
ar
X

iv
:m

at
h/

02
01

13
1v

1
 [

m
at

h.
C

O
]

 1
5

Ja
n

20
02 Classes of Lattices Induced by Chip Firing

(and Sandpile) Dynamics

Clémence Magnien

Abstract

In this paper we study three classes of models widely used in physics,

computer science and social science: the Chip Firing Game, the Abelian

Sandpile Model and the Chip Firing Game on a mutating graph. We

study the set of configurations reachable from a given initial configuration,

called the configuration space of a model, and try to determine the main

properties of such sets. We study the order induced over the configurations

by the evolution rule. This makes it possible to compare the power of

expression of these models. It is known that the configuration spaces we

obtain are lattices, a special kind of partially ordered set. Although the

Chip Firing Game on a mutating graph is a generalization of the usual

Chip Firing Game, we prove that these models generate exactly the same

configuration spaces. We also prove that the class of lattices induced by

the Abelian Sandpile Model is strictly included in the class of lattices

induced by the Chip Firing Game, but contains the class of distributive

lattices, a very well known class.

Introduction

The Chip Firing Game (CFG), the Abelian Sandpile Model (ASM), and the
Chip Firing Game on a mutating graph (which we will call Mutating Chip Fir-
ing Game or MCFG) are closely related models studied in physics [BTW87,
DRSV95], computer science [GMP98, BLS91, BL92] and social science [Big97,
Big99, Heu99]. These three models are variations of the following game: given
a graph and a distribution of chips on its vertices (called configuration), one
may select a vertex that contains at least as many chips as its outdegree, and
move one chip from this vertex along each of its outgoing edges, to the vertex at
the other extremity. Many questions have naturally arisen and given matter for
research about this game: given a graph and an initial configuration, does the
game stop after some time, or can it be played forever [BLS91, BL92, Eri96] ?
For a given graph, what are the properties of the configurations such that no
move is possible ? This has led to the algebraic study of some of these configu-
rations called recurrent configurations [DRSV95, CR00, Big99]. Given a graph,
what can be said about the set of the configurations that can be reached from
a given initial configuration [LP01, MPV01] ?

This paper is devoted to the study of this last question. Our purpose is to
study the set of configurations reachable from a given initial configuration, which
we will call the configuration space of the game. This set is naturally ordered
by the relation of reachability induced by the evolution rule. In [MPV01] it

1

http://arxiv.org/abs/math/0201131v1

was proved that the configuration spaces induced by CFGs have a very strong
structure, and that the class they form is situated between two very well-known
classes of orders (the distributive and the ULD lattices). Our aim is to determine
if the same kind of results also holds for the two other models. We will try to
determine the differences between the classes of configuration spaces induced by
each model, i.e. given the configuration space of a game, we will try to decide
if it is isomorphic to the configuration space of a game of another type. For
instance, given the configuration space of a CFG, does there exist a MCFG or
an ASM such that its configuration space is isomorphic to it ?

In Section 1, we give the definitions and known results used in this paper,
as well as the definitions of the models. In Section 2, we show that CFGs and
MCFGs induce exactly the same class of configuration spaces, and in Section
3, we will compare the configuration spaces of CFGs and ASMs. Since an
ASM is a special CFG, we will study under which condition a CFG can be
transformed into an ASM. We will give a sufficient (but not necessary) condition
of such a transformation, and we will give an example of a CFG that cannot be
transformed into an ASM.

1 Definitions and known results

We will need some definitions from order and lattice theory to describe the
configuration spaces of the models. We give them first, after what we give the
definition of each model, as well as the previously known results about them.

1.1 Posets and lattices

A partially ordered set (or poset) is a set equipped with an order relation ≤ (i.e.
a transitive, reflexive and antisymmetric relation). If x and y are two elements
of a poset, we say that x is covered by y (or y covers x), and write x ≺ y
(or y ≻ x) if x < y and x ≤ z < y implies z = x. We then say that x is a
lower cover of y (or that y is an upper cover of x). The interval [x, y] is the set
{z, x ≤ z ≤ y}. To represent a poset P we will use its Hasse diagram, defined
as follows :

• each element x of P is represented by a point px of the plane,

• if x < y, then px is lower than py, and

• px and py are joined by a line if and only if x ≺ y.

Two posets P and P ′ are isomorphic if there exists a bijection ϕ : P −→ P ′

satisfying: for all x, y ∈ P , x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y).
A poset L is a lattice if any two elements x, y of L have a least upper bound

(called join and denoted by x∨ y) and a greatest lower bound (called meet and
denoted by x ∧ y). The join x ∨ y is the (unique) smallest element greater than
both x and y, and x ∧ y is defined dually. All the lattices considered here are
finite, therefore they have a unique maximal and a unique minimal element.

A lattice is a hypercube of dimension n if it is isomorphic to the set of all
subsets of a set of n elements, ordered by inclusion. Hypercubes are also called
boolean lattices. A lattice is upper locally distributive (denoted by ULD) [Mon90]
if the interval between any element and the join of all its upper covers is a

2

Figure 1: From left to right: a poset, a lattice, a distributive lattice and a
hypercube of dimension 3

hypercube. Lower locally distributive (LLD) lattices are defined dually. All ULD
lattices are ranked, i.e. all the paths in the covering relation from the minimal
to the maximal element have the same length. A lattice L is distributive if it
satisfies one of the two following relations of distributivity (that are equivalent
and imply each other):

for all x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A distributive lattice is a lattice that is at the same time upper and lower locally
distributive, i.e. if the interval between any element and, on the one hand the
join of its upper covers, and on the other hand the meet of all its lower covers
both are hypercubes. In the sequel we will only be concerned with distributive
and ULD lattices. Figure 1 shows examples of posets and different types of
lattices.

For a more complete introduction to posets and lattices, see for instance [DP90].

1.2 The different kinds of Chip Firing Games

In this section we give the definitions of the Abelian Sandpile Model, the Chip
Firing Game and the Mutating Chip Firing Game. We begin by presenting the
features shared by the three models. Then we detail what is specific about each
of them. We will see that some models are generalizations of others. Finally,
we give some results about the CFG which will be useful in this paper.

1.2.1 Definitions

Each model is defined over a graph G = (V,E), called the support graph of
the game (undirected graphs will be regarded as directed by replacing each
undirected edge {i, j} by the two directed edges (i, j) and (j, i)). All graphs
are supposed to be multigraphs, i.e. multiple edges between two vertices are
allowed, therefore all edge sets are also supposed to be multisets. A configuration
of the game is a mapping σ : V 7→ IN which associates a weight to each vertex;
this weight may be considered as a number of chips stored in the vertex. The
game is played with respect to the following evolution rule, also called the firing
rule: if a vertex v contains at least as many chips as its outdegree, we can
transfer a chip from v along each of its outgoing edges to the corresponding

3

1 1

1

0

a b

c

d

a b

ab

c

c

c

ab

final configuration

initial configuration

Figure 2: An initial configuration of a CFG and its configuration space. Each
edge (σ, σ′) is labelled by the name of the vertex fired to reach σ′ from σ.

vertex. We call this process firing v. If σ is the configuration we start from, and
σ′ is obtained from σ by firing v, we write σ

v
−→ σ′, and we call σ a predecessor

of σ′.

Note 1.1 We consider that the firing rule cannot be applied to a vertex with no
outgoing edges because firing it does not change the configuration of the game
and is therefore of no interest to us.

The Chip Firing Game (CFG) [BL92] is defined over a directed graph. We
give an example of a CFG together with its configuration space in Figure 2. The
Abelian Sandpile Model (ASM) [BTW87] is defined over an undirected graph,
with a distinguished vertex called the sink and denoted by⊥. The sink can never
be fired. Finally the Chip Firing Game on a mutating graph (MCFG) [Eri96] is
played on a directed graph that changes during the game in the following way:
after the firing of a vertex, its outgoing edges are removed and new ones are
added in a pre-determined way (the vertex set V remains the same). A position
of a MCFG consists in:

• a directed graph on V ,

• on each node v ∈ V a nonnegative number of chips,

• for each node v ∈ V an infinite sequence Mv of multisets of nodes in V ,
which is the mutation sequence of v.

A vertex v may be fired if the number of chips on v is at least d+(v) (the
current number of outgoing edges of v). The mutation of the graph takes place
after the firing of the vertex. The outgoing edges of v are removed, and if
Mv = (S1

v , S
2
v , . . .) is the mutation sequence of v, then a new edge (v, w) is

created for each w ∈ S1
v . Finally, S

1
v is removed from Mv, so that Mv becomes

(S2
v , S

3
v , . . .). We define the initial support graph of a MCFG to be its support

graph in the initial position. An example of a firing sequence in a MCFG is
given in Figure 3.

4

1 0

3

a b

c

−→

0 1

3

a b

c

−→

0 0

4

a b

c

−→

1 1

2

a b

c

Figure 3: An example of a firing sequence in a MCFG, where the beginning of the
mutation sequences of the vertices are : Ma = ({c}, . . .),Mb = ({a}, . . .),Mc =
({a, b}, . . .)

These three games are strongly convergent games [Eri93], which implies that,
given an initial configuration, either a given game can be played forever or
it reaches a unique fixed point (where no firing is possible), called the final
configuration, which does not depend on the order in which the vertices are
fired. We will only consider convergent games,i.e. games that reach a fixed
point. We call execution of a game any sequence of firing that, starting from
the initial configuration, reaches the final configuration.

We call configuration space of a game C, and we denote it by L(C), the
set of all the configurations reachable from the initial configuration, ordered
by the reflexive and transitive closure of the predecessor relation. It is known
[BLS91, LP01, Eri96] that when a game is convergent, its configuration space
is a ULD lattice. This is a very strong property, because ULD lattices are very
structured sets. For instance, an immediate consequence of this is the fact that
all the firing sequences, in any convergent ASM, CFG or MCFG, from the initial
configuration to the final configuration, have the same length. We will say that
two convergent games C and C′ are equivalent if L(C) is isomorphic to L(C′).

We denote by L(CFG), L(ASM) and L(MCFG) the classes of lattices that
are the configurations spaces of convergent CFGs, ASMs and MCFGs respec-
tively. It is possible to guarantee that a CFG is convergent by the presence in
the support graph of a sink (a vertex with no outgoing edges) reachable from
all vertices [LP01]. This also holds for MCFGs. In the ASM, the presence of
the distinguished vertex which can never be fired (called the sink because it has
the same function as in the directed case) guarantees that the game is always
convergent.

These three models are very close to one another, and it is easy to see that
some of these are generalizations of others (the class of lattices they induce
are included in one another): since undirected graphs are particular directed
graphs, one can consider an ASM as a particular CFG, where each undirected
edge {u, v} with u, v 6= ⊥ is replaced by two opposite directed edges (u, v) and
(v, u), and where each undirected edge {v,⊥} is replaced only by the directed
edge (v,⊥). Therefore, we obtain that L(ASM) ⊆ L(CFG). Likewise, a CFG
can be regarded as a MCFG where the graph remains the same after each
mutation, therefore L(CFG) ⊆ L(MCFG). Our aim is to study the other
relations between these classes of lattices.

1.2.2 Previous results

Now let us give some definitions and known results about CFGs, useful for
simplifying the notations and proofs in the sequel.

5

Definition 1.2 A convergent ASM, CFG or MCFG is simple if, during an
execution, each vertex is fired at most once.

Theorem 1.3 [MPV01] Any convergent CFG is equivalent to a simple CFG.

Thanks to this result, all the CFGs considered in the sequel will be simple,
and such that their support graph has exactly one sink (denoted by ⊥) and such
that all vertices except ⊥ are fired during an execution. This is always possible
because, if this is not the case:

• either there is no sink and all vertices are fired during an execution; then
we can add an isolated vertex to the graph, which becomes the sink,

• or there exists a vertex v that is never fired during any execution but is
not a sink; then we can remove its outgoing edges without changing the
configuration space of the CFG, and v becomes the sink,

• or there is more than one sink; then we can merge them into a single
vertex without changing the configuration space.

In the sequel, we will restrict ourselves to CFGs for which the support graph
has no loops (i.e. no (v, v) edges). This is always possible because, for a simple
CFG C, if there is a loop on a vertex v (v cannot be the sink), we can replace it
by an edge (v,⊥), and the resulting CFG is equivalent to C, since C is simple.

Given a vertex v, we denote by d−(v) its indegree, by d+(v) its outdegree,
by d⊥(v) the number of edges from v to ⊥, and we define d(v) = d+(v)−d⊥(v).
Given two vertices u and v, we denote by d(u, v) the number of edges from u to
v. Given a CFG and a vertex v of its support graph, the initial number of chips
in v is denoted by σ0(v), and the number of chips in v in the final configuration
by σf (v) (since all the CFGs considered are simple, we have σf (v) = σ0(v) +
d−(v) − d+(v)). The number of chips needed to fire v is the difference between
σ0(v) and d+(v), i.e. 0 if σ0(v) ≥ d+(v), and d+(v)− σ0(v) otherwise.

The configuration spaces of simple CFGs can be described more easily than
in the general case. Indeed we have the following results:

Lemma 1.4 [MPV01, LP01] In a simple CFG, if, starting from the same con-
figuration, two sequences of firing lead to the same configuration, then the ver-
tices fired in each sequence are the same.

This allows us to define the shot-set s(σ) of a configuration σ as the set of vertices
fired to reach σ from the initial configuration. Given a CFG with support
graph (V,E), we say that a subset X ⊆ V is a valid shot-set if there exists a
configuration σ reachable from the initial configuration such that s(σ) = X . A
list (v1, . . . , vn) of vertices is a valid firing sequence if, for each i, {v1, . . . , vi} is
a valid shot-set. The configuration space of a CFG is isomorphic to the lattice
of the shot-sets of its configurations, ordered by inclusion. The join of any two
elements a and b is given by the following formula [LP01]:

s(a ∨ b) = s(a) ∪ s(b).

Here we give another way to characterize the configuration space of a CFG
with respect to the shot-sets: given a CFG and its vertex set, we can associate

6

with each vertex v, the set of the configurations in which v can be fired. Among
these, we distinguish the smallest configurations (the ones such that their shot-
set is minimal with respect to the inclusion), and we say that their shot-set
represent the first times at which v can be fired. For instance, in Figure 2,
the shot-sets of the minimal configurations in which c can be fired are {a} and
{b}, and we say that the first times at which c can be fired are a and b. The
minimal configuration in which a and b can be fired is the minimal point of the
lattice, and its shot-set is the empty set. We say that the first time at which
a and b can be fired is the beginning of any execution. The knowledge, for all
vertices, of the first times at which they can be fired, is a characterization of
the configuration space of a CFG, as it is stated in the following proposition:

Proposition 1.5 Let C be a simple CFG and let L = L(C). Let {v1, . . . , vn,⊥}
be the set of vertices of C. For each i,∈ {1, . . . , n}, let Xi be the set representing
the first times at which vi can be fired (i.e. Xi is the set of the shot-sets of
the minimal configurations at which vi can be fired). Then L is completely
determined by {v1, . . . , vn} and {X1, . . . , Xn}.

Proof : We will construct L from {v1, . . . , vn} and {X1, . . . , Xn}. Notice that,
for each i = 0, . . . , n, and for each x ∈ Xi, the set {vi} ∪ x is a valid shot-set
of C: by definition, x is the shot-set of a configuration in which vi can be fired.
We claim that all subsets Y of {v1, . . . , vn} satisfying the following condition:

for all vi ∈ Y, there exists Z ∈ Xi, such that Z ⊆ Y

are valid shot-sets of elements of L. Let Y be such a set. Y can be decomposed
into a union of sets Y1, . . . , Yk such that, for each j = 1, . . . , k, there exists i
such that Yj is the union of {vi} and of an element x of Xi (notice that the sets
Y1, . . . , Yk are not a partition of Y , some sets may overlap). Therefore, each of
the sets Yj is a valid shot-set of C. Since the shot-sets are stable by union, Y is
itself a valid shot-set of C. On the other hand, every shot-set of C satisfies the
condition above.

Therefore the set of subsets of {v1, . . . , vn} that satisfy this condition is the
set of shot-sets of C, which, ordered by inclusion, is isomorphic to L. ✷

This result will be useful in the sequel when we have to guarantee that
a modification made to a game does not change its configuration space. We
now have all the definitions and tools needed to compare the classes of lattices
induced by the models we have introduced.

2 Comparison of MCFGs and CFGs

In this section we show that the CFGs and the MCFGs induce exactly the same
class of configuration spaces. We already know from Section 1.2.1 that any
CFG is equivalent to a MCFG, therefore we need to show that any MCFG is
equivalent to a CFG.

We begin by proving that any MCFG is equivalent to a simple one. If a
MCFG is not simple, then there exists a vertex that is fired more than once
during an execution. In [Eri96] it is shown that the number of times this vertex

7

is fired is the same in every possible execution of the game: this vertex is fired
the same number of times in all the firing sequences that lead from the initial
to the final configuration. We need this result to prove the next theorem, which
is an equivalent of Theorem 1.3 for MCFGs.

Theorem 2.1 Any convergent MCFG is equivalent to a simple MCFG.

Proof : Let C be a MCFG with vertex set V and initial configuration σ.
Suppose C is not simple: there exists a vertex a which is fired twice or more
during any execution of C. The idea of the proof is to split a into two vertices
a0 and a1 which will be fired alternatively (the first firing of a in C corresponds
to a firing of a0 in C′, the second to a firing of a1, and so on), so that each
of them is fired strictly less often than a during an execution. Therefore, by
iterating this process, one can transform C into a simple MCFG.

Let G be the initial support graph of C. If for each vertex v, the sequence of
mutation is Mv = (S1

v , S
2
v , S

3
v , . . .), we define S0

v to be the set of outgoing edges
of v in G. Therefore from now on, a MCFG will be defined by a set of vertices,
an initial configuration, and for each vertex v an inifinite sequence of edge sets
Mv = (S0

v , S
1
v , S

2
v , . . .). At any time in the game, if a vertex v with mutating

sequence (S0
v , S

1
v , S

2
v , . . .) has been fired i times, then the current outgoing edges

of v are those given by Si
v. We then denote by li(v) the number of loops on

v (i.e. the number of occurrences of v in Si
v), by di

>(v) the number of edges
going out of v which are not loops (i.e. di

>(v) = d+i (v) − li(v)), and we define
di

<(v) dually: di
<(v) = di

−(v) − li(v)). Finally we define N to be twice the
number of chips present in the game.

Let us define the MCFG C′ in the following way:

• the vertex set of C′ is V ′ = V \{a} ∪ {a0, a1}, with a0 6∈ V and a1 6∈ V .

• for each v 6= a ∈ V , and for each i ∈ IN we define Si
v, the i-th set in the

mutation sequence of v, in the following way:

– for each occurrence of a vertex v′ 6= a in Si
v, there are two occurrences

of v′ in Si
v,

– for each occurrence of a in Si
v, there is one occurrence of a0 and one

occurrence of a1 in Si
v.

• for each i ∈ IN, we define the sets Si
a0

and Si
a1
, the i-th sets in the mutating

sequences of a0 and a1, in the following way:

– for each occurrence of a vertex w 6= a in S2i
a (resp. S2i+1

a), there are
two occurrences of w in Si

a0
(resp. Si

a1
).

– for each occurrence of a in S2i
a (resp. S2i+1

a), there is one occurrence
of a0 in Si

a0
(resp. one occurrence of a1 in Si

a1
).

– there are N − d2i
>(a) occurrences of a1 in Si

a0
, and N − d2i+1

>(a)
occurrences of a0 in Si

a1
.

• for any vertex v 6= a, σ′(v) = 2σ(v).

• σ′(a0) = σ(a) +N .

• σ′(a1) = σ(a).

8

v in C after i firings v in C′ after i firings

v v′

a

−→

v v′

a0 a1

a in C after 2j firings a0 in C′ after j firings

a

w

−→

a0 a1

w

N − 1

Figure 4: The outgoing edges of the vertices in the MCFG constructed during
the simplification of a MCFG.

An example of the construction of the graph is given in Figure 4.
We call the double of C the CFG obtained from C by multiplying by two

the initial configuration of all vertices, as well as the number of edges between
each pair of vertices. This CFG obviously is equivalent to C, and in the sequel
we will show that C′ is equivalent to the double of C. Notice that, except the
two vertices a0 and a1, C

′ is the same as the double of C. So if the firings of a0
and a1 take place in turn as stated before, then we can easily show that L(C′)
is isomorphic to L(C).

We first prove by induction that any firing sequence s of C, leading to a
configuration σ, corresponds to a valid firing sequence s′ in C′ (by replacing the
occurrences of a by occurrences of a0 and a1 in turn), leading to a configuration
σ′, satisfying Proposition 1 and Proposition 2 or 2′.

for all v 6= a0, a1, σ
′(v) = 2σ(v) (1)

σ′(a0) = N + σ(a), and σ′(a1) = σ(a) (2)

σ′(a0) = σ(a), and σ′(a1) = N + σ(a) (2′)

The initial configuration of C and C′ satisfy Propositions 1 and 2. So does
any configuration reached by a firing sequence that does not contain a, because,
except a0 and a1, C′ is the same as the double of C, and because for each
v 6= a0, a1, there is the same number of edges from v to a0 than from v to a1.

Let now s be a firing sequence of C that does not contain a, but leading to
a configuration σ where a can be fired. s corresponds to a firing sequence s′

in C′, leading to a configuration σ′ satisfying Proposition 1 and Proposition 2.
In σ′ a0 contains N + σ(a) chips. By construction, the outdegree of a0 is:
2d0

>(a) + l0(a) + (N − d0
>(a)) = N + d+0 (a). Therefore, the fact that a can

be fired in configuration σ implies that a0 can be fired in configuration σ′. Let
σ2 and σ2

′ be the configurations reached from σ and σ′ by firing a and a0. We
will show that these configurations satisfy Proposition 1 and Proposition 2′. We
have σ2(a) = σ(a)− d0

>(a), and σ2
′(a0) = σ′(a0)− d0

>(a0) = N +σ(a)− (N +

9

d0
>(a)) = σ2(a). The number of chips in a1 becomes: σ2

′(a1) = σ′(a1) +N −
d0

>(a) = N + σ(a)− d0
>(a) = σ2(a).

With the same arguments, we obtain that any firing sequence s of C corre-
sponds to a valid firing sequence of C′ satisfying Proposition 1 and Proposition 2
or 2′. Notice that, for each configuration σ of C corresponding to a configura-
tion σ′ in C′, the vertices that can be fired in both configurations are the same.
Therefore, there is no other valid firing sequence in C′ than those corresponding
to firing sequences of C. Therefore L(C′) is isomorphic to L(C).

✷

For simple MCFGs, the shot-set of a configuration is defined in the same
way as for CFGs. Likewise, the configuration space of any convergent MCFG
is isomorphic to the set of its shot-sets ordered by inclusion. We now show that
any MCFG is equivalent to a CFG.

Theorem 2.2 Any convergent MCFG is equivalent to a CFG.

Proof : Let C be a convergent MCFG. From Theorem 2.1 we can suppose that
C is simple. Let G = (V,E) and σ be the initial support graph and configuration
of C. To prove our result, we will use C to construct an equivalent (simple)
CFG. Given a vertex v, we define the initial degree of v to be its degree in G.
When v is fired (if fired at all), a mutation occurs and its outdegree changes.
Since C is simple, v will be fired only once before the end of an execution, so
its outdegree changes only once. We define v’s final degree to be its degree in
the final configuration (in the case where v is not fired during an execution, the
initial and final degrees are the same).

In the final configuration, v contains less chips than its final outdegree (oth-
erwise v could be fired and we would not be in the final configuration). Two
cases can occur: either v contains also less chips than its initial outdegree, or
not. In the first case, if we suppress the mutation of v (the outgoing edges of v
are the same before and after the mutation), v still cannot be fired in the final
configuration. If this is the case for all vertices, we can suppress all mutations
to obtain a simple classical CFG.

In the other case, there exists a vertex w which contains at the end of an
execution more chips than its initial outdegree (which means that the outdegree
of the vertex has been increased by the mutation). We will modify C to prevent
this from happening. We proceed in the following way: let d+(w) be the initial
outdegree of w, σf (w) be the number of chips in w in the final configuration,
and n be the number of chips needed to fire w (if σ(v) ≥ d, then n = 0). We add
σf (w)+1−d+(w) edges from w to the sink, and we set the initial configuration
of w to σf (w) + 1 − n chips. Figure 5 shows an example of this construction.
After this modification, w still needs n chips to be fired, therefore the first times
at which w can be fired are not modified, and w now contains less chips at the
end of an execution than its initial outdegree. We do this for every vertex that
does not satisfy this property, obtaining thus a MCFG that can be considered
as a CFG. ✷

Although the MCFG is a generalization of the CFG, this theorem shows that
in fact it generates no more lattices than the usual Chip Firing Game. As we
will see in the next section, the Chip Firing Game generates more lattices than

10

3

0

−→
0

2

3

2

−→
0

2

Figure 5: An example of a simple MCFG transformed into a CFG. On the left,
the initial and final configurations of the MCFG. Notice that the lower vertex
contains in the final configuration more chips than its initial outdegree. On the
right, the initial and final configuration of the corresponding CFG.

the Abelian Sandpile Model, which is a CFG on an undirected graph. Finding
out if a model defined as a Mutating Abelian Sandpile Model generates the same
lattices as the usual ASM would help understand these differences better.

3 Comparison of CFGs and ASMs

In this section, we compare the classes of configuration spaces induced by CFGs
and ASMs. Since we know from Section 1.2.1 that any ASM is equivalent to a
CFG, we try to determine at which conditions a CFG is equivalent to an ASM.
We will show that this is always the case when the CFG is simple and its support
graph has no cycle, by giving an algorithm to transform such a CFG into an
ASM. Since we know that any distributive lattice is the configuration space of
a simple CFG with no cycle [MPV01], we obtain as a corollary that the class
of lattices induced by ASM contains the distributive lattices. However, we will
prove that not all CFGs are equivalent to an ASM. Since examples of lattices in
L(ASM) that are not distributive appear often in the study of the model, we
obtain the result that L(ASM) is strictly between the distributive lattices and
the lattices induced by CFG, which is surprising because these two classes are
very close to one another.

We will try to transform CFGs into ASMs using local transformations on
the support graph of a CFG that do not change its configuration space. Using
a combination of these transformations, we will see that it is possible in some
cases to obtain a CFG such that its support graph contains one edge (u, v) for
each edge (v, u), i.e. the graph can be viewed as undirected, so that we have an
ASM. We begin by giving the two basic transformations we will use. They do
not change the vertex set of a CFG, only its edge set and its initial configuration.
Thanks to Proposition 1.5, we will prove that these modifications preserve the
configuration space by checking that the first times each vertex can be fired
are not changed, and that the CFG remains simple (indeed, in some cases, a
modification does not change the first times at which a given vertex can be fired,
but allows this vertex to be fired more than once).

The first modification is a basic one, that will be used several times with
small variations in the sequel.

Modification 1: Grounding
The grounding modification applied with factor n to a vertex v of a CFG con-
sists in adding n chips on v in the initial configuration, and adding n edges from
v to the sink.

11

Modification 2: Multipliying
The multiplying modification consists in multiplying by an integer factor n the
indegree and initial configuration of a given vertex v, without modifying the
rest of the CFG. It consists in:

• multiplying by n the initial configuration of v,

• adding (n− 1) · d+(v) edges from v to the sink,

• for each immediate predecessor u of v, adding (n− 1) ·d(u, v) edges (u, v),
and adding as much chips to the initial configuration of u.

The next two lemmas state that these modifications do not change the con-
figuration space of the CFG to which they are applied. The first result being
obvious, its proof is ommitted.

Lemma 3.1 The CFG obtained by applying the Grounding Modification to a
CFG C is equivalent to C.

Lemma 3.2 The CFG obtained by applying the Multiplying Modification to a
CFG C is equivalent to C.

Proof : Let C′ be the CFG obtained from C by applying the Multiplying
Modification to a vertex v with a factor n. L(C′) is isomorphic to L(C) since:

• The outdegree and the initial configuration of v have been multiplied by
n, thus v needs n times more chips to be fired in C′ than in C. Since, for
each immediate predecessor u of v the number of edges from u to v has
also been multiplied by n, the first times at which v can be fired do not
change. We can easily see that v can be fired only once in C′, since:

σ′(v) +
∑

d′(u, v) = nσ(v) + n
∑

d(u, v)
< nd+(v)

< d′+(v)

• the modifications made to the predecessors of v (the modification of the
initial configuration and the edges added towards v) are similar to applying
the Grounding Modification to these vertices (with v playing the role of
the sink).

✷

Now we give the main theorem of this section:

Theorem 3.3 Algorithm 1 transforms a simple CFG with no cycle into an
equivalent ASM in linear time with respect to the size of its configuration space.

Proof : The goal of the algorithm is to obtain an ASM from a CFG, by adding
a reverse edge to each edge in the graph (i.e. add an edge (v, u) for each edge
(u, v)). We recall that, when a CFG is modified, we obtain an equivalent CFG
if:

12

Algorithm 1 Transformation of a simple CFG with no cycle into an
equivalent ASM

Input: A simple CFG C with support graph G = (V,E) and initial
configuration σ0, such that G has no cycle

Output: An ASM equivalent to C

Compute L(C);
For each v ∈ V \ {⊥}, D[v]← maxσ∈L(C)(d

+(v)− σ(v));
Mark ⊥;
L← empty-list;
while there are unmarked vertices do

Choose an unmarked vertex v with all successors marked;
Mark v;
L← L, v;

Step 1: while L is not empty do
v ← head(L)
if D[v] ≤ d(v) then

Apply the Multiplying Modification to v with factor
⌈(d(v) + 1)/D[v]⌉;
For each edge (u, v) added by the Multiplying Modification, add
1 to D[u];

L← tail(L);

Step 2: for each v ∈ V \ {⊥} do
if σ0(v) + d−(v) + d(v) ≥ 2d+(v) then

Apply the Grounding Modification to v with factor
⌈(d(v) + d−(v) + 1)/(2 · d+(v)− σ0(v))⌉;

Step 3: for each v ∈ V \ {⊥} do
for each edge (u, v) in E do

Add one chip to the initial configuration of v;
Add one edge (v, u) to E;

13

• the first times at which each vertex can be fired do not change, and

• each vertex can be fired only once during an execution.

The purpose of the first two steps of the algorithm is to prepare the graph for
this reversal of edges. We first show that, at each step of the algorithm, the
current CFG is equivalent to C.

Step 1 In this step the indegree of a vertex is increased so that it exceeds by
a certain factor its outdegree. This is possible because the graph has no cycle,
and the graph has only one sink. In this step, the only modification applied is
the Multiplying Modification, therefore by Lemma 3.2, at each step the current
CFG is equivalent to C. At the end of this step, we have, for each vertex v and
for all configuration σ:

d+(v)− σ(v) > d(v).

Step 2 The only modification applied in this step is the Grounding Modification,
therefore, by Lemma 3.1, at each step the current CFG is equivalent to C. At
the end of this step we have, for each vertex v:

σ0(v) + d−(v) + d(v) < 2d+(v).

Step 3 In this step an edge (u, v) is added for each pre-existing edge (v, u). The
resulting CFG is equivalent to C because:

• a chip is added to the initial configuration of u for each edge (u, v) added.
This is similar to applying the Grounding Modification to u, with v playing
the role of the sink. Figure 6 (1-3) illustrates why this is necessary.

• After Step 2 we know that σ0(v)+d−(v)+d(v) < 2d+(v). This means that,
after we have added d(v, u) edges from u to v, we still have σ0(v)+d−(v) <
2d+(v), which means that v can be fired only once in the resulting CFG.
Figure 6 (4) illustrates this.

• After Step 1 we have, for all configuration σ: d+(v)−σ(v) > d(v). There-
fore adding edges from u to v does not change the first times at which v
can be fired: there is no configuration σ in which v cannot be fired, and
in which adding edges from u to v allows v to be fired. Figures 7 and 8
illustrate this.

✷

Corollary 3.4 Let C be a simple CFG with support graph G = (V,E) such that
G has no cycle. Then C is equivalent to an ASM.

We have just shown that any simple CFG with no cycle is equivalent to an
ASM. This seems like a strong restriction, but in fact a large part of lattices of
L(CFG) are the configuration space of a simple CFG with no cycle. Indeed,
the next theorem states that this is the case for all distributive lattices, which
are an important part of the ULD lattices, and therefore of L(CFG).

Theorem 3.5 [MPV01] Given any distributive lattice L, there exists a CFG C
with no cycle, such that L(C) is isomorphic to L.

14

1

0

v

u

(1)

1

0

v

u

(2)

1

1

v

u

(3)

2

1

v

u

(4)

Figure 6: (2): Simply adding an edge (u, v) to the CFG (1) changes the first
times at which u can be fired: u can not be fired at all. (3): therefore, we add
a chip to the initial configuration of u, and u can be fired after v, as in (1).
(4): In (3) v can be fired more than once. Therefore, we apply the Grounding
Modification to v (i.e. we add a chip to the initial configuration of v and we add
one edge (v,⊥)) before adding the edge (u, v). The resulting CFG is equivalent
to (1).

1 1

0

1

a b

v

u

b

u
v

a
b

u

a

Figure 7: A CFG and its configuration space. Notice that v needs one chip to
be fired, and that there exactly is one edge (v, u). After b and u have been fired
(the configuration is marked with a dot in the configuration space), only a can
be fired.

15

1 1

1

2

a b

v

u

2 1

0

2

a b

v

u

Figure 8: If we want to add one edge (u, v) to the CFG of Figure 7, we have first
to add one chip to the initial configuration of u, and to apply the Grounding
Modification to v, as seen before. We thus obtain the CFG shown on the left. In
this CFG, it is possible to fire v after b and u, and this adds the dotted lines to
the configuration space. Therefore, we must apply the Multiplying Modification
to v to multiply its indegree by two, before we add the edge (u, v). The resulting
CFG (on the right) is equivalent to the original CFG (see Figure 7).

Corollary 3.6 Any distributive lattice is the configuration space of an ASM.

The distributive lattices are not the only ones that can be obtained both by
CFG and ASM. Indeed, most of the simple CFGs we have considered during
our studies have no cycle, and are therefore equivalent to an ASM. Moreover,
we give in Figure 9 an example of a CFG which has a cycle in its support graph,
but is equivalent to an ASM.

However, we show that not all CFGs are equivalent to ASMs.

Theorem 3.7 L(ASM) L(CFG).

Proof : We know that L(ASM) ⊆ L(CFG). We will show that the lattice L of
Figure 10, which is the configuration space of the CFG of Figure 11, cannot be
the configuration space of any ASM (i.e. a CFG such that there exists an edge
(u, v) for each edge (v, u)). This will show that the inclusion is strict. The proof
is in two steps: first we show that L can be obtained only by a simple CFG (i.e.
a CFG such that its configuration space is L must have six different vertices,
each fired once during an execution, and a sink); we have to show that L can
only be obtained by a simple CFG, otherwise we must prove also that L cannot
be the configuration space of an ASM with five vertices or less. Then we prove
some inequalities on the number of edges between two pairs of vertices, from
which we will show that there exist two vertices a and b such that the number
of edges (a, b) can never be the same as the number of edges (b, a). Therefore
we can never consider that the support graph of the CFG is undirected, and
this proves that L cannot be obtained by ASM.

Let us prove that L can be only obtained by a simple CFG. The minimal
element has three immediate successors, so there are three different vertices
that can be fired in the initial configuration. Let us call them a, b and c. The
configuration denoted by a has three immediate successors, so there are three
different vertices that can be fired in configuration a. Two of them are b and

16

1 1

1 1

2 2

2 2

Figure 9: A CFG with a cycle in its support graph that is equivalent to an ASM.
We present here the CFG, an equivalent ASM, and their configuration space

aa’bb’

a’bb’cc’

bcc’ bb’x

aa’ bb’

a b

cc’

c

Figure 10: A lattice that can be obtained by CFG but not by ASM

17

1 1 1

1 1 1b′

a

a′

cb

c′

Figure 11: A CFG the configuration space of which is the lattice of Figure 10.
Notice the cycle in the support graph.

a b c a b c

a′ b′ c′

Figure 12: The possible vertex sets of a CFG that generates the lattice of
Figure 10

c, and the third one, that we denote by a′, is therefore a vertex different from
b and c. a′ is either a fourth vertex (that can be fired immediatly after a),
or a itself (which would mean that a can be fired twice in a row). The same
argument holds for b and c. So the vertex set of a CFG C such that L = L(C)
is something in-between the two vertex sets of Figure 12.

We will now prove that a′, b′ and c′ are different from a, b and c, and that
they are all distinct from each other. First we prove that a′ is different from a:
the configuration bb′ has three immediate successors, therefore there are three
different vertices that can be fired in configuration bb′. Two of them are a and c,
so the third one (denoted by x, and the firing of which leads to the configuration
labelled by bb′x) is either a′ (in which case a′ is distinct from a) or c′ (in which
case c′ is distinct form c). We observe that the join of aa′ and bb′ (labelled by
aa′bb′) is greater than bb′x, which means that {bb′x} ⊆ {aa′bb′}. From this we
conclude that the third vertex is a′, and therefore a′ is distinct from a. The
same reasonning can be applied to b′ and c′. Now we show that a′, b′ and c′

are distinct from each other: if a′ and b′ are the same vertex, the join of aa′

and bb′ would be reached from aa′ by the firing of b, and from bb′ by the firing
of a. Therefore, aa′bb′ would be at distance one of aa′ and of bb′, whereas it
is at distance two. Therefore, a′ and b′ are two different vertices. With the
same argument, we can show that a′, b′ and c′ are all distinct from each other,
therefore L can only be obtained by a CFG where six different vertices are fired

18

during an execution.
Now we prove that L cannot be the configuration space of any ASM. First

we claim that d(b′, a′) > d(c′, a′). Let n be the number of chips that a′ needs
to be fired. We know that a′ can be fired after b and b′. So we know that n ≤
d(b, a′) + d(b′, a′). Suppose our claim is not true, i.e. d(c′, a′) ≥ d(b′, a′). Then
we have n ≤ d(c′, a′) + d(b′, a′), and therefore n ≤ d(c′, a′) + d(b′, a′) + d(c, a′).
This means that a′ can be fired after c, c′ and b′. But at point b′cc′, only two
vertices can be fired, and they are a and b′. Therefore we obtain a contradiction,
and we must have d(b′, a′) > d(c′, a′). By similar arguments we can establish
that d(c′, b′) > d(a′, b′) and d(a′, c′) > d(b′, c′). Now if L was the configuration
space of an ASM, we would have d(a′, b′) = d(b′, a′), d(a′, c′) = d(c′, a′) and
d(b′, c′) = d(c′, b′), which is in contradiction with the inequalities established
above. We conclude that L cannot be the configuration space of an ASM. ✷

By combining Theorem 3.7 and Corollary 3.6, we obtain that L(ASM) is
situated strictly between the class of distributive lattices and L(CFG). This
shows the complexity of the problems raised by the Chip Firing Game and
the Abelian Sandpile Model in lattice theory: L(CFG) and L(ASM) are both
between the distributive and ULD lattices, while there is no previously known
lattices class satisfying this condition.

Conclusion and perspectives

In this paper, we have studied from the lattice point of view the Chip Firing
Game and two closely related models: the Abelian Sandpile Model and the Mu-
tating Chip Firing Game. It was already known that all these models generate
lattices, and that these lattices are in the class of Upper Locally Distributive
(ULD) lattices. Our goal was to characterize the classes of lattices L(CFG),
L(ASM) and L(MCFG) induced by each model (i.e. determine, given a ULD
lattice, by which model(s) it can be obtained). We have first shown that the
mutating CFG and the CFG generate exactly the same set of lattices, by giving
a way to transform a MCFG into a classical CFG. This means that, although
the MCFG is a generalization of the CFG, it brings no more information in
lattice terms.

We know that every ASM is equivalent to a CFG, and we have given an ex-
ample of a CFG that is not equivalent to any ASM. This implies that L(ASM)
L(CFG). Then we have given a sufficient but not necessary condition at which
a CFG can be transformed into an ASM, from which it can be shown that the
class D of distributive lattices is included in L(ASM). The class of lattices in-
duced by CFG being somewhere between the distributive and the ULD lattices,
we obtain that the class of lattices induced by ASM is a new class between the
distributive lattices and L(CFG). In other words, we have proved the following
relation:

D L(ASM) L(CFG) = L(MCFG) ULD

This illustrates the complexity of the problem in lattice theory, because
there exists no known lattice class between the distributive and ULD lattices.
Therefore, an exact characterization of the two classes L(ASM) and L(CFG)
would be a very interesting result in lattice theory.

19

The CFG and the ASM share the same definition, except that the first
is defined on a directed graph, and the latter on an undirected graph. This
might seem like a strong difference, and the first idea that comes to mind is
that L(ASM) is much smaller than L(CFG). The sufficient but not necessary
condition we have given at which a CFG is equivalent to an ASM is that the
support graph must contain no directed cycle. This is a strong restriction, but
it nonetheless implies that L(ASM) is a very significant part of L(CFG) (it
contains more than the distributive lattices class, which is a large part of the
ULD class).

The fact that three important models, used in various domains like physics,
computer science and social science, all induce strongly structured sets precisely
situated between two classical types of lattices, shows the importance of the use
of order theory in the context of dynamical models studies. In our case it is
even more interesting to notice that the models introduce new classes of lattices
which one may study from the order theoretical point of view.

We have seen that the difference between these models does not lie in the
fact that the graph is directed or not, but on the existence or not of directed
cycles in the graph. Simple CFGs with no cycle in their support graph are
very strongly linked with the class CN of lattices obtained by a sequence of
duplications of convex sets. It would be a natural sequel of this work to find out
in all lattices of CN induced by CFG can be obtained by ASM. However, if this
is true this does not give the result that L(ASM) = L(CFG)∩CN , because we
have examples of lattices that are in L(ASM), but not in CN .

Finally, lattices also appear in some other kinds of discrete dynamical models
defined in the context of tiling theory: for some classes of tiling problems, one
can define a local rearrangement of tiles, called flip, which transforms a tiling of a
given region into another tiling of the same region. In some cases (mainly tilings
with dominoes or with three lozenges [Rem99, BL01]), it has been proved that
the flip relation gives the distributive lattice structure to the set of all possible
tilings of a given region. A work similar to the one done in this paper, comparing
the classes of lattices induced by each tiling problem, may lead to interesting
result, both in tiling theory and in the study of discrete dynamical models.

References

[Big97] N. Biggs. Algebraic potential theory on graphs. Bull. London Math.
Soc., 29:641–682, 1997.

[Big99] N. Biggs. Chip firing and the critical group of a graph. Journal of
Algebraic Combinatorics, 9:25–45, 1999.

[BL92] A. Björner and L. Lovász. Chip-firing games on directed graphs.
Journal of Algebraic Combinatorics, 1:304–328, 1992.

[BL01] O. Bodini and M. Latapy. Generalized tilings with height functions.
2001. Submitted.

[BLS91] A. Björner, L. Lovász, and W. Shor. Chip-firing games on graphs.
European Journal of Combinatorics, 12:283–291, 1991.

20

[BTW87] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: an
explanation of the 1/f noise. Physics Review Letters, 59(4):381–384,
1987.

[CR00] Robert Cori and Dominique Rossin. On the sandpile group of a
graph. European Journal of Combinatorics, 21(4):447–459, 2000.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Orders.
Cambridge university press, 1990.

[DRSV95] Deepak Dhar, P. Ruelle, S. Sen, and D. Verma. Algebraic aspects of
sandpile models. Journal of Physics, A 28:805–831, 1995.

[Eri93] Kimmo Eriksson. Strongly Convergent Games and Coxeter Groups.
PhD thesis, Kungl Tekniska Hogskolan, Sweden, 1993.

[Eri96] Kimmo Eriksson. Chip firing games on mutating graphs. SIAM J.
Discrete Math., 9:118–128, 1996.

[GMP98] E. Goles, M. Morvan, and H.D. Phan. Lattice structure and conver-
gence of a game of cards. 1998. To appear in Annals of Combina-
torics.

[Heu99] Jan van den Heuvel. Algorithmic aspects of a
chip firing game. London School of Economics,
CDAM Research Reports., 1999. Preprint available at
http://www.cdam.lse.ac.uk/Reports/reports99.html.

[LP01] Matthieu Latapy and Ha Duong Phan. The lattice structure of chip
firing games. Physica D, 115:69–82, 2001. Preprint available at
http://www.liafa.jussieu.fr/~latapy/.

[Mon90] Bernard Monjardet. The consequences of dilworth’s work on lat-
tices with unique irreductible decompositions. In K. P. Bogart,
R. Freese, and J. Kung, editors, The Dilworth theorems Selected
papers of Robert P. Dilworth, pages 192–201. Birkhauser, Boston,
1990.

[MPV01] Clémence Magnien, Ha Duong Phan, and Laurent Vuillon.
Characterization of lattices induced by (extended) chip firing
games. In Discrete Mathematics and Theoretical Computer
Science, Proceedings of the 1-st international conference Dis-
crete Models: Combinatorics, Computation, and Geometry (DM-
CCG’01), pages 229–244. MIMD, July 2001. Preprint available at
http://www.liafa.jussieu.fr/~magnien/.

[Rem99] Eric Remila. The lattice structure of the set of domino tilings of
a polygon. LIP - ENS Lyon - Research Report 1999-25, 1999. To
appear in DMTCS, special issue, proceedings of ORDAL’99.

21

