Knowledge Based &chniques to Incease the Flexibility of
Workflow Management

Barbara Dellen, Frank Maurggerhard P&s

AG Expertensysteme, Umarsitat Kaiserslautern, Paath 3049, D-67653 Kaiserslautern
e-Mail: {dellen, maurerpevs}@informatik.uni-kl.de
http://mwwagrinformatik.uni-kl.de/~comokit

Keywords
Ad-hoc workflow, flexible workflows, traceabilityproject coordination, dependgnmanagement

Abstract

This paper describes how knowledgased tdmiques can be used tgexcome poblems of workflow magament in
engineering applications. Usingglicit process and mduct models as a basis for a workflow intetpr allows to
alternate planning andxecution stepsgsulting in an inaeased fleibility of project coodination and enactmentoTgain
the full advantges of this fleibility, change processes have to be supported by the system. Hpse an impoved
traceability of decisions and have to be based on dependencgenaarat and ltange notification mdtanisms. Our
methods and témiques ae illustrated by two applications: Urban land-use planning and sofvmocess modeling

1 Motivation

On account of global competition, thdigiency of business processes has to be impdy resulting in

a reduction of process requirements in terms of time and cost. Udinebs objecte leads to

approaches dsan mangementandbusiness prcess eengineering & optimizatiorin order to fulfill

these objecties, workflow management approaches often are introduced in the enterprise. The

workflow management coalition definesskflow management as:
»The automation of ausiness process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of procedural rules.”
[40]

Galler, Hagemger and Scheer [13] describe the lifele of workflows (see Figure 1). The
development of a wrkflow application starts with analyzing and modeling theifeess process. The
business process model is the input for tlhekflow system deelopment which results in aonkflow
model, typically implemented in anorkflow language. The resulting application is repetiy
executed within the compgnhopefully impreing and supportingusiness actities. Storing traces of
the workflow execution and analyzing it is a basis for future inweraents of the process (thereby
supporting an on-going imprement process/Kaizen [30]). The authors state:
»1he transformation of lssiness conceptsxgressed in Business Process Models) into information
systems (forxeample WMS) is not a simple deaition hut a creatie process which includes man
feedback loops betweenganizational and technicakeerts.” [13]

Their line of agument is that there is a (huge) humdoréin mapping the abstractisiness model
onto an operational anaecutable wrkflow language. Because of the necessary huniart,ahere
are deelopment costs which cannot bglezted. Hence, this approach basically is only applicable for

1. To appear in: Data & Knmdledge Engineering Journal, North-Holland, 1997

@ Modeling of

Business Processes

Information Management

Analysis of
@the Feedback-Data @Tlhe Prfoceﬁs I\\IAVOdEfIIS
resulting from the use of the are Input gft e Worktlow
Workflow System ystem
Process Manager EDP Coordinator

®

The Workflow System
in use

Concerned Department

Figure 1 Workflo w Lif e Cycle (from [13])

repetitve, standardizable processes as, fangle, administrate actvities like the payment for
traveling costs.

Additionally, it should be mentioned that Galler et al. assutmegphase apmac where the
modeling phase must be completed before xeewion of the wrkflow may start. Although there is a
tremendous profit in supporting administvatinorkflows following a two-phase approach, not all
processesdll into this catgory. Galler and Scheer distinguish in [14] between case-oriented
workflows and ad-hoc arkflows. The former follav some rulesiit are not completely standardizable,
whereas the latter are dealing with completely unstructured single-instance procesgpgo@ous
and Hornick gve a similar definition of ad-hocaskflows:

»+Ad-hoc workflows perform processes, where there is no set pattern fongnoformation

among people. Ad-hocarkflows typically irvolve human coordination, collaboration or co-

decision. Thus the ordering and coordination of tasksv/{aes) in an ad-hoc arkflow are not

automated bt are instead controlled by human. The task ordering and coordination decisions are

made while the wrkflow is performed.” [16]

To support ad-hoc erkflows, often groupare approaches are proposed. Gragvsystems (e.g.

Lotus Notes) basically aNoto share information between the group members. Comparemtkéiow

approaches this has somewdoacks:

» Handling worklists of users is not supported. Hence, the system is not able toyalyasxtind
messages to users about\atés to be carried out. The system does not guide its users in trkir w

* Tracing task eecution is not possible because the system has no notioasks,T

Nevertheless, groupave allavs an increased #téility of the work processes. This Ribility is
needed for design, engineering or science which are important application donzaines. aal. ayjue
in the same direction:

.In real life, both in ofice and in scientific lab @ronments, the enactment of arkcase may

deviate significantly from what as planned/modeled.” [41]

To summarize, groupave systems pwuide too little structure and guidance whereas currenkflow
techniques are not Kible enough to support virtual corporationsgept in a ery limited way.

A more flible approach than currenovkflow techniques, without the dk@acks of groupware is
particularly needed in distnibed engineering projects where manh the tasks cannot be analyzed
prior to xecution, and where the duration of co-operation is typicaily long. In a sense engineering
projects are the most challenging case of virtual companies that may in genengl thgnamic.
Distributed engineering projects are also particularly interesting because ofibesafreed to reduce
cost and increase speed bywailog engineers and designers irfeliént oganizations to wrk directly

in a peeitto-peer relationship rather than being separatedugradayers of management. Thiswid
enable an enterprise to sell its products earlier and cheaper than its competitors.

Our applications come from the folng engineering domains: urban land-use planning and aaftw
engineering. Looking from this perspeetieads to the wish to combine the aickages of wrkflow
and groupware approachesyercoming their dnabacks. In the rest of this papere will shav hov
knowledge-based techniques can be used to reach this goal.

The net section states requirements which must be fulfilled bgr&flew tool in engineering

domains. Chapter 3\g@s an gervien over our application. The Softwe Engineering application is

used to illustrate the technical details of our approach which are described in Chapter 4 - Chapter 7. In
Chapter 8, we discuss the implementation of our system. Relat&dsadiscussed in Chapter 9. The

last section summarizes our results and futuwekw

2 Global Goals and Global Answers

The global goal of our @rk is to deelop methods, techniques and saitevsystems which support the
planning andecution of lage-scale engineering projects. Although our approach mostly deals with
engineering, we assume that our techniques are applicable in all domains witdeevitak

processes va to be supported.

A closer look on our engineering applicationsvgéd that thg can be characterized by the feliog
features:

» People wrk in different locations and at #frent times on a shared taskn& and mongare spend
for planning and coordination of theovk process. The plan can not be modeled on a fine-grained
level before thexecution starts. Therefore, theayphase wrkflow approach is not applicable for
them. Basicallythe project plan must be seen as anwadgmt to a process model.

» Large-scale deelopment processes are long-term processes. Requirements on the outcome may and
will, as a fact of life, change during processeeution. Therefore, the need teise and adapt the
project plan and the results on the fly is inherent in these processes. Change processes are a central
reason for gceeding the project schedule andibet.

 During the process, a lot of decisions are made by each participant. These decisions influence each
other and base on each othdary of these decisions are made on unstable ground: required
information may be missing when the decision is made. Hence, decisions may crartgeey
raising the need for an automatic change management and giopagechanism.

These features lead to certain requirements for process-support tools which are in the focus of our
work:

» The tool has to support the planning of tharkyprocess. The resulting plan must be mapped
automaticallyonto an operational evkflow model because ax@icit implementation phase (as in
two-phase wrkflow approaches) auld be too costly and too time consuming.

» Spatial and chronological separation of the tasks necessitates that the emhseankind of
“intelligent memory” for its users, in order to allgarticipants to understand the rationales behind
decisions and to access kst informations.

« If changes ta& place, the tool should automatically inform the appropriate usedet@rmine the
set of users who arefa€ted by a change, the tool has to incorporate a notion of dependencies
between information and a generic and/or domain-specific theory for their generation [27].

2.1 Our Answers - An Owerview

To address the mentioned problems, wegirgtee knavledge-based techniques with ankflow
management approach. Here weeghn @erview over our approach. The xtesection gies more
detalils.

Explicit process & poduct modelsBased on kneledge and softare engineering approaches [5, 6,

38], we deeloped an ontology which alis to describe ark processes. The basic notions of this

ontology are process models, methods, product models, parameters, and agents. Using these concept
users are able to define a project plan.

A workflow engine whicinterprets the pocess modelsthe basic approach of kmtedge-based
systems, is to distinguish between thewlealge about a domain and the interpreter which use®it. W
adopted this approach andrdped a wrkflow engine which usesplicit process & product models
as input to support thexecution of the project. The engine supports project coordination, e.g. by
providing worklists for its users, and is used i@kange information between team members.

Genente dependencies between information based on dltegs modelSince change management is

a must for engineering project support, wétka generic dependeyntheory into our wrkflow engine

which automatically xracts dependencies from the process model. Based on these dependencies, our
system is able to proaetly send notifications to users who areeted by a change.

Allow to refine and xtent the ppcess model on the fl@Qur system alls to alternate between

planning andxecution steps. Because of the interpre¢atiorkflow engine process models can be
extended during»ecution. Furthermore, we pride the concept of a method within our ontology
method describes aay to reach the process goal. This concept enables a project planner to select a
solution stratgy for a process duringeecution.

Allow to dhange planning decisionsSince the wrkflow engine ,,sees” the current project plan only as
data and not as program code, it is possible to change the plan onTihe thange propagon
mechanisms are able to inform appropriate users about such a change. This |lezais\dier; €
updated wrklists or n&v inputs for a task.

In the net section, we gie an @erview over our applications. In the follang these will be used as
examples for our approach.

3 Applications

Our approach is applied to avdesign domains: Urban Land-Use Planning and Soé&\kngineering,
which will be introduced in this section.

3.1 Urban Land-Use Planning

In Germary, municipalities are responsible for determining and controlling the futvetagement of

the cities. One step in doing this is tonk out a Igally binding land-use plan. This plan consists of

textual stipulations and stipulations by aiag, which determine the type andgdee of liilding and

land use for areas within the municipalifpr example, thg might state that a certain area has to be a
residential-only area (type otittdding and land use), or specify the maximum amount of y$ore

allowed and the heights of péical structures (dgee of liilding and land use). lgally binding land-

use planning is part of localgeslation and therefore there are certain requirements for plan

development as well as for the completed plan. The procedure of setting up a plan has to be traceable,
and consistent with theva

For this domain, we used our techniquesuidoa system which ges intelligent support to an urban
planner The IBP-System (Intelligenter Bebauungsplan - Intelligent Land-Use Plan) focuses on the
process of transforming a first design study into tgallg binding plan [28]. ¥pically, it will be

performed by a single person at a timet, with laige temporal gps in it. Setting up a plan might &k
several years time, during which participants and planners might change. Therefordrérnsedy

important for agbody working with this plan to &ep in mind the dependencies and rationales for all
stipulations. Morewer, there is a great benefit from pre-structuring the urban planning process, in order
to male the process morefieient and not to rgdect ary legal decrees or standards. After the plan has
been completed, its intentions should be communicated to interested citizerestorm

The IBP-Project is an interdisciplinary research project between three research groups in Computer
Science, Evironmental Planning and Jurisprudende two years' vork, we set up a detailed model

of the design process and thedlved data. Basing on this, wailh a support system for land-use
planning which keps track of the planning process andiplies information filtering and tool (CAD,
Geographic Information System/GIS) configuration for these planning tasks.

3.2 Process centerd software dex/elopment3

In Software Engineering, the need for process engineering has becwvimesg21, 17]. In order to
improve the softwre process and the soétse, process modeling, project planning and management,
change control, quality measurement and reuse [22, 86]tbde introduced.df this, seeral process
centered softare deelopment systems to guide, reason about, control, and coordinatarsoftw
processes [12, 15, 39, 36Madbeen deeloped. Wo characteristics of soffwe processes that
influence research in this area are their long duration where necessary changesmdc¢berlage

2. The project is supported by thelkswagen-Stiftung. Imolved are in Computer Science: Prof. Blichael M. Richters
group “Expert Systems / Artificial Intelligence”, in Jurisprudence: Praf RDdolf Stichs group “Science of lva and
Administration”, and in @wn and Erironmental Planning, the group “CAAD and Planning Methods” of Profirioy.
Bernd Streich.

3. This work is supported by thBeutsthe Forschungsg@meinsbaft, Sonddorschungsbegich 501 Teilprojekt B2

contingent of create processes, which cannot be automated. Therefore, computer based project
planning and enactment support has to bebfle and to leae room for situation dependent decisions
by the userThe methods and techniques of our approachigecolutions for computer based
software process support, with respect to both characteristitginwhe MILOS [39] project, we
implement a process centered saitevde@elopment emronment. A future goal of the project is to
integrate softvare measurement and the reuse of products, measures, and process models in our
approach.

4 CoMo-Kit System Architecture

To huild our applications, we &eloped the CoMo-Kit system which defines and implements an
ontology for project planning and incorporates an interpreter for its operationalization.

Figure 2 shws the basic system architecture of CoMo-Kit [28], [29]. It consists ofain parts:

» TheModelerdefines and implements an ontology which can be used for project planning. Using the
Modeler team members are able to plan a comgksign project.

» TheStheduleroperationalizes the project plan. It supports #ezetion of a project and manages the
information produced.

Project Planning
(Modeler)

plan
changes

Figure 2 Architecture of the CoMo-Kit System

For a nev development project, in a first step euitial projectplanis created using the Model&or
our application domains, weoped generic project models which are initial project plans.

This plan contains descriptions of the processes to be done, a definition of the product data structures
which must be created during plaxeeution and a list of the team membemsined in the design
process. The mé section gplains this in further detalil.

The current project plan is used by oun&flow Management System, the CoMo-Kit Schedtier
support projectxecution. The Scheduler interprets the plan information. It supports team members in
their work by

* generating wrklists,

* providing access to relant information for eecuting a process,

forwarding results of a process to other team members,

allowing to delgate processes to other team members,

supporting the supervision and management ofydtde processes,

notifying the appropriate persons about changes within the project, and

 enabling further project planning using alreadgikable results of the project.

Now we &plain the ontology of the Modeler
5 Project Planning: The Ontology of the CoMo-Kit Modeler

Project planning can be seen agdaleping a model he the project should be carried oub. describe
cooperatre derelopment processes, our Modeler uses an ontology consisting of four basic notions:
Process Models, Methods, Product Models and Resources. The term ,process model“ comes from
software process modeling.aNise the term ,task” syngmously In the follaving, these terms are
defined asdr as is necessary to understand this papeitting the syntactical details of our project
planning language. These details are also hidden from the user by a graphical uaee interf

5.1 Process models

A process is characterized by a set ofvitatis (e.g. delgation, product creation) to b&ecuted in
order to reach the process goal. Our application domains basically deal with the production of
information. In contrast production processegehatysical structures (cars, computers) as central
output which cannot be phically stored in a computer system. Information which is/aglefor the
project is described in the project plan. Therefore, we assouate@ocess with a set of input and
output parameters. If a parameter is modified in a process, it is modeled aohpuiput. In the
project plan, we are only able to state which type of information is used or must be produced.
Example: The process ,requirements engineering“ of the acdtprocess modeling application
uses an object of type ,Informal problem description” as input and produces an object of type
~-Requirements document” as output.

For every input the flags mentioned in table 1 are defined. The flags are mukealisive.

Table 1: Parameter flags

Flag Name Meaning

needed for planning | The input must bevailable before the planning of the process
starts

needed forxecution | The input is not needed for planningtlit must be ailable before
the eecution starts.

optional The input neither needed for planning nor for enactmenti{b
may be helpful to heae).

Outputs of a process may be optional or required.

Additionally, for every process a precondition and a postcondition may be defined. Preconditions are,
for example, used to check if the inputs fulfilvgh requirements. Postconditions are, f@reple,
used to check if the output of a process has a desired quality
Example: I6r a process ,implement program modules” the precondition may be ,all module
specifications completed“ and the postcondition may be ,module critypteLIMIT*.

When processes argezuteddecisionsare made which result assignmentsf values to the output
parameterOur appoad assumes that thers a causal dependency between the available inputs and
the poduced outputs of a pcessWe work on the principle that during project planning only inputs
are associated to a process which arezaeteand necessary for reaching the goal. Limitations of this
assumption and solution for the resulting problems are discussed in [10].

For every process, the planner may state criteria which must be fulfilled by agents toueel atio
work on the process duringexution. for example for an ,implementation process” in the saitev
engineering domain, an agent shouldehskills inSmalltalk-80 pogrammingand belong to

departmenZFE 153

5.2 Product models

To describe product models, an object-centered approach is usedlopted the term ,Product

model“ from softvare process modeling approaches. Basidhié/term describes data types. As usual,

we distinguish between product classes and product instances. Product classes define shared features
for a set of products. Classes can be structured in an inheritance lyieradahclude a set of slots to
structure the product. Ewy slot has a type and cardinalifypes may be other product classes or basic
types (e.g. SYMBOL, STRING, REAL,...). Using other product classes as the type of a slot creates
comple object structures (part-of decomposition). A product instance is an instance of a product class.
For sale of brevity, we will use the term “product” for “product instance”.

Figure 3 shws a part of the product class hieraremd an product class editor of the urban land-use

planning application.

MoKit Concept Hierarchy on: IB

CoMoKit File Edit Compile Browse Relations View Language

MoKit Concept Editor for Mag der baulichen Hutzun

CoMoKit File Edit Language

T

Attributes:

Denkmalschutzgebiete
Grabungsschutzgehiete

Flachenbezogene nachrichtliche Ubernahme }Schut Iswigisungen nach|
Schutzéemelsausweusunéen nach|

Lineare Festsetzungen

Lineare Festsetzung nach
9 Abs. 1 Nr. 11 BauGB

Lineare Festsetzung nach Yersorgungsanlagen

9 A 1 1r. 19 BauGe
Lineare Festsetzung nach Stiutzmauern

9 Abs. 1 Nr. 26 BauGB
Lineare Festsetzung nach Baulinien

22 Baunvo

Lineare Festsetzung nach Strafenbegrenzungslinie
Mr. 8.2 Planzy

AnschluB anderer Flachen an Ver|

Lineare Festsetzung nach
Mr. 15.14 PlanzV

Punkiuelle Festsetzungen MaB der baulichen Mutzun

FPunkiuelle Festsetzung nach
9 Abs 1 Nr. 1 BauGB

FPunkiuelle Festsetzung nach
9 Abs 1 Nr. 2 BauGB

Abgrenzung unterschiedlicher Nut)

pn I’ﬂ

aAnzahl der Vallgeschosse B
Baumassenzahl

GRZ
Hbhe der baul. Anlagen

add... |{Duplicate..

Delete.. |

Show attributes:

O values
O subparts
@ unspecified

Pri [arz

Default value:

Edit_|

Attribute type: | Dezimalbruch

Set.

Cardinality:
@ Canjunction
O Disjunction

O Interval

min: |1_§

I3 Global Attribute T3 Defines Pan-Of

a

GFZ:

Figure 3 Product model definition tools

5.3 Methods

A method defines a solution strgyeto reach the process goabrfevery process, there mayist a set
of alternatve methods. This set might betracted from old project traces and stored in xpegience

factory” [3]. To solwe a process, a method has to be applied. Our approaess alithermore to define
nev methods dynamically.e. during project planning andexution (see Chapter 7).

Methods arexecuted by agents (see b&)oNot every agent who will be responsible for a process

may hae the abilities toxecute gery method (Br example, an ,implementation process” can be
carried out by using the methods “Implement in C++" or “Implement in Smalltalk”. The planner must
be able to specify that deloper ,Mr. Miller” is able to implement the sofewe in C++ Int not in
Smalltalk). Therefore, we alloto describe agent bindings fareey method.

We distinguish between atomic and compjer composed) methods.

» Atomic methods assigralues (i.e. instances of product classes) to paramBtersess scripts
describe for humans thwoa given process is to be sel.Process ppgramsare specified in a formal
language so that computers can s@wprocess automatically without human interaction.

» Complex methods describe the decomposition of a process imoadesubprocesses and define a
product flav graph between the subprocessepraduct flow gaph consists of nodes which define
parameters & (sub)processes, and links which relate parameters to processes. The direction of the
link determines if the parameter is an input or an output of the pradesssume that theis a
causal dependency between aqass and its subpcessegsee chapter 6.2).

Subprocesses can be further decomposed by methods, resulting in a process decomposition tree. Figur
4 shavs an gample process decomposition of the SafevEngineering domain. One can see that

there are tw alternates to sole the process ,Implementation Process”, namely ,Implementation

with Structural ‘€sting” and ,Implementation with Functiona&ting®. Both methods decompose the
process into seral subprocesses. Method ,Implementation with Structesting®, for éample,

defines fie subprocesses: ,Create Operating Documentation®, ,Perforgrati@n”, ,Create €st

Data using Source Code*, ,Create Source”, and ,Generate Object Code*.

Fask

rthod Hierarchy: IEE

7

CoMoKit File Edit View Language

[

1
|
’]Generate Object Code o
;'|F'en'0rm Integration
0

. —— . —. / . _ [] Process
&mplementatmn with Functional Testing Create Test Data just from Requirements]
S Create Operating Documentation] :} Method
Implementation Process = —
% ——» Process
“\ //’|F'en'0rm Integration Decomposition
=
wmplementation with Structural Testing _s{Create Test Data using Source Code] | .
Generate Object Code - Qteﬁn%twe
NCreate Qperating Documentation] etho
£ |> =

Figure 4 Process decomposition

In Figure 5 the product fle of method ,Implementation with Structura¢gting” (see Figure 4) is

given. One can see, that the ,Design Document® is used by the process ,Create Source”. The resulting
product is ,Source Code".df reasons of simplicity the type of the products is not displayed in the
figure.

CoMoKit Fle Edit View Language

-~ 3
I’/ Comprehensive Software
N Requirements

—

— T

- -
{ Design Document
LT
—
___‘_‘—\—__
s __—h__q_h‘-——___
—

Create Operating

Documentation

\\ /,/ Y ores o) :
,/__ —_____-.\“ I, :._':-\ ce L :I/. If
{ validation Document) \ / /// — ;'
e — \\\\ \ e // ¢
W ”“
= Z
I B !
[Create Test Data using Source Code] [Generate Object Code] L
[Process
. e | Product
{ External) = K : .
L —_ L__f___\ — g Product Flev: In/Out
----------------- ——ﬂ%;cie DDc:umentH\) T Product Flov: MOdIfy
T
Figure 5 Product flo w defini-

5.4 Resources: Agents & Dols
Resources are used for project planning and progessit®on.Agentsare actie entities which use

(passve)toolsfor their work.
Processes arexecuted by agents. \distinguish betweeactors (i.e. human agents) amiadines
Our system stores information about the propertiesafyeagent. Br actors, we distinguish three

kinds of properties: qualifications (q), roles (r), anghoization (0).
During process»acution, our system compares the properties requireddiding on a process with

the properties the agents posses. Thisvallim compute the set of agents which are ablggoute the

process.
Example:In a project plan, it is defined that the process ,implement useracéérghould be
executed by an actor which has skills in using thsyelvorks Interbce Builder (), is a

.programmer (r)“, and wrks in ,department Dep 1.4 (0)".
Having sketched our ontology for project planning, wevnwill explain hav the execution of plans is

supported.

6 Project Execution

Our methods and techniques do not automate the project planningeantian. Instead, the project
members are supported and guided in theividies. Information is xchanged interaately between
project members and the Scheduldre folloving scenario gies an impression what theegution
support of our approach looksdilon the user inteate leel. Sections 6.1 and 6.2vgimore technical
details of the system design. WMave support change processes is described in Chapter 7.

Figure 6 shwrs a snapshot of theorklist of agent named ,Barbara Dellen®. The agent can switch

o- Kit Desktop

% m Barbara Dellen

Waiting Goals

=

Requirement Process

Installation Process

4.2.4 Develop System Architecture]
Implementation Process

Design Process

Tools — H{:Sept Logout

Figure 6 Worklist of an a gent

between dilerent agendas, in which the processes that argadetkto the agent are stro. Each
agenda collects processes ifaliént states: processeaiting for execution (symboletter tray), in
progress (symbgdaper sheetpr suspended (symbpin). The waiting processes can be selected,
planned or xecuted by the agent. In Figure 6 the agenda with the proceasiegior execution is
displayed.

In this scenario, the agent ,Barbara Dellen* decidesakwn the process ,4.2.4 elop System
Architecture®, by pushinguiton ,,Accept” in Figure 6. This decision is propéed to and stored

within the ScheduleBecause the Scheduler guides the agerarassfnecessary in his/her aities,
.Barbara Dellen® is requested to select a method (see Figure 7). The information abuvatidbéca
methods isdracted from the process model. After the agent selected one of them by pusting b
~Select”, the decision is returned to the Schedlera result, the subprocesses defined by the method
become part of the current project plan.

The net task of the agent is the dg&tion of processes to other agents. Figure &stzowindev,
where the processes actually to be ghkaied are shen in the upper left agenda. By pushingtbn

Piease select a method for the task:
4.2.4 Develop System Architecture Inputs
v description language: OMT - Select v/ Functional Description of the System |2
description language: 50U c
textual
Show Structure ¥
|self ‘functional_description.doc’ i
Suspend g ol
| Cancel Framemaker File:

functional_description.doc Open

Defing Change Meathod ‘ fccept Changes || Lo 21 & Eesef

Figure 7 Method selection of pr ocess ,4.2.4 De velop System Ar chitecture®

Delegate Tasks

Subtasks to delegate Possible agents for: 10-erify Document
ldentifynonfunc. Meeds = ks, von Knethen 2]
Describe existing System hdr. Kronenburg —
DescribeEnvironment Barbara Dellen Delegate
Werify Document rr. hdiller
Describelser Scenarios hr. Muench
~ hds. Kohler
Gluit I
Delegated subtasks Responsible for: [0-Describe used v show Structure |
Identify viewOriented MNeeds 2l v 2l

Diescribe used Vocabulary
Create Summaryof func. Needs

Figure 8 Delegating pr ocesses

.Delegate”, the process afity Document” will be delgated to ,Mr Muench* and ,Ms. Khler”. The
agenda in the iger left side of the wind@e displays the processes thavdalready been dejated. If
one of them is madd, the laver right agenda displays the agents to whom the process has been
delegated.

The last snapshot (Figure 9) sisthe creation of a FrameMakdocument. After an atomic method

has been applied, the agent cameha look on the consumed products in the upper left agenda. In this
case, the process ,Analyze Requirements” consuneptaducts. The products to be produced are
shawvn in the upper right agenda. After selecting an output product (here: ,System Architecture®) that

Inputs: QOutputs:
Functional Descriptionof thg! " System Architecture (Systeqs GOAL: =
Functional Description nfthl ‘ DESCRIPTION:
[self "Architecture fms * T FrameMaker File:
! 1
i Architecture fins Open |
] B =
[hide undefined values
up | 4 1 ¥ Reset |

rTask Processing

i
! Old Methods ! Cancel ! Suspand | Finished H
| 1 ! 1]

Figure 9 Creating pr oducts

has to be created, the agent can edit it in twerd@art of the winde. In this scenario, the product is a
FrameMaler document with name ,Architecture.fm5“. By pushing the ,Open®, the document can be
edited.

6.1 Recording the Plan

During project gecution, the process model is sucoesgiinstantiated. d clarify this and to separate
the two levels of workflow description (i.e. model and instance), we usefaréifit terminology
Furthermore, there is no one-to-one relation between théestels, e. g. a process in the model can be
instantiated seeral times. An instantiated process is called goal, an operator is the instantiation of a
method and aariable is detied from a parameter

To describe he the Schedulen@cutes a project plan, wevsadefined state transitions of the main
instantiation elements, namely goals, operators aridhles which are lirdd by decisions the agents
made. A state transition is caused byané An &ent is triggered by an user or a state transition of a
related instantiation element.

For each of those four elements, their states and possible transitions wiléieed nov in order to
clarify how the Scheduler operationalizes a process modeldécumentation purposes we use the
OMT [37] notation.

Goals

A goal has tw basic statevalid andinvalid. Valid means that the goal is something to loeked on:
one should search for a method to reach this goainvatid goal is currently notalid, but it may
become so in the future. A transition fraadid to invalid and vice ersa is possible at ptime.

Besides this tw basic states, the statalid is split in sgeral sub-states:
initialized
The initial state of aalid goal.

acceptable for planning
An agent can n@ create a plan hothis goal can be reached, i. e. he may choose an operator for this
goal. To become acceptable,awonditions must hold: the agents which arenadlb to plan this goal
have to be determined and the pre- and postconditions of the geaidie satisfied. In otheronds
it is possible to create a plan for this goavno

accepted for planning
One of the agents has chosen twkwon this goal, i. e. to try to find an operator for this goal.

performing
A (possibly diferent) agent is trying to apply an operator

satisfied
An operator has been successfully applied.

unsatisfied
The operator could not be applied or an attempt to appylett

The transitions for galid goal are shan in Figure 10. The transition from the initial stat#ialized to
acceptable for planningneans that it is dejated for planning and its preconditions are satisfied. It
will go back to thenitialized state if the delgation is dravn back or if the preconditions are no longer
satisfied.

Once a goal iscceptable for planningan agent may pick this goal and start to choose an operator for
it. The typical vay for a goal is that if it is accepted tonk on, first an operator will be chosen, then an
agent will try to apply this operatdf he succeeds, the goalsatisfied There are somexeeptions to

this. If the goal cannot be reached by applying the opethtgoal will beunsatisfied Two things

might hare happened: Either the wrong operataswhosen or the agenasvnot able to apply the
operator (e.g. @as not &miliar with a demanded technique). The corresponding transitions go to
accepted for planningn order to choose a &frent operator) or tperforming(in order to retry the
operator application). If no appropriate operator can be fouadaepted for planninghe agent can

give back the goal completeiygets back intacceptable for planninggain, so that another agent can
accept it.

At some time in the future, the results of the chosen operator may be no longer suitable. It might
become necessary tamvk agin on this goal. In this case, the goal is set fsatisfiedto acceptable
for planning

Operators

An Operator has - similarly to a goal -dwasic statesetractedandselectedvhich indicate that an
operator is part of the current plan or not. An retracted operator may become selgctetag
selected operator may be retracted gttane. Theselectedstate is refined by a couple of sub-states:

valid

inifialized

:

acceptable
for planning

:

accepted
for planning

:

performing

N -
TT

)
/

[satisfied

—
)

unsatisfied J

:
()

Figure 10 State transitions of a goal

initialized
The initial state of an operator
acceptable forxecution

The operator can be chosen by an agent, that means: It is determined which agents may try to apply
this operator and the operawpgreconditions are satisfied

accepted forxecution
An agent has decided tgexute the operator

execution started
An agent has started tgexute the operatore.he is wrking on it. The idea of this state is that
operators which are beingorked on should not be retracted as easy as operatcseptable for
execution In that state, the agent has chosenddkwen the operatorub he has actually not spend
ary time for this job If the operator is retracted, naxk is lost.

execution finished

The agens work has been finished. Mahe postconditions lva to be galuated in order to check if
the goal has been reached.

execution failed
The agent thinks that the goal cannot be reached using this operator

execution succeeded
The goal has been reached using this operator

Figure 11 shas the transitions for an operator: The first transition goes iftgialized to acceptable
for execution as soon as the preconditions are satisfied and the operatogaeattle

After it has been madd asacceptable forxeecution an agent can choose the operator fecation
(accepted forxecution and start to wrk on it gxecution started)The point in time when an agent
starts to wrk on an operator cannot be determined by the schedhisrinformation has to be
provided by the editor which is used by the agent, xangple when an agent starts retimg input
information or bgins typing. If an editor cannot pride this kind of information, the operator changes
from accepted forxecutionto execution startednmediately When the agent considers hisrwto be
done, he will confirm this, e. g. by pressingugétén in the editgrand the operata’state will change to
execution finishedAfter this - if the postconditions @ been successfully chestk- the operator
moves toexecution succeeded

If the postconditions are not satisfied, the operatgigte changes &ecution failed The agent no
chooses what to do: Either it is a minor problem. Then hesdaand wrks a@in on the operator
(execution starteld Or he decides that he cannot gdllve goal with this operator and changes its state
to acceptable forxecution Now the agent who has chosen this particular operator is igeloar
deciding what to do: One possibility is to\eahe operator incceptable forxecution This means

that the goal can be achex with this operatoibut the &ecuting agent as unable to do this. The

other possibility is to choose am@perator which is represented by the state transition of the goal
from unsatisfiedo accepted for planning Figure 10.

Decisions

A decision represents the selection of an operator or gadiele result. A decision can valid or
retracted For example a walid decision for an operator means that the operator is part of the actual
plan, i.e. it isselectedAlso, rationales for decisions can be added.di8tinguish between hard and
weak rationales. Hard rationales for oaengt \alidity force the decision to becomalid or retracted.
Weak rationales will just be mentioned to the pges the uses task to change the status of his

p
selected

[initialized

:

[acceptable

for execution

:

[accepted

for execution

l

[execution

started

l

[execution

finished

>~

execution execution
succeeded failed

[retracted]

Figure 11 State transitions of an operator

S

decision. V¢ak rationales do not change the decisitw&h&ior and are not mentioned in the state
diagram in Figure 12. The states are:

hard rationales for validity notxasting
The decision isalid. There are no hard rationales for this, the decision can be retracted.

hard rationales for etraction not &isting
The decision is retractedytthere are no hard rationales for this. It can becatié agin.

hard rationales for validity ®isting

The decision isalid and cannot becomevailid until the last rationale forcing it to bald is
removed.

hard rationales for etraction &isting

The decision is forced to be retracted. It can only becain@ i all hard rationales for this are
removed

The Scheduler guarantees that there cannot be hard rationales foaiasthabdity at the same time.

hard rationales hard rationales
for validity for retraction
existing existing
hard rationales hard rationales
for validity for retraction
not existing not existing

Figure 12 State transitions of a decision

Variables
A variable may be in one of the folling states:

unassigned

The initial state of aariable. It has neer been accessed byyamser Users which wrk on tasks
depending on thisariable should &ep in mind that aalue might been assigned to thegiable in
the future.

assigned
The variable holds aalue.

irrelevant

An user has considered thariable not to be relant for the current process. Thariable has no
value.

These three statesugathe transitions sk in Figure 13. It is possible to change frony atate to
another The transition fronassignedo itself represents thadt that the ariables value has been
replaced by dferent one.

[unassigned

irrelevant]

assigned

Figure 13 State transitions of av ariable

6.2 Dependencies and Dependency Management

The Schedulerdeps track of the plasmexecution, and manages the dependencies betweerotke w
several agents did. ¥distinguish between twkinds of dependencies: user defined dependencies and
dependencies which argteacted from the process model. The depengemmnagement mechanisms
are discussed in detail in [10] and [29].

6.2.1 Representation of Dependencies

To record the agents’ acities, a dependegametwork is constructed. Dependencies are established
betweerdecisions, goalsandvariableassignmentsThey are formulated as logical implications. This
representation of the plané&ecution is simple enough to generate a record automatiaatystill

powerful enough to support change managemeithilthe state transition diagrams of Section 6.1,
dependencies occur as conditions for transitions. As soon as a decision or assignment changes its basi
state (e.g. a decision is retracted), it is easy to determinéealieaf assignments and decisions and to
calculate the éécts of this change. 8lemply an etension of the design model REDUX [34] for this

task. REDUX tracks dependencies resulting from process decomposition. CoMo-Kit as well as
REDUX use a futh Maintenance System (JTMS [11]) kmofrom Artificial Intelligence to manage
dependencies and to handle tHeas of changes &giently.

6.2.2 Automatic Derivation of Dependencies
Dependencies are automatically generated from the relations specified in the plan:

Goals and Subgoal©ne criteria for thealidity of a decision is thealidity of the goal it belongs to.
The \alidity of a subgoal is justified by thahdity of the decision for the operator of its parent goal.
As soon as the parent decision is retracted, the subgoals beeafite and as a result, the child
decisions are retracted, too. If the parent decision becaaidsagin, the decision for its children are
re-validated, too.

Product and Brts: A similar relation lile the one ab@ eists along the part-of hierarglof products.
Here, the alidity of assignments for subparts depend on #iielity of their parent-products.

Input-Output: The most important dependgmderives from the folleving assumption: An agent who
made a decision using some information and{edge about certain other assignments and decisions
might change his decision when the data has been changed. Therefore, justifications from all input-
assignments to the decision are generated based on the produtttfie associated method.

6.2.3 User defined dependencies

In addition an agent can edit dependencies manually: he/she camadédpsmdencies, modify or
remove self defined or automatically generated dependencies, in order to be notified more or less often.

7 Increasing flexibility of planning and execution

With the presented terms of the ontolpegplicit project plans can be created. These plans describe
the general course of action of projects.

In our approach an initial plan can be further specified duxagution. Delaying parts of the plan
specification until ecution has the adwtage that specific project kmedge such as products,
produced by preceding adgties, rationales for or @jnst decisions, and resource assignments, can be
used to complete and adapt the plan.

Furthermore, we prade basic mechanisms to change project plans as a reaction to changing
conditions or plan errors. By managing causal dependenciesfebts ef changes can be computed
and handled.

The following sections describe in more detaihour techniques lead to morexilele planning and
execution.

7.1 Refining the Plan

One goal of our approach is to allloth the planner and the project manager to delay planning
decisions until gecution, when thehave access to project specific information. Such decisions are
 opemator selectionThe selection of an applicable operator to s@\goal in the stasccepted for
planningcauses a state change of both the goal and the operator: the operator chaitigdiged,
the goal tcsatisfied For decision support, data from precedingwittis can be used oF example, a
manager is responsible for planning the test phase of implementedreofimput for this aatity is

the program code. The model pides two testing alternates, ,equalence class based testiragid
.code reading” (see Figure 4). Because thvemgjicode wuld generate mardifferent equralence

classes to be tested, the manager decideson 6f code reading.

« delegation of goals for planning activitieA. goal in the stataitialized has to be detgted to one or
more plannersThedelegation actvity triggers delgation events for each person the goal is
delegated to. If additionally alplanning peconditionsare satisfied, the goal a&ceptable for
planning The benefit of this late binding is that concrete resource assignments can be made,

depending on the current situation.

* delegation of opeators for execution activitiesPlanning a goal includes the dgdéion of the
selected operators to appropriate agergstlis, the planning agent triggers a dateon e/ent for
every selected agent. If one or more datéon eents occyrand theexecution peconditionsare

satisfied, the operator changesitaeptable forxecution Now each of the agents, who the goal has

been delgated to can accept the operator

Sometimes it is desirable to predefine the general course of action and to delay parts of the modeling

until execution: In doing so, project specific kviedge can be used for detailed modeling. aNawv to

extend the process models inadways:

» Adding n&v methods to the mod@uring execution, increasing process kviedge may result in
new solution approaches. The agent can addmethods to the process model. Theymeethod is
immediately mailable to the current projectoFexample, an agent defines axnmethod to create
test cases for a sofare program. He/shetends the process ,Implementation process* of the
example in Section 5.3, Figure 4 by asneethod named ,Implementation with Boundaglié

Analysis“ (see mawd parts of Figure 14).

ask and Method Hierarchy

AsSK and

CoMoKit File Edit View Language

»

Create Test Data just from Reqguirements]
Create Operating Documentation]

)
i Create Operating Documentation]

Create Source

Generate Object Code
Ferform Integration

hmplementatinn with Boundary Yalue Analysis

L1
>
—

___>

Create Test Data from Specification]
YCreate Operating Documentatian] J
>

£]

Figure 14 Extended decomposition graph of pr
.Implementation Pr ocess"

ocess

Process
Method

Process
Decomposition

Alternative
Method

» Refining methoddMany methods can be planned in detail only on basis of project specific
knowledge. Those methods stay unspecified in the initial model. The ,architectural de#sagn”
software product, for>eample, cannot be planned before thequirements documeniias been

produced.

As soon as the required information becomeslable, the refinement of the method can be
completed. Because the scheduler manages prodwadjoendencies, it informs the responsible

planner that the required information ismdable. Nav, the project plannemxénds the method
specification in the process model by adding peocesses, specifying the productfloetween
them, and refining the subprocesses within the method definition usingitadla product data.
The model changes are propsgg to the Schedulexhich in response updates its internal state.

» Adding nev qualificationsQualifications to solr a goal as well additional skills of the agents can be
added to the model. The Scheduler analyses theyoalifications and computes the set of agents,
who are allaved to sole the goal.

» Adding n&v resouces.Changing conditions may force to includeww@sources in the project.
Firstly, the nev resource has to be added to the model. Secamrglyurce specific skills ato be
assigned to it.

7.2 Changing the plan

During project gecution changing conditions and planning errors force the users to discard solutions.
These changesfatt the project plan as well as the produced products. As a result, the plan has to be
adapted to the mesituation. In such situations, the benefit of managing dependencies betertsn e

and plan states becomes visible: tieat$ of plan changes are handled by the systdectadl team
members can automatically be notified, and are guided in to react in an approgyidemapproach
provides the folleving mechanisms to react teemts @ternal to the system, or to state changes within
the plan.

7.2.1 Changing decisions

As described in the pvus section, the project members can select operators agdtdedgents
during eecution. If needed, these decisions can be rejected:

* Rejecting planning decisionshe decision for an operator can be rejected by sendetgpat event
to the selected operatds a result the &cted operator and the corresponding goal change their
states: The operator change®tecution failedthe goal returns tacceptable for planningSuch
changes can happen on abstract plannvejdeas well on a fine granularvé. Wth the managed
dependencies, faicted parts of the project model can be computed and state chaveyitg) e
dependent goals and operators triggered. Later on the planner can decide for another fitting operator

» Rejecting delgations Rejecting a detgtion may be necessary if time and personnel conditions
change (for gample an emplgee leaes the enterprise during projegeeution). Suchwents hae
no consequences if the goal is alreadyxiecetion by another agent.

7.2.2 Changing the process model

In case of errors in the model, rejecting a decision isfiogrit, and the process model has to be
corrected. Unfortunatelynodeling errors are often not noticed before the plan is alreadgdnteon.
Nevertheless, the errors\eato be corrected to guarantee a correetetion. Therefore, the system
has to preide mechanisms to propatg model changes to the plan xeeution, while sang as much
plan knavledge as possible. Errors can be eliminated within
* method & pocess definitiondVe allow to correct errors within method or process definitions e.g. to
add or remee pre- and postconditions, to remeanethods or to change the produciflBor
example, the product flw between tw processes ,architectural design“ and ,implementation” may
have the wrong direction: the process “architectural desigwhgly consumes the already

implemented programolguarantee a correctaxution, the project planner corrects the produet flo
within the model before he selects the method.

« agent bindingsSkills of agents may change, as well as skills that are necessargktoma task. In
both cases, the project manager can adapt the corresponding parts of the model.

8 State of Implementation

The CoMo-Kit Modeler as well as the CoMo-Kit Schedularehlbeen prototypically implemented for
a local area netwrk. The intgration of CoMo-Kit with the Wrld Wide Web, using the Mualvave
package, currently ales for plan &ecution and method selection/rejection [8]. Defining neethods
currently is not supported via thegiy

In Figure 15 the architecture of the CoMo-Kit Scheduler isvsho

Netscape
Browser

Mosaic
Browser Netscape

........ Browser

Internet

Visualwave
with
Visualworks
Client

LAN

Object-Oriented
To-Do Agendas Database GemStone

Dependency Data
Management Management

Figure 15 Architecture of the Sc heduler

The serer component of the Scheduler is implemented with the object-oriented database management
system GemStone by Servio Corp. The serv

* stores the current project model,

» handles the wrklists for eery agent,

« stores all data produced during procesatiorf, and
* manages dependencies between project information.

The serer component is accessible via a local areaortivom Misualworks for Smalltalk-80 and C/
C++-written clients. W developed clients in Mualwvorks which allev to

* accept processes twrk on

* plan a process

» change plans

» decompose processes into figeained subprocesses
* supervise ha the work on the subprocesses is adweing
* edit products

For every task, a separate client can be used for planning. Therefore it is possible tateligtab
overall planning process tosal agents via computer netiks. Clearlyit is also possible to
distribute the werall workflow (i.e. each of a processsubprocess) toseral agents.

9 Related Work

In the following, we discuss relatedork in the area of arkflow management and sofiwne
environments according to #tébility .

Within workflow management research, maublications emphasize the importance ofifie
workflow modeling and enactment. Unfortunatelgncrete solution approaches to thevalyjmoblems
are rarely described [4, 9, 31, 11, 23], and lack agiat®n of dependegananagement mechanisms.

A research field with more concrete solutions for this problem domain isasefemgineering. Main
approaches that\g special attention to #eility aspects are discussed here.

Marvel [25] follows a rule-based approach tgeess assumptions for the enactment of process steps.
The approach supports foavd-chaining of rules as well as backd reasoning. In Mael decisions

are not gplicitly represented. Therefore it is not possiblexpress causal dependencies between
decisions and products. Mechanisms for changing decisions are not discussed.

The MERLIN [24] approach has some similarities to Mérin MERLIN the process engine is some

kind of inference machine thaionks on &cts, specifying the (current state of the) safevproject.

Activities performed on documents change their content and state. Dependencies between the state of
documents are formulated as rules avaluated within the process engine. Extending the set of rules

and facts during xecution seems to be possible. As in Mardecisions are not represented.

Mechanisms to alle for changing the solution method and handling the resultiegtsfare not

discussed.

GRAPPLE [20] is based on aricit model of planning. Plan are constructed dynamically by
instantiating operators. In GRAPPLE it is assumed that, for planning and plan recognitledkyeo
is needed which is not included in operator definitions. Thislgdyge is gien as a set of assumptions

4. If the data is produced using atteznal tool (e.g. Framemak CAD Systems etc.) then only a reference to the file is
stored.

and handled by a Reason Maintenance System. Thvedage is mainly used to constrain the set of
applicable operators. Causal dependencies between decisions are not represented.

The SADE [2] ervironment preides a process language called SLANG to support enactment and
dynamic @olution of a process model.itN its reflive nature, it allvs the process engineer to define
the behwior of the process engine himself/herself. In contrast to our approach, the specification of
concrete gecution and change strgtes is left to the useAs a result, the SDE system does not
incorporate automated strgtes which handle thefetts of changes.

As in our approach EPOS [26] pides a set of predefined concepts to model project plans. Changing
preconditions, postconditions and the task decomposition of a plan (automatically generated by an Al
planner) is possible. If such changes octhe Al planner replans those parts of the plan that are
affected by the changes. In contrast to our approach, replanning is done automakiealiser is not
involved in the planning and replanning aities. It is not discussed what happens with those parts of
the plan that already ta been xecuted nor with the crated products. No mechanisms to notify

affected team members are proposed.

Currently CoMo-Kit manages decisions made during a projectibes not handle constraints which
restrict the possible alternmatis for a decision. work on the intgration of a constraint problem
solver to incorporate this functionalitin [19], for xkample, a similar approach is described.

For practical reasons, an igtation of our varkflow management techniques with standard project
management tools (e.g. MS Project) is important. [7] describes another approach to this problem,
although it is more restricted than CoMo-Kit in terms of change management and replanning.

10 Discussion & Future Work

The CoMo-Kit approach increases theitbdity of computersupported wrk processes by applying
knowledge-based techniques. The actual plan guides team members in theiodadyais the basis
from which traceability can be reached. Hence, CoMo-Kit has similandéalyes as currenionkflow
approaches. Alternating planning an@eution steps prxades the flgibility of groupware systems
without their disadantages.

CoMo-Kit can be used for project coordination [27]. The system notifies appropriate team members
after a change has happened. Hence, it reduces the risk that the outcome of a project is incorrect.

An extension of CoMo-Kit will deal with project schedulingpriRhis, we will adopt the techniques
developed by Sigrid Goldmann at Stanford \rsity [18].

The CoMo-Kit Schedulefrom an abstract point of wie contains a logically central component which
is used by all team members and is responsible doklist management and change pradam. W\
will adopt an agent-oriented approach, as kaneple in [34] or [1], to distribte the functionality wer
Local and Vide Area Netwrks.

A long term goal is the reuse of ,good"” old project plans fov teesks. This requires an ,Experience
Factory” [3] and dicient retriezzal and adaptation techniques. It is a basis for long-term process
improvements resulting in increased competitioweofor the enterprise.

11 References

[1] M. Barluceanu, Mark S.d%, Coordinating Multiple Agents in the Supply Chain, in: Proc. WET
ICE 96, (IEEE Computer Society Press, U. S., 1996), 134 -141.

[2] Segio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Safevprocess modev@ution in
the SRRADE ervironment, in:IEEE Transactions on SoftwarEngineering 19(12), December
1993, 1128-1144.

[3] V. R. Basili: The ExperienceaEtory and its Relationship to Other Impement Rradigms, in:
lan Sommerville, Manfred &ul, eds., Proc. of the 4th European SafevEngineering Confe-
rence, Lecture Notes in Computer Science/M6 (Springer ¥rlag, 1993), 68-83.

[4] Douglas. PBogia, Simon. M. Kaplan: Fility and Control for Dynamic \Wrkflows in the
wOrlds Erwvironment, in: Proceedings of the Conference oga@rational Computing Systems,
(ACM Inc., 1995).

[5] J. Breuler, W. van de \élde, eds.. CommonKADS Library for Expertise Modeling, (I0S Press,
1994).

[6] A. Brockers, ChM. Lott, H.D. Rombach, and M. &flage, MVP-L language reporénsion 2.
Technical Report 265/95, (Department of Computer Scienceelsity of Kaiserslautern, 1995).

[7] K.J. Cleetus, C. Caseal, K. Matsuaki, RCT - A Software Rickage to Manage Projects and
Coordinate People, in: Proc. WET ICE 96, (IEEE Computer Society Press, U. S., 1996). 162-169

[8] CoMo-Kit: On-line Web demo, http://wwwagrinformatik.uni-kl.de/~comokit/www-intedce.html

[9] W. Deiters, V Gruhn, R. Striemer. Der FUNSOHnhsatz zum intgrierten Geschafts-
prozeflmanagement, in: Mischaftsinformatik, 37, (1995).

[10]B. Dellen, K. Kohler, F Maurer Integrating Softvare Process Models and Design Rationales, in:
Proceedings of the elenth Knavledge Bases Softave Engineering Conference KBSE 96, (IEEE
Computer SocietyJ. S.), 84- 93.

[11]Gert Florijn, Timo Besamusca, DgnGreefhorst: Ariadne and HOPLa: Killele coordination of
collaboratve processes, in Proceedings of Coordination'96, CesenaSipailyger ¥rlag, 1996).

[12]A. Fuggetta, A Classification of CASEdhnologyin: Computer\ol. 26, (1993).

[13]J. Galler J. Hagemger, A.-W. ScheerThe Coordination of Interdisciplinarye@ms in Vgrkflow
Projects, in: Proc. IDIM-B5, (Kubova Hut, Czech Relblic)
http://mww.iwi.uni-shde/forschungsprojekte/contact/cont_2in.html

[14]J. Galler A.-W ScheerWorkflow-Projekte: \6m Geschaftsprozelimodell zur unternehmensspezi-
fischen Wrkflow-Anwendung, in: A.-W Scheged., IM-Information Management 10 1 (1995),
20-28
http://www.iwi.uni-shde/forschungsprojekte/contact/cont_4in.html

[15]Pankaj K. Gag, Mehdi Jazayeri: Process centered saféwvengineering @mronments (IEEE
Computer Soc. Pr 1996. - XlI, ISBN 0-8186-7103-3).

[16]D. Geogakopolous, M. Hornick, An Oervien of Workflow Management: From Process Mode-

ling to Workflow Automation Infrastructure, in: Distuibesd and &allel Databases 3, (1995) 119-
153.

[17]W. W. Gibbs, Softwre’s chronics crisis , in: Aci. Am. (1994) 86-95.

[18]S. Goldmann, Procura: A Project Management Model of Concurrent Planning and Design, in:
Proc. WET ICE 96, (IEEE Computer Society Press, U. S., 1996). 177-183

[19]L. Gupta, J. Chionglo, M.d%, A Constraint-Based Model of Communication and Coordination in
Concurrent Design Projects, in: Proc. WET ICE 96, (IEEE Computer Society Press, U. S., 1996).

[20]k. E. Huf, V. R. Lesser: An Plan-based Intelligent Assistant That Supports theaBaibgelop-
ment Process, in: Proceedings of the Third Symposium on &efttdelopment Emironments
(ACM Inc., 1988).

[21]Humphre, S. Watt, Recent findings in sofawe process maturijtin: A. Endres and H. @ber eds,
Software De&elopment Ewironments and Cases&hnology Lect. Notes Compute§ci., No. 509,
(Springer \érlag, Berlin, 1991) 258-270.

[22]Humphreg, S. Watt, Managing the Softave Process, SEI Series in Saiter Engineering, (Addi-
son-Weéslgy Publishing Compan Inc.)

[23]S. Jablonski: MOBILE: a Modular @vkflow Model and Architecture, in: Proceedings of the
Fourth International \Wtking Conference on Dynamic Modelling and Information Systems,
(1994).

[24]G. Junlermann, B. Peuschel, V8chafer S. WolIrf: Merlin: Supporting Cooperation in Sofane
Development through a kmdedge based Earonment, in: A. Finklstein, J. KRameB. Niseibeh
(editors), Softvare Process Modelling an@dhnology (Research Studies Press, UK, 1994).

[25]G.E. Kaiser M. Feiler S.S. Popach: Intelligent Assistance for Softwe Deelopment and
MaintenancelEEE Softwae, May 1988).

[26] M. Letizia Jaccheri and Reidar Conradechniques for process modebution in EPOS]EEE
Transactions on Softwe Engineering, 19(12):1145-1156 (IEEE Computer Society Press,
December 1993).

[27]F. Maurer Computer Support for Project Coordinationof®shop Summary), in: Proc. WET ICE
96, (IEEE Computer Society Press, U. S., 1996), http://fagvimformatik.uni-kl.de/~maurer/
WETICE96_Rpers/summarktml, 200-205.

[28]F. Maurer G. Pavs: Supporting Cooperat Work in Urban Land-Use Planning, in: Proc. COOP-
96, (INRIA, Sophia Antipolis,1996) 663-679.

[29]F. Maurer J. Rwlokat: Operationalizing Conceptual Models Based on a Model of Dependencies,
in: A. Cohn, ed., ECAI 94. (Johnildy & Sons, Ltd., 1994)

[30]M. Imai, Kaizen (Wtschaftserlag Langen Miuller Herbig, 1992)

[31]A. Oberweis: Modellierung und Ausfihrungrv Workflows mit Petri-Netzen. dubnefReihe
Wirtschaftinformatik (Eubner érlag, 1994).

[32]Ch. Petrie: Planning and Replanning with Reason Maintenance, Dissertatizersiiyiof Texas,
Austin, 1991.

[33]Ch. Petrie, M. Cutlisky. Design space nagation as a collaborat aid, in: J. Gero and Bund-
weeks, ed., Artificial Intelligence in Design ‘94 (Kluwer Academic Publishers, 1994).

[34]Ch. Petrie: The Redux' SenyProc. ICICIS, (Rotterdam, 1993).

[35]Proceedings Wkshops on Enablingethnologies: Infrastructure for Collaborating Enterprises,
(IEEE Computer Society Press, 1996).

[36]H. D. Rombach, M. &frlage, Directions in Softave Process Research, in: M.A¢élkowitz, ed.,
Advances in ComputerspWime 41 (Academic Press, Boston, 1995) 1-63.

[37]J. Rumbaugh, M. Blaha, WPremerlani, FEddy W. Lorensen, Object Oriented Modeling and
Design, (Prentice-Hall, Inc. , 1991).

[38]M.Verlage, Multi-viev modeling of softwre processes, in: B. Warboys, ed., Proc. Third Euro-
pean VWrkshop on Softare Processechnology (Springer—¥rlag, 1994) 123-127.

[39]M. Verlage, B. Dellen, AMaurer J. Minch, A Synthesis of twProcess Support Approaches, in:
Proceedings of the 8th Software Engineering and Knowledge Engineering Conference, SEKE’96
(Knowledge Engineering Institute, June 1996).

[40]Workflow Management Coalition: efminology & Glossary http://wwwaiai.ed.ac.uk/WfMC/
DOCS/glossary/glossahtmi

[41]J. Wainer M. Wesle, G. \bssen , C. M. Bauzer Medeiros, Scientifiariiflow systems, in: Proc.

NSF Workshop on Wirkflow and Process Automation, http://wwwmath.uni-muerdgérdbis/
Wesle/papers/wwvm96.html

Barbara Dellen recegd her Diploma in Computer Science from thevdrsity of Kaiserlautern and

works as researcher in the SFB 501 vyBlepment of lage systems with generic methods* located at

the Unversity of Kaiserslautern. The focus of her research is dynamic process planning, especially in
Software Engineering, dependgnmanagement, and design rationales.

Frank Maurer is a senior researcher in tkggeet system group of the UWirsity of Kaiserslautern. His
interests include design processes, saftaengineering, erkflow management, distuived
knowledge-based systems, and case-based reasoning. Current projects include the CoMo-Kit, which
supports the modeling and management of compbtek processes. He reged a Ph.D. in Computer
Science at the Umeérsity of Kaiserslautern in 1993 in the area of Hypermedia &\Hexge

Engineering for distribted knavledge-based systems. He is a member of the editorial board of the
IEEE Internet Computing magine and \&s a program committee member foresal national and
international conferences anamkshops.

Gerd Pers currently vorks on intgrating knevledge-based techniques andriflov management for
urban land-use planning. His main research interests ansl&hge Engineering, distnibed
knowledge-based systems, case-based reasoning, and object-oriented programming. In 1994, he
receved his Diploma in Computer Science from theugmsity of Kaiserslautern.

