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Abstract

When messages, which are to be sent point-to-point in a network, become available at irregular
intervals, a decision must be made each time a new message becomes available as to whether it should
be sent immediately or if it is better to wait for more messages and send them all together. Because
of physical properties of the networks, a certain minimum amount of time must elapse in between
the transmission of two packets. Thus, whereas waiting delays the transmission of the current data,
sending immediately may delay the transmission of the next data to become available even more. We
propose a new quality measure and derive optimal deterministic and randomized algorithms for this
on-line problem.
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1. Introduction

We consider point-to-point transmission of data in a network. Transmission of data is
in the form of packets, which contain some header information, such as the identification
of the receiver and sender, followed by the actual data. For obvious reasons, data is also
referred to as messages.

When messages to be sent become available a little at a time at irregular intervals,
the question arises on the sending side whether to send a given message immediately
or whether to wait for the next message to become available, such that they can be sent
together. Sending the messages together is referrediacet Bundling

The reason why this is at all an issue is because of physical properties of the networks
which imply that after one packet has been sent, a certain minimum amount of time must
elapse before the next packet may be sent. Thus, whereas waiting for more messages
will certainly delay the transmission of the current message, sending immediately may
delay the transmission of the next message to become available even more. In addition
to reducing the overall transmission delay when bundling messages, we also reduce the
bandwidth requirement of the sender, since overhead due to packet headers and network
gap is reduced. The problem of making these decisions is referred toResctkest Bundling
Problem

A very similar problem, thé&ynamic TCP Acknowledgment Problewas introduced
in [5,6]. Since it usually does not make sense to delay the transmission of large messages,
the focus for packet bundling is small messages, and acknowledgments to the receipt of
packets are examples of such. The problem was studied as an on-line problem [3] with
the cost function being the number of packets sent plus the sum of the latencies for each
message. The latency of a message is the time from when the message is available until it is
sent. In general for on-line problems, a flow-time cost measure [3] for a problem is a cost
function defined as the sum of the lengths of time intervals over all requests from when
each request was made until the treatment of it is completed. However, a cost function
which contains the above as an important ingredient is also sometimes referred to as a
flow-time cost measure.

Flow-time is used as a measure in many different contexts. With regards to competitive
analysis, it has been established as a standard measure, most notably in scheduling (single
as well as multiple machines) where it is used in, for example, [2,9,12,14,15]. As noted
in [5,10], it also seems like an obvious first choice with regards to the present problem.

For the Dynamic TCP Acknowledgment Problem, an exact characterization of the
optimal algorithms for the deterministic case can be found in [5]. For the randomized
case, an exact characterization is given by the lower bound in [18] and the upper bound
in [10]. The off-line version of the problem has also been considered, initiated by [5,6],
and a linear-time algorithm has been obtained [17].

In this paper, we consider a different approach to investigating the Dynamic TCP
Acknowledgment Problem: we prioritize choosing a model for distributed computing
which incorporates the gap between messages necessitated by the physical properties of
today’s networks and, related to this decision, we also choose a different cost function.

One of the models of computation for distributed computing which seems to be accepted
as areasonable model by practitioners as well as theoreticians is the LogP model [4], which
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is tractable from a theoretical point of view, but also realistic enough that good theoretical
algorithms are likely to be good in practice as well; on many different platforms. The
ingredients in the model are the latentythe processor overhead in sending messages
the gap imposed by the network between messggesid the number of processaPs

We refer to the original paper for a complete treatment, but give a short description of the
model here.

The times when messages become available are beyond our control. Some application
program simply hands over its message to the TCP protocol. When a message is sent by
the TCP software, there is a CPU overhead in preparing the message. The message is then
sent through the network, which takes titheafter which there is a CPU overhead at the
receiving end to extract the message. In addition, there is a requirement that all messages in
the network must be separated by a fixed time gap. Note that overhead and gap can overlap
in the following sense: Right after a message is sent, while the CPU spends overhead time
preparing the next message, the first message is traveling through the network, so after the
next message has been prepared, there is already a gap of size equal to the overhead. Thus,
if the overhead is larger than the gap, then the gap can be ignored, and if the overhead is
much smaller than the gap, then the overhead can be ignored.

In our presentation, we will ignore the overhead. Thus, our results apply when the gap
is significantly larger than the overhead. This decision has been made primarily to keep
formulations of theorems cleaner and proofs simpler. However, there is support for that
decision. In [4], the designers of the LogP model express hope that the overhead can be
eliminated from the model at a later time, though they considered it premature (for all
architectures; not selected architectures) at the time of their publication. They go on to say:
“In future machines, we expect architectural innovations in the processor-network interface
to significantly reduce the value of with respect tog.” In [13], the system analyzed
to verify their results shows a gap value more than 50 times as large as the overhead.
Whereas this system may not be typical, we believe it may be an important example since
it resembles the scenario in Grid Computing.

The LogP model has been extended to improve the treatment of large messages [1]
and the model is supported by experimental work, supplying methods for determining the
concrete values of the parameters on a given system [13].

Comparing the theoretical work of [5,6,10] with the model assumptions of [4], the most
noticeable difference is the lack of the gap parameter in [5,6,10]. In their work, packets
are allowed to be sent arbitrarily small distances apart. This gives different results, because
with decreasing intervals between messages, due to the latency contribution of each packet
to the cost function, a good algorithm would send frequently. With small enough distances
between messages which must be sent, the algorithm would wish to send more frequently
than allowed by the gap we are enforcing.

We base our theoretical work on the LogP model, which means we respect the physical
gap. At times when messages become available separated by very small time intervals,
a flow-time based cost function, as in [5,10], would impose a very large penalty, if the
decision is to delay transmission. This led us to consider another cost function: the sum of
time intervals when at least one unsent message is available. In our opinion, this measure
is just as natural and it has the significant advantage that good and bad algorithms can be
distinguished.
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Ourresults and the ones in [5,10] are largely incomparable. They supplement each other
by providing separate results for applications where some physical gap is significant and
applications where it is insignificant, or possibly not present at all.

In [6], a cost function similar to ours is used. Though the model used in [6] does not
include a requirement concerning packet distances, their alternative cost fungtigh (
will probably more accurately predict the behavior of algorithms in a scenario where a
physical gap must be respected than any of the flow-time based cost functions will.

Packet bundling has been considered experimentally in [16] for a concrete specialized
application, namely real-time simulations. However, the conditions are quite different in
that messages have different priorities. The goal is also different since there is an absolute
tolerance for the delay of messages of different types.

We analyze natural families of deterministic and randomized algorithms for the problem
and find the optimal algorithms for these families. Additionally, we show that these results
could not have been obtained using the standard flow-time cost function. In our opinion, it
is an interesting consequence that our step towards a possibly more realistic computational
model as a basis for the analysis forces us away from this standard measure.

2. Packet bundling

Referring to the description of the LogP model from the introduction, since we are
considering the situation from the perspective of a single processor, only the overhead and
gap parameters are relevant, and as discussed in the introduction, we investigate the case
whereo « g, so that the overhead parametemay be ignored. In the remainder of the
paper, we normalize with respect to the ga@nd assume that it is one (the important fact
is that it is different from zero).

With this in mind, we now state the problem in a form which is formal, but also
convenient to work with.

Consider the problem of a persoft wishing to send small messages to another
personB. All messages have to be sent using the same, single messenger, who uses one
time unit for each delivery, i.e., when the messenger has left with one or more messages
(a packet), no messages can be sent for the next one time unit.

WhenA decides to send a message;an either send it immediately (assuming that the
messenger is in), or wait some time (probably less than one) to see whether other messages
have to be sent, so that these messages can be sent together.

A possibly helpful analogy is to think of a hotel/airport shuttle scenario, assuming that
the shuttle bus is large enough to carry any number of passengers. When the hotel manager
decides to send the bus off, there is obviously a gap until it can be sent again, since it has
to return to the hotel first.

The formal definition of the problem is as follows:

Definition 1. A Packetis a collection of messages. When a packet is sent, it contains all
messages which have arrived since the time the last packet was sent (if it is the first packet,
it contains all messages which have arrived up to the point in time where the packet is
sent).
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In the Packet Bundling Problerone is given a sequenee= (as, ..., a,) of message
arrival times and is asked to give a sequence of packet times., p,, at which packets
of messages are sent. All messages are considered to be small, so that an unlimited number
of messages can fit in a packet.

The set of messages sent in packelis denotedp;. For convenience, we identify a
message with its arrival time, justifying the notatione p;. If more than one message can
arrive at the same timgy; can be thought of as a multi-set.

The packets should respect the following restrictions:

o All messages should be sent no earlier than their arrival time, i.e.,
Vi<ndj<m: a epjna <pj.

o All packet times should be at least one unit apart, i.e.,
Vi<m: piy1—pi=>1

e If a packet is sent at time;, then the set of messages contained in the packet are
considered delivered at timg + 1.

The last two bullets capture the essence of the gap parameter in the LogP model.
The cost function measures the total time elapsed while there are messages which have
arrived, but have not been delivered:
m

Z((p,- +1) - max{(Pifl +1), min a,-})

i=1 aj€pi

where we defingg = —oo.

Considering the cost function above, it is clear that if the formal definition should reflect
our informal definition, then no more thaw; + 1) — min,;¢, a; should be paid for
messages sent iy, i.e., we pay from when the first messagepjnarrived until the time
pi + 1 where we consider the messages delivered. However, this is sometimes too much,
which can be seen as follows:

Assume thaty, is the last message sent jn. If a,.1 arrives between the times,
andp; + 1, then it is sent irp;+1, and so both(p; + 1) — mina_,,ei,l. ajand(piy1+1) —

Ming; e, a; include the interval frona, 41 to p; + 1. To avoid this, the contribution from
the last term should instead Bg;+1 + 1) — (p; + 1). Including the maximization in the
cost function ensures that no interval is ever counted twice.

Equivalently, the cost function could be defined as the integral over a function which
has the value one if there are one or more undelivered messages and zero otherwise.

For further discussions of alternative definitions of cost functions, see the concluding
section. There, we will also mention some relations to earlier work which are difficult to
discuss before the treatment of flow-time cost in Section 6.

The are two additional issues regarding the modeling of the problem which we discuss
now. The first regards the assumption that an unbounded number of small messages can
be bundled up into one packet. For the TCP protocol in particular, the acknowledgment
of one packet automatically acknowledges all previous packets (packets are numbered
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consecutively). Thus, a packet with many acknowledgments is actually no larger than a
packet with just one. However, we would like our solutions to be applicable to small
messages in general; not just TCP acknowledgments. Fortunately, in most cases, the
maximum size of packets is fairly large (several kilobytes), which means that a very large
number of message identifiers can actually be bundled, so we believe the assumption is
reasonable; not in the least because the worst-case scenarios for our algorithms turn out to
be sequences with few and scattered messages.

The other issue regards assumptions about how close together in time messages can
become available. In the TCP acknowledgment scenario, and also in general, there is
essentially no physical limit as to how close together messages can become available and
become ready for delivery, since an application at any time can hand virtually any number
of messages to the part of the operating system implementing the message protocol. Thus,
we do not enforce any restrictions on arrival times.

We consider on-line algorithms [3]. The messages arrive over time, and the algorithm
has to decide over time when to send a packet without any knowledge of the existence of
future messages. For any algorithAl,G, and input sequence,, we letALG(c) denote
the value of the cost function whekL G is run ono'.

The performance of deterministic algorithms is measured in comparison with the
optimal off-line algorithm,OPT, using the standard competitive ratio [3,8,11,10PT
knows the entire input sequence, when it decides when to send each packet, and can hence
achieve the minimum cost.

An algorithmALG is (strictly) c-competitive for a constart, if for all input sequences,

o, the following holdsALG(c) < ¢ - OPT(o). The infimum of all such valuesis called
the competitive ratio oALG.

The performance of randomized algorithms is measured likewise, though using the
expected costE[ALG(0)], instead.

3. The A & RA, algorithm families

In this section, we first consider a family of deterministic on-line algorithms for the
problem. Subsequently we consider a natural randomization of this family and in both
cases we show tight results on the competitive ratio.
3.1. A-deterministic algorithms

The family of algorithms we consider is defined as follows:

Ar: When a message arrives, it is sent together with all messages (if any) arriving after
this one at the earliest possible time aftdime units.

Without loss of generality, we assume thafjf decides to let the messenger leave at a
certain pointin time, and one or more messages arrive exactly when the messenger is about
to leave, then the messenger leaves without these new messages. If this is a problem in a
proof, then all messages arriving when the messenger leaves can be considered to arrive
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e € 0(1) time units later. Because of the infimum which is taken in the definition of the
competitive ratio, this will generally not alter the result.
The algorithm familyA; is similar to the algorithms greegly, from [6] for varyingn’s
(see Section 6), in that the first message to arrive determines when the next packet is sent.
The following theorem states the competitive ratio of this family of algorithms:

Theorem 2. The competitive ratio of Als:

1+1/A+k), ifO<k<@,

1+k, if o <k,

wherep = (1+4/5)/2~ 1.618and® = ¢ — 1. The best ratia is achieved by b

R(A) = {

For afixed algorithméy, any input sequence for our problem can be divided into phases
as follows: Each phase starts with the arrival of the first message after the previous phase
has ended, and ends at the earliest possible time when there are no messages to deliver and
the messenger is in. In the special case when the messenger returns at the exact same time
a new message arrives (and no other messages are due for delivery), the phase ends, and
the new message starts the next phase.

In the proof, we need the following two lemmas:

Lemma 3. For a worst-case sequence fof,Ave can assume that the messenger carries
only one message at a time.

Proof. Consider a worst-case sequence, and assumaghas ap; of size larger than one.

We can construct another sequence whgre= 1 and the competitive ratio is no better.
Adjusting the sequence by removing messages which do not give rise to the minimum

arrival time among the messages in its packet will not chaéebehavior and will leave

the competitive ratio unchanged, sinO®T can send fewer messages without increasing

its cost. O

Lemma 4. There exists a worst-case sequence fpmwhere, if any messages arrive when
the messenger is out, they arrive exactly at the point in time where the messenger leaves or
returns.

Proof. We consider a worst-case sequence where a message arrives in the time interval,
(pi, pi +1), whenAr’s messenger is out, and neither is leaving nor returning, and we
transform this sequence into an equally bad sequence, where one message fewer arrives in
this interval.

The message which is being delivered in the time inteipalp; + 1] must have arrived
no later than timey; — k in order to be sent at timg;. Now assume that a message arrives
at timea;, wherep; <a; < p; +1. By Lemma 3, we may assume that this is the only
message arriving in this time interval, since otherwise at least two messages would be
carried the next time.

If a; € (pi, pi + 1—k) (which may be an empty interval Af> 1), thenA;’s messenger
has to leave with the new message immediately after returning aptimd., andA;’s cost
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is notinfluenced by exactly when in the interyal, p; + 1— k] the message arrives.OPT
sends the message together with previous message©RBEs cost will be minimized for
a;j = p;. Otherwisez; can be assumed to he + 1 — k asOPTs cost cannot increase if
this message arrives later. The time+ 1 — k is still while A;’s messenger is out, but that
will be dealt with in the next case.

If aj € [pi + 1—k, p; + 1), this message will be sent by, at timea; + k. As the
previous message arrived at some time bedgre 1, OPT can be assumed not to send the
new message together with the previous. Thus, if the new message is shifted together with
all later messages by; + 1 — a; time units, therOPT's cost will be the same, whereas
A¢’'s cost does not decrease. Consequently, we may assumsg thgi; + 1. O

Proof of Theorem 2. Let us first consider the case wherc 1:
By Lemmas 3 and 4, a worst-case sequence can be assumed to consist of phases of the
following form

o1=(0) or cr,,:(O,k,k—l—l,k—i—Z,...,k+(n—2)>

wheren is the number of messages. We separate each phase from the next by more than
two time units. By definition ofy;, this means that messages from different phases cannot
interfere, so relative costs can be calculated separately for each phase.

Ar’s cost isA,(o,) = k + n, wherea®OPT's cost is
k+n—1, ifn#l,
1, if n=1
Forn = 1, this gives a competitive ratio & (o1)/OPT(01) =k + 1, and forn > 1, it
gives a competitive ratio ok (o,,) /OPT(0,,) = (k +n)/(k + n — 1), which is maximized
forn =2, whereA;(02)/OPT(02) = (k+2)/(k+1) =1+ 1/(1+ k).

Comparing the two cases, we find thatis the worst possible fat < ¢, whereasr is
worst forg <k < 1.

Let us then consider the case wher: k. Again by Lemmas 3 and 4, a worst-case
sequence can be assumed to consist of phases of the following form:

on=(0,k, 2k, ..., k(n — 1))

wheren is the number of messages. Each phase is separated from the next by more than
1+ k time units, so relative costs can be calculated separately for each phase.

A¢’'s cost is Ay (o,) = 1 + kn, whereasOPT's cost isOPT(o,) = n. This gives a
competitive ratio ofA,(c,)/OPT(s,) = (1 + kn)/n = 1/n + k, which is maximized at
n =1, whereA,(o1)/OPT(c1) =1+k. O

OPT(0,) = {

3.2. RAy-randomized algorithms

We now consider a natural randomization of #hefamily of on-line algorithms. Our
deterministic algorithm family®; chose a specifi¢ and sent a message at the earliest
possible time aftek time units.RA, chooses the interval it waits at random.

RA4: Choose & uniformly at random between 0 antl, and then run the corresponding
A algorithm on the input sequence.
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We only consider algorithms withh < 1, since any algorithnRAx, with A > 1 easily
can be seen to have a competitive ratio larger Ran

One could also consider other families of randomized algorithms. Instead of using a
uniform distribution, we could have used an exponential distribution with parameter
varying from zero to infinity, or a cut-off exponential distribution described by the density
function (as in [10]):/(8) = e %/4/(A(1 — e 1)) for § € [0, A], and zero otherwise. By
careful examination, both of these are for amgasily shown to have a worse competitive
ratio than the best member of tR&, -family. Further, one could consider a randomized
algorithm, where the time interval to wait is chosen uniformly by random at the arrival of
the first message of each packet. In [7], this is shown to yield at W-F 1~1.397
competitive algorithm when the waiting time is chosen uniformly by randof,ig/1/2].

Without loss of generality, we will as with;, assume that messages arriving exactly
when the messenger leaves will not be delivered immediatelyAFsr0, this does not
make any difference to the expected competitive rativiaghosen uniformly at random in
the rangd0, A]. For A = 0, RAy andAg behave identically, and we can as fgy consider
all messages arriving when the messenger leaves, as awigingime later without any
difference.

The competitive ratio foRA, is given by the following theorem.

Theorem 5. The expected competitive ratio of RS

1
4+ f0<A<LV3-1,
RRAL) = '.i 2(A+1)
§+1’ ifv/3-1<A<1

The best ratio/3/2 + 1/2~ 1.366is achieved by RA;_, .

As for A, the theorem is shown by constructing a worst-case input sequence. For a fixed
RA4, any input sequence is divided into phases almost as before: Each phase starts with
the arrival of the first message after the previous phase has ended, and ends exactly when,
regardless of the random choiceigfthere are definitely neither any messages waiting to
be sent nor is the messenger out. In the event that a new message arrives at the exact same
time as the messenger returns, and where no random choicevofild have made the
messenger arrive later, the phase ends, and the new message starts the next phase. Due to
linearity of expectation, it is enough to consider a worst-case phase.

Before showing the main theorem, we need the following lemmas:

Lemma 6. Messages in a worst-case phase forRdre not further than one apatrt, i.e.,
Viiajt1—a; <1

Proof. Leta; be the first message such that; > a; + 1. As all messages before are
at most one aparQPT can send the messages ..., a; at timegq;, so that it does not
incur any cost between timg + 1 anda; 1. This means that the arrival of message;
(together with all other messages after message) can be shifted to any point in time
further ahead without increasing the costi?T.
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Since we only considea < 1, RA4 will make message; leave with the messenger at
timea; + 1 at the latest. So, message arrives either when the messenger is out or when
the messenger has returned (and then no other messages will be waiting at that time). The
cost ofRA, is maximal if the randomly chosen waiting time aftgy 1 is not shared by
time where the messenger is out, i.e., the cost is maximal if megagagarrives after the
messenger returns, and thereby the message is not in the same phase, but in the next.

Lemma 7. For a worst-case phase with messages- ((a1 = 0), ..., an,), the expected
competitive ratio of RA is at most
E[RAA(U)]<am+2_ + 1

OPT(0) ~amw+1 =~ an+1

R(RAy) =
Proof. Follows directly from Lemma 6. O

The following lemma shows that a worst-case phase with ((a1 =0),...,a,) and
an < 1 can be assumed to contain at most two messages:

Lemma 8. For any phase with messages= ((a1 =0), ..., a,) anda, < 1, the phase
obtained by looking only at the first and the last message 6f = (a1, a,,), has the same
expected competitive ratio, i.e.,

E[RA1(0)] _ EIRA4(0")]
OPT(c)  OPT(0’')

Proof. Sincea,, < 1, we haveOPT(c) = OPT(0’) = a,, + 1. ForRA4, we consider two
cases. Let be the (now fixed) value randomly chosenR#u . If a,, < k, then the cost of

o is the same as far'. If a,, > k, then message,, is not sent until the messenger leaves
the next time. This point of time is determined by the first messag®&vith a; > k. Since

ai +k <an +k < k+ 1, this will be exactly at the messenger’s next return. Leaving out
the messages before messagebut after)a; does not change this, and the cost6ind

o isthe same. O

Furthermore, as the next lemma showsg,if < 1, then in addition to assuming that
m < 2, we can assume that, € {0, A}. Note that forA > 0, due to the definition of our
cost functiona, =0, i.e.,oc = (0, 0) gives the same expected competitive ratie-as (0).
For A =0, the sequence = (0, 0) is the same as = (0, A).

Lemma 9. A worst-case input sequence for RAvith two message®; = ((a1 = 0), a2),
whereaz < 1, can be assumed to hawg € {0, A}. This gives the following lower bounds,
of which at least one is an upper bound for all input sequences((a; =0), ..., an),
wherea,, < 1:

When input is restricted to be of the fown= (0), RAxhas an expected competitive
ratio of

1+A
>
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When input is restricted to be of the fown= (0, A), RA4 has an expected competitive
ratio of

1 L 3

2 24+

Proof. For o = (0), the expected competitive ratio &A, is E[RAx(c)]/OPT(c) =
1+ A4/2.

For o = (0, ap), we prove the result by case analysis depending on the values of
andA. Letk be the (now fixed) value randomly chosenR¥x, . The cost oRA, can then

be described as follows:
k+1, if <k,
clagby= " T ez
k+2, ifk<ar<1.

Note that the above holds with equality even in the second case gngel implies
az + k <k + 1. Thusap will be sent at timek + 1.
The expected cost dRA, is E[RAx(0)] = %fOA c(az, k) dk, whereasOPT(0) =

az + 1, giving us an expected competitive ratioctiz) = 5= 3 e(az, k) dk.
Let us first consider the case when< A. The expected competitive ratio is

o2k +2)dk+ [ (k+Ddk  A2/24 A+ ap
A1+ ap) A+ ap)

c(az) =

By differentiation, we find that forA < +/3 — 1, this is maximal ina; = A, whereas
for A > /3 — 1, this is maximal ina; = 0. For A = +/3 — 1 and anyay € [0, A],
claz) = 3(v3+1).

The second case is wheh< a < 1. The expected competitive ratio is

Jik+2dk Aj242
clap) = = .
A1+ ap) 1+az

This is maximal folaz as small as possible, i.e., itis at mosn) = 1/2+ 3/(2(1 + A)).
a

Lemma 10. Leto = ((a1 =0), ..., ay,) be any worst-case phase for RAvith 1 < a,, <
1+ A, then

E[RA ()] _ —2a2 + 6ay, — A+ 2am A + A% +2A
OPT(0) 2A(am + 1) '

Proof. As before, let be the (now fixed) value randomly chosen®#, . The worst-case
cost ofRA4 can in this case be described as follows:

am +k+1, ifa, <k+1,

k+3, if k+1<ap.

This gives an expected worst-case costRéy of at most

clam, k) < {
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A am—1 A
E[RA1(0)] < %/c(am,k) dk = %( / (k +3) dk + / (am +k+1) dk)
0 0 am—1
_ —2a2 +6ay — 4+ 2a, A+ A% +2A
2A
wherea®©OPT(o) = a,, + 1, sinceo is a worst-case phase

Proof of Theorem 5. Lemma 9 gives the ratio of the cost functionsR4, andOPT on
some selected sequences. Thus, the expected competitive ratig @f at least as high as
those ratios. However, the ratios are also best possible for phasgga; = 0), ..., a,)
with a,, < 1. By Lemma 7, ifa,, > 1, the ratio of the cost functions &4, andOPT on a
worst-case input sequence is less than. 3

For A < 1/2, Lemma 9 is enough, since the input sequeficet) gives rise to an
expected ratio of 22+ 3/(2(A + 1)) > 3/2.

For A > 1/2, by Lemma 7, any input sequence witf > 1+ A gives rise to an
expected ratio of at mostl + A) +2)/((1+ A) + 1). Lemma 10 gives a similar bound
on the expected ratio far, € (1, 1+ A]. It can easily be shown that

max A+3 —24a2 +6a, — 4+ 2a, A+ A%+ 2A
A+2 2A(am + 1)
A 6A24+4A+1
<mayl+ —, —— .
2° AA(A+ 1)

Thus, either0) or (0, A) is a worst-case input sequence in this case. Now, Lemma 9 gives
the result. O

4. TheB; & RB,, algorithm families

We will now study the problem from another angle. In the previous section we studied
both a deterministic and a randomized family of on-line algorithms. For the deterministic
family, no randomness is needed, whereas for the randomized family, essentially infinitely
many random bits are necessary to choose a number uniformly betweenAQ émthis
section we consider the cases in between. The algorithm is allowed to choose a random
value only once and to do so uniformly at random from a set e&lues.

Let (a1,az,...,a,) be the sequence of arrival times of messages. The sequence can be
broken into phases where a phase contains a maximal subsequence of message arrivals for
which consecutive messages are at most one time unit apart. In other words, the first phase
starts with the first packet. A phase continues until there are consecutive revealed messages
a; anda; 1 which are more than one time unit apart. Message then the last message in
that phase and; ;1 is the first packet in the next phase. Note that the definition of phases
used in this section is different from the definition used in the previous section.

Let , and v, be the arrival time of the first and the last messages in phase
respectively. For a given schedule,dgtoe the time the messenger leaves to service the first
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message in phage, and letw,, be the time the messenger comes back from servicing the
last message in phage To simplify the discussion, we define a dummy variable= a;.

Let F be the total cost of an algorithm and [E} be the cost charged to phageFor
any p > 1, any waiting time in the intervdlw,_1, w,] will be charged to phasg. Since
the entire schedule is covered, thenr=}_ , F),.

Lemmall. Foranyp > 1, F, =w, —maXxwp_1,up}.

Proof. Supposep > 1 is fixed. Since consecutive messages in phasge at most one

time unit apart, at any time in the intervil,, w,], either there is a pending message,

or the messenger is out. Now consider the time intefwgl 1, w,1. If u, < w,_1, then

the entire intervalw,_1, w,] is charged to phasg. If w,_1 < u,, then during the time
interval [w,_1, u,] the messenger is in and there are no pending messages. Thus, there
is no charge to phase during the time intervalw,_1, u 1. Only the intervalu ,, w1 is
charged to phasg. In any case, the chargeis, — maxw,_1,up,}. O

We define the deterministic on-line algorithBa for the packet bundling problem as
follows:

Br: When the first message of a phase arrives, the algorithm will wait tome units.
After this waiting period, the algorithm sends out any messages in the phase as soon
as possible.

The algorithmBy, and the algorithmi; defined in the previous section are different. To
illustrate this, consider the input sequemce- (0,k —¢,1+k —¢,1+k +€).

Upon the arrival of the first messagé, will wait for k time units. It sends out the first
and the second messages with the messenger attifitee messenger will return at time
1+ k just after the third message arrives, will wait for k time units after the arrival of
the third message. It sends out the third and the fourth messages with the messenger at time
142k —e. The costofd, is 2+ 2k — €.

Now consider the schedule produced By. Since the messages @farrive no more
than one time unit apart, they all belong to the same phase. Upon the arrival of the first
message B will wait for k time units. It sends out the first and the second messages
with the messenger at timie The third message arrives at time-k — ¢ just before the
messenger returns. Since the third message belongs to the same phase, when the messenger
returns at time 4 k, it will be sent out again immediately. This is different frofm. The
fourth message arrives at timetk + €. The fourth message has to wait for the messenger
to return at time 2+ k before it can be serviced. The cost®f is 3+ k, which is worse
thanAy.

In contrast, consider the same example without the last message. The dpssatill
2+ 2k — €, but the cost ofBy is now 2+ k.

Let F} be the cost of algorithrB in phasep.

Lemma 12. For 0 < k < 1 and for any phase,
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Fk<

{k+1+j, if x <k,
p

k+24+j, ifx>k,
wherej = [v, —up| andx = (v, —u,) — j.

Proof. Supposé is fixed and suppose we consider any phas€he messenger can leave
to service the first message in phas&henk time units after the first arrival in the current
phase have elapsed and the messenger has returned from servicing the last message in the
previous phase. Thus, = maxXu, + k, w,_1}.
From the definition 0By, beginning at time, the messenger will leave every 1 time
unit to service the messages in the phase. It leaves to service the last message at time
sp+ [vp —sp] + 1, and will come back 1 time unit later. Thus, =s, + v, —s,] + 2.
Letj=|v, —up,] andx = (v, —up,) — j. Note that 0K x <l andj +x =v, —u,.
Now we computeF.

F;f:wp —maxXup, wp_1}
=maXu, +k, wp_1} + vy, —spl +2—maxu,, wy_1}
<k+vp—up—kl+2=k+1j+x—k]+2
k+j+2, ifx>k,
{k+j+1, if x <k. O

We define the randomized on-line algoritiRi,, for the packet bundling problem as
follows:

RB,: RB, is arandom distribution over the class of algoritBm First,RB,, picks a value
for an internal parameter Then,RB,, behaves likds,. In particular, the value far
is randomly chosen to bg(m) with probability 1/m fori =1, ..., m where

V3+2/m—1

m+1
SinceRB,, behaves likeB;, it does the following. When the first message of a phase
arrives,RB,, will wait for ¢ time units before this message and later messages (if
any) are sent. After that if there are more messages in the phase, the messages are
sent out as soon as possible.

t1(m) = , tiim)=i-r1(m), fori=2,...,m.

Note that them in RB, denotes the number of random choices available to the
algorithm, and not as foRA4, where A denotes which interval the algorithm should
choose its random values among.

Theorem 13. For anym > 1, the competitive ratio of RBis at most
_ 1 2
R(RB,) < —(,/3+ 2, 1).
2 m

Proof. Supposen is fixed and suppose we consider a worst case phiasgor brevity,
we user; to represent; (m). Also, we letrg = 0 andt,,+1 = 1.
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Letj=|v, —up] andx = (v, —up,) — j. Note that 0K x <l andj +x =v, —u,.
Let g be the integer such that <x < 7,41.

From the definition of; andx, it is the case that & ¢ < m. By Lemma 12, the cost of
RB,, can be bounded from above by

1 m
RBn(Up):Ei[Fg]=ZZF,I," (Z(t,+2+j)+ Z (t,+1+j)>

i=1 i=q+1

1{3
=—<Z(l n+2+j)+ Z @i t1+1+]))
m
i=1 i=q+1
1 m
=—< (i-t1+1+j)+21>
m\ “ ‘
i=1 i=1
1 . mm+1 . m+1
=— m(1+])+t1’¥+q =1l+j+n- +1
m 2 2 m

The optimal schedule is to wait for the last message in the phase and send all messages
in one packet at time,,. Thus, the optimal cost is

OPT(op) =1+ (vp —up)=1+j+x21+j+1,=1+,j+q 11
Next, we find an upper bound for the raRB,, (¢,)/OPT(c ).

RB,n(Up) m+1 ¢ 1
OPT(o,) (H th—— )(1+]+q n)

e ) (5aa)

(m+1«/3+2/m +1+i>< 1 )
2 m+ 1 1193+ 2/m—1)/m+1)

1+1-

() i) mmram )
() o 225029
X(1+mL+1<\/::+W—1>>

=%(@+1>. m]

If RB,, has access tb random bits, it can choose amonfgrandom choices.

1
2
1
2

Corollary 14. For b > 0, if RB,, has access tb random bits, then

R(RB,) < %(¢3+ 21b 4 1).
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Proof. Immediate from Theorem 13 and by setting=2". O

If RB,, has does not have access to any random bits at all, it reduces to a deterministic
algorithm.

Coroallary 15. If RB,, does not have access any random bits, it reduces to a deterministic
algorithm, and

V5+1

~ 1.618
2

R(RBo) <

Proof. Immediate from Corollary 14 by setting=0. O

Corollary 16. If RB,, has access t& random bit, therr; = 1/3, 1> = 2/3, and
R(RBy) < 3/2.

Proof. Immediate from Corollary 14 by setting=1. 0O

If b tends to infinity,RB,, will become a randomized algorithm that chooses a waiting
time from a uniform distribution in the rang®, +/3 — 1] ~ [0, 0.732].

Corollary 17. If RB,, has access to an unlimited number of random bits, it becomes a
randomized algorithm that chooses a waiting time from a uniform distribution in the range
[0, +/3 — 1] ~ [0, 0.732]. Furthermore,

V3+1
2

R(RBy) < ~ 1.366.

Proof. Immediate from Corollary 14 by letting tend to infinity. O

5. Lower bounds

Finally, we show that among the algorithms we have considered, we find both optimal
deterministic and optimal randomized algorithms.

First, A; and consequently by Lemma 18R, are shown to be optimal deterministic
algorithms.

Theorem 18. Let ALG be any deterministic algorithm for tiRacket Bundling Problem
ThenR(ALG) > R(A;) = ¢.

Proof. We show how to construct an input sequenceXb6, where it has a competitive
ratio larger than or equal ip.

The input will be given in a number of phases, each consisting of either one or two
messages. Between each phase, there is a time interval large enough so thafAh&ther
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nor A; at the end of the interval has any messages to deliver, nor are they at the moment
delivering any messages.
Let us first consider phase, and let the first message in this phase arrive at time
Letk; be the length of the time intervAlLG waits before it sends the message. Referring to
Theorem 2, we know fod;, whether a worst-case phase fg; has one or two messages.
If it has two, another message is set to arrive at ige= a;;, + k;; if not, the phase ends.
Referring again to Theorem 2, the following holds for phase

ALG(0;) = Ay, (01) = Ay (0i) = 9OPT(0y).

The first inequality holds for the following reason. Recall that we only consider sequences
of up to two messages. If a sequence contains only one message, Adigeas
deterministic, it waits some fixed tirmig before it sends the message. So, clearly; iias
length one ALG(0;) = Ay, (0;). Fork; < ¢, a worst-case phase consists of two messages.
Again, by definition ofA;;, ALG and Ay, will send the first message at the same titne
However, whereagy, will send the second message immediately after having sent the
first (at timek; + 1), we cannot be sure thAL. G does too. For a sequence of length two,
delaying sending the second message can of course only increase the cost. Thus, the first
inequality holds for sequences of length at most two.

Thus, for the entire input sequence, we h&l&s(c) > ¢OPT(o). O

Next, we show a lower bound for any randomized on-line algorithm. As a consequence
of this, bothRA\/é_1 andRB,, are optimal randomized algorithms.

Although the details of the following proof are somewhat technical, the idea is simple.
A message becomes available at time 0. Whenever the behavior of the on-line algorithm in
the expected case deviates from thaR&, in a way that reduces its cost on the current
sequence by any significant amount, another message becomes available.

Theorem 19. No randomized on-line algorithm can be better thiaf8+ 1) /2 competitive.

Proof. Fix a randomized on-line algorithiALG. We construct a sequence of message
arrivals for which the ratio of costs is arbitrarily close(io+ +/3)/2.

Fix N > 1 and lete = (+v/3—1)/N. Let a message arrive at time 0. For each 0< N
we decide whether a message will arrive at timeepending on the behavior ALG prior
to timeie. Note that this behavior cannot depend upon whether messages arrive at time
or later.

In order to describe the criteria for making the decision at tieve need to introduce
a technical concept. ForQr < ie, let p(¢t) be the (partial) probability density function
describing the probability density th&ll G sends a packet at time In other words,
P@) = [é p(x) dx is the probability thatALG has sent a packet by tinte Without loss
of generality, we can assume that) is continuous (if it is not, there is another algorithm
with cost arbitrarily close for whiclp(z) is continuous).

Call a timer sufficiently heavyf for all s < ¢, the inequalityP (t) — P(s) > (t —s) X
(+/341)/2 holds. A message arrives at timeif there is a timer € ((i — 1)e, ie] which
is sufficiently heavy.
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Let T be the time that the last message arrives an@ldte the supremum of all times
which are sufficiently heavy. Note that07 < +/3— 1 andT — T’ < e. We now claim
that

P(T")— P(t) = (T' —1)(v/3+1)/2 forallr <1’
and
P(t)—P(T)<(t—T)(V3+1)/2 forallr>T"

The first inequality follows immediately from the definition @f and properties of
limits. To see that the second inequality is true,det T’ be a time that maximizes
P(t) — P(T") — (t — T")(+/3+ 1)/2. If this maximum was greater than 0 thewould be
sufficiently heavy.

The optimal cost on the sequence is- T'.

Now consider the on-line cost. Suppose the on-line algorithm chooses to send the
messenger out at time, wherex is drawn from the probability density functiopn(z).
If x < T,the on-line costis 2 x because the messenger will come back at timex] go
out again with the message that arrives at tifjeand come back again at timet2x. If
x > T, the on-line cost is ¥ x because no messages arrive after timand the messenger
will be back at time & x. Since no messages will arrive after tirg@ — 1, we can assume
that p(r) = 0 forz > (v/3— 1) + € ~# 0.732+ €. Thus, the expected on-line cost is

T V3—1+€
/(2+ Hp@)de + / L+1t)p@)de. Q)
0 T

To more easily estimate the on-line cost, we allow the on-line algorithm to modify its
probability density functiorp(s) subject to the restriction that’ remains the supremum
of all times which are sufficiently heavy. From the cost function (12 >2>1+1n
for 1, € [0, T] and 1y € (T, /3 — 1+ €], to minimize the expected on-line cost, the on-
line algorithm will place as much probability mass jr(t) after time T as possible.
Furthermore, the mass remaining prior to tiffievill be moved as early as possible while
keepingT”’ sufficiently heavy. Similarly, the mass occurring after tithevill be moved as
early as possible while keeping no- T sufficiently heavy and while still keeping it after
timeT.

The on-line algorithm will modify its probability density functiop(r) so that it is
arbitrarily close to the following probability density functign-(z), which is arbitrarily
close to the uniform density distribution in the intery@l +/3 — 1].

o (V3+1)/2)", ifrelo,T],
q = _
(V3+1)/2)", ifre(T,~/3-1].
It can be verified that, with respect tg-(¢), time T is sufficiently heavy and, any time
t € (T, /3 — 1] is not sufficiently heavy. A simple calculation of

T V3-1
(2+t)(1+x/§)d (1411 ++/3)
/—2 t+ / — 5 dr

0 T
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shows that the on-line cost is arbitrarily close b+ T)(1 + +/3)/2, and the result
follows. O

6. Flow-time cost

The most standard cost function for problems of this nature is flow-time cost, which
is also used in [5,6,10]. The flow-time cost for some algorithm is the sum of the waiting
times or latencies of all messages. For one message, the latency is the length of the time
interval from when it arrives until either the packet time of its packet is reached or it has
been delivered (dependent on the definition used).

As stated in [5,6,10], a possible definition of this is the following:

nmA+ L=y > (pi—aj).

i=lajep;
As before € [0, 1] denotes the relative weight of the cost of an acknowledgment and the
message latency. We will not consider the case wherl, i.e., the case when cost is only
paid, if a packet is sent; the choice of any competitive algorithm will then be never to send
any packets.

Though we are considering the same cost function in this section as has been considered
in earlier work, the problem itself is different since packet times are required to be at least
one time unit apart. When trying to use this cost function for our problem, we are unable to
distinguish between on-line algorithms, as no on-line algorithm is competitive, i.e., for any
on-line algorithm, it is possible to find input sequences giving arbitrarily large competitive
ratios.

Theorem 20. For the Packet Bundling Problemasing the flow-time cost function with
n € [0, 1), no deterministic on-line algorithm is competitive.

Proof. Let ALG be any deterministic on-line algorithm. First give the on-line algorithm a
message arriving at time 0. The algorithm sends this message in a packet at some time,
Just after the messenger has left, giveessages all arriving at tinke The cost ofALG s
then at least2+ (1 — n)(k + s), wherea$DPT can send all messages at tilmsuch that
its cost is at most + (1 — n)k.

Since 1— n > 0, we can by the choice efget an arbitrarily large competitive ratio, and
consequently the algorithm is not competitive

The result also holds true for randomized on-line algorithms, although the proof is more
complicated:

Theorem 21. For the Packet Bundling Problerasing the flow-time cost function with
n € [0, 1), no randomized on-line algorithm is competitive.

Proof. Let ALG be any randomized on-line algorithm. We again show how to construct an
input sequence with an arbitrarily large competitive ratio.
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The first part of the input sequencesis- 0 messages all arriving at time 0. Legts) be
the probability thaALG decides to send a packet before tim@ 1This packet may or may
not contain alls messages. We now have two cases depending.on

If p(s) <1/2 for all s, then the input sequence only contains theseessages. The
expected ratio between the costadfG andOPT is then at least

E[ALG)] _ A= pGs)1+ A —m)s/2) - 2n+ (A —mn)s
OPT(o) ~ n 4p '
Since 1- n > 0, we can get an arbitrarily large ratio by choosingrge enough.

If p(s) > 1/2 for somes, thent > s more messages arrive at tim¢2l The ratio
betweerALG andOPT is in this case at least

E[ALG()] _ p(s)(2n+ A —mt/2) _ 4n+ (A —n)t
OPT(oc) =~ n+Q—-ns/2 ~ dnp+2(1—n)s
Since 1- » > 0, we can by choosinglarge enough get an arbitrarily large ratioa

Thus, no on-line deterministic or randomized algorithm is competitive using the flow-
time cost function defined earlier.

7. Concluding remarks

We have considered a new cost function instead of the cost function which is almost
a standard in theoretical analysis of this type of problems, namely flow-time. With the
new cost function, algorithms can be distinguished effectively, whereas using flow-time,
this is not possible while respecting the LogP model assumptions. The behavior of the
optimal off-line algorithm can be a little peculiar, however. If we consider sequences where
n messages arrive less than one unit apart, nothing in our cost function encourages the
optimal off-line algorithm to send any messages untilitttemessage has arrived.

While the behavior of an off-line optimal algorithm is secondary to the ability of the
total set-up to distinguish between good and bad on-line algorithms, our results are robust
enough that the behavior ®PT could be altered. Assume that we change the cost function
such that when a message has been waiting for one time unit (or equivalently, has not
been delivered two units after it became available), a strictly higher penalty is imposed.
This will encourage a different behavior, where messages are sent earlier. Hob/@ever,
can still send all messages with the same cost. It will send at ginmamediately after
the nth message has arrived (as before), but it could also send at all times in the set
{t. —i|ieN, t,—i>0}.

Itis of course also possible to consider entirely different cost functions. A cost function
should be reasonable in the sense that it should be a value which it would be good
to minimize. A cost function should also be useful in the sense that it should make it
possible to distinguish between algorithms. However, these requirements do not lead us to
a canonical choice of cost function.

The choice as to when a packet is considered delivered is somewhat arbitrary. We have
chosen to consider a packet sent at tippelelivered at timep; + 1 (that is timep; plus the
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gap time, since we have normalized with respect to the gap), the informal reason being that
this is the time when we are allowed to send again. Other choices give similar results. For
instance, if we consider a packet delivered at the time it is sent, a flow-time cost measure
will also be unable to distinguish between our algorithms. In this case, all the algorithms
become non-competitive, i.e., they do not have constant competitive ratios. Also adding
acknowledgment costs, i.e., a constant cost for each packet sent, gives rise to similar results.
For our presentation, we have chosen what we believe is the simplest cost function which
give useful results, under the constraint that packet times must be at least one unit apart.

Continuing the discussion of our cost function following Definition 1, the only thing that
distinguishes our cost function frogfyax with n = 1/2 in [6] is the included maximization.

This is because the constant one(jpy + 1), which for us reflects when a packet is
considered delivered, will take the role of the acknowledgment cost used in [6]. The
more important difference, however, is the difference in problem formulation regarding
the decision as to whether or not packets may be sent an apart. This decision seems

to be so fundamental that despite similarities in cost functions, our results and the results
in [6] are incomparable.

Finally, our algorithms can in principle be built into any operating system, though the
ease with which this can be done depends on the exact design of the operating system in
guestion, in particular on the availability of an extra timer to support interrupts from our
algorithm.
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