
r

l

mark

regular
r it should
ecause
tween
nt data,
ore. We
for this

time;

ndling,”
erlag,

ure and
Journal of Algorithms 48 (2003) 407–428

www.elsevier.com/locate/jalgo

Dynamic TCP acknowledgment in the LogP mode✩

Jens S. Frederiksen,a,1 Kim S. Larsen,a,∗,1 John Noga,b

and Patchrawat Uthaisombutc

a Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Den
b Department of Computer Science, California State University, Northridge, CA 91330, USA

c Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received 10 May 2002

Abstract

When messages, which are to be sent point-to-point in a network, become available at ir
intervals, a decision must be made each time a new message becomes available as to whethe
be sent immediately or if it is better to wait for more messages and send them all together. B
of physical properties of the networks, a certain minimum amount of time must elapse in be
the transmission of two packets. Thus, whereas waiting delays the transmission of the curre
sending immediately may delay the transmission of the next data to become available even m
propose a new quality measure and derive optimal deterministic and randomized algorithms
on-line problem.
 2003 Elsevier Inc. All rights reserved.

Keywords:Dynamic TCP acknowledgment; Packet bundling; On-line algorithms; Competitive ratio; Flow-
Deterministic; Randomized

✩ A preliminary version of this paper appeared as Jens S. Frederiksen, Kim S. Larsen, “Packet Bu
Eighth Scandinavian Workshop on Algorithm Theory, Lecture Notes in Comput. Sci., Vol. 2368, Springer-V
2002, pp. 328–337.

* Corresponding author.
E-mail addresses:svalle@imada.sdu.dk (J.S. Frederiksen), kslarsen@imada.sdu.dk (K.S. Larsen),

jnoga@csun.edu (J. Noga), utp@cs.pitt.edu (P. Uthaisombut).
1 Supported in part by the Danish Natural Science Research Council (SNF) and in part by the Fut

Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT).
0196-6774/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-6774(03)00058-0

408 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

ata is
cation
is also

ervals,
ediately
be sent

tworks
must
ssages
may

ddition
uce the
network

ssages,
eipt of

3] with
r each
ntil it is

a cost
when
nction
to as a

etitive
g (single
noted
m.
f the
ized

bound
[5,6],

TCP
uting
erties of
on.
epted

, which
1. Introduction

We consider point-to-point transmission of data in a network. Transmission of d
in the form of packets, which contain some header information, such as the identifi
of the receiver and sender, followed by the actual data. For obvious reasons, data
referred to as messages.

When messages to be sent become available a little at a time at irregular int
the question arises on the sending side whether to send a given message imm
or whether to wait for the next message to become available, such that they can
together. Sending the messages together is referred to asPacket Bundling.

The reason why this is at all an issue is because of physical properties of the ne
which imply that after one packet has been sent, a certain minimum amount of time
elapse before the next packet may be sent. Thus, whereas waiting for more me
will certainly delay the transmission of the current message, sending immediately
delay the transmission of the next message to become available even more. In a
to reducing the overall transmission delay when bundling messages, we also red
bandwidth requirement of the sender, since overhead due to packet headers and
gap is reduced. The problem of making these decisions is referred to as thePacket Bundling
Problem.

A very similar problem, theDynamic TCP Acknowledgment Problem, was introduced
in [5,6]. Since it usually does not make sense to delay the transmission of large me
the focus for packet bundling is small messages, and acknowledgments to the rec
packets are examples of such. The problem was studied as an on-line problem [
the cost function being the number of packets sent plus the sum of the latencies fo
message. The latency of a message is the time from when the message is available u
sent. In general for on-line problems, a flow-time cost measure [3] for a problem is
function defined as the sum of the lengths of time intervals over all requests from
each request was made until the treatment of it is completed. However, a cost fu
which contains the above as an important ingredient is also sometimes referred
flow-time cost measure.

Flow-time is used as a measure in many different contexts. With regards to comp
analysis, it has been established as a standard measure, most notably in schedulin
as well as multiple machines) where it is used in, for example, [2,9,12,14,15]. As
in [5,10], it also seems like an obvious first choice with regards to the present proble

For the Dynamic TCP Acknowledgment Problem, an exact characterization o
optimal algorithms for the deterministic case can be found in [5]. For the random
case, an exact characterization is given by the lower bound in [18] and the upper
in [10]. The off-line version of the problem has also been considered, initiated by
and a linear-time algorithm has been obtained [17].

In this paper, we consider a different approach to investigating the Dynamic
Acknowledgment Problem: we prioritize choosing a model for distributed comp
which incorporates the gap between messages necessitated by the physical prop
today’s networks and, related to this decision, we also choose a different cost functi

One of the models of computation for distributed computing which seems to be acc
as a reasonable model by practitioners as well as theoreticians is the LogP model [4]

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 409

etical
The

es

of the

lication
sent by
e is then
the
ages in
overlap
ad time
fter the

ad. Thus,
head is

e gap
keep

r that
can be
or all
to say:
erface
d
rhead.
since

ges [1]
ng the

most
ckets
ecause
packet

ances
quently

ysical
tervals,
if the
um of
easure
can be
is tractable from a theoretical point of view, but also realistic enough that good theor
algorithms are likely to be good in practice as well; on many different platforms.
ingredients in the model are the latencyL, the processor overhead in sending messago,
the gap imposed by the network between messagesg, and the number of processorsP .
We refer to the original paper for a complete treatment, but give a short description
model here.

The times when messages become available are beyond our control. Some app
program simply hands over its message to the TCP protocol. When a message is
the TCP software, there is a CPU overhead in preparing the message. The messag
sent through the network, which takes timeL, after which there is a CPU overhead at
receiving end to extract the message. In addition, there is a requirement that all mess
the network must be separated by a fixed time gap. Note that overhead and gap can
in the following sense: Right after a message is sent, while the CPU spends overhe
preparing the next message, the first message is traveling through the network, so a
next message has been prepared, there is already a gap of size equal to the overhe
if the overhead is larger than the gap, then the gap can be ignored, and if the over
much smaller than the gap, then the overhead can be ignored.

In our presentation, we will ignore the overhead. Thus, our results apply when th
is significantly larger than the overhead. This decision has been made primarily to
formulations of theorems cleaner and proofs simpler. However, there is support fo
decision. In [4], the designers of the LogP model express hope that the overhead
eliminated from the model at a later time, though they considered it premature (f
architectures; not selected architectures) at the time of their publication. They go on
“In future machines, we expect architectural innovations in the processor-network int
to significantly reduce the value ofo with respect tog.” In [13], the system analyze
to verify their results shows a gap value more than 50 times as large as the ove
Whereas this system may not be typical, we believe it may be an important example
it resembles the scenario in Grid Computing.

The LogP model has been extended to improve the treatment of large messa
and the model is supported by experimental work, supplying methods for determini
concrete values of the parameters on a given system [13].

Comparing the theoretical work of [5,6,10] with the model assumptions of [4], the
noticeable difference is the lack of the gap parameter in [5,6,10]. In their work, pa
are allowed to be sent arbitrarily small distances apart. This gives different results, b
with decreasing intervals between messages, due to the latency contribution of each
to the cost function, a good algorithm would send frequently. With small enough dist
between messages which must be sent, the algorithm would wish to send more fre
than allowed by the gap we are enforcing.

We base our theoretical work on the LogP model, which means we respect the ph
gap. At times when messages become available separated by very small time in
a flow-time based cost function, as in [5,10], would impose a very large penalty,
decision is to delay transmission. This led us to consider another cost function: the s
time intervals when at least one unsent message is available. In our opinion, this m
is just as natural and it has the significant advantage that good and bad algorithms
distinguished.

410 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

h other
nt and

s not
(
ere a

ialized
nt in

bsolute

blem
sults
ion, it
tational

are
ad and
the case
he
act

lso

her
ses one
ssages

the
essages

that
anager
it has

s all
packet,
ket is
Our results and the ones in [5,10] are largely incomparable. They supplement eac
by providing separate results for applications where some physical gap is significa
applications where it is insignificant, or possibly not present at all.

In [6], a cost function similar to ours is used. Though the model used in [6] doe
include a requirement concerning packet distances, their alternative cost functionfmax)
will probably more accurately predict the behavior of algorithms in a scenario wh
physical gap must be respected than any of the flow-time based cost functions will.

Packet bundling has been considered experimentally in [16] for a concrete spec
application, namely real-time simulations. However, the conditions are quite differe
that messages have different priorities. The goal is also different since there is an a
tolerance for the delay of messages of different types.

We analyze natural families of deterministic and randomized algorithms for the pro
and find the optimal algorithms for these families. Additionally, we show that these re
could not have been obtained using the standard flow-time cost function. In our opin
is an interesting consequence that our step towards a possibly more realistic compu
model as a basis for the analysis forces us away from this standard measure.

2. Packet bundling

Referring to the description of the LogP model from the introduction, since we
considering the situation from the perspective of a single processor, only the overhe
gap parameters are relevant, and as discussed in the introduction, we investigate
whereo � g, so that the overhead parametero may be ignored. In the remainder of t
paper, we normalize with respect to the gapg, and assume that it is one (the important f
is that it is different from zero).

With this in mind, we now state the problem in a form which is formal, but a
convenient to work with.

Consider the problem of a personA wishing to send small messages to anot
personB. All messages have to be sent using the same, single messenger, who u
time unit for each delivery, i.e., when the messenger has left with one or more me
(a packet), no messages can be sent for the next one time unit.

WhenA decides to send a message,A can either send it immediately (assuming that
messenger is in), or wait some time (probably less than one) to see whether other m
have to be sent, so that these messages can be sent together.

A possibly helpful analogy is to think of a hotel/airport shuttle scenario, assuming
the shuttle bus is large enough to carry any number of passengers. When the hotel m
decides to send the bus off, there is obviously a gap until it can be sent again, since
to return to the hotel first.

The formal definition of the problem is as follows:

Definition 1. A Packetis a collection of messages. When a packet is sent, it contain
messages which have arrived since the time the last packet was sent (if it is the first
it contains all messages which have arrived up to the point in time where the pac
sent).

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 411

number

a
an

t are

l.
ch have

flect

much,

e

hich
e.
uding
lt to

iscuss
ges can
gment

bered
In thePacket Bundling Problemone is given a sequenceσ = 〈a1, . . . , an〉 of message
arrival times and is asked to give a sequence of packet timesp1, . . . , pm at which packets
of messages are sent. All messages are considered to be small, so that an unlimited
of messages can fit in a packet.

The set of messages sent in packetpi is denotedp̃i . For convenience, we identify
message with its arrival time, justifying the notationaj ∈ p̃i . If more than one message c
arrive at the same time,̃pi can be thought of as a multi-set.

The packets should respect the following restrictions:

• All messages should be sent no earlier than their arrival time, i.e.,

∀i � n ∃j � m: ai ∈ p̃j ∧ ai � pj .

• All packet times should be at least one unit apart, i.e.,

∀i < m: pi+1 − pi � 1.

• If a packet is sent at timepi , then the set of messages contained in the packe
considered delivered at timepi + 1.

The last two bullets capture the essence of the gap parameter in the LogP mode
The cost function measures the total time elapsed while there are messages whi

arrived, but have not been delivered:
m∑
i=1

(
(pi + 1)− max

{
(pi−1 + 1), min

aj∈p̃i

aj

})

where we definep0 = −∞.

Considering the cost function above, it is clear that if the formal definition should re
our informal definition, then no more than(pi + 1) − minaj∈p̃i

aj should be paid for
messages sent inpi , i.e., we pay from when the first message inpi arrived until the time
pi + 1 where we consider the messages delivered. However, this is sometimes too
which can be seen as follows:

Assume thataq is the last message sent inpi . If aq+1 arrives between the timesaq
andpi + 1, then it is sent inpi+1, and so both(pi + 1) − minaj∈p̃i

aj and(pi+1 + 1) −
minaj∈p̃i+1 aj include the interval fromaq+1 to pi +1. To avoid this, the contribution from
the last term should instead be(pi+1 + 1) − (pi + 1). Including the maximization in th
cost function ensures that no interval is ever counted twice.

Equivalently, the cost function could be defined as the integral over a function w
has the value one if there are one or more undelivered messages and zero otherwis

For further discussions of alternative definitions of cost functions, see the concl
section. There, we will also mention some relations to earlier work which are difficu
discuss before the treatment of flow-time cost in Section 6.

The are two additional issues regarding the modeling of the problem which we d
now. The first regards the assumption that an unbounded number of small messa
be bundled up into one packet. For the TCP protocol in particular, the acknowled
of one packet automatically acknowledges all previous packets (packets are num

412 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

than a
mall
es, the
large

ption is
n out to

ges can
here is
ble and
mber
l. Thus,

rithm
nce of

h the

n hence

,

g the

the
both

after

t a
is about
lem in a
to arrive
consecutively). Thus, a packet with many acknowledgments is actually no larger
packet with just one. However, we would like our solutions to be applicable to s
messages in general; not just TCP acknowledgments. Fortunately, in most cas
maximum size of packets is fairly large (several kilobytes), which means that a very
number of message identifiers can actually be bundled, so we believe the assum
reasonable; not in the least because the worst-case scenarios for our algorithms tur
be sequences with few and scattered messages.

The other issue regards assumptions about how close together in time messa
become available. In the TCP acknowledgment scenario, and also in general, t
essentially no physical limit as to how close together messages can become availa
become ready for delivery, since an application at any time can hand virtually any nu
of messages to the part of the operating system implementing the message protoco
we do not enforce any restrictions on arrival times.

We consider on-line algorithms [3]. The messages arrive over time, and the algo
has to decide over time when to send a packet without any knowledge of the existe
future messages. For any algorithm,ALG, and input sequence,σ , we letALG(σ) denote
the value of the cost function whenALG is run onσ .

The performance of deterministic algorithms is measured in comparison wit
optimal off-line algorithm,OPT, using the standard competitive ratio [3,8,11,19].OPT
knows the entire input sequence, when it decides when to send each packet, and ca
achieve the minimum cost.

An algorithmALG is (strictly) c-competitive for a constantc, if for all input sequences
σ , the following holds:ALG(σ) � c · OPT(σ). The infimum of all such valuesc is called
the competitive ratio ofALG.

The performance of randomized algorithms is measured likewise, though usin
expected cost,E[ALG(σ)], instead.

3. The Ak & RA∆ algorithm families

In this section, we first consider a family of deterministic on-line algorithms for
problem. Subsequently we consider a natural randomization of this family and in
cases we show tight results on the competitive ratio.

3.1. Ak-deterministic algorithms

The family of algorithms we consider is defined as follows:

Ak: When a message arrives, it is sent together with all messages (if any) arriving
this one at the earliest possible time afterk time units.

Without loss of generality, we assume that ifAk decides to let the messenger leave a
certain point in time, and one or more messages arrive exactly when the messenger
to leave, then the messenger leaves without these new messages. If this is a prob
proof, then all messages arriving when the messenger leaves can be considered

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 413

the

is sent.

ases
phase
liver and
me time
nds, and

ries

.
.
imum

ing

en
aves or

nterval,
we

rrives in

ves
nly
uld be

r

ε ∈ o(1) time units later. Because of the infimum which is taken in the definition of
competitive ratio, this will generally not alter the result.

The algorithm familyAk is similar to the algorithms greedynew from [6] for varyingη’s
(see Section 6), in that the first message to arrive determines when the next packet

The following theorem states the competitive ratio of this family of algorithms:

Theorem 2. The competitive ratio of Ak is:

R(Ak) =
{

1+ 1/(1+ k), if 0 � k < ϕ̂,

1+ k, if ϕ̂ � k,

whereϕ = (1+ √
5)/2 ≈ 1.618andϕ̂ = ϕ − 1. The best ratioϕ is achieved by Âϕ .

For a fixed algorithm,Ak, any input sequence for our problem can be divided into ph
as follows: Each phase starts with the arrival of the first message after the previous
has ended, and ends at the earliest possible time when there are no messages to de
the messenger is in. In the special case when the messenger returns at the exact sa
a new message arrives (and no other messages are due for delivery), the phase e
the new message starts the next phase.

In the proof, we need the following two lemmas:

Lemma 3. For a worst-case sequence for Ak , we can assume that the messenger car
only one message at a time.

Proof. Consider a worst-case sequence, and assume thatAkhas ap̃i of size larger than one
We can construct another sequence where|p̃i | = 1 and the competitive ratio is no better

Adjusting the sequence by removing messages which do not give rise to the min
arrival time among the messages in its packet will not changeAk ’s behavior and will leave
the competitive ratio unchanged, sinceOPT can send fewer messages without increas
its cost. ✷
Lemma 4. There exists a worst-case sequence for Ak where, if any messages arrive wh
the messenger is out, they arrive exactly at the point in time where the messenger le
returns.

Proof. We consider a worst-case sequence where a message arrives in the time i
(pi,pi + 1), whenAk ’s messenger is out, and neither is leaving nor returning, and
transform this sequence into an equally bad sequence, where one message fewer a
this interval.

The message which is being delivered in the time interval[pi,pi +1] must have arrived
no later than timepi − k in order to be sent at timepi . Now assume that a message arri
at timeaj , wherepi < aj < pi + 1. By Lemma 3, we may assume that this is the o
message arriving in this time interval, since otherwise at least two messages wo
carried the next time.

If aj ∈ (pi,pi +1−k) (which may be an empty interval, ifk � 1), thenAk ’s messenge
has to leave with the new message immediately after returning at timepi +1, andAk ’s cost

414 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

if
at

he
er with
s

es of the

re than
nnot

se

re than

t

r
iest

g

is not influenced by exactly when in the interval[pi,pi +1−k] the message arrives. IfOPT
sends the message together with previous messages, thenOPT’s cost will be minimized for
aj = pi . Otherwiseaj can be assumed to bepi + 1 − k asOPT’s cost cannot increase
this message arrives later. The timepi + 1− k is still while Ak ’s messenger is out, but th
will be dealt with in the next case.

If aj ∈ [pi + 1 − k,pi + 1), this message will be sent byAk at timeaj + k. As the
previous message arrived at some time beforeaj − 1, OPT can be assumed not to send t
new message together with the previous. Thus, if the new message is shifted togeth
all later messages bypi + 1 − aj time units, thenOPT’s cost will be the same, wherea
Ak ’s cost does not decrease. Consequently, we may assume thataj = pi + 1. ✷
Proof of Theorem 2. Let us first consider the case whenk � 1:

By Lemmas 3 and 4, a worst-case sequence can be assumed to consist of phas
following form

σ1 = 〈0〉 or σn = 〈
0, k, k + 1, k + 2, . . . , k + (n− 2)

〉
wheren is the number of messages. We separate each phase from the next by mo
two time units. By definition ofAk , this means that messages from different phases ca
interfere, so relative costs can be calculated separately for each phase.

Ak ’s cost isAk(σn) = k + n, whereasOPT’s cost is

OPT(σn) =
{
k + n− 1, if n �= 1,

1, if n = 1.

For n = 1, this gives a competitive ratio ofAk(σ1)/OPT(σ1) = k + 1, and forn > 1, it
gives a competitive ratio ofAk(σn)/OPT(σn) = (k + n)/(k + n− 1), which is maximized
for n = 2, whereAk(σ2)/OPT(σ2) = (k + 2)/(k + 1)= 1+ 1/(1+ k).

Comparing the two cases, we find thatσ2 is the worst possible fork � ϕ̂, whereasσ1 is
worst for ϕ̂ � k � 1.

Let us then consider the case when 1< k. Again by Lemmas 3 and 4, a worst-ca
sequence can be assumed to consist of phases of the following form:

σn = 〈
0, k,2k, . . . , k(n− 1)

〉
wheren is the number of messages. Each phase is separated from the next by mo
1+ k time units, so relative costs can be calculated separately for each phase.

Ak ’s cost is Ak(σn) = 1 + kn, whereasOPT’s cost is OPT(σn) = n. This gives a
competitive ratio ofAk(σn)/OPT(σn) = (1 + kn)/n = 1/n + k, which is maximized a
n= 1, whereAk(σ1)/OPT(σ1) = 1+ k. ✷
3.2. RA∆-randomized algorithms

We now consider a natural randomization of theAk family of on-line algorithms. Ou
deterministic algorithm familyAk chose a specifick and sent a message at the earl
possible time afterk time units.RA∆ chooses the interval it waits at random.

RA∆: Choose ak uniformly at random between 0 and∆, and then run the correspondin
Ak algorithm on the input sequence.

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 415

ing a
ter
nsity
y
ive
ed
al of

ctly
t
n

a fixed
rts with
ly when,
g to
act same
e
e. Due to

.,

t

e

We only consider algorithms with∆ � 1, since any algorithm,RA∆, with ∆> 1 easily
can be seen to have a competitive ratio larger thanRA1.

One could also consider other families of randomized algorithms. Instead of us
uniform distribution, we could have used an exponential distribution with parame∆
varying from zero to infinity, or a cut-off exponential distribution described by the de
function (as in [10]):f (δ) = e−δ/∆/(∆(1 − e−1)) for δ ∈ [0,∆], and zero otherwise. B
careful examination, both of these are for any∆ easily shown to have a worse competit
ratio than the best member of theRA∆-family. Further, one could consider a randomiz
algorithm, where the time interval to wait is chosen uniformly by random at the arriv
the first message of each packet. In [7], this is shown to yield at best a1

2
3
√

1/2+ 1 ≈ 1.397
competitive algorithm when the waiting time is chosen uniformly by random in[0, 3

√
1/2].

Without loss of generality, we will as withAk assume that messages arriving exa
when the messenger leaves will not be delivered immediately. For∆ > 0, this does no
make any difference to the expected competitive ratio ask is chosen uniformly at random i
the range[0,∆]. For∆ = 0, RA0 andA0 behave identically, and we can as forA0 consider
all messages arriving when the messenger leaves, as arrivingo(1) time later without any
difference.

The competitive ratio forRA∆ is given by the following theorem.

Theorem 5. The expected competitive ratio of RA∆ is

R(RA∆) =

1

2
+ 3

2(∆+ 1)
, if 0 � ∆ �

√
3− 1,

∆

2
+ 1, if

√
3− 1 � ∆ � 1.

The best ratio
√

3/2+ 1/2≈ 1.366 is achieved by RA√3−1.

As for Ak, the theorem is shown by constructing a worst-case input sequence. For
RA∆, any input sequence is divided into phases almost as before: Each phase sta
the arrival of the first message after the previous phase has ended, and ends exact
regardless of the random choice ofk, there are definitely neither any messages waitin
be sent nor is the messenger out. In the event that a new message arrives at the ex
time as the messenger returns, and where no random choice ofk would have made th
messenger arrive later, the phase ends, and the new message starts the next phas
linearity of expectation, it is enough to consider a worst-case phase.

Before showing the main theorem, we need the following lemmas:

Lemma 6. Messages in a worst-case phase for RA∆ are not further than one apart, i.e
∀i: ai+1 − ai � 1.

Proof. Let ai be the first message such thatai+1 > ai + 1. As all messages beforeai are
at most one apart,OPT can send the messagesa1, . . . , ai at timeai , so that it does no
incur any cost between timeai + 1 andai+1. This means that the arrival of messageai+1
(together with all other messages after messageai+1) can be shifted to any point in tim
further ahead without increasing the cost ofOPT.

416 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

at
hen
e). The

ext.

f
es

out

at
r

s,

e

Since we only consider∆ � 1, RA∆ will make messageai leave with the messenger
timeai +1 at the latest. So, messageai+1 arrives either when the messenger is out or w
the messenger has returned (and then no other messages will be waiting at that tim
cost ofRA∆ is maximal if the randomly chosen waiting time afterai+1 is not shared by
time where the messenger is out, i.e., the cost is maximal if messageai+1 arrives after the
messenger returns, and thereby the message is not in the same phase, but in the n✷
Lemma 7. For a worst-case phase with messagesσ = 〈(a1 = 0), . . . , am〉, the expected
competitive ratio of RA∆ is at most

R(RA∆) = E[RA∆(σ)]
OPT(σ)

� am + 2

am + 1
= 1+ 1

am + 1
.

Proof. Follows directly from Lemma 6. ✷
The following lemma shows that a worst-case phase withσ = 〈(a1 = 0), . . . , am〉 and

am � 1 can be assumed to contain at most two messages:

Lemma 8. For any phase with messagesσ = 〈(a1 = 0), . . . , am〉 and am � 1, the phase
obtained by looking only at the first and the last message ofσ , σ ′ = 〈a1, am〉, has the same
expected competitive ratio, i.e.,

E[RA∆(σ)]
OPT(σ)

= E[RA∆(σ ′)]
OPT(σ ′)

.

Proof. Sinceam � 1, we haveOPT(σ) = OPT(σ ′) = am + 1. ForRA∆, we consider two
cases. Letk be the (now fixed) value randomly chosen byRA∆. If am < k, then the cost o
σ is the same as forσ ′. If am � k, then messageam is not sent until the messenger leav
the next time. This point of time is determined by the first message,ai , with ai � k. Since
ai + k � am + k � k + 1, this will be exactly at the messenger’s next return. Leaving
the messages before messageam (but after)a1 does not change this, and the cost ofσ ′ and
σ is the same. ✷

Furthermore, as the next lemma shows, ifam � 1, then in addition to assuming th
m � 2, we can assume thatam ∈ {0,∆}. Note that for∆> 0, due to the definition of ou
cost function,a2 = 0, i.e.,σ = 〈0,0〉 gives the same expected competitive ratio asσ = 〈0〉.
For∆ = 0, the sequenceσ = 〈0,0〉 is the same asσ = 〈0,∆〉.

Lemma 9. A worst-case input sequence for RA∆ with two messages,σ = 〈(a1 = 0), a2〉,
wherea2 � 1, can be assumed to havea2 ∈ {0,∆}. This gives the following lower bound
of which at least one is an upper bound for all input sequencesσ = 〈(a1 = 0), . . . , am〉,
wheream � 1:

When input is restricted to be of the formσ = 〈0〉, RA∆has an expected competitiv
ratio of

1+ ∆
.

2

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 417

e

of
When input is restricted to be of the formσ = 〈0,∆〉, RA∆ has an expected competitiv
ratio of

1

2
+ 3

2(∆+ 1)
.

Proof. For σ = 〈0〉, the expected competitive ratio ofRA∆ is E[RA∆(σ)]/OPT(σ) =
1+∆/2.

For σ = 〈0, a2〉, we prove the result by case analysis depending on the valuesa2

and∆. Let k be the (now fixed) value randomly chosen byRA∆. The cost ofRA∆ can then
be described as follows:

c(a2, k) =
{
k + 1, if a2 � k,

k + 2, if k < a2 � 1.

Note that the above holds with equality even in the second case sincea2 � 1 implies
a2 + k � k + 1. Thus,a2 will be sent at timek + 1.

The expected cost ofRA∆ is E[RA∆(σ)] = 1
∆

∫ ∆

0 c(a2, k)dk, whereasOPT(σ) =
a2 + 1, giving us an expected competitive ratio ofc(a2) = 1

∆(a2+1)

∫ ∆

0 c(a2, k)dk.
Let us first consider the case whenaj � ∆. The expected competitive ratio is

c(a2) =
∫ a2

0 (k + 2)dk + ∫ ∆

a2
(k + 1)dk

∆(1+ a2)
= ∆2/2+∆+ a2

∆(1+ a2)
.

By differentiation, we find that for∆ �
√

3 − 1, this is maximal ina2 = ∆, whereas
for ∆ �

√
3 − 1, this is maximal ina2 = 0. For ∆ = √

3 − 1 and anya2 ∈ [0,∆],
c(a2) = 1

2(
√

3+ 1).
The second case is when∆< a2 � 1. The expected competitive ratio is

c(a2) =
∫ ∆

0 (k + 2)dk

∆(1+ a2)
= ∆/2+ 2

1+ a2
.

This is maximal fora2 as small as possible, i.e., it is at mostc(∆)= 1/2+ 3/(2(1+∆)).✷
Lemma 10. Let σ = 〈(a1 = 0), . . . , am〉 be any worst-case phase for RA∆ with 1< am �
1+∆, then

E[RA∆(σ)]
OPT(σ)

� −2am2 + 6am − 4+ 2am∆+∆2 + 2∆

2∆(am + 1)
.

Proof. As before, letk be the (now fixed) value randomly chosen byRA∆. The worst-case
cost ofRA∆ can in this case be described as follows:

c(am, k) �
{
am + k + 1, if am < k + 1,

k + 3, if k + 1� am.

This gives an expected worst-case cost forRA∆ of at most

418 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

s

d

gives

udied
nistic
nitely

andom

can be
rivals for
t phase

essages
in
ases

e
first
E
[
RA∆(σ)

]
� 1

∆

∆∫
0

c(am, k)dk = 1

∆

(am−1∫
0

(k + 3)dk +
∆∫

am−1

(am + k + 1)dk

)

= −2a2
m + 6am − 4+ 2am∆+∆2 + 2∆

2∆

whereasOPT(σ) = am + 1, sinceσ is a worst-case phase.✷
Proof of Theorem 5. Lemma 9 gives the ratio of the cost functions ofRA∆ andOPT on
some selected sequences. Thus, the expected competitive ratio ofRA∆ is at least as high a
those ratios. However, the ratios are also best possible for phasesσ = 〈(a1 = 0), . . . , am〉
with am � 1. By Lemma 7, ifam > 1, the ratio of the cost functions ofRA∆ andOPT on a
worst-case input sequence is less than 3/2.

For ∆ � 1/2, Lemma 9 is enough, since the input sequence〈0,∆〉 gives rise to an
expected ratio of 1/2+ 3/(2(∆+ 1)) � 3/2.

For ∆ > 1/2, by Lemma 7, any input sequence witham > 1 + ∆ gives rise to an
expected ratio of at most((1 + ∆) + 2)/((1+ ∆) + 1). Lemma 10 gives a similar boun
on the expected ratio foram ∈ (1,1+∆]. It can easily be shown that

max

{
∆+ 3

∆+ 2
,
−2a2

m + 6am − 4+ 2am∆+∆2 + 2∆

2∆(am + 1)

}

� max

{
1+ ∆

2
,

6∆2 + 4∆+ 1

4∆(∆+ 1)

}
.

Thus, either〈0〉 or 〈0,∆〉 is a worst-case input sequence in this case. Now, Lemma 9
the result. ✷

4. The Bk & RBm algorithm families

We will now study the problem from another angle. In the previous section we st
both a deterministic and a randomized family of on-line algorithms. For the determi
family, no randomness is needed, whereas for the randomized family, essentially infi
many random bits are necessary to choose a number uniformly between 0 and∆. In this
section we consider the cases in between. The algorithm is allowed to choose a r
value only once and to do so uniformly at random from a set ofm values.

Let 〈a1, a2, . . . , an〉 be the sequence of arrival times of messages. The sequence
broken into phases where a phase contains a maximal subsequence of message ar
which consecutive messages are at most one time unit apart. In other words, the firs
starts with the first packet. A phase continues until there are consecutive revealed m
ai andai+1 which are more than one time unit apart. Messageai is then the last message
that phase andai+1 is the first packet in the next phase. Note that the definition of ph
used in this section is different from the definition used in the previous section.

Let up and vp be the arrival time of the first and the last messages in phasp,
respectively. For a given schedule, letsp be the time the messenger leaves to service the

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 419

the

ge,

, there

s

s soon

To

t
e
f
r at time

e first
ages

essenger

ger
message in phasep, and letwp be the time the messenger comes back from servicing
last message in phasep. To simplify the discussion, we define a dummy variablew0 = a1.

Let F be the total cost of an algorithm and letFp be the cost charged to phasep. For
anyp � 1, any waiting time in the interval[wp−1,wp] will be charged to phasep. Since
the entire schedule is covered, thenF =∑

p Fp .

Lemma 11. For anyp � 1, Fp = wp − max{wp−1, up}.

Proof. Supposep � 1 is fixed. Since consecutive messages in phasep are at most one
time unit apart, at any time in the interval[up,wp], either there is a pending messa
or the messenger is out. Now consider the time interval[wp−1,wp]. If up < wp−1, then
the entire interval[wp−1,wp] is charged to phasep. If wp−1 � up , then during the time
interval [wp−1, up] the messenger is in and there are no pending messages. Thus
is no charge to phasep during the time interval[wp−1, up]. Only the interval[up,wp] is
charged to phasep. In any case, the charge iswp − max{wp−1, up}. ✷

We define the deterministic on-line algorithmBk for the packet bundling problem a
follows:

Bk: When the first message of a phase arrives, the algorithm will wait fork time units.
After this waiting period, the algorithm sends out any messages in the phase a
as possible.

The algorithmBk and the algorithmAk defined in the previous section are different.
illustrate this, consider the input sequenceσ = 〈0, k − ε,1+ k − ε,1+ k + ε〉.

Upon the arrival of the first message,Ak will wait for k time units. It sends out the firs
and the second messages with the messenger at timek. The messenger will return at tim
1 + k just after the third message arrives.Ak will wait for k time units after the arrival o
the third message. It sends out the third and the fourth messages with the messenge
1+ 2k − ε. The cost ofAk is 2+ 2k − ε.

Now consider the schedule produced byBk . Since the messages ofσ arrive no more
than one time unit apart, they all belong to the same phase. Upon the arrival of th
message,Bk will wait for k time units. It sends out the first and the second mess
with the messenger at timek. The third message arrives at time 1+ k − ε just before the
messenger returns. Since the third message belongs to the same phase, when the m
returns at time 1+ k, it will be sent out again immediately. This is different fromAk. The
fourth message arrives at time 1+ k+ ε. The fourth message has to wait for the messen
to return at time 2+ k before it can be serviced. The cost ofBk is 3+ k, which is worse
thanAk .

In contrast, consider the same example without the last message. The cost ofAk is still
2+ 2k − ε, but the cost ofBk is now 2+ k.

Let Fk
p be the cost of algorithmBk in phasep.

Lemma 12. For 0< k � 1 and for any phasep,

420 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

ve
nt
ge in the

e
at time

s

ase
s (if
ges are

the
ld
Fk
p �

{
k + 1+ j, if x < k,

k + 2+ j, if x � k,

wherej = �vp − up� andx = (vp − up)− j .

Proof. Supposek is fixed and suppose we consider any phasep. The messenger can lea
to service the first message in phasep whenk time units after the first arrival in the curre
phase have elapsed and the messenger has returned from servicing the last messa
previous phase. Thus,sp = max{up + k,wp−1}.

From the definition ofBk, beginning at timesp the messenger will leave every 1 tim
unit to service the messages in the phase. It leaves to service the last message
sp + �vp − sp� + 1, and will come back 1 time unit later. Thus,wp = sp + �vp − sp� + 2.

Let j = �vp − up� andx = (vp − up) − j . Note that 0� x < 1 andj + x = vp − up .
Now we computeFk

p .

Fk
p = wp − max{up,wp−1}

= max{up + k,wp−1} + �vp − sp� + 2− max{up,wp−1}
� k + �vp − up − k� + 2 = k + �j + x − k� + 2

=
{
k + j + 2, if x � k,

k + j + 1, if x < k. ✷
We define the randomized on-line algorithmRBm for the packet bundling problem a

follows:

RBm: RBm is a random distribution over the class of algorithmBk. First,RBm picks a value
for an internal parametert . Then,RBm behaves likeBt . In particular, the value fort
is randomly chosen to beti(m) with probability 1/m for i = 1, . . . ,m where

t1(m) =
√

3+ 2/m− 1

m+ 1
, ti (m) = i · t1(m), for i = 2, . . . ,m.

SinceRBm behaves likeBt , it does the following. When the first message of a ph
arrives,RBm will wait for t time units before this message and later message
any) are sent. After that if there are more messages in the phase, the messa
sent out as soon as possible.

Note that them in RBm denotes the number of random choices available to
algorithm, and not as forRA∆, where∆ denotes which interval the algorithm shou
choose its random values among.

Theorem 13. For anym � 1, the competitive ratio of RBm is at most

R(RBm) � 1

2

(√
3+ 2

m
+ 1

)
.

Proof. Supposem is fixed and suppose we consider a worst case phaseσp . For brevity,
we useti to representti(m). Also, we lett0 = 0 andtm+1 = 1.

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 421

f

ssages
Let j = �vp − up� andx = (vp − up) − j . Note that 0� x < 1 andj + x = vp − up .
Let q be the integer such thattq � x < tq+1.

From the definition ofti andx, it is the case that 0� q � m. By Lemma 12, the cost o
RBm can be bounded from above by

RBm(σp) = Ei

[
F ti
p

]= 1

m

m∑
i=1

F ti
p � 1

m

(
q∑

i=1

(ti + 2+ j)+
m∑

i=q+1

(ti + 1+ j)

)

= 1

m

(
q∑

i=1

(i · t1 + 2+ j)+
m∑

i=q+1

(i · t1 + 1+ j)

)

= 1

m

(
m∑
i=1

(i · t1 + 1+ j)+
q∑

i=1

1

)

= 1

m

(
m(1+ j)+ t1 · m(m+ 1)

2
+ q

)
= 1+ j + t1 · m+ 1

2
+ q

m
.

The optimal schedule is to wait for the last message in the phase and send all me
in one packet at timevp . Thus, the optimal cost is

OPT(σp) = 1+ (vp − up) = 1+ j + x � 1+ j + tq = 1+ j + q · t1.
Next, we find an upper bound for the ratioRBm(σp)/OPT(σp).

RBm(σp)

OPT(σp)
�
(

1+ j + t1 · m+ 1

2
+ q

m

)(
1

1+ j + q · t1
)

�
(

1+ t1 · m+ 1

2
+ q

m

)(
1

1+ q · t1
)

=
(
m+ 1

2

√
3+ 2/m− 1

m+ 1
+ 1+ q

m

)(
1

1+ q(
√

3+ 2/m− 1)/(m+ 1)

)

=
(

1

2

(√
3+ 2

m
+ 1

)
+ q

m

)(
1

1+ q
m+1(

√
3+ 2/m− 1)

)

=
(

1

2

(√
3+ 2

m
+ 1

)
+ q

m+ 1

(√
3+ 2

m
− 1

)
1

2

(√
3+ 2

m
+ 1

))

×
(

1

1+ q
m+1(

√
3+ 2/m− 1)

)

= 1

2

(√
3+ 2

m
+ 1

)
. ✷

If RBm has access tob random bits, it can choose among 2b random choices.

Corollary 14. For b � 0, if RBm has access tob random bits, then

R(RBm) � 1

2

(√
3+ 21−b + 1

)
.

422 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

inistic

nistic

ting

es a
ange

timal

ic

e

r two
her
Proof. Immediate from Theorem 13 and by settingm = 2b. ✷
If RBm has does not have access to any random bits at all, it reduces to a determ

algorithm.

Corollary 15. If RBm does not have access any random bits, it reduces to a determi
algorithm, and

R(RB0) �
√

5+ 1

2
≈ 1.618.

Proof. Immediate from Corollary 14 by settingb = 0. ✷
Corollary 16. If RBm has access to1 random bit, thent1 = 1/3, t2 = 2/3, and

R(RB1) � 3/2.

Proof. Immediate from Corollary 14 by settingb = 1. ✷
If b tends to infinity,RBm will become a randomized algorithm that chooses a wai

time from a uniform distribution in the range[0,√3− 1] ≈ [0,0.732].

Corollary 17. If RBm has access to an unlimited number of random bits, it becom
randomized algorithm that chooses a waiting time from a uniform distribution in the r
[0,√3− 1] ≈ [0,0.732]. Furthermore,

R(RB∞) �
√

3+ 1

2
≈ 1.366.

Proof. Immediate from Corollary 14 by lettingb tend to infinity. ✷

5. Lower bounds

Finally, we show that among the algorithms we have considered, we find both op
deterministic and optimal randomized algorithms.

First, Aϕ̂ and consequently by Lemma 15,RB0 are shown to be optimal determinist
algorithms.

Theorem 18. Let ALG be any deterministic algorithm for thePacket Bundling Problem.
ThenR(ALG) � R(Aϕ̂) = ϕ.

Proof. We show how to construct an input sequence forALG, where it has a competitiv
ratio larger than or equal toϕ.

The input will be given in a number of phases, each consisting of either one o
messages. Between each phase, there is a time interval large enough so that neitALG

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 423

oment

g to
s.
.

ences

ges.

t the
o,
the first

uence

ple.
ithm in
ent

age

time

e
n

m

nor Aϕ̂ at the end of the interval has any messages to deliver, nor are they at the m
delivering any messages.

Let us first consider phaseσi , and let the first message in this phase arrive at timeai1.
Let ki be the length of the time intervalALGwaits before it sends the message. Referrin
Theorem 2, we know forAki whether a worst-case phase forAki has one or two message
If it has two, another message is set to arrive at timeai2 = ai1 + ki ; if not, the phase ends

Referring again to Theorem 2, the following holds for phaseσi :

ALG(σi) � Aki (σi) � Aϕ̂ (σi) � ϕOPT(σi).

The first inequality holds for the following reason. Recall that we only consider sequ
of up to two messages. If a sequence contains only one message, sinceALG is
deterministic, it waits some fixed timeki before it sends the message. So, clearly, ifσi has
length one,ALG(σi) = Aki (σi). For ki � ϕ̂, a worst-case phase consists of two messa
Again, by definition ofAki , ALG andAki will send the first message at the same timeki .
However, whereasAki will send the second message immediately after having sen
first (at timeki + 1), we cannot be sure thatALG does too. For a sequence of length tw
delaying sending the second message can of course only increase the cost. Thus,
inequality holds for sequences of length at most two.

Thus, for the entire input sequence, we haveALG(σ) � ϕOPT(σ). ✷
Next, we show a lower bound for any randomized on-line algorithm. As a conseq

of this, bothRA√
3−1 andRB∞ are optimal randomized algorithms.

Although the details of the following proof are somewhat technical, the idea is sim
A message becomes available at time 0. Whenever the behavior of the on-line algor
the expected case deviates from that ofRB∞ in a way that reduces its cost on the curr
sequence by any significant amount, another message becomes available.

Theorem 19. No randomized on-line algorithm can be better than(
√

3+1)/2 competitive.

Proof. Fix a randomized on-line algorithmALG. We construct a sequence of mess
arrivals for which the ratio of costs is arbitrarily close to(1+ √

3)/2.
Fix N � 1 and letε = (

√
3− 1)/N . Let a message arrive at time 0. For each 0< i � N

we decide whether a message will arrive at timeiε depending on the behavior ofALGprior
to timeiε. Note that this behavior cannot depend upon whether messages arrive atiε
or later.

In order to describe the criteria for making the decision at timeiε, we need to introduc
a technical concept. For 0� t � iε, let p(t) be the (partial) probability density functio
describing the probability density thatALG sends a packet at timet . In other words,
P(t) = ∫ t

0 p(x)dx is the probability thatALG has sent a packet by timet . Without loss
of generality, we can assume thatp(t) is continuous (if it is not, there is another algorith
with cost arbitrarily close for whichp(t) is continuous).

Call a timet sufficiently heavyif for all s < t , the inequalityP(t) − P(s) > (t − s)×
(
√

3+ 1)/2 holds. A message arrives at timeiε if there is a timet ∈ ((i − 1)ε, iε] which
is sufficiently heavy.

424 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

s

f
s

nd the

r
e

fy its

n-
.
ile

r

e

Let T be the time that the last message arrives and letT ′ be the supremum of all time
which are sufficiently heavy. Note that 0� T �

√
3 − 1 andT − T ′ � ε. We now claim

that

P(T ′)− P(t) � (T ′ − t)
(√

3+ 1
)
/2 for all t < T ′

and

P(t) − P(T ′) � (t − T ′)
(√

3+ 1
)
/2 for all t > T ′.

The first inequality follows immediately from the definition ofT ′ and properties o
limits. To see that the second inequality is true, lets > T ′ be a time that maximize
P(t) −P(T ′)− (t − T ′)(

√
3+ 1)/2. If this maximum was greater than 0 thens would be

sufficiently heavy.
The optimal cost on the sequence is 1+ T .
Now consider the on-line cost. Suppose the on-line algorithm chooses to se

messenger out at timex, wherex is drawn from the probability density functionp(t).
If x � T , the on-line cost is 2+ x because the messenger will come back at time 1+ x, go
out again with the message that arrives at timeT , and come back again at time 2+ x. If
x > T , the on-line cost is 1+x because no messages arrive after timex, and the messenge
will be back at time 1+x. Since no messages will arrive after time

√
3−1, we can assum

thatp(t) = 0 for t � (
√

3− 1)+ ε ≈ 0.732+ ε. Thus, the expected on-line cost is

T∫
0

(2+ t)p(t)dt +
√

3−1+ε∫
T

(1+ t)p(t)dt . (1)

To more easily estimate the on-line cost, we allow the on-line algorithm to modi
probability density functionp(t) subject to the restriction thatT ′ remains the supremum
of all times which are sufficiently heavy. From the cost function (1), 2+ t2 � 2> 1 + t1
for t2 ∈ [0, T] and t1 ∈ (T ,

√
3 − 1 + ε], to minimize the expected on-line cost, the o

line algorithm will place as much probability mass inp(t) after time T as possible
Furthermore, the mass remaining prior to timeT will be moved as early as possible wh
keepingT ′ sufficiently heavy. Similarly, the mass occurring after timeT will be moved as
early as possible while keeping not > T sufficiently heavy and while still keeping it afte
timeT .

The on-line algorithm will modify its probability density functionp(t) so that it is
arbitrarily close to the following probability density functionqT (t), which is arbitrarily
close to the uniform density distribution in the interval[0,√3− 1].

qT (t) =
{((√

3+ 1
)
/2
)+

, if t ∈ [0, T],((√
3+ 1

)
/2
)−

, if t ∈ (T ,√3− 1
]
.

It can be verified that, with respect toqT (t), time T is sufficiently heavy and, any tim
t ∈ (T ,

√
3− 1] is not sufficiently heavy. A simple calculation of

T∫
(2+ t)(1+ √

3)

2
dt +

√
3−1∫

(1+ t)(1+ √
3)

2
dt
0 T

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 425

t

hich
iting

he time
it has

d the
ly
send

sidered
t least
ble to
r any
titive

th

m a
time,

d

more

th

ct an
shows that the on-line cost is arbitrarily close to(1 + T)(1 + √
3)/2, and the resul

follows. ✷

6. Flow-time cost

The most standard cost function for problems of this nature is flow-time cost, w
is also used in [5,6,10]. The flow-time cost for some algorithm is the sum of the wa
times or latencies of all messages. For one message, the latency is the length of t
interval from when it arrives until either the packet time of its packet is reached or
been delivered (dependent on the definition used).

As stated in [5,6,10], a possible definition of this is the following:

ηm+ (1− η)

m∑
i=1

∑
aj∈p̃i

(pi − aj).

As before,η ∈ [0,1] denotes the relative weight of the cost of an acknowledgment an
message latency. We will not consider the case whenη = 1, i.e., the case when cost is on
paid, if a packet is sent; the choice of any competitive algorithm will then be never to
any packets.

Though we are considering the same cost function in this section as has been con
in earlier work, the problem itself is different since packet times are required to be a
one time unit apart. When trying to use this cost function for our problem, we are una
distinguish between on-line algorithms, as no on-line algorithm is competitive, i.e., fo
on-line algorithm, it is possible to find input sequences giving arbitrarily large compe
ratios.

Theorem 20. For the Packet Bundling Problemusing the flow-time cost function wi
η ∈ [0,1), no deterministic on-line algorithm is competitive.

Proof. Let ALG be any deterministic on-line algorithm. First give the on-line algorith
message arriving at time 0. The algorithm sends this message in a packet at somek.
Just after the messenger has left, gives messages all arriving at timek. The cost ofALG is
then at least 2η + (1 − η)(k + s), whereasOPT can send all messages at timek such that
its cost is at mostη+ (1− η)k.

Since 1− η > 0, we can by the choice ofs get an arbitrarily large competitive ratio, an
consequently the algorithm is not competitive.✷

The result also holds true for randomized on-line algorithms, although the proof is
complicated:

Theorem 21. For the Packet Bundling Problemusing the flow-time cost function wi
η ∈ [0,1), no randomized on-line algorithm is competitive.

Proof. Let ALGbe any randomized on-line algorithm. We again show how to constru
input sequence with an arbitrarily large competitive ratio.

426 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

y

e

flow-

lmost
h the
-time,
of the
here

ges the

the
robust
tion
as not
osed.
r,

he set

ction
good
ke it
d us to

e have
The first part of the input sequence iss > 0 messages all arriving at time 0. Letp(s) be
the probability thatALGdecides to send a packet before time 1/2. This packet may or ma
not contain alls messages. We now have two cases depending onp(s).

If p(s) < 1/2 for all s, then the input sequence only contains theses messages. Th
expected ratio between the cost ofALG andOPT is then at least

E[ALG(σ)]
OPT(σ)

� (1− p(s))(η + (1− η)s/2)

η
>

2η+ (1− η)s

4η
.

Since 1− η > 0, we can get an arbitrarily large ratio by choosings large enough.
If p(s) � 1/2 for somes, then t � s more messages arrive at time 1/2. The ratio

betweenALG andOPT is in this case at least

E[ALG(σ)]
OPT(σ)

� p(s)(2η + (1− η)t/2)

η + (1− η)s/2
� 4η + (1− η)t

4η+ 2(1− η)s
.

Since 1− η > 0, we can by choosingt large enough get an arbitrarily large ratio.✷
Thus, no on-line deterministic or randomized algorithm is competitive using the

time cost function defined earlier.

7. Concluding remarks

We have considered a new cost function instead of the cost function which is a
a standard in theoretical analysis of this type of problems, namely flow-time. Wit
new cost function, algorithms can be distinguished effectively, whereas using flow
this is not possible while respecting the LogP model assumptions. The behavior
optimal off-line algorithm can be a little peculiar, however. If we consider sequences w
n messages arrive less than one unit apart, nothing in our cost function encoura
optimal off-line algorithm to send any messages until thenth message has arrived.

While the behavior of an off-line optimal algorithm is secondary to the ability of
total set-up to distinguish between good and bad on-line algorithms, our results are
enough that the behavior ofOPTcould be altered. Assume that we change the cost func
such that when a message has been waiting for one time unit (or equivalently, h
been delivered two units after it became available), a strictly higher penalty is imp
This will encourage a different behavior, where messages are sent earlier. HoweveOPT
can still send all messages with the same cost. It will send at timetn immediately after
the nth message has arrived (as before), but it could also send at all times in t
{tn − i | i ∈ N, tn − i � 0}.

It is of course also possible to consider entirely different cost functions. A cost fun
should be reasonable in the sense that it should be a value which it would be
to minimize. A cost function should also be useful in the sense that it should ma
possible to distinguish between algorithms. However, these requirements do not lea
a canonical choice of cost function.

The choice as to when a packet is considered delivered is somewhat arbitrary. W
chosen to consider a packet sent at timepi delivered at timepi + 1 (that is timepi plus the

J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428 427

ng that
ts. For
asure

ithms
dding
results.
which
part.

that
.
is
. The
rding
s

results

h the
stem in
our

and
ferees
per.

into the

ings

8.
Eicken,
LAN

e, in:
. 389–

blem,

ics and

1581.
gap time, since we have normalized with respect to the gap), the informal reason bei
this is the time when we are allowed to send again. Other choices give similar resul
instance, if we consider a packet delivered at the time it is sent, a flow-time cost me
will also be unable to distinguish between our algorithms. In this case, all the algor
become non-competitive, i.e., they do not have constant competitive ratios. Also a
acknowledgment costs, i.e., a constant cost for each packet sent, gives rise to similar
For our presentation, we have chosen what we believe is the simplest cost function
give useful results, under the constraint that packet times must be at least one unit a

Continuing the discussion of our cost function following Definition 1, the only thing
distinguishes our cost function fromfmax with η = 1/2 in [6] is the included maximization
This is because the constant one in(pi + 1), which for us reflects when a packet
considered delivered, will take the role of the acknowledgment cost used in [6]
more important difference, however, is the difference in problem formulation rega
the decision as to whether or not packets may be sent anyε > 0 apart. This decision seem
to be so fundamental that despite similarities in cost functions, our results and the
in [6] are incomparable.

Finally, our algorithms can in principle be built into any operating system, thoug
ease with which this can be done depends on the exact design of the operating sy
question, in particular on the availability of an extra timer to support interrupts from
algorithm.

Acknowledgments

We thank Brian Vinter for drawing our attention to the Packet Bundling Problem
for initial discussions regarding the cost function. We also thank the anonymous re
for constructive comments and suggestions that improved the presentation of the pa

References

[1] A. Alexandrov, M.F. Ionescu, K.E. Schauser, C. Scheiman, LogGP: Incorporating long messages
LogP model for parallel computation, J. Parallel Distrib. Comput. 44 (1) (1997) 71–79.

[2] B. Awerbuch, Y. Azar, S. Leonardi, O. Regev, Minimizing the flow time without migration, in: Proceed
of the 31st Annual ACM Symposium on the Theory of Computing, 1999, pp. 198–205.

[3] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge Univ. Press, 199
[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, T. von

LogP: Towards a realistic model of parallel computation, in: Proceedings of the Fourth ACM SIGP
Symposium on Principles and Practice of Parallel Programming, 1993, pp. 1–12.

[5] D.R. Dooly, S.A. Goldman, S.D. Scott, TCP dynamic acknowledgment delay: Theory and practic
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM Press, 1998, pp
398.

[6] D.R. Dooly, S.A. Goldman, S.D. Scott, On-line analysis of the TCP acknowledgment delay pro
J. ACM 48 (2) (2001) 243–273.

[7] J.S. Frederiksen, K.S. Larsen, Packet bundling, Technical Report 9, Department of Mathemat
Computer Science, University of Southern Denmark, Odense, 2002.

[8] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell Systems Tech. J. 45 (1966) 1563–

428 J.S. Frederiksen et al. / Journal of Algorithms 48 (2003) 407–428

38th

2–509.
1988)

izing

atforms,
–1183,

nnual

J.

n DIS,
l-Time

oblem,

Second

8 (2)
[9] B. Kalyanasundaram, K.R. Pruhs, Minimizing flow time nonclairvoyantly, in: Proceedings of the
Annual Symposium on Foundations of Computer Science, 1997, pp. 345–352.

[10] A.R. Karlin, C. Kenyon, D. Randall, Dynamic TCP acknowledgement and other stories about e/(e− 1), in:
Proceedings of the 33th Annual ACM Symposium on Theory of Computing, ACM Press, 2001, pp. 50

[11] A.R. Karlin, M.S. Manasse, L. Rudolph, D.D. Sleator, Competitive snoopy caching, Algorithmica 3 (
79–119.

[12] H. Kellerer, T. Tautenhahn, G.J. Woeginger, Approximability and nonapproximability results for minim
total flow time on a single machine, SIAM J. Comput. 28 (4) (1999) 1155–1166.

[13] T. Kielmann, H.E. Bal, K. Verstoep, Fast measurement of LogP parameters for message passing pl
in: Proceedings of the Workshop on Run-Time Systems for Parallel Programming, 2000, pp. 1176
Satelite workshop of the International Parallel and Distributed Processing Symposium.

[14] S. Leonardi, D. Raz, Approximating total flow time on parallel machines, in: Proceedings of the 29th A
ACM Symposium on the Theory of Computing, 1997, pp. 110–119.

[15] J.Y.-T. Leung, G.H. Young, Minimizing schedule length subject to minimum flow time, SIAM
Comput. 18 (2) (1989) 314–326.

[16] L.A.H. Liang, W. Cai, B.-S. Lee, S.J. Turner, Performance analysis of packet bundling techniques i
in: Proceedings of the 3rd International Workshop on Distributed Interactive Simulation and Rea
Applications, IEEE Comput. Society, 1998.

[17] J. Noga, S.S. Seiden, G.J. Woeginger, A faster off-line algorithm for the TCP acknowledgement pr
Inform. Process. Lett. 81 (2) (2002) 71–73.

[18] S.S. Seiden, A guessing game and randomized online algorithms, in: Proceedings of the Thirty-
Annual ACM Symposium on Theory of Computing, ACM Press, 2000, pp. 592–601.

[19] D.D. Sleator, R.E. Tarjan, Amortized efficiency of list update and paging rules, Commun. ACM 2
(1985) 202–208.

