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Designs in a coset geometry:
Delsarte theory revisited

Tatsuro Ito

Delsarte [2] formulated design theory in the framework of commutative
association schemes, especially P- and Q-polynomial schemes. It enabled us
to interpret the combinatorial aspect of designs in terms of representations
of the Bose-Mesner algebras. In this article, we revisit the Delsarte theory,
shifting the framework from association schemes to coset geometries. When
a group acts transitively on the underlying sets, this attempt broadens the
category of designs and makes all the clearer the relation between combina-
torial and algebraic structures of designs. As an application, t-transtive sets
are constructed from the classical t-designs.

1. Let X, Ω be finite sets and G a finite group acting transitively both
on X and Ω. With the action to be from the right, G acts on X × Ω by
(x, α)a = (xa, αa). Let O be an orbit of G on X × Ω. Then O defines an
incidence relation I = IO between X and Ω:

xIα ⇔ (x, α) ∈ O.

For (x0, α0) ∈ O, let H, K be the stabilizers of x0, α0 in G, respectively. If
we identify X, Ω with the cosets H\G, K\G, then

HaIKb ⇔ Ha ∩ Kb �= ∅.
For a subset Y of X and an elemnt α of Ω, let λ(α) be the number of

elements x in Y that are incident to α:

λ(α) = λI(α) = #{x ∈ Y |xIα}.
Y is called an I-design if λ(α) is a constant λ for all α ∈ Ω. Y is called a
combinatorial design or simply a design if Y is an I-design for each I = IO.
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2. Let V be the vector space over C with X a basis:

V =
⊕
x∈X

Cx.

V affords the permutation character θ of G on X. For an irreducible character
χ of G appearing in θ, let Vχ be the homogeneous component of V corre-
sponding to χ, i.e., the sum of all irreducible G-subspaces of V affording χ.
Then V is decomposed into the direct sum of these Vχ:

V =
⊕

χ

Vχ,

where χ runs over the irreducible characters of G appearing in θ. Let χ0 be
the principal character 1G of G. Then the transtivity of G on X implies

Vχ0 = CX,

where X =
∑

x∈X x. Similarly the other G-module

W =
⊕
α∈Ω

Cα

affords the permutation character π of G on Ω, and W is decomposed into
the direct sum of homogeneous components Wχ:

W =
⊕

χ

Wχ,

Wχ0 = CΩ.

With an incidence relation I = IO, we associate a linear mapping fI from
V to W :

fI(x) =
∑
xIα

α for x ∈ X.

Then for any subset Y of X, it holds that

fI(Y ) =
∑
α∈Ω

λ(α)α,

where Y =
∑

x∈Y x, and λ(α) = #{x ∈ Y |xIα}. So we have:
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Lemma A subset Y of X is an I-design if and only if fI(Y ) ∈ Wχ0.

3. Let HomG(V, W ) be the set of linear mappings f from V to W that
commute with the action of G: f(va) = f(v)a for v ∈ V, a ∈ G. The
mappings fI form a basis of HomG(V, W ) as a vector space over C, where
I = IO and O ranges over the G-orbits of X × Ω. We give a brief proof of
this fact. For f ∈ HomG(V, W ) and x ∈ X, set

f(x) =
∑
α∈Ω

cαxα with cαx ∈ C.

Then from f(x) = f(xa)a−1
, it follows that cαx is a constant cO on each

G-orbit O. So we have f =
∑

O cOfIO .
By the above lemma, a subset Y of X is a combinatorial design if and

only if fI(Y ) ∈ Wχ0 for all I = IO. Since the mappings fI form a basis of
HomG(V, W ), Y is a combinatorial design if and only if f(Y ) ∈ Wχ0 for all
f ∈ HomG(V, W ).

By Schur’s lemma, HomG(V, W ) is decomposed into the direct sum of
HomG(Vχ, Wχ):

HomG(V, W ) =
⊕

χ

HomG(Vχ, Wχ),

where Vχ, Wχ run over the homogeneous components of V , W , respectively.
We understand that Vχ = 0 (resp. Wχ = 0) if χ does not appear in the
permutation character θ (resp. π) of G on X (resp. Ω). Let Irr(θ), Irr(π)
be the set of irreducible characters of G appearing in θ, π, respectively. Then
HomG(Vχ, Wχ) = 0 unless χ ∈ Irr(θ) ∩ Irr(π).

Let pχ be the projection of V onto the homogeneous component Vχ. Then
by HomG(V, W ) =

⊕
χ HomG(Vχ, Wχ), f(Y ) belongs to Wχ0 for all f ∈

HomG(V, W ) if and only if pχ(Y ) = 0 for all χ ∈ Irr(θ) ∩ Irr(π) (χ �= 1G).
Thus we have:

Theorem A subset Y of X is a combinatorial design if and only if

pχ(Y ) = 0 for all χ ∈ Irr(θ) ∩ Irr(π) (χ �= 1G).
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In view of this theorem, we introduce the notion of a T -design, where T is
a set of irreducible characters of G. A subset Y of X is said to be a T -design
if

pχ(Y ) = 0 for all χ ∈ T (χ �= 1G).

Notice that T can be replaced by T ∩ Irr(θ) or by any T ′ with T ∩ Irr(θ) =
T ′∩ Irr(θ), since pχ = 0 for χ /∈ Irr(θ). The theorem above states that Y is
a combinatorial design if and only if Y is a T -design for T = Irr(π).

4. The projection pχ of V onto the homogeneous component Vχ is given
by the formula ([3] Theorem 8):

pχ(v) =
χ(1)

|G|
∑
a∈G

χ(a)∗va for v ∈ V,

where ∗ stands for the complex conjugate. This formula is valid for any
irreducible character χ of G, in particular the sum on the right hand side
vanishes if χ does not appear in the G-module V . Notice that χ(a)∗ = χ(a−1).
So for a subset Y of X and Y =

∑
x∈Y x, we have

pχ(Y ) =
χ(1)

|G|
∑
y∈X

cyy with cy =
∑
ya∈Y

χ(a).

Equip V with a Hermitian form 〈 〉 such that X is an orthonormal basis:
〈x, y〉 = δxy for x, y ∈ X. Notice that the Hermitian form 〈 〉 is G-invariant
and so the homogeneous components Vχ are orthogonal each other. It holds

that 〈pχ(Y ), pχ(Y )〉 = 〈pχ(Y ), Y 〉 = χ(1)
|G|

∑
a∈G χ(a)|Y a ∩ Y |. So we have:

Delsarte’s Condition For a subset Y of X and an irreducible character
χ of G,

〈pχ(Y ), pχ(Y )〉 =
χ(1)

|G|
∑
a∈G

χ(a)|Y a ∩ Y | ≥ 0.

Y is a T -design if and only if the equality holds in Delsarte’s condition
for χ ∈ T (χ �= 1G).

Since the Hermitian form 〈 〉 is G-invariant and since pχ commutes with
the action of G, we have

〈pχ(x), y〉 = 〈pχ(x′), y′〉
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for (x, y), (x′, y′) in the same G-orbit of X × X. Fix an element x0 in X
and let H be the stabilizer of x0 in G. For each G-orbit Λ of X ×X, choose
xΛ ∈ X and tΛ ∈ G such that (x0, xΛ) ∈ Λ and xtΛ

0 = xΛ. Then for (x, y) ∈ Λ,

we have 〈pχ(x), y〉 = 〈pχ(x0), xΛ〉 = χ(1)
|G| χ(HtΛ)∗, where HtΛ is the sum of

elements of the coset HtΛ. We understand that χ is extended to the character
of the group algebra C[G]. Since 〈pχ(x0), xΛ〉 = 〈pχ(x0), x

h
Λ〉 for h ∈ H , we

have χ(HtΛ) = χ(HtΛh). So for (x, y) ∈ Λ

〈pχ(x), y〉 =
χ(1)

|G||H : H ∩ t−1
Λ HtΛ|χ(HtΛH)∗,

where HtΛH is the sum of elements of the double coset HtΛH. Thus comput-
ing 〈pχ(Y ), pχ(Y )〉 = 〈pχ(Y ), Y 〉, we have another formulation of Delsarte’s
condition:

Delsarte’s Condition For a subset Y of X and an irreducible character
χ of G,

〈pχ(Y ), pχ(Y )〉 =
χ(1)

|G|
∑
Λ

|Λ ∩ Y × Y |
|H : H ∩ t−1

Λ HtΛ|
χ(HtΛH) ≥ 0,

where Λ runs over the G-orbits of X × X.

Delsarte’s condition is the basis on which Delsarte discussed the linear
programming bound for the size of a subset in an association scheme [2], but
we go no further into this direction in this article.

5. As is seen in Delsarte’s condition, what really matters to T -designs
is the Hecke algebra HomG(V, V ), to which the projections pχ belong. It
is well known that the algebra HomG(V, V ) is semisimple and that as a
HomG(V, V )-module, V =

⊕
χ Vχ is still the decomposition into the homoge-

nious components. The space Vχ is irreducible as a (C[G] ⊗ HomG(V, V ))-
module.

Let χ0 = 1G, χ1, · · · , χr be the irreducible characters appearing in the
permutation character θ of G on X. We shall abbreviate pχi , Vχi to pi, Vi,
respectively. Let A be the linear subspace of HomG(V, V ) spanned by the
projections pi:

A = Span{p0, p1, · · · , pr}.
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Then in the Hecke algebra HomG(V, V ), we have

pipj = δijpi, 1 = p0 + p1 + · · · + pr ,

and A becomes a commutative semisimple algebra of dimension r + 1.
Besides the ordinary product, HomG(V, V ) is endowed with the Schur

product ◦, which is also called the Hadamard product:

(f ◦ g)(x) =
∑
y∈X

cyxdyxy for x ∈ X

if f(x) =
∑

y∈X cyxy, g(x) =
∑

y∈X dyxy. HomG(V, V ) is closed with respect
to the Schur product, since the coefficients cyxdyx of f ◦ g are G-invariant.
If we express the elements of HomG(V, V ) as matrices with respect to the
basis X of V , the Schur product is the entrywise product of matrices. The
Schur product is defined with respect to the basis X and hence it must carry
certain information of X.

Assume that A is closed with respect to the Schur product, and let A◦ be
the commutative algebra that the linear space A gives rise to with respect
to the Schur product. Since p0(x) = 1

|X |X for x ∈ X, the mapping |X|p0

is the identity of the algebra A◦. Since A◦ has no nilpotent elements, A◦ is
semisimple. Let f0, f1, · · · , fr be the primitive idempotents of A◦:

fi ◦ fj = δijfi, |X|p0 = f0 + f1 + · · · + fr.

Let Ai, Ei be the matrices of fi, pi with respect to the basis X, respectively.
Then the algebra spanned by Ai (0 ≤ i ≤ r) is the Bose-Mesner algebra of
a commutative association scheme; Ai, Ei are the adjacency matrices, the
primitive idempotents of the Bose-Mesner algebra, respectively ([1] Section
2.2). The proof is rather routine and is left to the reader. We have now
reached the place where Delsarte built his design theory.

6. We keep the notations of 5. Let χ∗
i be the complex conjugate character

of χi. Then χ∗
i = χî for some î (0 ≤ î ≤ r), and we have an involutive

permutation ˆ of the indices 0, 1, · · · , r.
Let A = Span{p0, p1, · · · , pr}. Assume that A is closed with respect to

the Schur product:

pi ◦ pj =
1

|X|
r∑

k=0

qk
ijpk.

6



The coefficients qk
ij are the Krein parameters and known to be nonnegative

real numbers. For a subset Y of X, pY denotes the orthogonal projection
of V onto the subspace VY of V spanned by Y : VY =

⊕
x∈Y Cx. Delsarte

showed ([2] Theorem 3.15):

Delsarte’s Criterion Let Y be a subset of X and i, j arbitrarily given
distinct indices.

(i) The subspaces pY (Vi), pY (Vj) are orthogonal each other if and only if
(pi ◦ pĵ)(Y ) ∈ V0, i.e., qk

iĵ
pk(Y ) = 0 for all k �= 0.

(ii) The mapping
√

|X |
|Y |pY is an isometry of Vi into VY if and only if

(pi ◦ pî)(Y ) ∈ V0, i.e., qk
îi
pk(Y ) = 0 for all k �= 0.

A Fisher type inequality is derived from Delsarte’s Criterion. For a subset
S of the indices 0, 1, · · · , r, set

S ◦ Ŝ = {k | qk
iĵ
�= 0 for some i, j ∈ S}.

For a T -design Y , choose S such that

S ◦ Ŝ ⊆ T ∪ {0}.
Then by Delsarte’s Criterion, pY maps

⊕
i∈S Vi into VY injectively. Thus we

have:

Fisher Type Inequality

|Y | ≥
∑
i∈S

dim Vi.

To find an explicit formula for the Krein parameters qk
ij, we calculate the

trace of pk(pi ◦ pj) = 1
|X |q

k
ijpk. Then Tr pk = dimVk and Tr pk(pi ◦ pj) =∑

x∈X〈pk(pi ◦ pj)(x), x〉 =
∑

x∈X〈(pi ◦ pj)(x), pk(x)〉. Keeping the notations
of 4, we have

pχ(x) =
χ(1)

|G|
∑
Λ

1

|H : H ∩ t−1
Λ HtΛ|χ(HtΛH)∗Λ(x),
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where Λ runs over the G-orbits of X × X, Λ(x) = {y ∈ X | (x, y) ∈ Λ} and
Λ(x) is the sum of elements of Λ(x). So 〈(pi ◦ pj)(x), pk(x)〉 equals

χi(1)χj(1)χk(1)

|G|3
∑

Λ

χi(HtΛH)∗χj(HtΛH)∗χk(HtΛH)

|H : H ∩ t−1
Λ HtΛ|3

|Λ(x)|.

Since |Λ(x)| = |H : H ∩ t−1
Λ HtΛ| and dim Vk = χk(1)mult(χk) with mult(χk)

the multiplicity of χk in the permutation character θ of G on X, we have

qk
ij =

χi(1)χj(1)|X|2
|G|3mult(χk)

∑
Λ

χi(HtΛH)∗χj(HtΛH)∗χk(HtΛH)

|H : H ∩ t−1
Λ HtΛ|2

.

7. There are two important cases which satisfy the condition that the
linear subspace A = Span{p0, p1, · · · , pr} is closed with respect to the Schur
product. One is the case in which the permutation character θ of G on X
is multiplicity free, i.e., each homogeneous component Vi is irreducible or
equivalenty the Hecke algebra HomG(V, V ) is commutative. The other is the
case in which X = G and G acts on X as the regular representation.

Suppose first that the permutation character θ of G on X is multiplicity
free. Then A = HomG(V, V ) and hence A is closed with respect to the
Schur product. Notice that f ∈ A acts on each homogeneous component Vχ

as a scalar and so ω = 1
χ(1)

Tr|Vχ is a linear representation of A. For more

information about the association scheme A = HomG(V, V ), see [2] Section
2.11.

Let us go back to the I-design situation discussed in 1, 2, 3. We have
two finite sets X, Ω on which a group G acts transitively. The I-designs
are defined with respect to the incidence relation I = IO associated with an
G-orbit O of X × Ω. Let V =

⊕
x∈X Cx, W =

⊕
α∈Ω Cα be the permuta-

tion modules with characters θ, π, respectively. By our assumption, every
homogeneous component Vχ of V is irreducible. For f ∈ HomG(V, W ), the
kernel of f is G-invariant and so is a direct sum of Vχ’s. Let Supp(f) be the
rest:

Supp(f) = {χ ∈ Irr(θ) ∩ Irr(π) | f(Vχ) �= 0}.
Then we have

V = ker(f)
⊕

χ∈Supp(f)

Vχ.

Hence by the lemma in 2, we have a stronger version of the theorem in 3:
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Theorem Assume that the permutation character θ of G on X is multi-
plicity free. Then a subset Y of X is an I-design if and only if

pχ(Y ) = 0 for all χ ∈ Supp(fI) (χ �= 1G),

where fI(x) =
∑

xIα α for x ∈ X.

Notice that χ0 = 1G is contained in Supp(fI), since Vχ0 is spanned by X.
Hence we have:

Corollary An I-design is an I ′-design if Supp(fI) ⊇ Supp(fI′),
i.e., ker(fI) ⊆ ker(fI′).

8. Let us consider the case in which X = G and G acts on X as the
regular representation. In this case, the permutation character θ contains
every irreducible character χ of G with multiplicity χ(1). The projection pχ

is given by

pχ(x) =
χ(1)

|G|
∑
y∈G

χ(y−1x)y for x ∈ G,

and so for x ∈ G

(pi ◦ pj)(x) =
χi(1)χj(1)

|G|2
∑
y∈G

χi(y
−1x)χj(y

−1x)y.

Let us decompose χiχj as a character of the group G:

χiχj =
r∑

k=0

ck
ijχk.

Then

(pi ◦ pj) =
1

|X|
r∑

k=0

qk
ijpk

with

qk
ij =

χi(1)χj(1)

χk(1)
ck
ij.

This is also checked by the formula of qk
ij in 6, thanks to the orthogonality re-

lation of group characters. Thus the linear subspace A = Span{p0, p1, · · · , pr}
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is closed with respect to the Schur product. The association scheme A is dis-
cussed in detail in [2] Section 2.7.

For a subset Y of X = G, Delsarte’s Condition is

〈pχ(Y ), pχ(Y )〉 =
χ(1)

|G|
∑

x,y∈Y

χ(y−1x) ≥ 0.

This can be checked by the second formulation of Delsarte’s Condition in
4 or directly by 〈pχ(x), pχ(y)〉 = 〈pχ(x), y〉 = χ(1)

|G| χ(y−1x). From Delsarte’s
Condition, we see that if Y is a T -design, then aY and Y a are also T -designs
for all a ∈ G.

Given a transitive permutation representation of G on Γ and a T -design
Δ in Γ, we can ‘lift’ Δ to a T -design in X = G. Choose a point γ0 ∈ Γ. Let
H be the stabilizer of γ0 in G and identify Γ with the cosets H\G. With this
identification, define a subset Y of X = G to be

Y =
∑

Ht∈Δ

Ht,

where the symbol
∑

stands for the direct sum of subsets. It is a straightfor-
ward consequence of the first formulation of Delsarte’s Condition in 4 that
Y becomes a T -design. We shall refer to this T -design Y as the lifting of Δ.

Let us consider the combinatorial meaning of I-designs in X = G. Besides
the regular representation of G on X, we have a set Ω on which G acts
transitively. Each pair (1, α) ∈ X ×Ω belongs to a unique G-orbit of X ×Ω,
which we shall denote by Oα. Let Iα be the incidence relation associated
with Oα. Then x Iα β if and only if αx = β. For a subset Y of X, set
λα(β) = #{x ∈ Y | x Iα β}. Then

λα(β) = #{x ∈ Y | αx = β}.

Thus a subset Y of X is an Iα-design if and only if Y contains exactly λ = |Y |
|Ω|

members that send α to β, independent of the choice of β ∈ Ω. A subset
Y of X is a combinatorial design if and only if Y contains exactly λ = |Y |

|Ω|
members that send α to β, independent of the choice of α, β ∈ Ω; such a
subset Y is called a transitive set on Ω. A transitive set with λ = 1 is called
regular.
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9. Let us consider the classical t-designs in the framework we have dis-
cussed. Let Ω be a finite set and G the symmetric group on Ω. Let Ω{k} be
the set of unordered k-sets of Ω and Ωk that of ordered k-sets of Ω:

Ω{k} = {{α1, α2, · · · , αk} |αi ∈ Ω, αi pairwise distinct},
Ωk = {(α1, α2, · · · , αk) |αi ∈ Ω, αi pairwise distinct}.

G acts both on Ω{k}, Ωk, transitively. Let π{k}, πk be the permutation char-
acters of G on Ω{k}, Ωk, respectively. It is well known that π{k} is multiplicity
free and that for 1 ≤ t ≤ k ≤ 1

2
|Ω|

Irr(π{k}) ∩ Irr(πt) = Irr(π{t}),

in particular, Irr(π{t}) ⊆ Irr(πt), where Irr(π) is the set of irreducible
characters of G appearing in π.

For 1 ≤ t ≤ k ≤ 1
2
|Ω|, the G-orbits on Ω{k} × Ω{t} are

Oi = {(α, β) ∈ Ω{k} × Ω{t} | |α ∩ β| = t − i} (0 ≤ i ≤ t).

We shall abbreviate IOi to Ii. The incidence relation I0 is the inclusion
relation between the unordered k-sets and t-sets of Ω. The classical t-design
is by definition a subset of Ω{k} that is an I0-design in our terms. The
incidence relation I0 is a particular one in the sense that the linear mapping
fI0 from V =

⊕
α∈Ω{k} Cα to W =

⊕
β∈Ω{t} Cβ is surjective. In terms of 7,

Supp(fI0) = Irr(π{t}). By the theorem in 7, an I0-design is a T -design for
T = Irr(π{t}). By the theorem in 3, an I0-design is a combinatorial design,
i.e., an Ii-design for all i. Notice that an I0-design is also a T -design for
T = Irr(πt), since Irr(π{k}) ∩ Irr(πt) = Irr(π{t}).

Given a classical t-design Δ, the notion of which is defined in the G-set
Ω{k} × Ω{t}, we can regard Δ as a T -design with T = Irr(πt), the notion
of which is defined in the G-set Ω{k}. As is explained in 8, the T -design Δ
in the G-set Ω{k} can be lifted to a T -design Y in G. Place the T -design Y
in the G-set G × Ωt (resp. the G-set G × Ω{t}). Then Y turns out to be a
combinatorial design, i.e., a transitive set on Ωt (resp. Ω{t}). A transitive set
on Ωt (resp. Ω{t}) is called a t-transitive (resp. t-homogeneous) set. Thus a
classical t-design is lifted to a t-transitive set.

From the viewpoint of representation theory, it is clear that classical
t-designs, t-transive sets, t-homogeneous sets are also (t−1)-designs, (t−1)-
transive sets, (t−1)-homogeneous sets, respectively. The problem of extend-
ing a classical (t − 1)-design to a classical t-design is settled by Teirlinck [4]
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by a combinatorial method. It is a problem of some significance how much
possible it is to reconstruct the work of Teirlinck in terms of representation
theory.

By our construction of t-transitive sets from classical t-designs, there are
a large number of nontrivial t-transive sets for arbitrary t, whereas there are
no t-transive groups for 6 ≤ t other than the trivial ones, i.e., the symmetric
or alternating groups. However, it is yet to be settled whether there exists a
sharply t-transitive set for large t, i.e., a t-transitive set Y with |Y | = |Ωt|.

Designs in coset geometries seem to be particularly interesting when G
is a group of Lie type, and X, Ω are H\G, K\G with H, K (maximal)
parabolic subgroups of G. In case of G = GL(n, q), we have a q-analogue
of the classical t-designs. However, the existence problem of such designs is
yet to be settled; q-analogues of the classical t-designs are constructed only
for t ≤ 3 so far. Let G be a group of Lie type, (GI , GJ ) a pair of (maximal)
parabolic subgroups of G, W the Weyl group of G, and (WI , WJ ) the pair
of the corresponding parabolic subgroups of W . It is an interesting problem
whether there exists a correspondence in some sort between the designs in
GI\G × GJ\G and those in WI\W × WJ\W .

The author thanks E. Bannai and H. Suzuki who informed him that a
q-analogue of a classical 3-dedign was recently constructed.
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