ ∈ Subterms(t), the subterms of t′ are in Subterms(t)

Definition 2.2 Let P be a set of predicate symbols, and T be a set of terms. If t1, ..., tn ∈ T and p ∈ P
then p(t1, ..., tn) is a predicate. If p(t1, ..., tn) is a predicate and t1 is a ground term and ... and tn is a
ground term, then p(t1, ..., tn) is a ground predicate, otherwise it is an unground predicate. An atom is
a ground predicate. A literal is either a predicate (i.e. a positive literal) or the negation of a predicate (i.e.
a negative literal).

Definition 2.3 If α is a literal, then Terms(α) is the set of terms in α as follows.

Terms(p(t1, .., tn)) = Subterms(t1) ∪ .. ∪ Subterms(tn)
Terms(¬p(t1, .., tn)) = Subterms(t1) ∪ .. ∪ Subterms(tn)

Terms({α1, ..,αn}) = Terms(α1) ∪ .. ∪ Terms(αn)

Definition 2.4 A grounding is an equality predicate where the first argument is a variable and the second
argument is a ground term. A grounding set is a set of groundings which can be substituted into an
unground term to give a grounded term. Let α be a formula and let Φ be a grounding set. Ground(α, Φ)
gives the results of substituting each variable X in α with term t where the grounding X = t is in Φ.

Example 2.1 Let a(b(X), c(Y), d(Z)) be a formula where X, Y and Z are variables. Let the grounding set
Φ be {Y = john, Z = betty}.

Ground(a(b(X), c(Y), d(Z)),Φ) = a(b(X), c(john), d(betty))

We assume ) denotes the classical consequence relation.

3



〈weatherreport〉
〈date〉 23 April 1999 〈/date〉
〈location〉

〈city〉 London 〈/city〉
〈country〉 UK 〈/country〉

〈/location〉
〈today〉 cold 〈/today〉
〈tomorrow〉 sunny 〈/tomorrow〉
〈log〉 23 April 1999 〈/log〉

〈/weatherreport〉

Figure 1: An example of a structured news report.

3 News reports and background knowledge

First we consider structured news reports and then discuss how they can be represented as logical liter-
als. In order to support reasoning with information in news reports, we require two kinds of background
knowledge: (1) Access rules for accessing information encoded in structured news reports; and (2) Domain
facts.

3.1 Structured news reports

We use XML to represent structured news reports. An example is given in Figure 1. Each structured news
report is an XML document, but not vice versa, as defined below.

Definition 3.1 If φ is a tagname (i.e. an element name), and ψ is textentry (i.e. a phrase represented by a
string), then 〈φ〉ψ〈/φ〉 is a structured news report. If φ is an tagname and σ1, ...,σn are structured news
reports, then 〈φ〉σ1...σn〈/φ〉 is a structured news report.

Clearly each structured news report is isomorphic to a tree with each tagname being represented by a non-
leaf node and each textentry being represented by a leaf node. Furthermore, each subtree in a structured
news report is isomorphic to a ground term where each tagname is represented by a function symbol and
each textentry is represented by a constant symbol. Hence, we can represent each structured news report
by a ground logical atom in classical logic as follows.

Definition 3.2 Let 〈φ〉σ1, ..,σn〈/φ〉 be a structured news report. A report atom is ground atom of the
form φ(t1, .., tn) where t1 is a ground term that represents σ1, ...., and tn is a ground term that represents
σn.

Example 3.1 Consider the following structured news report.

〈auctionreport〉
〈buyer〉〈name〉〈firstname〉John〈/firstname〉〈surname〉Smith〈/surname〉〈/name〉〈/buyer〉,
〈property〉Lot37〈/property〉

〈/auctionreport〉

This can be represented by the following report atom:

auctionreport(buyer(name(firstname(John), surname(Smith))), property(Lot37))
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Each structured news report is isomorphic to a report atom and the semantic label of the root of a structured
news report is the predicate symbol of the corresponding report atom. In the rest of this paper, the root of
the structured news report in each example, and the predicate symbol of the correpsonding report atom, is
the symbol report.

3.2 News atoms and access rules

News atoms are atoms that capture information encoded in report atoms. These predicates can then be
directly used with other information in the knowledgebase.

Definition 3.3 Let φ(t1, .., tn) be a report atom. A news atom for this report is a literal of the form
β(s1, ..., sm) where β is a predicate symbol and s1, ..., sm are in Subterms(t1) ∪ .. ∪ Subterms(tn).

The news atoms that we obtain for a given report atom are defined by the access rules as follows.

Definition 3.4 An access rule is a first order formula of the form where: (1) X1, ..., Xk are the variables
in α; (2) the variables in β1, ...,βn are a subset of, or equal to, X1, .., Xk; (3) all of α, β1, ...,βn are
unquantified; and (4) the predicate symbol for α is not used as a predicate symbol for any of β1, ..,βn.

∀X1, ..., Xk;α → β1 ∧ ... ∧ βn

If there is a grounding set Φ s.t. Ground(α, Φ) is a report atom then Ground(β1,Φ),...,Ground(βn,Φ) are
news atoms.

Definition 3.5 Let ∆ be a set of access rules and let R be a report. For this, Access(∆, R) is the smallest
set of news atoms obtained by exhaustively applying the news atom for report R to the access rules in ∆
using generalized modus ponens and conjunction elimination as defined below.

Access(∆, R) = {Ground(β1,Φ), ..,Ground(βn,Φ) | ∀X1, .., Xk;α → β1 ∧ .. ∧ βn ∈ ∆
and Ground(α, Φ) is R}

Example 3.2 Let R be the following report.

report(forecast(date(25July01), city(Malaga), today(blizzard)))

Suppose the set of access rules, ∆, contains the following.

∀X, Y, Z; report(forecast(date(X), city(Y), today(Z))) → date(X) ∧ location(Y) ∧ today(Z)

So for R we get

date(25July2001), location(Malaga), today(blizzard) ∈ Access(∆, R)

Suppose ∆ also contains the following access rule.

∀X, Y; report(forecast(date(X), city(Y), today(blizzard))) → blizzardWarning(X, Y)

So for R we get
blizzardWarning(25July2001, Malaga) ∈ Access(∆, R)

We assume that the textentries in structured news reports are heterogeneous in format. For example, the
format of date values is unconstrained (12/12/1974; 31st Dec 96; 12 Nov 2001 etc.) as is the format of
numbers and currency values (3 million; 3, 000, 000 GBP; $4, !500K etc.). Elsewhere, we have discussed
how this heterogeneity can be handled in logic by various kinds of equivalence axioms [Hun00a, Hun02a,
Hun02c]. To simplify our exposition in this paper, we will assume that a preprocessor will convert these
textentries into a standard format.
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3.3 Domain facts

The domain facts come from a set of domain specific databases. These hold data concerning key entities. In
the mergers and acquisitions domain these would include companies, subsidiaries, key personnel, turnover,
business activities and so on.

Definition 3.6 The domain facts are a set of ground literals (i.e. atoms and negated atoms).

Example 3.3 For the mergers and acquisitions domain, domain facts may include the following.

in(London, UK)
memberOf(United Kingdom, EU)
sector(Pirelli, tyreAndCable)
¬sector(Pirelli, finance)
¬sector(Pirelli, food)

Domain facts may include negative literals. These may be listed explicitly as negative literals or they may
have been obtained by the closed world assumption [Rei78]. There may be restrictions on which types
of facts may be subjected to the closed world assumption and which are subjected to the open world
assumption. We do not consider the implementation details further here.

In many domains such as mergers and acquisitions news, there is much information available in existing
relational databases that can be used as domain facts. In order to minimize the problems of knowledge
engineering for any given domain, it is intended that the use of such relational data should be harnessed.

4 Event modeling

Reports do not normally exist in isolation. There is an underlying narrative which concerns a number of
entities related in some way over a period of time. In many domains, stories will follow a stereotypical
sequence. A criminal act for example may begin with the offence, continue through investigation, arrest,
trial, through to conviction and possibly appeal.

In some domains, the transition from state to state may not be clear-cut. There may be iterations of se-
quences of states, states may be omitted or reordered, it may not even be clear where one state ends and
another begins. Nonetheless, an understanding of states is imperative if the unfolding of a narrative is to be
understood. The progression of states forms the narrative which relates reports and entities to events.

In order to represent and reason with narratives, we need to model states and changes of state. In the domain
of mergers and acquisitions for example, phrases include agree, complete, and approve. These words
or their synonyms are used to indicate when a state changes. Additional information about narratives is
usually found in close proximity to these phrases in news reports, such as dates, entity names and the tense
of the phrases (“shareholders will approve” is a very different state to “shareholders have approved”).

Event modeling consists of three parts: state models, characterizing events, and the event calculus. The
result of event modeling is an event model for a domain. In use, an event model will be updated with
information in news reports. An event model can therefore be regarded as an up-to-date repository of
information about a set of stories. For a given domain, we may have a number of different event models
capturing different kinds of stories in the domain, though for simplicity, in the rest of the paper we just
consider individual event models.
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4.1 State models

A state model is an abstract definition of the possible events that can take place in a stereotypical narrative,
along with the ordering of these events. We assume that events are initiated by entities. For the mergers and
acquisitions domain, these entities include legal entities such as companies, agents for legal entities such as
company secretaries and company boards, semi-autonomous parts of companies such as subsidiaries and
joint ventures, stakeholders in companies such as unions, shareholders and customers, government agencies
such as the monopolies and mergers commission and the inland revenue, and government departments such
as the Treasury.

Definition 4.1 A state model is a directed graph, whose nodes correspond to states and whose arcs corre-
spond to events. A state of an entity is an attribute of an entity with limited duration. An event takes place
at a point in time at which one or more entities do something to bring about a change in their state.

The state model defines the relationships between events and states for a given domain. We give an example
in Figure 2. Each event begins and/or ends a period of time for which a state holds. The state model can be
represented by a set of formulae which we assume exhaustively define all possible orderings of events and,
by extension, states.

Definition 4.2 An action atom is a type of news atom that describes the type of event that a news report
is about. We use the predicate symbol act for the action atoms. A state atom is a type of news atom that
contains information concerning entities, dates and values in order to identify and describe a distinct event.
An event is represented by an action atom and one or more state atoms.

Example 4.1 For the mergers and acquisitions domain, action atoms include act(bid), act(reject) and
act(approve) and state atoms include buyer(Shell) and target(Texaco). An example of an event in
the mergers and acquisitions domain is:

act(bidMade), buyer(Granada), target(Carlton),
value(9BillionGBP), date(25Jan1998)

Once the state model has been constructed, it needs to be represented in a form that the system can use.
To do this we translate the state model into a set of binary meta-level predicates that allow us to define the
behaviour of the action and state atoms.

Definition 4.3 A state model is represented by the comesAfter, initial and terminal meta predicates.
The ordering given by a state model can be translated into logic by defining a corresponding binary predi-
cate comesAfter. Events which may come after the empty “start” state, in which there is no relationship
between two entities, are initial events. These events are not preceeded by any other event. Events which
initiate the empty “end” state and so are not followed by any other event are terminal events. Both the
initial and terminal predicates are monadic.

Example 4.2 For the state model in Figure 2, the state where two entities, the buyer and the target, are
united by the fact that the target’s board has accepted the buyer’s bid follows the state where the target has
made a bid for a buyer:

∀B ∈ Buyer, T ∈ Target; comesAfter(boardAcceptance(B, T), bidMade(B, T)).

The bidInvited event may be the first event in a sequence.

∀T ∈ Target; initial(bidInvited(T))
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START

Takeover bids invited

New bid made No new bids made

Board accepts offer Board rejects offer

Shareholders accept offer Shareholders reject offer

Referral to antitrust authorities No referral

Takeover rejected Takeover renegotiated

Takeover finalized

END
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!

!

!

!

!

!
"

"

#

!

!

!

"

!

!

#

"

!

Figure 2: A simplified state model for the acquisitions domain.
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The takeoverRejection event is the last event of a sequence.

∀B ∈ Buyer, T ∈ Target; terminal(takeoverRejection(B, T))

States are begun and ended by events. The initiates predicate allows us to define which states are begun
by which events.

Definition 4.4 An initiates axiom is of the following form where {Y1, .., Ym} ⊆ {X1, .., Xn}, β is a pred-
icate symbol, and each of the predicates α1(X1), ...,αn(Xn) is grounded as either an action atom or a state
atom, and γ is a optional predicate with its free variables being a subset of {X1, .., Xn}

∀X1, .., Xn; initiates(β(Y1, .., Ym)) ↔ α1(X1) ∧ .. ∧ αn(Xn) ∧ γ

Example 4.3 The state during which shareholders have accepted a bid is begun by an event whose action
is “acceptance” and the body concerned are the shareholders:

∀B ∈ Buyer, T ∈ Target; initiates(shareholderAcceptance(B, T)) ↔
act(acceptance) ∧ target(T) ∧ buyer(B) ∧ body(shareholders)

The act and body predicates relate to the type of event in question, and the buyer and target predicates
are state predicates used to tie acts to specific events.

Example 4.4 The state during which a company is profitable is begun by a report of operating profits:

∀C ∈ Company, P ∈ Profit; initiates(profitable(C)) ↔
act(profitAnnouncement) ∧ company(C) ∧ profit(P) ∧ P > 0

Once the state model is in place we can reason with events. The state model allows us to construct an event
sequence. This allows us to decide whether a sequence of events is completed or ongoing and which events
may follow the current event.

4.2 Characterizing events

To use a state model, we need to be able to extract information about events from news reports. This raises
the need to characterize events in terms of event records. Each event record is a set of event atoms (defined
below) that delineates an event. Event records register the entities that play a role in that particular event,
the action, the date of the event and any other feature which may combine to uniquely identify an event,
such as a bid value in the mergers and acquisitions domain. Event atoms are extracted from reports using
the news atoms described in Section 3.2. It is assumed that each structured news report refers to only one
event. This is a reasonable assumption if the structured news reports are generated from business newsfeeds
by information extraction technology.

Definition 4.5 Let ∆ be a set of access rules, and let R be a report. Let α(t1, ..., tn) ∈ Access(∆, R). An
event atom for R is of the form α(e, t1, ..., ti) where e is an event identifier (a label used to denote the event
record it is contained in).

Example 4.5 The following event atoms capture the event when Walmart has made a bid for Asda on the
3rd of June 1999.

act(e1, bid)
target(e1, Asda)

bidder(e1, Walmart)
eventTime(e1, 03/06/1999)
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Example 4.6 The following event atoms capture the event when Asda’s board has accepted Walmart’s bid
on the 7th July 1999:

act(e2, acceptance)
target(e2, Asda)

bidder(e2, Walmart)
body(e2, board)

eventTime(e2, 07/07/1999)

The way we derive event atoms from news atoms is via event rules as defined below. If the event referred
to is not already the subject of an event record, the event rules use a new event identifier to label the
information.

Definition 4.6 An event rule is a formula of the following form where α(X1, .., Xn) is a news atom, and
α(E,X1, .., Xn) is an event atom.

∀X1, .., Xn, E; α(X1, .., Xn) → α(E,X1, .., Xn)

We use the event rules as follows.

Definition 4.7 Let ∆ be a set of access rules, let Γ be a set of event rules, and let R be a report.

Event(Γ, R) = {Ground(α(e,X1, .., Xk),Φ) |
Ground(α(X1, .., Xk),Φ) ∈ Access(∆, R)
and ∀X1, .., Xn, E; α(X1, .., Xn) → α(E,X1, .., Xn) ∈ Γ
and e is a unique event identifier }

Note, e is a unique identifier if and only if e has not yet been used in any event record.

So Event(Γ, R) is the smallest set of event atoms obtained by exhaustively applying the news atoms ob-
tained from report R to the event rules in Γ using generalized modus ponens and conjunction elimination.
Once a set of event records has been constructed they can be applied to the event model. This gives us a
way of representing the states in which we find entities at a given time.

Example 4.7 Given the following report

report(buyer(WHSmiths), target(Stars), act(bidMade),
date(6/6/02), value(42 million GBP))

and the access rule

∀B, T, A, D, V; report(buyer(B), target(T), act(A), date(D), value(V))
→ buyer(B) ∧ target(T) ∧ act(A) ∧ date(D) ∧ value(V)

and the event rule

∀B, T, A, D, V, E; buyer(B) ∧ target(T) ∧ act(A) ∧ date(D) ∧ value(V)
→ buyer(E, B) ∧ target(E, T) ∧ act(E, A) ∧ date(E, D) ∧ value(E, V)

we obtain the event atoms where e3 is a unique event identifier

buyer(e3, WHSmiths)
target(e3, Stars)
act(e3, bidMade)
date(e3, 6/6/02)

value(e3, 42 million GBP)
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If the event referred to in a report is already the subject of an event record then a new event record is not
created. A report concerns an event which features in an existing event record if and only if the information
which appear in the report is identical or synonymous with the information in the event record.

4.3 The event calculus

In order to reason with the events and the state model we need some way to define the relations between
events and states and the relations between states and times. For this, we adopt the event calculus proposed
by Kowalski and Sergot ([KS85]). In this calculus, meta-level predicates are used to identify the states (or
relationships) which hold at given timepoints by recording the events which initiate and terminate those
states.

The event calculus incorporates the holds predicate which relates states to timeperiods and the holdsAt
predicate which relates times and states. These are axiomatised below, using the after and before func-
tions, which map events and states to timeperiods, and the fallsIn predicate which relates timepoints to
states.

Definition 4.8 A state holds after the event which initiates it and before the event which terminates it:

∀E ∈ Event, S ∈ State; holds(S, after(E, S)) ↔ initiates(E, S)

∀E ∈ Event, S ∈ State; holds(S, before(E, S)) ↔ terminates(E, S)

Definition 4.9 A state holds at a timepoint if the timepoint falls in the period during which that state holds:

∀E ∈ Event, S ∈ State, T ∈ Timepoint; holdsAt(S, T) ↔
holds(S, after(E, S)) ∧ fallsIn(T, after(E, S))

∀E ∈ Event, S ∈ State, T ∈ Timepoint; holdsAt(S, T) ↔
holds(S, before(E, S)) ∧ fallsIn(T, before(E, S))

We use the holds and holdsAt definition along with the recorded events to identify which states hold at a
given timepoint.

Example 4.8 Consider the following event atoms,

act(e1, bid) act(e2, acceptance)
target(e1, Asda) target(e2, Asda)

bidder(e1, Walmart) bidder(e2, Walmart)
eventTime(e1, 03/06/1999) eventTime(e2, 07/07/1999)

body(e2, board)

and the following axioms,

∀E ∈ Event, T ∈ Target, B ∈ Bidder; initiates(E, bidMade(B, T)) ↔
act(E, bid) ∧ target(E, T) ∧ bidder(E, B)

∀E ∈ Event, T ∈ Target, B ∈ Bidder; terminates(E, bidMade(B, T)) ↔
act(E, acceptance) ∧ target(E, T) ∧ bidder(E, B) ∧ body(E, board)

Using the event calculus, we can infer:

holds(bidMade(Walmart, Asda), after(e1, bidMade(Walmart, Asda))
holds(bidMade(Walmart, Asda), before(e2, bidMade(Walmart, Asda))
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Further rules confirm that these events are the initiator and terminator for a single, continuous state. There-
fore, any timepoint between the 3rd June 1999 and the 7th June 1999 coincides with Asda and Walmart
being in the positions of target and buyer respectively.

The above definitions are sufficient when we have complete information about events. Realistically how-
ever there will be times when there is no recorded initiating or terminating for a state. To address this, we
have augmented the Kowlaski and Sergot rules for holdsAt (Definition 4.9) by adding definitions where
the fallsIn predicate is augmented with fallsBefore, fallsAfter and fallsBetween predicates.

The fallsBefore predicate uses the after function to ascertain whether the event has any possible pre-
decessors. If there are no recorded predecessors and the event is not an initial event then the relation-
ship which holds before that event holds at any timepoint which falls in the time up to that event. The
fallsAfter predicate uses the after function to ascertain whether the event has any possible subsequent
events. If there are no recorded subsequent events and the event is not a terminal event then the rela-
tionship which holds after that event holds at any timepoint which falls in the time since that event. The
fallsBetween predicate uses the after function to identify two event which belong to the same event se-
quence but which are separated by at least one unrecorded event. In this case there are at least two relations
or states which potentially hold at any given time between those two events: the unterminated relation and
the uninitiated relation.

For a more comprehensive coverage of our version of the event calculus, including the complete axiomati-
zation for the state model given in Figure 2, see [BH02].

4.4 Event models

We can now pull together the various object-level and meta-level formulae we have considered in this
section to give the following definition of an event model.

Definition 4.10 An event model is a set of object-level and meta-level formulae that is the union of the
following sets: (1) a state model represented by a set of comesAfter, initial, and terminal predicates
(see Definition 4.3) and a set of initiates axioms (see Definition 4.4); (2) Zero or more event records
represented by sets of event axioms (see Definition 4.5); and (3) The event calculus axioms (see Section
4.3).

An event model can be viewed as a repository of information obtained from news reports. As each news
report is processed using access rules and event rules, the set of event records is increased. Then via the
state model axioms and the event calculus axioms, the information can be queried. It is intended that each
event model is self-contained. In other words, once the event records have been created, queries to an event
model use just the formulae in the event model. This means we can regard an event model as a separate
module.

Definition 4.11 Let Π be an event model, Γ be a set of event rules, and R be a structured news report. The
Prolog version of inference is denoted by the )prolog relation.

EventQueries(Π,Γ, R) =
{Holds(s, p) | s and p are ground terms and Event(Γ, R) ∪Π )prolog Holds(s, p)}
∪{HoldsAt(s, t) | s and t are ground terms and Event(Γ, R) ∪Π )prolog HoldsAt(s, t)}

For any instantiation of Π, Γ and R, the set EventQueries(Π,Γ, R) gives all the holds and holdsAt atoms
that follow from the events in R and the event model Π using Prolog. In the rest of the paper, our ap-
proach to seeking violations of expectations uses the set EventQueries(Π,Γ, R) rather than querying Π or
Event(Γ, R). This maintains the modularity of the event model.
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In practice, it is not necessary to generate EventQueries(Π,Γ, R). Rather, in the course of seeking violations
of expectations, queries are posted to Event(Γ, R) ∪ Π to see if particular holds atoms and holdsat atoms
are members of EventQueries(Π,Γ, R). The modularity is still maintained in this case.

Based on this modularity, the system may have more than one event model in order to deal with different
types of state. In the mergers and acquisitions domain for example, it is also necessary to keep track of the
state of a company’s key performance indicators such as profit, earnings per share, and so on. A separate
event model exists to record and reason with events pertaining to company figures. Each event model can
exist as an independent module. Furthermore, the underlying version of event calculus can differ. We have
used the proposal by Kowalski and Sergot and adapted it for our needs. But there are a number variants on
event calculus that we could consider (for a review see [MS02]).

5 Expectations about news

Expectations are formulae that capture general relationships between news reports, background knowledge,
and event models. Unlike information that we assume is always correct, e.g. definitions, mathematical
properties, and integrity constraints, we assume expectations can be violated some of the time. In a sense,
an expectation is a form of defeasible or default rule. Violations of expectations allow the system to identify
information which is unusual but not necessarily incorrect.

Definition 5.1 An expectation is a formula of the following form where α1, ..,αn,β1, ..,βm are literals
and X1, .., Xk are free variables occuring in the literals,

∀X1, ..., Xk; α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm

and for all Φ, if Ground(α1 ∧ .. ∧ αn,Φ) is a ground formula, then Ground(β1 ∨ .. ∨ βm,Φ) is a ground
formula.

Examples of expectations are given in Example 5.1 to Example 5.3 below.

Example 5.1 The heuristic “The value of a tendered bid is expected to be greater than 90% of the com-
pany’s market capitalisation” can be represented by the following expectation.

∀C ∈ Companies, V ∈ BidValue, M ∈ MarketCapitalization;
bidTendered(C, V) ∧ marketCapitalization(C, M) → (V/M) ≥ 0.9

Example 5.2 The heuristic “A company is expected to have sufficient available capital to be able to cover
a bid” can be represented by the following expectation.

∀C ∈ Companies, V ∈ BidValue, A ∈ AvailableCapital;
bidTendered(C, V) ∧ availableCapital(C, A) → A > V

Example 5.3 The heuristic “A company is expected to bid for a target in a sector which supplies or is
supplied by that company’s sector or that is compatible with the company’s sector” can be represented by
the following expectation.

∀X, Y ∈ Companies; target(X, Y) →
(sector(X) = sector(Y) ∨ supplier(sector(X), sector(Y))∨

supplier(sector(Y), sector(X)) ∨ compatible(sector(Y), sector(X)))

13



Expectations may be developed either by manually analysing a body of news reports, by obtaining heuris-
tics from experts in the domain, or by using data mining techniques to extract expectations from a corpus
of reports. Data mining software is able to identify rules in databases that capture patterns of recurrent
behaviour but we believe that individually these rules are not usually useful. However if these rules are
harnessed as expectations in the MBD framework, we believe that collectively they would become much
more useful.

Some expectations are specific to certain entities or sets of entities. Furthermore, some expectations hold
for all entities at all times, whereas others hold only for entities in given states. The event model is what
allows us to identify the state of a given entity and so identify which of these expectations (which we will
call state dependent expectations) should hold.

Definition 5.2 A state dependent expectation is an expectation whose antecedent contains the holdsAt
relation.

State dependent expectations apply to an entity E at timepoint T only if there exists a relation R which
holdsAt T for E.

Example 5.4 The heuristic “A company which is unprofitable will not be expected to have a rising shareprice”
can be represented by the following state dependent expectation.

∀C ∈ companies, T ∈ Timepoints;
¬holdsAt(profitable(C), T) → ¬sharemovement(C, T, rising)

Expectations, by their very nature, are not correct 100% of the time. In other words, it is possible for the
antecedent of an expectation to hold, and for the negation of the consequent to hold, and hence for there to
be an inconsistency with the expectation. It is when an expectation leads to an inconsistency that we expect
to see interesting information. Some expectations are unviolated for a greater percentage of reports than
others. A rule is stronger than another if for a greater percentage of reports, the consequent holds when
the antecedent holds. Violations of strong rules are more interesting than violations of weaker rules. In this
section, we focus on what we mean by violating an expectation. In Section 6, we consider evaluation of
violations of expectations in detail.

Violations are classified as either cohort or singular violations. We explain these terms next and then for-
malize the definitions in the rest of this section.

Singular violations These occur when a report concerning an entity includes facts which are inconsistent
with the state that that entity is known to be in at the time which the reports concerns.

Cohort violations These occur when one or more reports concerning more than one entity include facts
which are inconsistent with the state that that entity is known to be in at the time which the reports
concern.

For both singular violations and cohort violations, we need to consider a report atom for each report R
together with access rules, events rules, domain facts, an event model, and a set of expectations.

5.1 Singular violations of expectations

As discussed in Section 1, we assume that news reports are consistent with the background knowledge.
This is summarized as follows where R is a report, ∆ is a set of access rules, Γ is a set of event rules, Λ is
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a set of domain facts, and Π is an event model.

Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ /) ⊥

Using this assumption, we define a singular violation of expectations as follows.

Definition 5.3 Let R be a report, ∆ be a set of access rules, Γ be a set of event rules, Λ be a set of domain
facts, Π be an event model, Σ be a set of expectations, and φ ∈ Σ.

R is a singular violation of φ iff Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ∪ {φ} )⊥

Example 5.5 Let R be the following report

report(takeover(bidder(Pirelli), target(Olivetti)))

Assume an access rule in ∆ gives us

target(Olivetti, Pirelli)

Let Λ contain the following facts

sector(Pirelli, tyresAndCables)
sector(Olivetti, informationTechnology)

¬compatible(tyresAndCables, informationTechnology)
¬compatible(informationTechnology, tyresAndCables)
¬supplier(tyresAndCables, informationTechnology)
¬supplier(informationTechnology, tyresAndCables)

informationTechnology /= tyresAndCables

Also assume Σ contains the following expectation.

∀X, Y ∈ Companies, A, B ∈ Sectors;
target(X, Y) ∧ sector(X, A) ∧ sector(Y, B) →

A = B ∨ supplier(A, B) ∨ supplier(B, A) ∨ compatible(A, B) ∨ compatible(B, A)

Hence this expectation is violated by the news report.

Example 5.6 Consider an event in the event model which allow us to conclude

holdsAt(inAdministration(Railtrack), 02/02/2002)

Suppose the system then receives a report which we represent by the following report atom

report(company(Railtrack), annualreport(result(profit), amount(GBP292m), date(02/02/2002))

And from this suppose we can derive

holdsAt(profitable(Railtrack), 02/02/2002)

Now suppose there is a state dependent expectation in Σ such that

∀C ∈ Companies, T ∈ Time;
holdsAt(profitable(C), T) → ¬holdsAt(inAdministration(C), T)

Hence we can derive ¬holdsAt(inAdministration(Railtrack), 02/02/2002) and therefore we ob-
tain an inconsistency.
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5.2 Cohort violations of expectations

Some violations of expectations only become interesting when a number of entities all exhibit the same
unexpected behaviour. The EnitityCount function (which we define below) allows us to determine how
many entities appear in a set of reports.

Definition 5.4 An entity classifier is a function of the form Entityz where z is a set of news atoms. An
entity classifier assigns the value True or False to each report R as follows.

Entityz(∆, R) = True iff z ⊆ Access(∆, R)

Example 5.7 Consider the following report atom.

report(act(bidMade), target(Sabena), buyer(BritishAirways))

From this, suppose Access(∆, R) = {act(bidMade), target(Sabena), buyer(BritishAirways)}. If we
refer to the above report as R, then

Entity{target(Sabena)}(∆, R) = True
Entity{buyer(BritishAirways)}(∆, R) = True

Entity{target(Sabena),buyer(BritishAirways)}(∆, R) = True
Entity{target(Sabena),buyer(Ryanair)}(∆, R) = False

Definition 5.5 Let Y be a set of semantic labels. We assume each semantic label can also be used as a pred-
icate symbol. The set EntitySet(Y ) is a set of entity classifiers such that for each Entityz ∈ EntitySet(Y ),
the following two conditions hold: (1) for each p(q) ∈ z, p∈Y; and (2) for each p∈Y, there is a p(q)∈ z.

Definition 5.6 Let R1...Rn be a set of reports and Y be a set of semantic labels.

EntityCount({R1...Rn},∆, Y ) = |{Entityz ∈ EntitySet(Y )|∃Ri ∈ {Ri...Rn} s.t. Entityz(∆, Ri) = True}|

Example 5.8 For the set of reports {R1, R2, R3}, where

Access(∆, R1) = {act(bidMade), target(Sabena), buyer(BritishAirways)}
Access(∆, R2) = {act(bidMade), target(Ryanair), buyer(BritishAirways)}

Access(∆, R3) = {act(bidMade), target(Northwest), buyer(American)}

we have EntityCount({R1, R2, R3},∆, {target}) = 3, EntityCount({R1, R2, R3}, ∆, {buyer}) = 2, and
EntityCount({R1, R2, R3},∆, {target, buyer}) = 3.

In general, for EntityCount({R1...Rn},∆, Y ), we need the semantic labels to delineate appropriate entities.
For example, for companies, Y = {name, location} would allow for companies with the same name but
different locations to be differentiated. Similarly, for staff records, Y = {firstname, lastname, birthdate}
may be appropriate.

We are now ready to define the notion of a cohort violation. As with the definition of a singular violation,
we assume that the news reports are consistent with the background knowledge. Using this assumption, we
define a cohort violation of expectations as follows.
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Definition 5.7 Let {R1, .., Rn} be a set of reports,∆ be a set of access rules, Γ be a set of event rules, Π be
the event model, Λ be a set of domain facts, Σ be a set of expectations, and φ ∈ Σ.

{R1, .., Rn} is a cohort violation of φ
iff
there is a non-empty Y such that EntityCount({R1...Rn},∆, Y ) > 1
and
Access(∆, R1) ∪ EventQueries(Π,∆, R1) ∪ Λ ∪ {φ} )⊥
and
:
and
Access(∆, Rn) ∪ EventQueries(Π,∆, Rn) ∪ Λ ∪ {φ} )⊥

Example 5.9 Suppose the set of domain facts Λ includes the following facts

¬profitable(Amazon), ¬profitable(Boo), ¬profitable(Yahoo)

and that we receive a set of reports, {R1, ..., Rn} such that the following is a subset of the access predicates
Access(∆, R1) ∪ .. ∪ Access(∆, Rn).

{shareMovement(Amazon, up), shareMovement(Boo, up), shareMovement(Yahoo, up)}

Suppose also that the expectations Σ contains the following

∀C ∈ companies;¬profitable(C) → ¬shareMovement(C, up)

This leads us to conclude that the news reports taken with the background facts and the above expectation
lead to inconsistency. Furthermore, EntityCount({R1, .., Rn},∆, {shareMovement}) = 3.

Specification of the set of semantic labels Y for the EntityCount function needs to appropriately delineate
entities. Inappropriate specification may distort the results as illustrated by the following example. To avoid
this kind of problem, we can assume that the sets Y are selected in advanced by hand for each expectation,
and therefore form part of the meta-knowledge.

Example 5.10 Assume that the following set of reports all violate the same expectation:

Access(∆, R1) = {act(bidMade), target(Sabena), buyer(BritishAirways)}
Access(∆, R2) = {act(bidMade), target(Ryanair), buyer(BritishAirways)}

Access(∆, R3) = {act(bidMade), target(Northwest), buyer(BritishAirways)}
Hence, EntityCount({R1, R2, R3},∆, {target, buyer}) = 3, corresponding to three unique tuples made
up of the entity features. Yet EntityCount({R1, R2, R3},∆, {buyer}) = 1, and so this set of reports may
suggest that the behaviour which violates this expectation is particular to one company acting as a buyer.

By comparing Definition 5.3 with Definition 5.7, we see the key difference is that for a cohort violation,
the condition EntityCount({R1, .., Rn},∆, Y ) > 1 holds for some non-empty Y , whereas for the singular
violations, there is the implicit condition EntityCount({R},∆, Y ) = 1 holding for some non-empty Y that
is always satisfiable.

6 Evaluation of inconsistencies

Confirmation theory is a subject that has developed within the fields of statistics, probability theory, and the
philosophy of science. The need for such a theory arises because evidence e rarely establishes conclusively
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that some hypothesis h is true, but e may nonetheless confirm or coroborate h to some degree [GGH+92].
Confirmation theory investigates the relation which holds between h and e when e confirms h to some
extent, but does not establish it completely.

We use a simple form of confirmation theory to evaluate expectations, and thereby evaluate the incon-
sistencies arising when they are violated by news reports. Each expectation can be viewed as a form of
hypothesis. Furthermore, information in each news report may be used as evidence to help confirm or dis-
confirm some of the expectations. We will explain how we can do this below. Our approach is based on the
proportion of correct firings of each expectation.

Definition 6.1 Let R be a report, ∆ be a set of access rules, Γ be a set of event rules, Λ be a set of
domain facts, Π be the event model, and Σ be a set of expectations. An expectation in Σ of the form
∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm is fired by a report R when there is a Φ such that

Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn,Φ)

There are three possible outcomes, namely Correct, Incorrect, and Unknown, for each firing of an expec-
tation with a report. The outcome Correct means that the consequent of the expectation agrees with the
information in the report, background knowledge, and event model. In other words, the report, background
knowledge, and event model imply a ground version of the consequent. The outcome Incorrect means that
the consequent of the expectation disagrees with the information in the report, background knowledge, and
event model. Finally, the outcome Unknown means the consequent of the expectation neither agrees nor
disagrees with the information in the report, background knowledge, and event model.

Definition 6.2 Let R be a report, ∆ be a set of access rules, Γ be a set of event rules, Λ be a set of domain
facts, Π be the event model, and Σ be a set of expectations, where

Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn,Φ)

The FireValue function is defined as follows.

FireValue(∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm, R) = Correct
iff Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(β1 ∨ .. ∨ βm,Φ)

FireValue(∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm, R) = Incorrect
iff Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) ¬Ground(β1 ∨ .. ∨ βm,Φ)

FireValue(∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm, R) = Unknown
iff Access(∆, R) ∪ EventQueries(Γ, R) ∪ Λ /) Ground(β1 ∨ .. ∨ βm,Φ)

and Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ /) ¬Ground(β1 ∨ .. ∨ βm,Φ)

A firing trace for an expectation is the history of when an expectation has been fired and whether the
firing was correct or not given some set of reports Ψ = {R1, .., Rn} obtained over time. If φ ∈ Σ then
Trace(Ψ,φ) = {(c1, s1), .., (cn, sn)} where each ci is a value denoting whether the rule fired correctly, i.e.
the value assigned by the FireValue function, and so is one of {Correct,Unknown, Incorrect}, and si is the
corresponding timestamp for the firing.

Definition 6.3 Let Ψ be a set of report received at different points in time, ∆ be a set of access rules, Γ be
a set of event rules, Λ be a set of domain facts, Π be the event model, and Σ be a set of expectations, and
let φ ∈ Σ.

Trace(Ψ,φ) = {(FireValue(φ, R),TimeStamp(R)) | R ∈ Ψ
and φ is of the form ∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm

and ∃Φs.t.Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn,Φ)}
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where TimeStamp(R) is the timestamp of the report R (i.e. the time that the report was received by the
system).

Example 6.1 Let ∆ be a set of access rules, and let R be a report with a timestamp of 20/02/2002.
Suppose we have

target(BritishAirways, Sabena) ∈ Access(∆, R)

Now consider an expectation φ in Σ.

∀X, Y ∈ Companies, A, B ∈ Sectors; target(X, Y) ∧ Sector(X, A) ∧ Sector(Y, B) → A = B

with domain facts
sector(BritishAirways, civilAviation)

sector(Sabena, civilAviation)

which gives us
(Correct, 20/02/2002) ∈ Trace({R},φ)

We can then calculate a confirmation value based on the number of firings (the “frequency” of an expec-
tation) and the ratio of successful to unsuccessful firings (the “accuracy” of the expectation) since a given
timepoint. This is a relative frequency approach [CHS93].

Definition 6.4 Let Ψ be a set of reports received at different points in time, and let Σ be a set of expecta-
tions. For φ ∈ Σ, and timepoints t1 and t2, the following are subsets of Trace(Ψ,φ).

Correct(Ψ,φ, t1, t2) = {(Correct, t) ∈ Trace(Ψ,φ) | t1 ≤ t and t ≤ t2}

Incorrect(Ψ,φ, t1, t2) = {(Incorrect, t) ∈ Trace(Ψ,φ) | t1 ≤ t and t ≤ t2}

Unknown(Ψ,φ, t1, t2) = {(Unknown, t) ∈ Trace(Ψ,φ) | t1 ≤ t and t ≤ t2}

Definition 6.5 Let Ψ be a set of reports received at different points in time, and let Σ be a set of expec-
tations. If φ ∈ Σ then Confirmation(Ψ,φ, t1, t2) = (x, y) where x is the ratio of sucessful firings to total
firings and y is the number of firings from time t1 to t2.

x =
|Correct(Ψ,φ, t, t′)|

|Correct(Ψ,φ, t, t′)| + |Incorrect(Ψ,φ, t, t′)| + |Unknown(Ψ,φ, t, t′)|

y = |Correct(Ψ,φ, t, t′)| + |Incorrect(Ψ,φ, t, t′)| + |Unknown(Ψ,φ, t, t′)|

Example 6.2 Suppose Trace(Ψ,φ) = {(Correct, 1), (Incorrect, 2), (Correct, 3), (Incorrect, 4)}.

Confirmation(Ψ,φ, 4, 5) = (0, 1)
Confirmation(Ψ,φ, 3, 5) = (0.5, 2)
Confirmation(Ψ,φ, 2, 5) = (0.33, 3)
Confirmation(Ψ,φ, 1, 5) = (0.5, 4)

For any Ψ,φ, t1, t2, when Confirmation(Ψ,φ, t1, t2) = (x, y), the measure x reflects the degree of accu-
racy with which an expectation predicts the real world as reflected in the news reports inΨ, and the measure
y reflects the coverage of φ. The coverage of a Confirmation measure is the total number of times the ex-
pectation has been fired by an incoming report in Ψ. The higher the coverage value, the more significant
the confirmation measure is.
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Confirmation values can be used to rank violations of expectations. The higher the confirmation value,
the more unlikely it is that an expectation will be violated, hence the more interesting a violation of that
expectation will be. One approach is to aggregate the two dimensions of the confirmation value into a
partial ordering over the expectations is to use the 2 relation defined as follows.

Definition 6.6 Let i, j, p, q be real numbers and let ≥ be the usual ordering over real numbers. The 2
relation is a partial ordering relation over pairs of real numbers.

(i, p) 2 (j, q) iff i ≥ j and p ≥ q

The 2 relation induces a ranking over expectations according to the confirmation values for each expecta-
tion. So if φ1 and φ2 are expectations such that Confirmation(Ψ,φ1, t1, t2) 2 Confirmation(Ψ,φ2, t1, t2),
then violation of φ1 is regarded as more significant than φ2.

Rankings will change over time as rules continue to be fired by the reports received. Continued violations
of an expectation suggest a trend emerging which should lead to a change in the strength of the expectation
which is violated. For example, we may have an expectation in the domain of mergers and acquisitions,
where it is expected that a company will sell rather than acquire subsidiaries, indicating a market going
through a period of consolidation, and also an expectation that companies will sell, rather than buy sub-
sidiaries, indicating a period of decentralisation. If every time an expectation is violated its confirmation
decreases by some degree and the confirmation of the opposing expectation increases by the same degree,
we have a self-setting market state indicator.

In order to determine which rules are currently accurate, it may be necessary to give greater weight to the
results of more recent firings than to firings further in the past. In order to achieve this, each firing and its
associated outcome wil be assigned a weight which decreases with time.

Applying confirmation theory to a cohort is more difficult. For cohort violations, we need to consider the
following goals.

• maximizing the number of entities involved in the violation

• minimizing the time frame considered for the violation

• maximizing the specificity of the entity specification

and trade these against the number of entities not violating the expectation within the time frame. Rather
than propose an aggregation of these goals, we believe that the user should be able to vary the time frame
considered for the violation, and thereby see whether the relative number of entities violating the expecta-
tion differs from the number of entities not violating the expectation.

7 Compilation of consistency checking

Checking whether a set of formulae is consistent is in general an undirected activity. For example, given
a set of formulae we could construct a semantic tableau. But this potentially involves decomposing every
formula in the set into literals. For finding violations of expectations, this involves an inordinate amount
of unnecessary search since only a relatively restricted set of formulae needs to be considered for each
expectation.

One solution to this problem is to compile the consistency checking for each expectation. So rather than
checking the consistency directly, we attempt to prove whether each expectation has been violated. The
way we do this is to rewrite each expectation into another formula that we call a viaduct as follows.
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Definition 7.1 Let q be the name of an expectation of the form ∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm.
The viaduct of q is the following formula.

∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q)

If Σ is a set of expectations, let Viaduct(Σ) be the set of viaducts obtained from Σ.

Reasoning with Viaduct(Σ) and reasoning with Σ is identical in the sense that the set of expectations that
are identified as being violated is identical. This is demonstrated for singular violations in Proposition 7.1
and for cohort violations in Proposition 7.2 below.

Proposition 7.1 Let R be a structured news report, ∆ be a set of access rules, Γ be a set of event rules, Λ
be a set of domain facts, Π be an event model, and Σ be a set of expectations. Also let φ be the expectation
∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm, and let q be the name of φ. R is a singular violation of q where
there is an expectation named q in Σ iff the following two conditions hold:

(1) Viaduct(Σ) includes the following viaduct

∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q)

(2) there is a grounding set Φ such that

Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)

Proof: R is a singular violation of q where there is an expectation named q in Σ

iff R is a singular violation of φ and φ ∈ Σ
iff Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ∪ {φ} )⊥ and φ ∈ Σ
iff ∃Φ s.t. Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(¬β1 ∧ .. ∧ ¬βm,Φ)

and Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn,Φ)
and ∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm ∈ Σ

iff ∃Φ s.t. Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)
and ∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q) ∈ Viaduct(Σ). !

Proposition 7.2 Let {R1, .., Rn} be a set of structured news reports, ∆ be a set of access rules, Γ be a set
of event rules, Λ be a set of domain facts, Π be an event model, and Σ be a set of expectations. Also let φ
be the expectation ∀X1, .., Xk;α1 ∧ .. ∧ αn → β1 ∨ .. ∨ βm, and let q be the name of φ. {R1, .., Rn} is a
cohort violation of q where there is an expectation named q in Σ iff the following three conditions hold:

(1) Viaduct(Σ) includes the following viaduct

∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q)

(2) ∃Φ s.t. Access(∆, R1) ∪ EventQueries(Π,∆, R1) ∪ Λ ) Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)
and
:
and
∃Φ s.t. Access(∆, Rn) ∪ EventQueries(Π,∆, Rn) ∪ Λ ) Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)

(3) there is a Y s.t. EntityCount({R1, .., Rn},∆, Y ) > 1.
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Proof: {R1, .., Rn} is a cohort violation of q where there is an expectation named q in Σ

iff {R1, .., Rn} is a cohort violation of φ and φ ∈ Σ
iff there is a non-empty Y such that EntityCount({R1...Rn},∆, Y ) > 1

and Access(∆, R1) ∪ EventQueries(Π,∆, R1) ∪ Λ ∪ {φ} )⊥
and....and Access(∆, Rn) ∪ EventQueries(Π,∆, Rn) ∪ Λ ∪ {φ} )⊥

iff there is a non-empty Y such that EntityCount({R1...Rn},∆, Y ) > 1
and R1 is a singular violation of φ and φ ∈ Σ
and....and Rn is a singular violation of φ and φ ∈ Σ

iff there is a non-empty Y such that EntityCount({R1...Rn},∆, Y ) > 1
and ∃Φ s.t. Access(∆, R1) ∪ EventQueries(Π,Γ, R1) ∪ Λ )

Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)
and
:
and ∃Φ s.t. Access(∆, Rn) ∪ EventQueries(Π,Γ, Rn) ∪ Λ )

Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)
and ∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q) ∈ Viaduct(Σ). !

We have described the use of viaducts as a compilation of consistency checking. Proposition 7.1 (respec-
tively 7.2) show that we maintain consistency checking as in the original definition for singular (respec-
tively cohort) violation. The following example illustrates that compilation looses much of the possible
consistency checking questions that could be asked by the original formalization of expectations. In other
words, there may be a number of possible subsets of Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ∪ Σ that
are inconsistent but that we cannot detect these if we use Viaduct(Σ) instead of Σ. But since we were
not looking for other possible inconsistencies in our original formalization, this is not a loss for the MBD
framework.

Example 7.1 Suppose we have a(d) and b(d) in Access(∆, R) for some report R. Also suppose two of the
expectations in Σ are

∀X; a(X) → c(X)
∀X; b(X) → ¬c(X)

Clearly, the set {a(d), b(d),∀X; a(X) → c(X),∀X; b(X) → ¬c(X)} is inconsistent. However, this inconsis-
tency is not a violation of an expectation.

A key advantage of compilation of consistency checking is the increase in computational viability. Consis-
tency checking for classical logic is expensive in general. Deciding whether a set of propositional classical
formulae is consistent is an NP-complete decision problem [GJ79]. Furthermore, deciding whether a set of
propositional classical formulaeΥ is a minimal inconsistent set involves (1) checking thatΥ is inconsistent
and (2) checking whether each maximal subset ofΥ is consistent. If the cardinality ofΥ is k, then doing (2)
involves k consistency checks, where k is no more than linear in the size of the input. Hence, this decision
problem is equivalent (modulo polynomial time) to the original PSAT problem. However, if we consider
the problem as an abduction problem, where we seek the existence of a minimal subset of a set of formulae
that implies a contradiction, then the problem is in the second level of the polynomial hierarchy [EG95].
Even worse deciding whether a set of first-order classical formulae is consistent is an undecidable decision
problem [BBJ02]. This means compilation of consistency checking is highly advantageous as highlighted
by the following proposition.

Proposition 7.3 Let R be a structured news report, ∆ be a set of access rules, Γ be a set of event rules, Λ
be a set of domain facts, Π be an event model, and Σ be a set of expectations. Also assume the following
two sets of literals:

Θ1 = {α | Access(∆, R) ) α and α is a ground literal}
Θ2 = {α | EventQueries(Π,∆, R) ) α and α is a ground literal}
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Also let GroundViaduct(Σ) be a set of ground formulae of the form α′
1 ∧ .. ∧ α′

n ∧ ¬β′
1 ∧ .. ∧ ¬β′

m →
violation(q) where each such formula is obtained by instantiation of a formula

∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q) ∈ Viaduct(Σ)

using only ground terms in Terms(Θ1 ∪ Θ2 ∪ Λ). Deciding whether R violates an expectation in Σ is a
coNP-complete decision problem when Θ1 ∪Θ2 is a finite set.

Proof: R violates an expectation in Σ iff there is an expectation φ ∈ Σ such that R is a singular violation
of φ. Suppose, φ is called q. So, R is a singular violation of φ
iff

(1) Viaduct(Σ) includes the following viaduct

∀X1, .., Xk;α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm → violation(q)

and (2) there is a grounding set Φ such that

Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ) Ground(α1 ∧ .. ∧ αn ∧ ¬β1 ∧ .. ∧ ¬βm,Φ)

iff
Access(∆, R) ∪ EventQueries(Π,Γ, R) ∪ Λ ∪ Viaduct(Σ) ) violation(q)

iff
Θ1 ∪Θ2 ∪ Λ ∪ GroundViaduct(Σ) ) violation(q)

Since,Θ1∪Θ2∪Λ∪GroundViaduct(Σ) is a finite set of classical propositional formulae, and violation(q)
is a classical propositional formula, determining whether this inference holds, using the classical conse-
quence relation, is a coNP-complete decision problem. !

This result means that checking whether a given news report R violates an expectation is reduced to a
decidable problem of classical propositional logic. We have developed a prototype implementation in Pro-
log. This incorporates a meta-interpreter (adapted from [SS94]) that takes each viaduct in turn and checks
whether the antecedent holds. Checking each literal in the antecedent of a viaduct involves querying a
Prolog knowledgebase. If this knowledgebase is propositional, then Proposition 7.3 applies. Otherwise, the
complexity of deciding whether R violates an expectation is given by the complexity of querying the Prolog
knowledgebase.

Knowledge compilation has become an increasingly attractive proposition for dealing with the general
intractability problem of propositional reasoning. In this, a propositional theory is compiled once into a
target language, and this is then used to answer potentially numerous repeated queries in polynomial time,
and hence the cost of the orginal compilation is amortized over the repeated queries (e.g. [Mar95, Dar99,
DM01]). Clearly, knowledge compilation is a different idea to the notion of compiled consistency checking
that we have proposed here.

8 Discussion

Structured text is a general concept implicit in many approaches to handling textual information in com-
puting, including tagged text in XML, text in relational and object-oriented databases, and output from
information extraction systems. Whilst structured text is useful as a resource, there are techniques to han-
dle, analyse, and reason with it, including merging potentially inconsistent sets of news reports [Hun00a,
Hun02a, Hun02c], and deriving inferences from potentially inconsistent sets of news reports [Hun00b,
Hun00c, BH01, Hun01]. Structured text can be naturally viewed in logic. Each item of structured text can
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be represented by a formula of classical logic. This means that consistency checking and inferencing can
be undertaken with structured text using domain knowledge.

Central to the MBD framework is the need to evaluate the violations of expectations. This evaluation is
a form of measuring of inconsistency. The better confirmed an expectation is, the more significant the in-
consistency arising when the expectation is violated. This approach has wider applicability in measuring
inconsistency in knowledge. Current techniques for measuring the degree of inconsistency in a set of for-
mulae are underdeveloped. Some approaches touch on the topic. In diagnostic systems, there are proposals
that offer preferences for certain kinds of consistent subsets of inconsistent information [KW87, Rei87];
in proposals for belief revision, epistemic entrenchment is an ordering over formulae which reflects the
preference for which formulae to give up in case of inconsistency [Gar88]; in proposals for drawing in-
ferences from inconsistent information there is a preference for inferences from some consistent subsets
(e.g. [Bre89, BDP93]); in proposals for approximating entailment, two sequences of entailment relation are
defined (the first is sound but not complete, and the second is complete but not sound) which converge to
classical entailment [SC95]; and in proposals for partial consistency checking, checking is terminated after
the search space exceeds a threshold which gives a measure of partial consistency of the data. However,
none of these proposals provide a direct definition for degree of inconsistency.

In belief revision theory, and the related field of knowledgebase merging, there are some proposals that
do provide some description of the degree of inconsistency of a set of formulae. For example, the Dalal
distance [Dal88], essentially the Hamming distance between two propositional interpretations, can be used
to give a profile of an inconsistent knowledgebase. Unfortunately, this does not provide a very succinct
way of describing the degree of inconsistency in a given set of formulae, and it is not clear how we could
compare sets of formulae using this approach. Furthermore, operators for aggregating these distances, such
as the majority operator [LM98], egalitarist operator [Rev97], or the leximax operator [KP98], do not seem
to be appropriate summaries of the degree of inconsistency in the original knowledgebase since they seek
to find the most appropriate model for particular kinds of compromise of the original knowledge. Related
techniques for knowledgebase revision are similarly inappropriate.

Another approach to handling inconsistent information is that of possibility theory [DLP94]. Let (φ,α)
be a weighted formula where φ is a classical formula and α ∈ [0, 1]. A possibilistic knowledgebase B is
a set of weighted formulae. An α-cut of a possibilistic knowledgebase, denoted B≥α, is {(ψ, β) ∈ B |
β ≥ α}. The inconsistency degree of B, denoted Inc(B), is the maximum value of α such that the α-
cut is inconsistent. As presented, the problem with this measure is that it assumes weighted formulae. In
other words, we need some form of preference ordering in addition to the set of classical formulae in the
knowledgebase. The knowledgebase can be used to induce such an ordering as suggested in [BDKP00],
where an ordering over inferentially weaker forms of the original formulae are generated. Again this does
not offer a direct lucid view on the inconsistency in the original set of formulae.

Measuring the “amount of information” is related to the idea of measuring inconsistency. Information
theory can be used to measure the information content of sets of inconsistent formulae. Applying Shannon’s
measure of information, Lozinskii proposes that the information in a set of propositional formulae Γ, that
has been composed from n different atom symbols, is the logarithm of the number of models (2n) divided
by the number of models for the maximum consistent subsets of Γ [Loz94]. This information theoretic
measure increases with additions of consistent information and decreases with additions of inconsistent
information. However, as highlighted by Wong and Besnard [WB01], the measure by Lozinskii is syntax
sensitive and it is sensitive to the presence of tautologies in Γ. To address this, they suggest the use of a
normal form for the formulae in Γ that is obtained by rewriting Γ into conjunctive normal form, and then
applying disjunction elimination and resolution exhaustively. However, this approach does not provide a
direct measure of inconsistency since for example, the value for {α} is the same as for {α,¬α, β}.

A general characterization of inconsistency has been based on quasi-classical logic (a form of paraconsis-
tent logic with a more expressive semantics than Belnap’s four-valued logic, and unlike other paraconsistent
logics, allows the connectives to appear to behave as classical connectives). Inconsistent knowledge is anal-

24



ysed by considering the conflicts arising in the minimal quasi-classical models for that knowledge. This
is used for a measure of coherence for each knowledgebase, and for a measure of significance of incon-
sistencies in each knowledgebase [Hun02b]. Whilst this is potentially useful in various applications such
as comparing heterogeneous sources of information, it does not seem to help in evaluating inconsistencies
arising through violations of expectations. In the MBD approach, we evalutate the inconsistency on the
basis of the expectation rather than all the formulae involved in the inconsistency. We may regard the two
approaches as complementary, and in some applications it may be of interest to integrate them. The confir-
mation theoretic approach to measuring significance that we have presented in this paper can be described
as a likelihood-based significance. However, there are other dimensions for measuring significance of in-
consistency. In measuring inconsistency in structured news reports, we are interested in two further kinds
of significance which are described below.

Subject-based significance This can be viewed as a weighting so that some subjects (denoted by a tag-
name for a structured news report or a predicate symbol for a news atom) are more significant than
others when part of a violation of an expectation. For example, suppose in a weather report R1 for
London the humdity is given as 10%, and in a weather report R2 for London the temperature is given
as 50C. Both would violate expectations about weather in London but for most people violation with
regard to temperature is regarded as more significant than an inconsistency with regard to humidity.

Entry-based significance This can be viewed as a weighting so that some text entries are more significant
than others when part of a violation of an expectation. For example, suppose we have an expectation
that a new Ferrari is at least 200K Euros. A violation of this with a news report about the price of a
new Ferrari would be more significant if the text entry was 1K Euros as opposed to 50K Euros.

We aim to capture these two further forms of significance in future developments of the MBD framework.
In addition to the framework issues, these forms of significance needs to be tuned for individual user groups
since different groups would need to weight subjects and entries according to their interests and goals.

In conclusion, in this paper, we have provided a basic framework for finding interesting inconsistencies in
structured news reports. We have a prototype implementation of the framework for finding and evaluating
violations of expectations in mergers and acquisitions reports. This has been implemented in Prolog and
incorporates an event model for this domain and a meta-interpreter for the compiled consistency checking.
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