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Abstract

We introduce the following notion of weak equivalence between
shifts of finite type. Two shifts of finite type S and T are equiva-
lent if and only if there are finite alphabets A and B and sliding block
maps f from A% to B% and g from B% to A% such that S C AZ,
TCB% S=f1T)and T = g 1(S). We give a necessary condition
for this equivalence and we show how to decide the equivalence when
the shifts are given by finite circular codes.

1 Introduction

In this paper, we introduce a notion of weak equivalence between shifts of
finite type. Shifts of finite type can be seen both from the point of view of
the mathematical theory of symbolic dynamics and from the point of view
of finite automata theory. Some practical applications from these areas
have been found in the field of coding into constrained channels. From the
automata theory point of view that we adopt, a shift of finite type is the set
of bi-infinite words recognized by a finite local automaton. An automaton is
local if it does not admit two distinct equally labeled cycles. The automata
are such that all states are both initial and final. The labeling is in a finite
alphabet. When one can choose an automaton such that all labels of edges
are distinct, the shift is called an edge shift.



Several notions of equivalence have been studied, in order to classify the
shifts of finite type and other more general symbolic dynamical systems,
like shift equivalence and strong shift equivalence (see [6]). The strong shift
equivalence is the conjugacy or isomorphism between two systems. An iso-
morphism is a bijective continuous map that commutes with the shift op-
eration on bi-infinite words. The decidability of strong shift equivalence
between shifts of finite type is still an open question. Some invariants have
been found but none of them is a characteristic one.

The notion of weak equivalence that we introduce here is much weaker
than the previous ones. Two shifts of finite type S and T are are equivalent if
and only if there are finite alphabets A and B and sliding block maps f from
A7 to B” and ¢ from B” to A” such that S ¢ A”, T ¢ B”, S = f~'(T) and
T = g~ '(S). The topological entropy for example is no more an invariant for
this equivalence relation. We prove that the weak equivalence is decidable
for a subclass of edge shifts called the flower edge shifts, that is the shifts that
are generated by a finite circular code, or, equivalently, the shifts recognized
by a flower automaton whose edges have distinct labels. An equivalence
class for this relation is characterized by the signature of the flower edge
shift which is given by the length sequence of a minimal generating system
of the ideal of N of periods of words of the flower edge shift.

For more general edge shifts, we give a trivial necessary condition for
their equivalence but the question of decidability of their equivalence is
open. At the end of the paper, we give an example of a flower edge shift
which is weakly equivalent to a non flower one.

2 Definitions and background

We first recall some basic definitions about subshifts and sliding block maps.
We refer to [5], [6], or [3], [2] for more details about these notions coming
from symbolic dynamics.

If A is a finite alphabet, we consider the set A% of two-sided infinite
words as a topological space with respect to the usual product topology.
The shift transformation o acts on A% bijectively. It associates to z € A%
the element y = o(x) € A” defined for n € Z by

Yn = Tn+1,

and obtained by shifting all symbols one place left. A symbolic dynamical
system or subshift is a subset S of A% which is both topologically closed
and shift-invariant, i.e. such that o(S) = S.



Figure 1: A sliding block map

Let G be a directed graph with E as its set of edges. We actually use
multigraphs instead of ordinary graphs in order to be able to have several
distinct edges with the same origin and end. We shall always say “graph” for
“directed multigraph”. Let S be the subset of EZ formed by all bi-infinite
paths in G. It is clear that S is a subshift called the edge shift on G. Indeed
S¢ is closed and shift invariant by definition.

Let A = (Q, F) be a finite automaton on an alphabet A given by a finite
set () of states and a set £ C Q@ x A x Q of edges, all states being both
initial and final. The set of all labels - - - a_jagaq - - - of the bi-infinite paths
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is a subshift S. We say that S is the subshift recognized by the automaton
A. A subshift obtained in this way is called a sofic shift. Tt is transitive iff
it can be recognized by an automaton with a strongly connected underlying
graph.

A shift of finite type is a subshift which is made of all infinite words
avoiding a given finite set of blocks. It is a sofic shift. Any edge shift is of
finite type and is characterized by a finite list of forbidden blocks of length 2.
An allowed block is a finite word that is subblock of at least one bi-infinite
word of the shift.

Let S C A” and T C B” be two subshifts and let & > 1 be an integer. A
function f : S — T is said to be a k-sliding block map if there is a function
f: A¥ = B and an integer a € Z, called the anticipation, such that for all
x € S the word y = f(z) is defined for n € Z by

Yn—a = ?(mn—(k—l) " Tp—1Tn) (1)

Thus the value of a symbol in the image is a function of the symbols
contained in a window of length k& above it, called a sliding window (repre-
sented on Figure 1 in the case a = 0). It is known (see for instance [6]) that
sliding block maps are exactly the maps f that are continuous and commute
with the shifts, i.e. such that fo =of.



An isomorphism or a conjugacy is a bijective sliding block map. The
inverse is also a sliding block map. Two isomorphic shifts are also said to be
conjugate or strong shift-equivalent. Any shift of finite type is isomorphic
to an edge shift.

A finite non empty word z is said to be primitive if x = u™, where n > 1
and u is a word, implies n = 1 and u = z. Let z be a finite primitive word.
The bi-infinite word y obtained by infinite concatenations of z left and right
and such yo ... y|z—1 = = is denoted by z.

We denote by (z)” the set {o"(Z) | n € Z}, that is the orbit of z.

We consider a finite set X of n finite words such that all letters of
all words are distinct. We denote by F(X*) the set of finite factors of
concatenations of words of X. We call Sx the shift of finite type defined
as the bi-infinite words whose finite factors belong to F(X*). The shift
Sx is an edge shift recognized by an automaton constructed with n cycles
around one central state, each cycle being labeled by one word of X. Such
a shift is called the flower edge shift (I1,1a,... 1), where (I1,la,... ,1,) is
the length distribution of the set X. In Figure 2 is represented on the
left the flower edge shift (2,3,5) by an automaton recognizing Sy, where
X = {ab,cde, fghij}. On the right part of the figure the same automaton
is represented by a labeled graph such that each edge labeled ¢ represents
a path of length ¢+ with same origin and end. The labeling is omitted in
this last compact representation. Note that flower edge shifts are transitive
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Figure 2: The flower edge shift (2,3,5)
shifts.
Let A be an alphabet. A subset C' of AT is said to be a circular code
(see [4]) if for all n,m > 1 and z1,z9,... ,2y, € C, y1,Y2,... ,ym € C, and



p € A* and s € AT, the equalities

STy ... Tpp = Y1Y2---Ym

r1 = ps
imply
n=m,p=c¢, and z; =y; (1 <i<n)

Let C be a finite set of distinct words that is a circular code. The shift S
defined as the bi-infinite words whose finite factors belong to F'(C*) is a shift
of finite type which is strong shift equivalent to the flower edge shift defined
by a code X which has the same length distribution (see for instance [2]).
This allows us to work in Section 4 with flower edge shifts and to omit the
labeling on these graphs. We consider that each edge has a label which is
distinct from the others.

3 The weak equivalence

We define a notion of weak equivalence between subshifts. This notion is

much weaker than the notions of strong shift-equivalence and shift-equivalence
(see [6] for these notions).

Definition Let S and T be two symbolic subshifts. We note S — T or

T < S if and only if there are finite alphabets A and B and a sliding block

map from A” to B” such that S ¢ A”, T ¢ B” and S = f~'(T). We say

that S and T are weakly equivalent, and we note it S ~ T if and only if

S—=TandT — S.

We can remark that the relation — is reflexive and transitive. It is a
partial order. Note that if S = f~!(T), then f(S) C T. Two strong shift-
equivalent (or isomorphic) subshifts are of course weakly equivalent. This
allows us to consider shifts of finite type that are always edge shifts, i.e. that
are recognized by finite automata whose edges all have distinct labels, since
every shift of finite type is isomorphic to an edge shift. It is also known that
the inverse image of a shift of type by a sliding block map is a shift of finite
type. Then a shift of finite type cannot be weakly equivalent to a subshift
which is not of finite type. As we shall see later, the topological entropy is
not an invariant of weak equivalence.

Let u be a (bi-infinite) word of A”. We say that a positive integer p
is a period of u iff oP(u) = u. The word u is said to be periodic when
such an integer exists. We call the period of u the smallest integer with this



property. The period of u divides all other periods of u. Let f be a sliding
block map from A? to B%. Since fo = of, if u is a periodic word, f(u)
also and the period of f(u) divides the period of u. From this we get the
following proposition.

Proposition 1 Let S and T be two symbolic subshifts with S — T. If S
has a word of period n, then T has a word of period m dividing n.

Proposition 2 Let T be a symbolic subshift that has a word of period p.
Let = be a finite primitive word of length multiple of p. Then (z)? — T.

Proof: Let us assume that 7 is a subshift of B%, where B is a finite
alphabet. Let u = (u;);cz be a bi-infinite word of period p of T. Thus for
each integer n, we have u, 1, = u,. Let = x122 ... 2}) be a primitive word
of A*, where k is a positive integer and A is a finite alphabet. We define a
Ep-sliding block map f with a null anticipation from A” to (BU{$})”, where
$ does not belong to B, by defining the image by f of any block of length kp
as follows. We map each block (zj, i1, , Tpp, T1,Z2,... ,Tj—1) tO u;j_1,
and any other block to $. It is then easy to verify that f~1(T) = (z)?. O

Proposition 3 Let S be a transitive shift of finite type such that the g.c.d
of the periods of periodic words of S is equal to d. Let x be a primitive finite
word of length dividing d. Then S — (z)%.

Proof: Without loss of generality, we assume that S is an edge shift,
recognized by a finite automaton 4 that has a strongly connected graph
and edges with distinct labels in an alphabet A. The g.c.d. of the lengths
of cycles of the graph of the automaton is equal to g.c.d., denoted by d, of
periods of periodic words of S.

Let x = zgx1 ... x1_1 be a word of length k dividing d on an alphabet B.
Since the g.c.d. of the lengths of the cycles of the graph of A is d, one can
label each state of A with a number in Z/kZ, in such a way that each path
of length [ goes from a state labeled i to a state labeled 7 +1 (mod k).

We define a two block map f from A% to (B U {$})%, by defining the
image of a block of two letters of A by f. Let ab be a block of letters of
length two such that a is the label of an edge ending in a state s labeled by
(i — 1) mod k and b the label of an edge starting at s and ending in a state
labeled by i mod k, we define f(a,b) as z;. Note that b is the label of an
edge that can follow the unique edge labeled by a in the graph. One maps
other two-blocks to $ by f. We define f from f with a null anticipation.



If u is a word of S, we get f(u) C (zozy...zx_1)” = (z)”. Conversely
f~1((2)?%) is a set of bi-infinite words such that any subblock ab of length
two is an allowed block of S, that is b is the label of an edge that can follow
the unique edge labeled a in the graph. Then f~'((x)%) c S. O

As a consequence of the two previous propositions, we get the following
one.

Proposition 4 Let S be a transitive shift of finite type which has a periodic
word whose period divides all other periods of words of S, then S ~ (z)Z,
where x is a (primitive) finite word.

Proof: Let p be the period of a periodic word of smallest period, which is
also the g.c.d of periods of words of S. Let z be a finite primitive word of
length p. By Proposition 2, S — (z)%. By Proposition 3, ()% — S. Hence
S~ (z)2. O

4 Decidability of weak equivalence of flower edge
shifts

In this section, we only consider flower edge shifts. These shifts are com-
pletely determined by the length distribution of the words of a finite set of
words X. Let Sx be such a shift, we denote by s = (s1, s9, ..., 8, ) the length
distribution of X. We can moreover assume that s; < g9 < --- < 3,. We
denote by < s > the ideal s1N+soN+--- 5,N of N. It is called the spectrum
of s and s is a generating system of < s > as ideal of N.

Proposition 5 There is a unique (up to a permutation) minimal generating
system of < s >.

Proof: Let s = (s1,589,...,8,) and t = (t1, %2, ..., t,) be two minimal gen-
erating systems of < s >, with s1 <59 < --- < sy and t1 < g < -+ < tpy.
Since < s >C< t >, we get

81 = tja; + - - - timam, with a; #0,a; € N.

This implies that t; < s1, and thus ¢; < s1. Conversely we get s; < #; and
then S1 = tl.

Let us now suppose that < (s2,...,8p) >#< (t2,....ty) > and so < to.
If s9 belongs to < (to, ..., ty) >, we get to < 89, s9 = t9. If not, so does not
belong to < (t2,...,t,) > and sg <ty < --- < t,. Then

S9 = 81b1 + toby + - -+ + ty by, With by 7é 0,b; € N.



Since so < tg < -+ < iy, we get bg = -+ = by, = 0. This implies that
s = (s1,82,..., 8p) is not minimal.

We now have s; = ¢; and sy = t9. We iterate the process with the same
arguments by assuming for instance that s3 < ¢3. If s3 does not belong to
< (toy.-v ytm) >,

S3 = Slbl + 82b2 + t3b3 R tmbm

with by or by non null. Since s3 < t3, we get b = --- = b,;, = 0 and s is again
non minimal since s3 = s1b1 + s2b2. We iterate the process for the remaining
indices and get the result since both generating systems are minimal. [J

We can remark that even if the minimal generating system is unique,
the decomposition in a nonnegative integral linear combination of elements
of the system is not.

The minimal generating system of the system generated by the length
distribution of a finite set X is called the signature of X or the signature of
the shift Sx.

We now prove that the weak equivalence for flower edge shifts is decid-
able. This is a consequence of the two following propositions.

Proposition 6 Let S = Sx and T = Ty be two flower edge shifts where
X and Y have respectively the length distributions s = (s1,...,8,) and t =
(t1y.eestm). Then S ~ T if and only if < s >=<1t >.

Proof: In one direction, if < s >=< t >, we have S;min = tmin, Where
Smin (resp. tmin) denotes the minimal generating system extracted from s
(resp. t). A subcode X; of X (resp. Y7 of V) has syin (resp. tmin) as
length distribution. We define a 2-sliding block map f from S to T with a
null anticipation from f that maps each allowed block ab of length two of S,
where b is the letter of index 7 of a word of X7, to the letter of index 7 of
the word of same length of Y7. Let now u = uy ... u; be a word of X which
does not belong to X;. Then the length of u is the sum of the lengths of
words zi,...,2; of Y (the words z; are not supposed to be distinct). This
allows us to define a mapping g which associates to each letter of u a letter
of z1,...,z such that g(u) is an allowed block of T. Wew then define f for
any allowed block of length two ab of S where b is a letter of u as g(b). If ab
is not an allowed block of S, we define f(ab) = $, where $ is not a symbol
of T. We get S = f~(T). By symmetry, S ~ T.

In the other direction, we consider that S ~ T. By Proposition 1, we
get that if S has a word of period k, then T has a word of period dividing



k. Without loss of generality, we can assume that s and ¢ are minimal
generating systems of < s > and < t >. Since the set < s > is the set
of values of periods of words of S, we get that there is a matrix A with
nonnegative integral coefficients such that

s.A/t

(the dividing property is satisfied coefficients by coefficients). There is also
a nonnegative integral matrix B such that

t.B/ s.
We get

s.AB [ s.
We obtain

<§s>C<s.AB>C< s A>C<s>
Since s.A / t, we also have:
<t>C<K 8. A>=<s>.

Symmetrically, we get < s >=<t>.

Proposition 7 Let S = Sx and T = Ty be two flower edge shifts where
X and Y have respectively the length distributions s = (81,...,8,) and t =
(t1y ooy tim). It is decidable if < s >=<t >.

Proof: If < s >=< t >, then s,,;, is equal to t,,;,, where s,,;, is the
minimal generating system of the spectrum of X. The computation of spp
from s can be done as follows. It can be reduced to the problem of checking
whether s can be removed from < ss,...,s, >, that is whether s; belongs
to < s9,...,8, >. This is computable since the coefficients are nonnegative
integers and there only a finite number of values to check. [J

Example The flower edge shifts (2, 3), (2,3, 3), (2,3,5) are all weakly equiv-
alent since 5 = 2+3. Remark that they all have different topological entropy.
They all have the same signature (2, 3).

Corollary 1 Let S and T be two flower edge shifts. It is decidable whether
S~T.



In the more general case of edge shifts that are not flower edge shifts, we
have the partial following result. Let G be a graph. We call the spectrum of
the lengths of the cycles of G the sequence s = (s1, s2,... ,s,) where s; = 1
if there is a cycle of length ¢ and s; = 0 if not.

Proposition 8 Let S and T be two edge shifts given by two finite graphs G
and H. It is decidable whether the spectrum of the lengths of cycles of the
two graphs are equal.

Proof: Let A (resp. B) be the adjacency matrix of G (resp. H). The
coefficient of index ij of the adjacency matrix is 1 if there is at least one
edge from 4 to 7 in the graph. The coefficients of A and B can be seen in
the boolean ring. Checking whether the spectrum of the lengths of cycles of
the two graphs are equal is equivalent to checking whether ¢r(A™) = tr(B™)
for each positive integer n, where tr denotes the trace of a matrix. For any
matrix A in the boolean ring, there are two positive indices 7 < j such that
A" = AJ. There is then a finite number of equalities to check. This proves
the decidability of the problem. [J

The condition given in the statement of Proposition 8 is a necessary con-
dition for weak equivalence. But we don’t know if it is a sufficient condition.
Moreover, a flower edge shift can be weakly equivalent to a non flower one
as it is shown in the following example.

Figure 3: Two weakly equivalent edge shifts: S (on the left) and 7' (on the
right)

Example The two edge shifts S C {a}” and T C {z,y, z,t}” given by the
graphs of Figure 3 are weakly equivalent. Indeed, the graph of the edge
shift S = (1) is a subgraph of the other edge shift 7. Thus we have S — T
since we can take the one block map from S to T that maps the letter a
to the letter x. In the other direction, a 2-sliding block map with a null
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anticipation f from T to S is defined by f(zz) = f(zy) = f(yz) = f(yt) =

f(z

z) = f(zt) = f(tz) = f(ty) = a, and by f(u) = $ for any forbidden

block u of length two of T. Then T = f~!(S). The equivalence S ~ T is
also a consequence of Proposition 4.
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