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Linear Groups and Distance-transitive Graphs 

JOHN VAN BON AND ARJEH M. COHEN 

A detailed treatment is given of the graphs on which a group with simple socle PSL(n, q) 
acts primitively and distance-transitively. 

1. INTRODUCTION 

This paper may be viewed as a continuation of [5], in which all graphs are 
determined or. which a group with socle L(n, q) for some n ;:;. 8 acts distance 
transitively and primitively. Here we treat the case where the simple socle is 
isomorphic to PSL(n, q) for some n E N with 2 ~ n ~ 7. This completes the determina­
tion of all graphs on which a group with simple socle isomorphic to some L(n, q) acts 
distance transitively. We recall that a group G acting on a graph I'= (VI', EI') is said 
to be distance-transitive on I' if its induced action on each of the sets 

{(x, y) Ix, y E vr, d(x, y) = i} 

is transitive, and that a graph is called distance-transitive if its automorphism group acts 
distance transitively on it. Here, d denotes the usual distance in I', and i runs through 
{O, ... , diam( I')}. For notation, standard terminology and facts concerning distance­
transitive graphs, the reader is referred to [3] and [6]. 

THEOREM 1.1. Let G be a group with PSL(n, q) ~ G ~ aut PSL(n, q), n ~ 2, and 
(n, q) -=I= (2, 2), (2, 3). If I' is a connected graph of diameter at least 2 on which G acts 
primitively and distance-transitively, then either I' is a Grassmann graph or K: = 
Naut r( G"'), I', and the stabilizer H in K of a vertex are as listed in Table l, with the 
understanding that, if diam( I')= 2, only one of I' and its complement is listed. 

For the precise definitions of the graphs listed, the reader is referred to [6). In most 
cases, the group in the second column is the full automorphism group of I'. But, for 
instance, 1(9, 2) has automorphism group Sym9 , whereas our group is PI'L(2, 8). 

The results in [12], [6] and [4] imply that all imprimitive distance-transitive graphs 
whose primitive quotients are among those listed in Table 1 are known. 

PROOF. The proof is given in several steps. In view of Theorem 3.2 in [5] and 
known results on small valency (cf. [15]), we may (and shall) assume (without loss of 
generality) that n ~ 7 and k ;:;.14, where k is the valency of I'. Throughout the proof, 
we let y E VI', v = jVI'I, X = soc G = PSL(n, q), H =Gr, and Y = H n X. Then 
H = Nc(Y). Finally, we set q = p 6 , where p is a prime. 

2. THE CASE n = 2 

Since the graphs corresponding to Alt5 are known (cf. [14] and (21]) and accord with 
the statement of the theorem, we may (and shall) take q;:;. 7. Since G acts doubly 
transitively on the projective line Q = {IFqvlv E IF~} and the permutation character of G 
on (the cosets of) H is multiplicity-free, the group H has at most two orbits on Q, and 
so is listed in an appendix ('Hering's Theorem') or the conclusion of the main theorem 
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TABLE 1. 

(n, q) K H Index Array Name 

(2, 4) Sym5 Sym3 x 2 10 {3, 2; 1, 1} Petersen 
(2, 7) PGL(2, 7) Sym4 28 {3, 2, 2, 1; l, 1, 1, 2} Coxeter 
(2, 8) PI'L(2, 8) Frob7.6 36 {14, 6; 1, 4} J(9, 2) 
(2, 9) PJ:L(2, 9) L(2, 3) x 2 15 {6,4;1,3} Complement of 

J(6, 2) 
(2, 9) PI'L(2, 9) AGL(!, 5) x 2 36 {5, 4, 2; l, 1, 4} Inv( aut Sym6 \Sym6) 

(2, 9) PI'L(2, 9) [32] 45 {4,2,2,2; 1, 1, 1,2} Gen. 8-gon (2, 1) 
(2, 16) PI'L(2, 16) (2 x L(2, 4)) · 2 68 {12, 10, 3; 1, 3, 8} Doro 
(2, 17) PSL(2, 17) Sym4 102 {3,2,2,2, 1, 1, 1; 1, 1, 1, 1, 1, 1,3} Biggs-Smith 
(2, 19) PSL(2, 19) Alt5 57 {6, 5, 2; 1, 1, 3} Perkel 
(2, 25) PJ:L(2, 25) L(2, 5) · 2 x 2 65 {10, 6, 4; 1, 2, 5} Locally Petersen 
(3, q) aut P I'L(3, q) Borel· 2 (q2 + q + l)(q + 1) {2q, q, q; 1, 1, 2} Gen. 6-gon (q, l) 
(3, 4) aut PSL(3, 4) PSU(3, 2) · fih, 2 280 {9, 8, 6, 3; 1, 1, 3, 8} (,(Herm. forms (3, 4)) 
(3, 4) PJ:L(3, 4) · Alt6 • 2 56 {10, 9; 1, 2} Gewirtz 

(diag) 
(4, 2) Sym8 Sym6 x 2 28 {15, 8; 1, 6} Complement of 1(8, 2) 
(4, 2) Sym8 Sym5 x Sym3 56 {15, 8, 3; l, 4, 9} 1(8, 3) 
(4, 3) PG0+(6, 3) PSp(4,3):2x2 117 {36,20;1,9} Non-isotropics 

of [20]. It is well known (cf. [23]) that aut X = PI'L(2, q) has order q(q2 - l)a, and 
that the subgroups of X = L(2, q) come in seven types, which we have labeled (ia), 
(ib), (ii), ... , (vi) below. 

(i) Y is a dihedral group, of order IYI = 2(q - s)/(2, q -1), where e e {±1}. We 
show that I'is the Johnson graph 1(9, 2) and G = PI'L(2, 8). 

(ia) First, suppose e = 1. Then as a G-set, VT may be viewed as the set ( ~) of pairs 
of projective points. Furthermore, by Lemma 2.6 of [5], we may suppose that 
G = PI'L(2, q) or diam I':o;;;4. We establish that the latter must hold. To this end, 
assume that G = PI'L(2, q). 

Take y = {O, oo} so that H1 = Gy n PGL(2, q) is generated by the elements h, w with 
matrices 

(~ ~) and (_~ ~)' 
where ~is a generator of IF;. Consider the H1-orbits on VT\{ y }. The element h acts on 
{)., µ} e ( ~) by multiplication of its members by ~ and the element w by inversion and 
multiplication by -1. Clearly, the set XY of all vertices meeting y in a singleton is a 
single orbit of size 2( q - 1 ). Each of the remaining (1) vertices in VT\ { y} is 
Hi-conjugate to a vertex of shape {1, ~j} for some j(l :o;;;j,,;;; (q - 1)/2). 

Now h; fixes {1, µ} iff µ = -1:;.!: 1, and h;{l, µ} coincides with w{l, µ} iff either 
-1 = ~; and -µ- 1 = ~;µ, or -1 = ~;µ and -µ- 1 = ~;. In the first case we have again 
µ = -1 * l, in the second case there is an i for eachµ. This information determines the 
order of vertex stabilizers in Hl> and yields that on Vr\(XY U {y}) we have ( q - 3) /2 
orbits of length q - 1 and a single orbit (with representative { 1, -1}) of length 
(q - 1)/2 if q is odd, and (q - 2)/2 orbits of length q - 1 if q is even. 

If {O, 1} is adjacent to y, then we must have I'= J(q + 1, 2), by definition of the 
Johnson graph J(q + 1, 2) (cf. 1.2 of [5]), and so G must have a known rank 3 
representation. Here G = PJ:L(2, 8) appears with H = Frob7.6-

More generally, let i be such that XY = .I';(y); then, since J(q + 1, 2) has diameter 2, 
we have diam I',,;;; 2i. We fix a neighbour o = { 1, a} of y in I'. Applying w and a 
suitable power of h to o, we obtain {11, 11a-1} e Il(y) £ I',,.2(6). Transforming ()to y 
by means of 

( -1 a) 
1 -1 
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we find 

{ a - TJ a - TJIX-1} 
--1, -1 1 E I' .. 2(1')· 
T/ - TJIX -

Taking 71=a2, we obtain {-a/(a+l),O}eI' .. 2(y). If a#:-1, it follows that 
XY= J;(y), and so, by the above remark, diam I'o:;;;4, as required. Therefore, suppose 
a= -1 and p is odd. Taking T/ :/:= 1, -1, we obtain 

{ 1, (~ ~ :r} E I' .. i(y) ~ I' .. 3(C>). 

Taking TJ = 2, we see {l, 9} e r .. J( c5). If diam I'> 6, this forces 9 = -1 mod p, whence 
p = 5. But then q is a non-trivial power of 5 and an T/ e [F q \[F P can be found such that 

(~)2 #:-1· 
T/ + 1 ' 

applying the same argument once more leads to a contradiction. 
Consequently, diam I'.,;;; 6. We show that q must be small. From the above, we see at 

least the H-orbits xr, the one containing {l, -1}, and at least (q -3)/2a further 
orbits, so 2 + (q - 3)/2a.,;;; diam I'.,;;; 6. This shows that a ii::; 3 if p = 3 and a= 1, q .,;;; 11 
if p ~ 5. If q = 9, then soc G is an alternating group so I' is known (cf. [5]) and if 
q = 7, 11, there are at least two suborbits of size at most 13, so k ~ 13 by Lemma 2.7 
and I'is known (cf. §1.5 of [5]). Since q >5, only the case q =33 remains. Then, there 
is a unique suborbit of size 13 and one of size 52, while the remaining four suborbits all 
have length 78. Since k =I= 52 (because I' is not a Johnson graph) it follows that k = 13, 
contrary to the assumption k ~ 14. 

This establishes that diam I'~ 4. Then, by the same argument as above, 2 + (q -
3)/2a.,;;; 4 if p is odd, and 1 + (q - 2)/2a ~ 4 if p = 2. The only new cases to consider 
arise when p = 2, so let q = 2". Then q .,;;; 32. If q = 32, then all non-trivial suborbits 
distinct from xr have size 5 x 31, and so k = k2 = 155, contradicting Lemma 2.7 [5]. If 
q = 16, then the suborbits have sizes 1, 15, 30, 30 and 60. Taking into account that 
k2 = 30, we find that k = 15, k3 = 60 and k 4 = 30. But it is readily seen that there is no 
corresponding feasible intersection array. We have seen above that for q = 8 we find 
the Johnson graph 1(9, 2). Since q > 5, this ends the proof of (ia). 

(ib) Now let e = -1. We shall view X as the group PSU(2, q), so elements are 
(projectively) represented by matrices x with x T = x- ", where 'T' stands for transposed 
and <J for the standard Frobenius of order 2 of [F q>· The group X preserves the 
hermitean form ((a1 , {J1), (a2 , /32)) = a1a1 + {31 {J~ on IF~2 (cf. [23] for details). Take; 
to be a generator of [F;z, and put ~ = ;q-1• Then the elements h, w, described by the 
same matrices as in (ia), generate H1 := H n PGU(2, q). Denote by Q the set of 
projective points over [F qz, and identify ere IF qz with the 1-space containing (a, 1 ). Then 
Gleaves invariant the subset L1 (of size q + 1) of points represented by vectors (a, fJ) 
with ( (a, fJ), (a, fJ)) = 0, and for every point of .Q\L1 represented by (a, fJ), there is a 
unique orthogonal point (f3q, -aq). Now His the stabilizer of the orthogonal pair of 
points related to the standard basis, so VI' may be identified with the set of all 
orthogonal pairs {a, -a-1} with a e IF qz, a 1+q :/:= -1. Since h preserves a 1+q for 
a e IF q» the 'double' value a±<t+q) e IF q parametrizes (h)-orbits. It readily follows from 
this description that on VI', the subgroup H1 has (q - 2)/2 orbits of length q + 1 if q is 
even, and (q - 3)/2 orbits of length q + 1 and a single orbit of length (q + 1)/2 
(containing 1) if q is odd. The H-orbit structure will be completely determined if we 
know the Frobenius action; but this is also clear from the above picture. For instance, 
if q is odd, then, among the Hi-orbits of length q + 1, there are precisely (p - 3)/2 
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invariant under the Frobenius of order a. Then a > 1 implies that there are orbits of 
length >(q + 1), so by Lemma 2.7 of [5] there are at most two orbits of length q + 1. 
Thus (p - 3)/2::::; 2, i.e. p::::; 7. Let e be the number of divisors of a (including 1 and a). 
By Lemma 2.7 [5], and the orbit lengths, we must have k.+ 1 ::::; ke if q is even and 
k,+2 ::::; ke+i if q is odd, so d::::; 3e if q is even and d::::; 3e + 3 if q is odd. But H has at 
least (q - 2)/2a orbits if q is even and at least 1 + (q - p )/2a + (p - 3)/2 if q is odd, so 
2a = q::::; 6ae + 2 if q is even and pa= q::::; 6ae + 4a + 3 if q is odd. Using that k ~ 14, we 
also have q ~ 13, so that q is one of 16, 32, 64, 27, 81, 25 and 13. Inspection of the 
subdegrees in these specific cases shows that no feasible intersection array exists. 

(ii) Y is a Borel subgroup of X. Then G acts doubly transitive on VF and so I' is a 
clique. 

(iii) soc Y = Alt5 and p-=/= 2, 5. We may view VI' as the class of X-conjugates of Y. 
Thus v = q(q 2 - 1)/120 and JHI = 120 or 60 (as H is a maximal subgroup of G and 
there are precisely two conjugacy classes of Alt5 in L(2, q) which fuse in PGL(2, q)). 

Let x E soc Y be an element of order 5 and let £ 5 E {±1} be such that 5 divides 
q - £ 5 . There are q(q + s 5)/2 groups of order 5 in X, all conjugate to (x). Hence, 
there are precisely (q - s5)/10 vertices of I' containing x. Let a and b denote the 
number of vertices of I' meeting soc Y in precisely (x), respectively, a dihedral of 
order 10 containing x. Then Y has b orbits of length 6 on the vertices of I' and a/2 
orbits of length 12. Moreover, a+ b + 1 = (q - s5)/10. By the assumption k > 13, 
so there is only one H-orbit of length at most 12. 

Suppose first that q is a prime, so that Y = H = Alt5 . If q > 31, there are at least two 
H-orbits of size at most 12, a contradiction. Thus q::::; 31 and we are done by a 
straightforward check using the Atlas [7]. Next suppose q is not a prime. Then, by 
maximality of H, it must be the square of a prime, and by [20] q = 9 or 49. Since in the 
first case the theorem is readily seen to hold, we may assume q = 49. But then £ 5 = -1 
and, by the assumption k > 12, there is a single H-orbit of size 24. At this point, it is 
straightforward to derive a contradiction. This ends the proof of the case where 
Y= Alt5 and p -=!=2, 5. 

(iv) Let p > 3, and Y = Alt4 (with q = 3 or 5 mod 8) or Sym4 (with q = ±1mod8). 
Then q is a prime number and, if q = ±1mod8, there are two conjugacy classes of 
subgroups of X isomorphic to Sym4 which fuse in PGL(2, q) so h =IHI= 12 or 24. But 
h = 12 implies k ::::; 12, in which case there is nothing left to prove. Thus h = 24 and 
r; ( y) is a regular H-orbit. 

If d = 2, the complement of I' is distance-transitive with the same group G, so we 
may assume k2 = k so that v = 1+24 + 24 = 49 and v = q(q2 - 1)/48 or q(q2 - 1)/24, 
contradicting that q is a prime. If d > 2, we obtain k = k2 = 24 and we are done by 
Lemma 2.7 [5]. 

(v) Y = PSL(2, r), where q = rm and m is an odd prime number. There is a unique 
X-class, so v = q(q 2 - 1)/(r(r2 - 1)). Recall that q =pa so that r = pa1m. Now, by 
multiplicity freeness, H has at most two orbits on Q = P(IF~); but we see one H-orbit 
(which coincides with a Y-orbit) of length r + 1. Other Y-orbits are regular of length 
r(r2 - 1)/(2, p -1), so we must have q + 1=(r+1) + br(r2 - 1)/(2, p - 1), where b 
divides JG I XJ, sob I (2, p - l)m. It follows that (r"'- 1 - 1)/(r2 - 1) = (q - r)/(r(r2 - 1)) 
= b/(2, p -1)::::; m. Consequently, either m::::; 3 or r = 2 and m = 5. In the latter case, 
H contains a torus and so is dealt with in (i). 

Therefore, we have m = 3 and b = (2, p -1), so H ~ PGL(2, q). 
Now v=r2(r4 +r2 +1). Let £E{l,-l}. There are r(r+s)/2 tori (i.e. abelian 

subgroups of consisting entirely of semi-simple elements) of order r - £ in H1 = 
PGL(2, r) and similarly with q instead of r, whence each torus of PGL(2, q) of order 
r - sis contained in vr(r + e)/(q(q + s)) = r2 + sr + 1 conjugates of H1• Thus there are 
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(r(r + e)/2)(r2 +er)= r2(r + e)2/2 vertices of VI' meeting Hin a torus of order r - e. 
The same computation can be carried out for dihedral subgroups of order 2(r - e); 
using that a dihedral of order q - e contains (q - e)/(r - e) dihedral subgroups of 
order r - e, it follows that, if D is a dihedral subgroup of H1 of order r - e, then H1 is 
the unique member of its conjugacy class containing D. Hence any two conjugates of 
H1 containing a torus of order r - E meet precisely in that torus. 

Suppose diamI'~5. Then, by [5], Lemma 2.6, we may assume that G = PI'L(2, q). 
If e denotes the number of divisors of a (including 1 and a), then, since the H-orbit 
sizes of vertices meeting H in a torus of order q - e only depend on the order of the 
Galois automorphism, the number of H-orbits of vertices meeting Hin a torus of order 
r - E is at least r(r + e)/2ea. On the other hand, there are orbits of size larger than 
that, for instance those containing H", where x corresponds to the matrix 

(_~-1 ~) 
where b e IF q \IF,. Thus, by [ 5], Lemma 2. 7 we have r(r + E) /2ea :;::; 2. This implies that r 
is one of 2, 3, 4, 8 and 9. By straightforward analysis of the numbers involved, there 
must be strictly more than two H-orbits in the cases r = 8, 9. A straightforward check 
of subdegrees against feasible intersection arrays shows that the theorem holds for the 
remaining values (2, 3, 4) of r. 

Finally, suppose diam r:;;;; 4. Then the number of non-trivial H-orbits is four. One of 
these is accounted for by the same x as in the previous paragraph. Since both values of 
E account for at least one, there is a value, say e0 , of e such that there is exactly one 
H-orbit of vertices meeting Hin a torus of order r - e. This implies r(r + e0 )/2a:;::; 1, 
whence r = 2, 3, 4. If r = 2, then H is not maximal, and we are done. If r = 3, the 
degrees of irreducible characters do not exceed a · 28 = 168, so we would have 
1+4 · 168 ~ IVI'I = 891, a contradiction. If r = 4, then, by standard arithmetic, there 
must be more than two H-orbits meeting Hin a torus of order r -1=3. 

(vi) soc Y = PSL(2, r), where q = r2• By Lemma 2.6(i) of [5], we may assume 
G ~ P IL(2, q ). By maximality of H, and observing that if q is odd, there are two 
classes of subgroups isometric to PSL(2, r), we have G = PIL(2, q) and H = 
PI'L(2, r)·(y), where y is the standard Frobenius automorphism of PSL(2, q) of order 
2. Furthermore, as a G-set, VI' can be identified with the L(2, q)-class of y. Thus, 
Proposition 2.5 of [5] applies. Clearly, cases (i) and (ii) of its conclusion do not hold. 

Suppose q is odd. First consider the case where {>er is adjacent to y if {> and y 

commute. Then the product of any two non-commuting involutions in Y has the same 
order. But any element in a torus of Y order (r ± 1)/2 arises as such a product, so (as r 
is odd) it follows that (r - 1)/2 = 2 and q = 25. The resulting graph has been found by 
J. I. Hall [11] in his determination of locally Petersen graphs. 

It remains to study the case where y and {> e I'(y) do not commute. Then case 
2.5(iii) of [5] is at hand, so yo has order 2 iff o e I',.i(y). Also, no two involutions in VI' 
have a product of order 4, so (by consideration of involutions in I' commuting with a) 
r=3, 5mod8. 

To finish, we shall use another interpretation of VI'. Since G = PIL(2, r2) ~ 
PI0-(4, r), we can view H ~ PE0(3, r) · 2 as the stabilizer of a non-isotropic vector in 
elliptic projective 3-space. (The two choices of points according to square or 
non-square norm if q is odd correspond to the two classes of PSL(2, r) in PSL(2, q).) 
We can thus view VI' as the set of non-isotropic points with square norm. 

Suppose q is odd. Then, from this picture it is readily seen that, if y and {> are 
vertices of r, there is g e H = Gr such that {J and f>g are orthogonal (consider the 
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projection of o on the orthoplement of ( y) ). This yields that commuting involutions in 
the earlier picture occur at distance 2, whence d ~ 2, a contradiction. 

Suppose q is even. Then, a direct computation (cf. [6], Ch. 12) shows that vertices 
corresponding to orthogonal points can be found at distance at most 3, regardless of 
the choice of adjacency, sod~ 3, and q = 16, yielding the Doro graph. This ends the 
proof for n = 2. 

3. PROOF FOR n ;;;;:: 3; STRUCTURE PRESERVING VERTEX STABILIZERS 

The following result is essentially due to Saxl [22], cf. the remark following [5], 
Lemma 2.1. Recall that, for d ~ n/2, the Grassmann graph G(n, d, q) has vertex set 
VG(n, d, q), the collection of d-dimensional subspaces of IF~. 

LEMMA 3.1. Let G, I' and H be as above and suppose G acts multiplicity-freely on 
VI': 
(i) If -r:n is the number of involutions in Symm then 

n i 1 
JPI'L(n, q) n HI;;;;:: (1 + 7:n)-1[G: G n PI'L(n, q)]-1 IT~. 

i=2 q -1 

(ii) If n is even, the group G acts multiplicity-freely on VG(n, n/2, q) with 
rank n/2 + 1. Consequently, the number of H-orbits on VG(n, n/2, q) is at most 
n/2+ 1. 

For dimension n ~5, the subgroups of L(n, q) have been determined (cf. [17] for 
references and details). Nevertheless, we start with the same approach for finding all 
multiplicity-free permutation representations as used by Inglis, Liebeck and Saxl [13]; 
namely, to apply Aschbacher's division of cases for a skew-linear group H0 = 

PI'L(V) n H (a normal subgroup of H of index at most 2) acting projectively on a 
module V over IFq of dimension n. Aschbacher [2] discerns eight cases (Cl), ... , (CS), 
in which H preserves a certain structure on V. We shall go over the various possibilities 
now. Denote by <P the natural projection map I'L(n, q)- PI'L(n, q). 

(Cl), (C2) Y stabilizes a subspace. We are as in one of (i), (ii), (iii) or (iv) of [13]. 
There are no changes with respect to [13) (i.e. this leads to the Grassmann graphs), 
except that for n = 3 generalized hexagons of order (q, 1) occur (they are distance­
transitive as polarities exist) and for n = 3 and q = 2, the Coxeter graph arises. 

(C3) There is an extension field of order r = qm, for some prime m \ n, and 
IF rH0-module W such that V is the module obtained from W by restriction of scalars to 
IF q· There is a torus, L say, in SL(n, q) of order qm-t + qm-z + · · · + 1 such that 
H =Ne( <PL). As all such tori are conjugate, we may take VI' to be the set of 
conjugates of L. Similarly to case (v) of the proof of Theorem 3.2 in [5], one can show 
that if L 1 is a conjugate of L which commutes with L, then L 1 E Id(L). Let NE I'(L). 
Then, according to Lemma 2.7(ii), (iii) of [5], NH(<PN) is the unique one of maximal 
order among all NH(</>M) for ME VI' such that Mand L do not commute. In other 
words, k= [H:NH(<f>N)] is minimal among all conjugates of L not commuting with L. 

As here n ~ 7, we have either m =nor one of (m, n) = (2, 6), (3, 6), (2, 4). Consider 
the case m = n. In view of maximality of H, we have that n is a prime; in particular, 
n E {3, 5, 7}. All non-trivial orbit sizes of H0 := <1>- 1HnI'L(n, q) on VI' are multiples 
of ILl/(n, ILi) (for the centralizer in L of a conjugate L 1 of L distinct from it is trivial 
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and the normalizer interchanges the n distinct characters of L 1 on V 0 IF q• ). Thus, 
there are at most e([H:Na(4>L1)])=e(2na(n,qn-1 +···+l)) different non-trivial 
H-orbit sizes, where e(x) stands for the number of divisors of x. By Lemma 2. 7(vi) of 
[5], this yields diamI'~3e(2na(n,qn- 1 +···+l)). On the other hand, we have 
v ~ 1 +diam r · IHI, so 

~ 1+6e(2na(n, qn-I + · · · + l))an(qn - 1)/(q -1). 

This gives that we have one of (n, q) = (3, 2), (3, 3), (3, 4). In the first case, we find 
the projective line of order 7 on which PGL(2, 7) = aut L(3, 2) acts doubly transitively, 
so VI' is a clique, a contradiction. In the cases q = 3 and q = 4, we obtain graphs on 
144 and 960 vertices, respectively, which, by closer inspection of possible intersection 
arrays, are readily seen not to provide distance-transitive graphs. 

From now on, we may assume that m is a proper divisor of n. 
Suppose m = 2, so n = 4 or 6, and L is a torus of order q + 1. The case n = 4 can be 

done by geometry, using the isomorphisms L(2, q 2) =PS Q-( 4, q) and L( 4, q) = 
PSQ+(6, q). Thus, we can (and shall) view VI' as the set of elliptic lines in the 
hyperbolic geometry o+(6, q). Fix a line l E VI'. Any line me VI' belongs to one of the 
sets V; (1~i~6) given below: 

IV.I 

(q2 - l)(q2 + 1) 
q(q 2 + l)(q + l)(q - 2)/2 

q(q 2 + l)(q 2 - l)(q + l)(q - 2)/2 
q3(q 2 + l)(q2 - l)(q -1)/4 

q2(q2 + l)(q2 - l)(q - l)(q - 2)/4 
q2(q2 + 1)/2 

Description of Vi 

(/, m) degenerate, I nm = 0 
< /, m) non-degenerate, I n m * 0 

(/, m) degenerate, l nm= 0 
(/, m) elliptic, l nm= 0 

(/, m) hyperbolic, In m = 0, m ~ /"­
(/, m) hyperbolic, In m = 0, me/"-

If q = 2, then V; = 0 for i = 2, 3, 5, and the Johnson graph J(8, 3) appears. Other­
wise, diam I'~ 6, so, by Lemma 2.6 of [5], we may assume that H acts transitively on 
the set of non-isotropic points of o+ ( 6, q ). Now Vi is a single orbit corresponding 
to L1 (the commuting conjugate of L) so fd(/) = V6 . On the other hand, a straight­
forward check shows that an H-orbit off V6 of minimal length lies in V2 (and has size 
(q + l)(q 2 + l)q /2) if q is odd, and lies in Vi (and has size (q2 - l)(q2 + 1)) if q is 
even. In both cases, it is easily seen that there are members of V6 = I'd(l) in r ... 4(/), 

contradicting that d ~ 6. 
Suppose n == 6. Take l such that L = {/), and let K == (k) e VI'\fd(L) be such that 

z- 1k has four-dimensional fixed space and (!, k) = SL(2, q) stabilizes a two­
dimensional complement of this fixed space. The H-orbit size of K is certainly not 
maximal. So the number of such orbits is bounded by 2. Also NH(</>L, ij>K) ~ 
C0 ( ij> ( L, K) ). Now the n == 2 case gives that the number of such orbits (varying K 
over the conjugates of Lin (L, K)) is at least (p - 3)/2. Since this number is bounded 
by 2, we obtain p ~ 7. If p is odd, then H is centralized by an involution in PG L( 6, q) 
and so by Lemma 2.6 of [5], we may take PGL(n, q) ~ G and His the centralizer of an 
involution in N0 ( <f>L); but then there are pairs of involutions from this class with 
products of order 4 (from the PGL(2, q) picture), so we are done by [5]. It remains to 
consider the case where p = 2. 

Suppose q = 2. Then direct computation (we used CA YLEY) shows that the 
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H-orbits on VI' have sizes 1, 336, 5040, 201060, 25920, 315, 3780, in the respective 
cases where (L, N) is a group of type Z3 , Z5, [36], Alt5 , L(2, 8), Alt4, [24]. Thus, 
d = 6, and I'(L) must be the H-orbit of size 315. But then, there is a subspace 
decomposition V = Vi ® Vi with dim V; = 2i such that L and N coincide on Vi. and 
generate a subgroup isomorphic to Alt4 in the subgroup A of G normalizing Vi and V2 • 

Now A acts on LA as SL(Vz) == Alt8 on its set of groups of order 3 fixing 5 points, and 
the above adjacency leads to an isomorphism of the subgraph of I' induced on LA with 
J(8, 3). In particular, commuting pairs occurs at distance 3, so d,;;:; 3, a contradiction. 

Now q ;::;,: 4, q even. From the geometry it is readily seen that there are at least three 
H-orbits of the same length consisting of (K) such that (L, K) ==SL(4, q), a 
contradiction. 

Finally, suppose m = 3. Then n = 6. Now IHol ~ (q 3 - l)(q - 1) IPGL(2, q3)1·3a, so 
Lemma 3.1yieldsq~4. For q = 3, 4, direct check reveals that the number of H-orbits 
on the set of maximal flags in IF: exceeds 't"n + 1 = 76, contradicting the remark after 
Lemma 2.1 of [5]. If q =2, it can be verified that too many subdegrees are equal for 
the graph r to be distance-transitive. 

(C4), (C7) There is a ¥-invariant tensor product decomposition V =Vi®· · · ® l'f 
with j > 1 and dim V; > 1 for all i (1 ~ i ~j). Then, as n,;;:; 7, we have j = 2 and 
(dim Vi, dim V2) = (2, 2) or (2, 3). 

First consider dim Vi= 2, and dim V2 = 3, son= 6. Then, by Lemma 3.1, 
6 i 

q(q2 - l)q3(q3 - l)(q2 - l)(q - l)a ~IHI~! -ff, IT q - 1 
i=l q -1 

implying q4a;::;,: m(q6 - l)(q5 - l)(q2 + 1)/(q - 1)2, which is absurd. 
Thus, assume dim Vi = dim Vi= 2. Then H is an orthogonal group and will be dealt 

with in (CS). 

(CS) There is a divisor m of a such that, with q = rm, the subgroup H0 is conjugate to 
a subgroup normalizing PSL(n, r). 

LEMMA If a is the standard Frobenius ; ~ ;r of order m. Then H = Ca( a), and the 
permutation character of G on H is multiplicity-free iff m = 2. 

If m = 2, the statement follows from [10]. 
Suppose for the remainder of the proof of this lemma that m > 2. Denote by P, S the 

set projective points of IF~, IF~, respectively. Then P partitions into the three H 
invariant sets S, S1 ={peP\Slpp 0 nS=F0}, and S2 ={peP\Slpp 0 nS=0}, 
where pp 0 denotes the projective line of P on p and pa. Since these three sets are 
non-empty and G is doubly transitive on P, we are done unless G contains a duality 
(i.e. graph automorphism) o. Also, H cannot have four or more orbits on P. Consider 
p E S1 and denote by l the unique line pp 0 on p meeting S. Then Hx ~ H1 and, as S1 

must be a single H-orbit, the group H1 acts transitively on the r(rm-i - 1) points of l\S, 
so r(rm-i -1) I r(r2 - l)m. Hence either m = 5 and r = 2, or m = 3. In the first case, we 
obtain a contradiction with Lemma 3.1, so from now on we may assume m = 3. 

Now consider the H-invariant sets of incident point, hyperplane pairs {s, t}, for 
s E S1, t E oSi (0 ~ i, j ~ 2). If n > 3, all six of them are non-empty and if n = 3, there 
are five non-empty sets among them. Since G acts multiplicity-freely on the set of all 
incident point, hyperplane pairs with rank 5 and 4 in the respective cases, this leads to 
a contradition with the multiplicity freeness of G on VT, and so finishes the proof of 
the lemma. D 
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Due to the lemma, we only need consider the case where m = 2. Then H is the 
centralizer of the involution a and, in view of the proof of Theorem 3.2 Case (vii) [5], 
we may assume a E G, VI'= a 0 , I'(a) ~ H, H n a 0 is a class of s-transpositions for 
some primes, and n ~ 4. According to [1] and [9], n = 4 and r E {2, 3}. 

If r = 2, then I'(a) is isomorphic to the complement of the Johnson graph 1(8, 2), so 
I' contains a quadrangle, k = 28, a 1 = 6, and, by [24], I' has diameter at most 7, a 
contradiction as the permutation rank exceeds 8 (cf. Gow [10]). 

If r = 3 then I'( a) is the graph of non-isotropics in o+(6, 3), so I' contains a 
quadrangle, k = 117 and a 1 = 36, leading to the same contradiction as for r = 2. 

(C6) There is a prime r =I= p such that rm = n for some m, and an r-group R acting 
irreducibly on V and normalized by H 0 , such that R/Z(R) has order r2m and Z(R) has 
order at least 3 (and dividing q -1). Furthermore, a is odd and equals the order of pin 
the group of units of the integers modulo IZ(R)j. Now 

m 

IH n PI'L(n, q)I ~ r2m 1Sp(2m, r)I a= r2m+m 2 n (r2i - l)a 
i=l 

so, by Lemma 3.1, 

r2m+m2 ft (r2i - 1) ~ !(1 + 'fn)-1 IT (q; - 1). 
i=l i=2 (q - 1) 

Using that IZ(R)I divides (q - 1) and 2 < rm = n ~ 7, and that IZ(R)I is either odd or 
divisible by 4, we see that the only possible values for the triple (r, m, q) are (3, 1, 4), 
(3, 1, 7), (2, 2, 5). In the first case, we have the example on 280 vertices described in 
Table 1. In the second case, a look at the character table of aut L(3, 7) (cf. the Atlas 
[7]) immediately gives a contradiction with multiplicity freeness. Finally, let 
(m, r, q) = (2, 2, 5). Then, by use of the isomorphism L(4, 5) ~ PSQ+(6, 5), the vertex 
set VI' may be viewed as the stabilizer of an orthonormal frame (6 non-isotropic 
1-spaces that are mutually orthogonal), say {IF5 v;}i"';"'6 in o+ (6, 5). Now v1 + 2v2, 

v1 + v2 + 2v3 + 2v4 , v1 + v2 + v3 + 2v4 + 2v5 + 2v6 , v1 + v2 + v3 + v4 + v5 are clearly 
representatives of distinct H-orbits, whose 1-spaces are isotropic, showing that H has at 
least four orbits of isotropic points. This implies that it cannot be multiplicity-free ( cf. 
the remark following Lemma 2.1 of [5]). 

(C8) There is a non-degenerate H0-invariant quadratic, symplectic, or hermitean form 
on V. If the form is symplectic or hermitean, then His the centralizer of an involution, 
and we proceed as in [5]. First, consider the case of a symplectic form. Then m = 2 in 
view of [5]. Using the isomorphisms PSp(4, q) = PSQ(5, q) and L(4, q) == PSQ+(6, q), 
we can view VI' as the set of projective points (x) with Q(x) = 1, for x E W =IF~ and Q 
a fixed non-degenerate quadratic form on W of Witt index 3, and G n L(4, q) as the 
simple socle of the group fixing Q. From this picture, it is straightforward that VI' 
cannot be distance-transitive, unless q = 2 or 3, in which cases there are distance­
transitive graph structures on I' as listed in Table 1 (on 28 and 117 vertices, 
respectively). 

Now consider the case where H0 fixes a hermitean form. Then, according to [5], there 
are involutions x, y E VI' such that xy has order 4, so I'(x) coincides with a class of 
r-transpositions for some prime number r, and by [9] and [1], either (n, q) = (4, 9) or 
q = 4. In the first case we obtain the result that I' satisfies k = 126, a1 = 45 and contains 
quadrangles, so that, by [24], diamI'~5, less than the number of H-orbits (cf. Gow 
[10]), a contradiction. Therefore assume q = 4. For n = 3, we obtain an example, the 
graph I' from Table 1 on 280 vertices, so assume n :::o 4. Then the same argument as 
given at the end of the proof of Theorem 3.2 in [5] applies. 
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It remains to discuss the case where H0 stabilizes a quadratic form. By maximality of 
Hin G, we take q to be odd. 

Suppose n is odd. If G::;::; PIL(n, q), then the permutation rank of G on VG(n, 2, q) 
is 3 or 2 according as n;;;;::; 5 or n = 3, whereas H has four, respectively three orbits on 
this set. Consequently, G is not multiplicity-free on VI', a contradiction. Hence G 
contains a graph automorphism. Now G has permutation rank 5 on the set of incident 
point, hyperplane pairs, whereas H n PI'L(n, q) has at least seven orbits on this set, 
again a contradiction with multiplicity freeness. 

Thus n = 2m is even. First, suppose the Witt index of the form is maximal (i.e. equal 
to m ). Then G has permutation rank m + 1 on the set of m-spaces, but there are at 
least m + 2 H-orbits on this set (if n = 4, there are elliptic, hyperbolic, tangent and 
isotropic lines, and if n = 6, there are totally isotropic, degenerate with two­
dimensional radical, degenerate with hyperbolic quotient, degenerate with elliptic 
quotient, non-degenerate). 

Finally, let the Witt index be smaller than m. Then it ism -1. If G::;::; PI'L(n, q), 
then G has permutation rank 2 on the set of 1-spaces, and H has three orbits on this set 
(observe that if n ""'4, no outer automorphsim can be realized in PI'L(n, q)), so again 
G cannot be multiplicity-free on VI'. Thus G contains a diagram automorphism. Now 
H n PI'L(n, q) has three orbits on the set of 1-spaces, and from this it readily follows 
that there are at least six orbits on the set of incident point, hyperplane pairs. Since G 
has permutation rank 5 on the latter set, we have a contradiction with multiplicity 
freeness, and we are done. 

4. PROOF FOR n ""'3; IRREDUCIBLE GROUPS WITH SIMPLE SocLE 

We retain the notation <P: I'L(n, q)~ PI'L(n, q), V =IF~, H0 = <J>- 1(H n PI'L(n, q)). 
In this section, we deal with the case where H0 is not as described in one of (Cl)-(C8). 
Then, according to [2], the socle Z of His a non-abelian simple group acting absolutely 
irreducibly on 1Fq. Moreover, we have H = Nc(Z), and Cc(</>Z) = l, so H embeds in 
aut z. The resulting upper bound laut ZI on H will be frequently applied in conjunction 
with Lemma 3.1. We further divide this case into four subcases, viz.: (i) Z is a simple 
Chevalley group of characteristic p; (ii) Z is a simple Chevalley group of characteristic 
r :t= p and cannot be viewed as a simple Chevalley group of characteristic p; (iii) Z is an 
alternating group Altm with m ;;::;7, m :1=8; (iv) Z is a sporadic group. 

(i) From known literature (e.g. [8, 17, 19]) we derive: 

LEMMA. Let Z be a simple Chevalley group of characteristic p (including the derived 
groups PSp(4, 2)', G2(2)', G2(3)', 2~(2)') that is a subgroup of L(n, q) for which 
(Cl)-(C8) does not hold. Then either Z==PSp(4, 2)' and q =4, or Z==L(2, r) for 
some power r =pm of p. 

The case Z == PSp(4, 2)' leads to the graph on 56 vertices mentioned in Table 1. 
Therefore, we assume Z == L(2, r). By a result of Donkin (cf. [19]), n;;;;::; zmt(m,a>. As 
n::;::; 7, we have m/(m, a)~ 2. Suppose m = (m, a). Then m =a, for otherwise (CS) 
would hold. By Lemma 3.1, we have 

n j 1 
q(q2 - l)a ""'!(1 + 't"n) U !-= l , 

whence n = 3. But then Z = PSQ(3, q) and belongs to (C8), a contradiction. 
Therefore x = (m, a) satisfies m = 2x and there is an odd number k such that a= kx. 
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Set s = px. Then Lemma 3.1 gives 
n Sil< -1 

s2(s4 - l}m ~ i(l + •n) TI -k--, 
i=2s -1 

leading to k = 1 (recall that n ~ 22), and either n = 5 and q = 2, or n = 4. 
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If (n, q) = (5, 2), a look at the Atlas [7] shows that H = Na(Z) is non-maximal, 
ag_ain a contradiction. Consequently, n = 4, and we are in case (C3) (cf. [17]}, a 
contradiction. 

(ii) From known literature (e.g. [18]) we derive: 

LEMMA Let Z be a Chevalley group of characteristic r =I= p acting projectively and 
irreducibly on the IF q-vector space V of dimension at most 7. Denote by µ the minimal 
dimension of such a module. Then Z is isomorphic to one of L(2, 4) (µ = 2), L(2, 8) 
(µ = 6), L(2, 7) (µ = 3), L(2, 9) (µ = 3), L(2, 11) (µ = 5), L(2, 13) (µ = 6), L(3, 4) 
(µ = 4), L(4, 2) (µ = 7), PSp(6, 2) (µ = 7), PSU(4, 2) (µ = 4), PSU(3, 3) (µ = 6), 
PSU(4, 3) (µ = 6). 

Suppose n = 3. Then an absolutely irreducible embedding of each of the three 
groups listed in the table with µ ~ 3 defies (CS). 

So let n ~ 4. Each of PSp(6, 2), L( 4, 2), L(2, 13), L(2, 8) fails in view of Lemma 
3 .1. We check the remaining possibilities for Z in their order of appearance in the 
lemma. 

Z = L(2, 4) or L(2, 7): Lemma 3.1 yields n = 4 and q ~ 3, so q = 3. Now, in the 
former case, we obtain a contradiction with the maximality of H, and in the latter case 
is absurd as L(2, 7) does not embed in L( 4, 3). Suppose Z == L(2, 9). As Z = 
PSp(4, 2)', we may also assume p =I= 2. But then Lemma 3.1 yields a contradiction. 

Suppose Z = L(2, 11). Then Lemma 3.1 (andµ~ 5) gives n = 5 and q = 2, which is 
absurd as 11 does not divide laut L(5, 2)1. 

Let Z = L(3, 4). If n ~6, we obtain a contradiction with Lemma 3.1. By [17], we 
must have n = 4 and q = 9, in which case, X embeds via PSU( 4, 3), a contradiction 
with the maximality of H. 

If Z =PSU(4, 2), then we may assume p =1=2, 3. Lemma 3.1 then yields n = 4 and 
q = 5, 7, whence, by the requirement q = 1mod3 (cf. [17]) q = 7. In order to study the 
action of Z on V, we present Z as the group generated by the following matrices (they 
are given here as the matrices presented in [20] are in error): 

(0 0 0) (1 0 0 j (1 0 
0 

j 0 1 0 0 0 4 0 0 0 2 1 1 
0 0 1 0 ' 0 0 1 0 ' 0 1 2 1 ' 

0 0 0 1 0 0 0 1 0 1 1 2 

(2 0 1 6) (~ 
0 0 

i) 0 1 0 0 1 0 
1 0 2 6 ' 0 1 
6 0 6 2 0 0 

Straightforward computation shows that there are two orbits, say S and T, on the set of 
projective points (as stated in [20]) with length 40 and 360, respectively, and that there 
are 240 (projective lines) containing precisely 2 points from S, 90 lines having precisely 
4 points of S, 1440 lines having precisely 1 point of S, and 1080 lines entirely contained 
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in T. Consequently, the permutation rank of G on the set of lines (being 3) exceeds the 
number of H-orbits of lines, a contradiction with multiplicity freeness of G on H. 

Suppose Z = PSU(3, 3). Lemma 3.1 gives n = 6 and q = 2, but in view of 
Z = G2(2)', we may assume p *-2, and we are done. 

Finally, suppose Z = PSU(4, 3). Now either n = 6, and q e {2, 4} or n = 7 and q = 2. 
As the possibility q = 2 fails by Lagrange, we have n = 6 and q = 4. But then Z embeds 
in PSU(6, 2) and hence His not maximal in G. This ends the proof of case (ii). 

(iii) By well known results, Z = Altm and n =dim V,,;;; 1 gives m,,;;; 9. 
Let m = 7. Then Lemma 3.1 gives that either n = 5 and q = 2, or n:::;:; 4. In the 

former case, His non-maximal (cf. [7]), so assume n "6:4. 
If n = 3, then Lemma 3.1 gives q,,;;; 25. In view of [7], we must have p:::;:; 7, and by 

Lagrange and [7], q = 25 remains. But then Z is contained in PSU(3, 5), yielding a 
contradiction with the maximality of H. Now suppose n = 4. If p = 2, then q = 2 and G 
is doubly transitive on vr, leading to a contradiction with diam r > 1, so p;;;;.:, 3. 
Lemma 3.1 gives q = 3, 5 contradicting Lagrange. 

Finally, let m = 9. Then p divides m ! (as n ,,;;; 7). If p * 2, then, by consideration of 
the subgroup Alt8, n = 7, contradicting Lemma 3.1. So p = 2, forcing n;;;;.:, 8, a 
contradiction. 

(iv) It is well known (cf. [20]) that the only sporadic groups having a projective 
representation of degree at most 7 are among M11 , M12, M22 , 111 12 . If p does not 
divide IZI, then by the Atlas [7] we have Z = 12 , n = 6, and .c/>- 1 Z = 2 · J2 • Since p is 
odd, there is a symplectic form left invariant by Z, and so H = N0 (Z) is non-maximal. 

From now on, suppose p divides IZI. We proceed with a case-by-case analysis. 
Let Z =Mu. By [16], the only irreducible projective modular characters for Z of 

dimension at most 7 occurs for p = 3 and n = 5. If G,,;;; PGL(5, 3), then Lemma 3.1 
yields IHI;;;,, 9680. But IHI= IZI =Mu= 7920, a contradiction. Hence G contains graph 
automorphisms, and by maximality of H, we have that there is a graph automorphism 
a normalizing Z. Since out M11 = 1, we must have H,,;;; C2 ( a), a classical group, 
conflicting with maximality of Hin G. 

Z = M12: if the representation has no multiplier, then, by [16], we have n;;;;.:, 10, 
which is absurd, so we may assume c/>- 1 H contains a subgroup Z == 2 · M 12 • Now n must 
be even, and, in view of Lemma 3.1, either n = 6 and q = 2 or n = 4 and q:::;:; 13. But 11 
must divide IL(n, q)I, whence n = 4 and q = 11. Since IL(4, 11)1 is not a multiple of 33 , 

this is impossible. 
Z = M22: applying [17] gives n;;;,, 6. Lemma 3.1 then gives q = 2, contradicting 

Lagrange. 
Z =11 : consider a Frobenius subgroup F of order 7 · 6. Suppose p * 7. Then n;;;,, 6 

for a faithful representation of F, and by Lemma 3.1 we obtain q = 2, again 
contradicting Lagrange. Thus p = 7. By [17], n;;;,, 6, contradicting Lemma 3.1. 

Z =J2 : if p = 3, then n = 4 from Lemma 3.1. But consideration of the subgroup 
isomorphic to 52 : D12 shows that n ;;;,, 6. Then q ~ 3, contradicting Lagrange. This ends 
the proof of case (iv) and hence Theorem 1.1. 0 
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