Available at

WwW.MATHEMATICSwEB.ORG

POWERED BY SCIENCE DIRECT® Journal of

Algorithms

ACADEMIC
PRESS Journal of Algorithms 48 (2003) 257-270

www.elsevier.com/locate/jalgor

Capacitated vertex coverifig

Sudipto Guh&! Refael Hassifi,Samir Khulleré*2 and Einat OP

@ Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
b Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel
¢ Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA

Received 3 March 2002

Abstract

In this paper we study the capacitated vertex cover problem, a generalization of the well-known
vertex cover problem. Given a gragh= (V, E) with weights on the vertices, the goal is to cover
all the edges by picking a cover of minimum weight from the vertices. When we pick a copy of a
vertex, we pay the weight of the vertex and cover up to a pre-specified number of edges incident
on this vertex (its capacity). The problem is NP-hard. We give a primal-dual based approximation
algorithm with an approximation guarantee of 2, and study several generalizations, as well as the
problem restricted to trees.
0 2003 Elsevier Inc. All rights reserved.

Keywords:Approximation algorithm; Vertex cover; Capacitated network design

1. Introduction

Let G = (V, E) be an undirected graph with vertex 3ét= {1, ..., n} and edge sek.
Suppose thaiv, denotes the weight of vertaxandk, denotes the capacity of vertex
(we assume thdt, is an integer). Acapacitated vertex covés a functionr : V — Np such
that there exists an orientation of the edge<;oin which the number of edges directed

Y An extended abstract of this work appeared in ACM—SIAM Symposium on Discrete Algorithms (SODA)
2002.
* Corresponding author.
E-mail addressessudipto@cis.upenn.edu (S. Guha), hassin@post.tau.ac.il (R. Hassin), samir@cs.umd.edu
(S. Khuller), eior@post.tau.ac.il (E. Or).
1 The work was done while the author was at AT&T Research, Florham Park, NJ 07932.
2 Research supported by NSF Awards CCR-9820965 and CCR-0113192.

0196-6774/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-6774(03)00053-1

258 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

into vertexv € V is at mostk,x,. (These edges are said to beveredby, or assigned

to v.) The weight of the cover is}_ ., x,w,. The MINIMUM CAPACITATED VERTEX
COVER problem is that of computing a minimum weight capacitated cover. The problem
generalizes th&INIMUM WEIGHT VERTEX COVER problem which can be obtained by
settingk, = |V | — 1 for everyv € V. The main difference is that in vertex cover, by picking

a nodev in the cover we can cover all edges incidenwtdn this problem we can only
cover a subset of at mokt edges incident to node

The problem originated in research at Glycodbgabiotechnology company specializ-
ing in the areas of glycobiology and bioinformatics. One of its projects related to rational
re-design of known drugs involves Glycoproteins. A glycoprotein is a protein thal/has
attachment points, in which it binds to a glycan. The gratipof glycans that may appear
in each attachment point is known and hence a glycoprotein#igs variants. The goal
of this project is to determine which are the building blocks of the glycans comprising the
variants of the glycoprotein found in a given (liquid) solution. Methods that identify the
building blocks found in a solution exist. However, identifying the building blocks is not
sufficient to determine the structure of any given variant found in the solution. It is there-
fore crucial to determine which of the building blocks are found in each variant, i.e., find a
detailed description of the connectivity of the building blocks.

GMID (Glycomolecule ID) is a chip-based technology that is used to generate
fingerprints which uniquely identify glycomolecules. It is able to answer in a single
application a question of the form: For a given building block A, and for each member
B in a set S of building blocks, does the solution contain a molecule which contains
both building blocks A and B? The size of the set S is restricted, because of the specific
technology. When planning an experiment that would use the GMID method to obtain
information about a given solution, the required information may be presented as a graph
where the building blocks are its vertices, and an edge exists between two vertices if the
guestion regarding their connectivity is required. The device is able to answer K
guestions at once if they share a common vertex. The problem of minimizing the number of
experiments (i.e., GMID uses) needed to cover the required information grapécisely
a capacitated vertex cover problem, with uniform capacities.

We denote by (v) the edges irE which are incident ta. We also denote by (v) =
|8(v)| the degree ob € V. For § C V we denote byG(S) = (V, E(S)) the subgraph
induced byS. We denote an edge with end-vertice$ as a sefi, j}.

Since this problem generalizes vertex cover, one of the most studied problemsin the area
of approximation algorithms [1,9], it raises several very interesting directions for future
research. There are many interesting results known about vertex cover—for example, the
bipartite case can be solved in polynomial time, fixed parameter tractability, structural
results, special properties about the fractional LP solutions etc [9]. It would be of interest
to investigate all these properties in the context of capacitated covering.

Our problem is also related to work on the capacitated facility location problem, for
the model where multiple facilities can be opened at the same location, and each facility

3 URL: http://www.glycodata.com.

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 259

can only handle at most a specified demand. See Jain and Vazirani [11], and Chudak and
Williamson [2] for recent work.

In fact, since the publication of an earlier draft of our work, several follow-up papers
have appeared. First of all, using a method catlegendent roundin@andhi et al. [5]
show how to get an alternate 2 approximation for the problem considered here, by using
LP-rounding. If we add the constraint that only one copy of each vertex can be chosen, then
for the unweighted case, Chuzhoy and Naor [3] have shown how to obtain a 3 approxima-
tion using LP rounding. This bound has recently been improved to 2 by Gandhi et al. [6].

1.1. Summary of results

The main results that we show are as follows. We give a primal—dual algorithm [8] that
yields a factor 2 approximation for the basic problem. We also consider a generalization
where each edge has a “demand’dgfwhich has to be assigned to an adjacent vertex.
For this generalization we show a factor 3 approximation. These results extefyper-
graphs (each edge in the hypergraph is a subset of atmvestices and the edge must be
assigned to one of thesevertices) with approximation factors efandr + 1, respectively.

Finally, when the graph is a tree we show that the problem can be solved in polynomial
time, but for the more general version with edge demands the problem is NP-hard.

One can view Clarkson’s greedy algorithm [4] for approximating vertex cover as a
primal—dual algorithm. In this (and other algorithms) some vertices are chosen in the
final solution. The cost for these vertices is charged to the dual variables corresponding
to the adjacent edges. Some edges are charged once and some edges are charged twice. For
vertex-cover, the fact that some edges are charged only once does not (apparently) help
in improving the approximation bound. For our proof, this savings is crucial and helps us
improve the bound from 3 to 2. While the actual algorithm and proof are more complex, at
a high level this is the key insight for the improved approximation factor.

2. Integer programming formulation and a simple L P rounding scheme

A linear integer program (IP) of the problem can be written as follows. In this
formulation, y., = 1 denotes that the edgec E is covered by vertex. Clearly, the
values ofx in a feasible solution correspond to a capacitated cover. While we do not really
need the constraint, > y., v € e € E for the IP formulation, this constraint will play an
important role in the relaxation. (In fact, without this constraint there is a large integrality
gap between the best fractional and integral solutions. For example, consider a complete
bipartite graph between two sets of verticasand B. A has two vertices, with each with
weightW and capacity?. B hasp vertices, each with weight 0 and capacity 1. Since there
are 2p edges, the optimal solution must have cissince by picking all the vertices iB
we can only covep edges. The fractional solution has cost at Mg, by setting thec
variables for the vertices iA as 1/ (2p), and thex variables for the vertices iB as 1.)

Minimize Z Wy Xy
v

260 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

Yeu+Yev 21, e={u,v}ek,

kyxy — Z Y20, vevV,
e€d(v)

Xy 2 Yev, VEEEE,
Yew €{0,1}, vee€ckE,
xy€Ng, veV. Q)

We suggest the following algorithm: Solve (1) by relaxing the requirement that the
variables take integral values. We require that> 0 andx, > 0. If y., > 1/2 then we
define the rounded valug, = 1 otherwise we define it as 0. For each edge {u, v}
either y,, or y., is at least 12, hence the edge can be assigned. (If both the rounded
values,y} andy;, are 1 then the edge can be assigned to either end.) Cleirkg 2y.,
for the rounded valug*.

We can now defing; forv e V, as[% > ees(w) Yeu1- We claim that this rounding gives
a 4-approximation:

Let) ", cs) Yoo = aky + k;, where 0< k;, < k, anda > 0.

Z y:v < Z 2)761) <2kpxy = aky +k; < 2kyxy,
eed(v) e€d(v)
implying thatx, > a/2 + (k,/2k,).

Clearly, x} < (a + 1). We will prove thatx < 4x,. It is sufficient to prove that
a+1<4a/2+ (kl,/2k,)]. We need to show that +1 < 2a + 2k] /k,. If a > 1 we
are done. lfa =0, thenx = 1 while x, > 1/2, sincey,, > 1/2. The last case is when
a = 0 andk], = 0 in which casex} = 0 and the claim holds.

3. Primal—dual algorithm

We develop a primal—dual algorithm that gives a 2-approximation. While the algorithm
is quite simple, the proof is somewhat subtle.
The dual problem of the relaxation of (1) is given in (2):

Maximize Zaf
ecE
kvgqy + Z ley <wy, vev,
e€d(v)
gy +lew>a,, veeck,

qv=0, veV,
loy>0, veeckE,
. >0, ecE, veV. (2)

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 261
High level description of the algorithm

Initially, no edges are assigned and all vertices are closed. As the algorithm runs, it
declares certain vertices as open. When a vertéx marked open, certain edges are
assigned to it. In fact, when is marked openall unassigned edges that are incident to
v are assigned to it. However, later on, if another vertdkat is adjacent t@ is opened,
an edge betweenandv that was previously assignedianayget re-assigned te. In the
end, the algorithm chooses the valuexpfto be[y,/k,] wherey, is the number of edges
assigned ta. The formal description of the algorithm is given in Fig 1.

Min_Capacitated_Cover
input
1.AgraphG = (V, E).
2. A capacity functiork: V — Ng.
3. A cost functiorw : V — Np.
output
A capacitated cover.
begin
E':= E [E' is the set of unassigned edyes
V/:=V [V’ is the set of closed vertides
for every ve vV
8’ (v) := edges inE’ incident withv. d), := |8’ (v)|.
If d}, > ky then Dy, := @; otherwiseD,, := §'(v).
w) = wy.
end for
while E' # @
ry :=w),/min(ky,d,),ve V.
u:=argminir,: v e V'). (break ties arbitrarily
V=V \ {u).
w), == w), — ry Mintky, d}), ve V.
if d), > ky
then
Assign the edges 1 (u) to u.
else [d[, < kyl
Assign the edges i, to u.
[For D, \ E' this is a re-assignmeijt.
end if
for every {u, v} € 8'(u)
E':=E"\ {{u,v}}. 8 () :=6"(v) \ {u, v}}.
dy=d, - 1.
if d, =ky
then D, :=68'(v).
end if
end for
end while
return
x, := [|edges assigned td/ky1.
end Min_Capacitated_Cover

Fig. 1. Algorithm Min_Capacitated_Cover.

262 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

Initially, all the dual variableg, are 0. This is a dual feasible solution (with g}l =0
andl,, = 0). We useE’ to denote the set of unassigned edges. Wesi(se to denote the
unassigned edges currently incident on venieXVe used’(v) to denote the number of
unassigned edges currently incident on verteWe now explain how vertices are marked
open. This is done by increasing all the dual varialblefor the unassigned edgesc E’
simultaneously. In the dual program, there are two kinds of constraints—vertex constraints
and edge constraints.

To maintain dual feasibility of the edge constraigistl., > «., as we increase,, we
have to increase, or l,,. If the vertex has a large number of unassigned edges incident
to it, then we increase,, otherwise we increask,. Formally, if d'(v) > k, then we
increasey,, otherwise we increadg,.

For each vertex constrairk,q, + Zeea(v) ley < wy, initially the left-hand side is 0 and
the right-hand side is the weight of the vertex. While increasing the dual variables for the
unassigned edges, we stop as soon as a vertex constraint is met with equality. (In Fig. 1 this
is vertexu in the main loop.) We declare this vertex as open. We assign to this verk,
unassigned edges incident to it and have to stop increasing their dual variables. In addition
to assigning edges iff (1) to u, we may also re-assign some of the previously assigned
edges frond (1) to u. We now elaborate on this point further.

For any vertexw, as soon ad’(v) < k,, wedefineD, to be the set of unassigned edges
incident to vertex. If a vertex has its initial degree at mdstthen this condition is true at
the start of the algorithm. For other vertices, the initial degree may exgeedt as edges
are assigned, it may happen that at some sfa@e = k.. If this event happens we define
D, to be the set ok, edges frond’(v) that are currently unassigned. Later éf{p) may
change but noD,,.

When a vertex is declared open, d#’(v) > k, then we assign all unassigned edges in
8’ (v) tow. If d’(v) < k, then we assign all edges in, to v. Note that some of these edges
may have earlier been assigned to other vertices. (Only the edg&w)rare previously
unassigned.)

The pseudo-code description of the algorithm is given in Fig. 1.

Theorem 3.1. Min_Capacitated_Cover returnsZapproximation foMINIMUM CAPAC -
ITATED COVER.

Proof. The algorithm opens a multi-set of verticsas centers. The total cost of the
solution can be represented by(S), the total weight of the subseét counting multiple
copies. Any vertex that is declared open has the property that= k,q, + Zeeé(v) ley.

We will charge the weight for (all copies ofv) to edges ind(v). We will show
(Lemma 3.2) that each edge gets a charge of at mgst &ince the dual solution has
value)_, ., and is a lower bound on the optimal solution, we get the required bound. In
other wordsw(S) <23}, a. < 2w(OPT) whereOPT is an optimal cover. O

Lemma 3.2. We can charge the weight of each open vertéall copieg to edges ins(v)
such that each edgegets a charge of at mo&ty,.

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 263

Proof. Define a vertex to be a low degree vertexifien it is declared oped’ (v) < &,
otherwise it is defined to be a high degree vertex. We will discuss the charging mechanism
for both low degree and high degree vertices.

Consider a low degree vertex We pick only one copy of the vertex. We will charge
the weight of this vertex tall edges in the seb,. All these edges are assignedittoy
the algorithm when this vertex is declared open, regardless of having been assigned earlier.
In fact, some of the edges b, may be assigned to other vertices later on and are thus
charged again.

If d(v) <k, thenD, =4§(v) andg, = 0, and since the vertex constraint is tight then
Wy = D pesw) lev = Deesw) ¥e- We thus charge the cost of vertexo all incident edges
by charginge, to eache € §(v). If d(v) > k, then at some point of tim&’'(v) = k,. At
this point we fix the value of;, and subsequently increase the variables. Note that
|Dy| = ky. When this vertex is declared open, we have ihat k,q, + Zeea(v) loy. FOr
the edges not irD,, note that/,, = 0. Hencew, = kyq, + ZeeDv l.y. Since there are
exactlyk, edges inD,, we havew, = }_,.p, (qv +lev) = X, p, % Thus, the cost for
vertexv is charged to all edges iB,,.

Now consider a high degree vertex Suppose’’(v) is the set of unassigned edges
incident tov whenv is declared open. In our charging scheme these will be the only edges
that will be charged by, and previously assigned edges incidenvamill not be charged.

Some of these edges, a subRgtC §'(v), will be re-assigned to other vertices.

For a high degree vertex, we havel,, = 0 anda, = ¢, for each unassigned edge
when the vertex is declared open. Thus = k,q,. Sincea, = g, the cost for a single
copy of v needs to be charged tg edges. Le®’(v) = pyk, + k], where 0< k), < ky. If
[Ry| > k,, then the number of edges assignedtis at mostp,k,. In this case the cost
for p, copies can be charged to apyk, edges ind’(v). Each edge is charged at most
wy/ky = qy = .. If |Ry| <k, then we neegh, + 1 copies ofv. The cost for these copies
is charged ta p, + 1)k, edges. We can charge all the edged’iw) once. We still need
to chargek, — &, edges. Since there are at lepsk, edges that are not re-assigned, their
other ends are not charged. (If the other end is ever opened, if it is a high degree vertex
then it does not re-assign these edges and does not charge them. If it is a low degree vertex
then the edge is re-assigned and belong®,toThe edges iR, are charged at most once
by v.) Sincep, > 1, we have at lea#t, edges that we can charge a second time.

Finally, for any edge = {u, v} if only one end is open then the edge is charged at most
twice. If both ends are open, and both are high degree, then only the end that the edge is
assigned to can charge it. If both ends are low degree then it is charged at most once from
each end. If one end is low degree and one end is high degree, then the edge is assigned
to the low degree end and charged once from each end. This completes the proof of the
lemma. O

3.1. r-hypergraphs

The above primal-dual algorithm yields a fact@pproximation algorithm far-hyper-
graphs. The only difference is that one hyperedge contains attwestices. To prove that
the approximation factor i we need to prove a lemma analogous to Lemma 3.2. Of
course, in this case we would prove that a hyperedge is charged exactly

264 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

The proof of such a lemma is straightforward and we indicate the adjustments required
for the proof to go through. The definitions of “low” and “high” degree vertices remain the
same. The critical observation needed is that a hyperedge cannot be assigned to two low
degree vertices.

Once again, if the hyperedge is attached to only one open vertex, the hyperedge is
charged at most twice. If the hyperedge is adjacent only to open vertices with high degree,
then only the vertex to which the hyperedge is assigned to charges the hyperedge. The
charge in this case is also at most. 20therwise the hyperedge is adjacent to at least one
low degree vertex and therefore assigned to some low degree vertex. In this case each open
vertex the hyperedge contains charges the hyperedge at most ©has.the total charge
is at mostra,. This yields an--approximation.

4. Approximation with d,

Consider the case that each edge has denrigrashd each vertex has the property that
if copies of it are open, then summing over the edges assignedtgd, < rk,. In this
case we have a 3-approximation. The primal and dual linear programs in this case are:

Minimize » " wyx,
v

Yeu+ Yev =21, e={u,v}€E,
kyxy — Z Yevde 20, veV,

e€d(v)
Xy 2 Yev, VEe€E,
Yev €{0,1}, veeck,
xy€Ng, veV. 3)

Maximize Zaf
ecE
kvgy + Z loy<wy, veEYV,
e€d(v)
Gvde +1ley 2 0te, veEeE€eE,

gy =0, vevV,

~

=20 veeekE,
>0, ecE,veV. (4)

We growe, in proportion to thei, values. Ifzed,(v) d, > k, raiseq,, otherwise raise
lo, appropriately. Once again, as soon as a vertex is open assign all unassigned edges

I

e

4 Actually two high degree vertices cannot both charge a hyperedge. This is implicit in the case analysis of
Lemma 3.2 Therefore the worst case is when the edge is attachelbwodegree open vertices or— 1 low
degree open vertices along with a high degree open vertex.

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 265

adjacent to it by sufficiently many copies. We do not perform any re-assignmentsbeet
the minimum integer such that for all adjacent unassigned edges. s, de < rky.

It is easy to observe that if > 1 we haverk, > Y _,c5) de = 3rk, for assigned
edges. In this casex, = d.q, for all assigned edges. We will charge all edges, 2nd
since

2 Z O = Z (2deqy) = rkyqy =rw,

eed(v) eed’ (v)

we can pay for all copies.

If » =1 we open one copy and each adjacent edge pay® this case as before we
may charge an edge already assigned elsewhere. Over all these edges by dual feasibility
and the growing procesgees/(v) a. > w,. Thus each edge gets charged at most 3

Therefore we can claim the following,

Theorem 4.1. For the capacitated vertex cover problem with arbitrary demands on edges
and arbitrary capacity and costs of vertices we have a fadtapproximation.

It appears that a re-assignment is feasible and that should reduce the cestpter 2
edgee. However no simple re-assignment exists since the low degree vertex (under-
saturated, filled to less than capacity) may get over-saturated and a high degree vertex
(over-saturated) becomes under-saturated, thus disallowing any reassignment. This is
illustrated in the example below.

4.1. Gap example

We observe that in the above primal dual method as long as wearawthe intuitive
fashion as described above and only select the open vertices in the final solution we can
only hope for a factor 3 approximation.

Consider the chain of length three defined by verti¢®<" D. EdgesA B andC D have
demand 1BC has demand > 2. Capacity ofA, andD are 1. Capacity oB, andC arek.
Weight of C is c. Weight of A, andD arec/k +ce’, and of Bisc(1+¢€) with 1/k > €' > €.

If both ¢, ¢’ are small, the optimal solution i$B being assigned td, BC to C, andC D
to D.

It is easy to verify that in our process we will only decla#eandC to be open. Since
C is cheaper, we can at best have a costo#3¢. Thus the best ratio we can hope is
3—(2+2ke' —ke)/(k+2+2ke') >3 —4/(k+ 4).

4.2. Ther-hypergraph case

In this case the 3-approximation algorithm for graphs yields #rl approximation for
r hypergraphs. The critical observation is that a hyperedge cannot be charged by two or
more “high” degree vertices. A low degree vertex charges the edge atunoBlhus the
worst case would be when the edge is adjacent-tal low degree open vertices and one
high degree open vertex. Thus the total charge is at mostl)«,.

266 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

5. Capacitated coverson trees

In this section we consider th&INIMUM CAPACITATED VERTEX COVER ON A
TREE (CVCT). In the most general version we assume that the input consists of vertex
weightsw,, integer capacitiek, > 0, v € V, and integer edge demandls> 1 ¢ € E. We
consider two variations with respect to whether or not the demand of aneedde, v)
can be split so thai, = d} + d¥, whered! is assigned t@ andd” is assigned ta. For
both formulations CVCT is NP-hard.

Theorem 5.1. CVCT is NP-hard even whén = k Yv € V. This claim holds in both cases
when edge demands can and cannot be split.

Proof. To prove NP-hardness we do a reduction fromgkNaPSACK PROBLEM, Which is
known to be NP-hard [7]. Consider an instance Max.gc, | S C{1,...,n}, Y csav <

B of the knapsack problem. We create the following CVCT: The graph is a star with root
Oandleave$l,...,n+1}. ky,=B+1forv={0,....n+1}. wy=c,forv=1,...,n,

wo > Y v _q Wy, andwy41 > wo. doy =ay forv=1,...,n anddp ,4+1 = 1.

Sincew,4+1 > wy, itis optimal to assigdp ,+1 to the root 0. There is an unused capacity
of size B at node 0. We wish to minimize the other costs by computing a subsdét
{1,...,n} such that)_, _;w, is maximized subject to the constraift, .¢d, < B. The
optimal solution for this CVCT gives an optimal solution for the knapsack problem. Note
that even if splitting the demand is allowed, it would be of no use because if a demand of
an edge is split we pay for both ends and therefore increase the cost.

We now describe three special cases that can be solved in polynomial time. In each case
we assume that the input graph is a tfee- (V, E). We rootT at an arbitrary vertex and
renumber the vertices so that a child of a vertex has a smaller index than its parent. We
defineT, as the subtree rooted at

The first special case assumes unit edge demands. It can be solved by algorithim Min_
Cover unit demand (Fig. 2). The algorithm computes for evegyV two values defined
as follows: lete, be the edge connectingand its parentd, = ?). Wlf’“t is the cost of a
minimum capacitated cover df,, andW!" is the cost of a minimum capacitated cover of
T, U {e,} under the restriction that, is assigned t@.

Theorem 5.2. Algorithm Min_ k-Cover unit deman(Fig. 2) computes the minimum cost
of CVCT wherni, = 1 for everye € E.

Proof. The proof is by induction on the index We omit the straightforward details.c

GivenWoUand WM for v =1,..., n, one can recursively obtain the assignment of the
edges off.

Our next special case assumes uniform weights. We assume,thal for everyv € V.
A restricted version of this case in which the capacities are unifaym=(k for every

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 267

Min_ k-Cover unit demand
inputs
1.T=(V,E).
2. A capacity functiork,, ve V.
3. A weight functionw,, ve V.
output
The cost of a capacitated cover.
begin
forv=1ton
wout.— 0, Win .=y,
end for
foru=1ton
A, = set of children ofu.
for every v e Ay.
Cy = Win — wout,
end for
Sortv € A, in non-increasing order of”,,.
while A, # 0
A := the firstmin{k,, |A, |} vertices inA,.
if 2pea Co > wu
then Assign all edge$v, u}, v € A tou.

Ay = Ay \ A
ese
Assign edge$v, u}, v e A, tov.
Ay =0.
end if
end while

S :={v: {v,u} is assigned ta}.
F :={v: {v,u}is assigned ta}.
Sk := {min(k, — 1,1S]) highestC-value vertices irs}.

W= 3 s Wil + 2 pep WU+ wu l1F 1/ K.
if |F| =0 (modky)
then Wi := WU+ min(wy, — 35, Co. Minyer C).
else Wi .= wout.
end if
end for
return woUt.
end Min_ k-Cover unit demand

Fig. 2. Algorithm Min_k-Cover unit demand.

v € V) was solved in Jaeger and Goldberg [10] as a special case of the capacitated facility
location problem on trees. We first show how to solve this case assuming that the demand
can be split.

Theorem 5.3. If w, = 1 for everyv € V and the demand can be split then algorithm Min_
k_d_cover_splitable_demaifEig. 3) returns a minimum cost solution.

Again, the proof is straightforward and we omit the details.
We now turn to the case where the demand cannot be split.

268 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

Min_ k_ d-cover splitable demand
input
1.7 =(V, E), with all w, =1.
2. A capacity functiork, v e V.
3. A demand functiod, ¢ € E.
output
A capacitated cover
begin
for everyve V, D, :=0
[Dy is the total demand assignedias V].
end for
forv=1ton—-1
u := the parent ofv.
cy = [Dy/kylky — Dy.
[ey is the spare capacity of].

e:= (v, u).
m:=min{de, cy}.
Dy := Dy +m.
d,:=de —m.

if ky >d), orky > ky
then D, :=Dy +dé
else (k, < min{d,, ky})
ae = |d,/kylky.
Dy := Dy + ae.
d,:=d, —a,.
if ky <D,
then Dy := Dy, +d,.
ese (ky > dé)
Dy := Dy + dé'
end if
end if
end for
return x, :=[Dy/k,Ju=1,...,n.
end Min_ k_ d-cover splitable demand

Fig. 3. Algorithm Min_k_d-cover splitable demand.

Theorem 5.4. If w, = 1 for everyv € V and the demand cannot be split then algorithm
Min_k_ d_cover_unsplitable_demaftg. 4) returns a minimum cost solution.

Proof. The proof is by induction on the index The induction’s assumption is that the
algorithm returns an optimal solution for every subtree in the forest induced by the edges
connecting the vertices, 1.., u and their parents. Moreover, this solution has maximal
spare capacity at the root of the subtree, among all optimal solutions to this subtree. For
n = 1 these properties trivially hold.

Assume the claim holds far < u. It is important to observe that by definitio®, < &,
so that using the spare capacity at a vertex may save at most one center.

Consider the assignment of the demaldvheree = (1, v). The assignment made by
the algorithm clearly preserves the induction’s hypothesis whkpk,] # N,. A lower
cost is attained by constructing centers at the vertex that requires less centers. It may be
that the number of centers requiredidd served, is greater thawv, by 1 and that by using

S. Guha et al. / Journal of Algorithms 48 (2003) 257-270 269

Min_ k_ d-cover unsplitable demand
inputs
1.7 =(V, E),with all w, = 1.
2. A capacity functiork,, ve V.
3. A demand functiod,, e € E.
output
A capacitated cover
begin
for everyveV
D, :=0.
[Dy is the total demand assigned g
end for
forv=1ton—1
u := the parent ofv.
cy = [Dy/kylky — Dy.
[cy is the spare capacity of].
e:=(v,u).
Ny :=max{[(de — cv)/kv1, 0}
[Ny is the number of centers one must place ito coverd,].
if [de/kul < Ny.
then D, := D, +d,.
ese ([de/kul > Ny)
Dy :=Dy +d,
end if
end for
return x, :=[Dy/kyJu=1,..., n.
end Min_k_ d-cover unsplitable demand

Fig. 4. Algorithm Min_k_d-cover unsplitable demand

the spare capacity ata center can be saved. However, in this case both solutions have the
same cost whereas the one that assigns the demanddme with a greater remaining
spare capacity at.

Finally, if [d./k,7 = N, then the two options may come with the same cost but
assigning the demand toeither lowers the cost by using spare capacity there or increases
the spare capacity. O

If the edge demand is uniform the question of whether splitting is allowed determines
the hardness of the problem. If splitting is forbidden the problem is easy and algorithm
Min_Capacitated_Cover_for_Tree holds. In the case where splitting is allowed the
problem is NP-hard as we show in Theorem 5.5.

Theorem 5.5. The CVCT with splitable demand is NP-hard even when the edge demands
are uniform.

Proof. To prove NP-hardness we apply a reduction from kNAPSACK PROBLEM
Consider an instance max, _qcy | S C {1,...,n},> cgav < B of the knapsack
problem. We solve the following CVCT: The graph is a two level tree with root Gahd
childrendenoted,1..,n and 21 + 1. Each of the children =1, ..., n has a child denoted

by u =n 4+ v. Child 2n 4 1 of the root vertex 0 has no children. All edges have demand

270 S. Guha et al. / Journal of Algorithms 48 (2003) 257—-270

d where maxe;: i =1,...,n} <d < B. The capacities arkg = B + d, k, = 2d — a,
forv=1,...,n andk, =1, n < v < 2n. The weights arev,c, for everyv =1, ..., n,
wo = Y v _q wy andw; > wo fori > n.

It is optimal to assign the demand @, 2n + 1) to 0 and the demand ef= (v, n + v)
v=1,...,n to v. After the assignment, vertex v =1, ...,n, has a spare capacity of
d — a, that we have already paid for. It is optimal to assifjr- a, of the demand of
edgee = (0, v) to v since it is the only edge that may use the spare capacity. After this
assignment, the unassigned demand of gfge) is a, for v =1, ...,n. The remaining
problem is identical to the one in the reduction introduced in Theorem 511.

References

[1] R. Bar-Yehuda, S. Even, A linear time approximation algorithm for the weighted vertex cover problem,
J. Algorithms 2 (1981) 198-203.

[2] F. Chudak, D. Williamson, Improved approximation algorithms for capacitated facility location problems,
in: Proc. of 1999 Integer Programming and Combinatorial Optimization Conference, in: Lecture Notes in
Comput. Sci., Vol. 1610, 1999, pp. 99-113.

[3] J. Chuzhoy, J. Naor, Covering problems with hard capacities, in: Proc. of the 43rd IEEE Symposium on
Foundations of Computer Science, 2002, pp. 481-489.

[4] K. Clarkson, A madification to the greedy algorithm for the vertex cover problem, Inform. Process. Lett. 16
(1983) 23-25.

[5] R. Gandhi, S. Khuller, S. Parthasarthy, A. Srinivasan, Dependent rounding on bipartite graphs, in: Proc. of
the 43rd IEEE Symposium on Foundations of Computer Science, 2002, pp. 323-332.

[6] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, A. Srinivasan, An improved approximation algorithm for
vertex cover with hard capacities, to appear in, in: Proc. of International Colloquium on Automata Languages
and Programming, 2003.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, 1978.

[8] M.X. Goemans, D.P. Williamson, A general approximation technique for constrained forest problems, SIAM
J. Comput. 24 (1995) 296-317.

[9] D.S. Hochbaum (Ed.), Approximation Algorithms for NP-hard problems, PWS, 1996.

[10] M. Jaeger, J. Goldberg, A polynomial algorithm for the equal capagityenter problem on trees,
Transportation Sci. 28 (1994) 167-175.

[11] K. Jain, V.V. Vazirani, Primal-dual approximation algorithms for metric facility location &ndedian
problems, in: Proc. of the 40th IEEE Symposium on Foundations of Computer Science, 1999, pp. 2-13.

