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tWe introdu
e the following notion of weak equivalen
e betweenshifts of �nite type. Two shifts of �nite type S and T are equiva-lent if and only if there are �nite alphabets A and B and sliding blo
kmaps f from AZ to BZ and g from BZ to AZ su
h that S � AZ,T � BZ, S = f�1(T ) and T = g�1(S). We give a ne
essary 
onditionfor this equivalen
e and we show how to de
ide the equivalen
e whenthe shifts are given by �nite 
ir
ular 
odes.1 Introdu
tionIn this paper, we introdu
e a notion of weak equivalen
e between shifts of�nite type. Shifts of �nite type 
an be seen both from the point of view ofthe mathemati
al theory of symboli
 dynami
s and from the point of viewof �nite automata theory. Some pra
ti
al appli
ations from these areashave been found in the �eld of 
oding into 
onstrained 
hannels. From theautomata theory point of view that we adopt, a shift of �nite type is the setof bi-in�nite words re
ognized by a �nite lo
al automaton. An automaton islo
al if it does not admit two distin
t equally labeled 
y
les. The automataare su
h that all states are both initial and �nal. The labeling is in a �nitealphabet. When one 
an 
hoose an automaton su
h that all labels of edgesare distin
t, the shift is 
alled an edge shift.1



Several notions of equivalen
e have been studied, in order to 
lassify theshifts of �nite type and other more general symboli
 dynami
al systems,like shift equivalen
e and strong shift equivalen
e (see [6℄). The strong shiftequivalen
e is the 
onjuga
y or isomorphism between two systems. An iso-morphism is a bije
tive 
ontinuous map that 
ommutes with the shift op-eration on bi-in�nite words. The de
idability of strong shift equivalen
ebetween shifts of �nite type is still an open question. Some invariants havebeen found but none of them is a 
hara
teristi
 one.The notion of weak equivalen
e that we introdu
e here is mu
h weakerthan the previous ones. Two shifts of �nite type S and T are are equivalent ifand only if there are �nite alphabets A and B and sliding blo
k maps f fromAZ to BZ and g from BZ to AZ su
h that S � AZ, T � BZ, S = f�1(T ) andT = g�1(S). The topologi
al entropy for example is no more an invariant forthis equivalen
e relation. We prove that the weak equivalen
e is de
idablefor a sub
lass of edge shifts 
alled the 
ower edge shifts, that is the shifts thatare generated by a �nite 
ir
ular 
ode, or, equivalently, the shifts re
ognizedby a 
ower automaton whose edges have distin
t labels. An equivalen
e
lass for this relation is 
hara
terized by the signature of the 
ower edgeshift whi
h is given by the length sequen
e of a minimal generating systemof the ideal of N of periods of words of the 
ower edge shift.For more general edge shifts, we give a trivial ne
essary 
ondition fortheir equivalen
e but the question of de
idability of their equivalen
e isopen. At the end of the paper, we give an example of a 
ower edge shiftwhi
h is weakly equivalent to a non 
ower one.2 De�nitions and ba
kgroundWe �rst re
all some basi
 de�nitions about subshifts and sliding blo
k maps.We refer to [5℄, [6℄, or [3℄, [2℄ for more details about these notions 
omingfrom symboli
 dynami
s.If A is a �nite alphabet, we 
onsider the set AZ of two-sided in�nitewords as a topologi
al spa
e with respe
t to the usual produ
t topology.The shift transformation � a
ts on AZ bije
tively. It asso
iates to x 2 AZthe element y = �(x) 2 AZ de�ned for n 2 Z byyn = xn+1;and obtained by shifting all symbols one pla
e left. A symboli
 dynami
alsystem or subshift is a subset S of AZ whi
h is both topologi
ally 
losedand shift-invariant, i.e. su
h that �(S) = S.2



Figure 1: A sliding blo
k mapLet G be a dire
ted graph with E as its set of edges. We a
tually usemultigraphs instead of ordinary graphs in order to be able to have severaldistin
t edges with the same origin and end. We shall always say \graph" for\dire
ted multigraph". Let SG be the subset of EZ formed by all bi-in�nitepaths in G. It is 
lear that SG is a subshift 
alled the edge shift on G. IndeedSG is 
losed and shift invariant by de�nition.Let A = (Q;E) be a �nite automaton on an alphabet A given by a �niteset Q of states and a set E � Q � A � Q of edges, all states being bothinitial and �nal. The set of all labels � � � a�1a0a1 � � � of the bi-in�nite paths� � � p�1 a�1�! p0 a0�! p1 � � �is a subshift S. We say that S is the subshift re
ognized by the automatonA. A subshift obtained in this way is 
alled a so�
 shift. It is transitive i�it 
an be re
ognized by an automaton with a strongly 
onne
ted underlyinggraph.A shift of �nite type is a subshift whi
h is made of all in�nite wordsavoiding a given �nite set of blo
ks. It is a so�
 shift. Any edge shift is of�nite type and is 
hara
terized by a �nite list of forbidden blo
ks of length 2.An allowed blo
k is a �nite word that is subblo
k of at least one bi-in�niteword of the shift.Let S � AZ and T � BZ be two subshifts and let k � 1 be an integer. Afun
tion f : S ! T is said to be a k-sliding blo
k map if there is a fun
tionf : Ak ! B and an integer a 2 Z, 
alled the anti
ipation, su
h that for allx 2 S the word y = f(x) is de�ned for n 2 Z byyn�a = f(xn�(k�1) � � � xn�1xn) (1)Thus the value of a symbol in the image is a fun
tion of the symbols
ontained in a window of length k above it, 
alled a sliding window (repre-sented on Figure 1 in the 
ase a = 0). It is known (see for instan
e [6℄) thatsliding blo
k maps are exa
tly the maps f that are 
ontinuous and 
ommutewith the shifts, i.e. su
h that f� = �f .3



An isomorphism or a 
onjuga
y is a bije
tive sliding blo
k map. Theinverse is also a sliding blo
k map. Two isomorphi
 shifts are also said to be
onjugate or strong shift-equivalent. Any shift of �nite type is isomorphi
to an edge shift.A �nite non empty word x is said to be primitive if x = un, where n � 1and u is a word, implies n = 1 and u = x. Let x be a �nite primitive word.The bi-in�nite word y obtained by in�nite 
on
atenations of x left and rightand su
h y0 : : : yjxj�1 = x is denoted by �x.�x = : : : xxxx:xxxx : : :We denote by (x)Z the set f�n(�x) j n 2 Zg, that is the orbit of �x.We 
onsider a �nite set X of n �nite words su
h that all letters ofall words are distin
t. We denote by F (X�) the set of �nite fa
tors of
on
atenations of words of X. We 
all SX the shift of �nite type de�nedas the bi-in�nite words whose �nite fa
tors belong to F (X�). The shiftSX is an edge shift re
ognized by an automaton 
onstru
ted with n 
y
lesaround one 
entral state, ea
h 
y
le being labeled by one word of X. Su
ha shift is 
alled the 
ower edge shift (l1; l2; : : : ; ln), where (l1; l2; : : : ; ln) isthe length distribution of the set X. In Figure 2 is represented on theleft the 
ower edge shift (2; 3; 5) by an automaton re
ognizing SX , whereX = fab; 
de; fghijg. On the right part of the �gure the same automatonis represented by a labeled graph su
h that ea
h edge labeled i representsa path of length i with same origin and end. The labeling is omitted inthis last 
ompa
t representation. Note that 
ower edge shifts are transitive
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Figure 2: The 
ower edge shift (2; 3; 5)shifts.Let A be an alphabet. A subset C of A+ is said to be a 
ir
ular 
ode(see [4℄) if for all n;m � 1 and x1; x2; : : : ; xn 2 C, y1; y2; : : : ; ym 2 C, and4



p 2 A� and s 2 A+, the equalitiessx2 : : : xnp = y1y2 : : : ymx1 = psimply n = m; p = �; and xi = yi (1 � i � n)Let C be a �nite set of distin
t words that is a 
ir
ular 
ode. The shift SCde�ned as the bi-in�nite words whose �nite fa
tors belong to F (C�) is a shiftof �nite type whi
h is strong shift equivalent to the 
ower edge shift de�nedby a 
ode X whi
h has the same length distribution (see for instan
e [2℄).This allows us to work in Se
tion 4 with 
ower edge shifts and to omit thelabeling on these graphs. We 
onsider that ea
h edge has a label whi
h isdistin
t from the others.3 The weak equivalen
eWe de�ne a notion of weak equivalen
e between subshifts. This notion ismu
h weaker than the notions of strong shift-equivalen
e and shift-equivalen
e(see [6℄ for these notions).De�nition Let S and T be two symboli
 subshifts. We note S ! T orT � S if and only if there are �nite alphabets A and B and a sliding blo
kmap from AZ to BZ su
h that S � AZ, T � BZ and S = f�1(T ). We saythat S and T are weakly equivalent, and we note it S � T if and only ifS ! T and T ! S.We 
an remark that the relation ! is re
exive and transitive. It is apartial order. Note that if S = f�1(T ), then f(S) � T . Two strong shift-equivalent (or isomorphi
) subshifts are of 
ourse weakly equivalent. Thisallows us to 
onsider shifts of �nite type that are always edge shifts, i.e. thatare re
ognized by �nite automata whose edges all have distin
t labels, sin
eevery shift of �nite type is isomorphi
 to an edge shift. It is also known thatthe inverse image of a shift of type by a sliding blo
k map is a shift of �nitetype. Then a shift of �nite type 
annot be weakly equivalent to a subshiftwhi
h is not of �nite type. As we shall see later, the topologi
al entropy isnot an invariant of weak equivalen
e.Let u be a (bi-in�nite) word of AZ. We say that a positive integer pis a period of u i� �p(u) = u. The word u is said to be periodi
 whensu
h an integer exists. We 
all the period of u the smallest integer with this5



property. The period of u divides all other periods of u. Let f be a slidingblo
k map from AZ to BZ. Sin
e f� = �f , if u is a periodi
 word, f(u)also and the period of f(u) divides the period of u. From this we get thefollowing proposition.Proposition 1 Let S and T be two symboli
 subshifts with S ! T . If Shas a word of period n, then T has a word of period m dividing n.Proposition 2 Let T be a symboli
 subshift that has a word of period p.Let x be a �nite primitive word of length multiple of p. Then (x)Z! T .Proof: Let us assume that T is a subshift of BZ, where B is a �nitealphabet. Let u = (ui)i2Z be a bi-in�nite word of period p of T . Thus forea
h integer n, we have un+p = un. Let x = x1x2 : : : xkp be a primitive wordof A�, where k is a positive integer and A is a �nite alphabet. We de�ne akp-sliding blo
k map f with a null anti
ipation from AZ to (B[f$g)Z, where$ does not belong to B, by de�ning the image by �f of any blo
k of length kpas follows. We map ea
h blo
k (xi; xi+1; � � � ; xkp; x1; x2; : : : ; xi�1) to ui�1,and any other blo
k to $. It is then easy to verify that f�1(T ) = (x)Z. �Proposition 3 Let S be a transitive shift of �nite type su
h that the g.
.dof the periods of periodi
 words of S is equal to d. Let x be a primitive �niteword of length dividing d. Then S ! (x)Z.Proof: Without loss of generality, we assume that S is an edge shift,re
ognized by a �nite automaton A that has a strongly 
onne
ted graphand edges with distin
t labels in an alphabet A. The g.
.d. of the lengthsof 
y
les of the graph of the automaton is equal to g.
.d., denoted by d, ofperiods of periodi
 words of S.Let x = x0x1 : : : xk�1 be a word of length k dividing d on an alphabet B.Sin
e the g.
.d. of the lengths of the 
y
les of the graph of A is d, one 
anlabel ea
h state of A with a number in Z=kZ, in su
h a way that ea
h pathof length l goes from a state labeled i to a state labeled i+ l (mod k).We de�ne a two blo
k map f from AZ to (B [ f$g)Z, by de�ning theimage of a blo
k of two letters of A by �f . Let ab be a blo
k of letters oflength two su
h that a is the label of an edge ending in a state s labeled by(i� 1) mod k and b the label of an edge starting at s and ending in a statelabeled by i mod k, we de�ne �f(a; b) as xi. Note that b is the label of anedge that 
an follow the unique edge labeled by a in the graph. One mapsother two-blo
ks to $ by �f . We de�ne f from �f with a null anti
ipation.6



If u is a word of S, we get f(u) � (x0x1 : : : xk�1)Z = (x)Z. Converselyf�1((x)Z) is a set of bi-in�nite words su
h that any subblo
k ab of lengthtwo is an allowed blo
k of S, that is b is the label of an edge that 
an followthe unique edge labeled a in the graph. Then f�1((x)Z) � S. �As a 
onsequen
e of the two previous propositions, we get the followingone.Proposition 4 Let S be a transitive shift of �nite type whi
h has a periodi
word whose period divides all other periods of words of S, then S � (x)Z,where x is a (primitive) �nite word.Proof: Let p be the period of a periodi
 word of smallest period, whi
h isalso the g.
.d of periods of words of S. Let x be a �nite primitive word oflength p. By Proposition 2, S ! (x)Z. By Proposition 3, (x)Z! S. Hen
eS � (x)Z. �4 De
idability of weak equivalen
e of 
ower edgeshiftsIn this se
tion, we only 
onsider 
ower edge shifts. These shifts are 
om-pletely determined by the length distribution of the words of a �nite set ofwords X. Let SX be su
h a shift, we denote by s = (s1; s2; :::; sn) the lengthdistribution of X. We 
an moreover assume that s1 � s2 � � � � � sn. Wedenote by < s > the ideal s1N+s2N+ � � � snN of N. It is 
alled the spe
trumof s and s is a generating system of < s > as ideal of N.Proposition 5 There is a unique (up to a permutation) minimal generatingsystem of < s >.Proof: Let s = (s1; s2; :::; sn) and t = (t1; t2; :::; tm) be two minimal gen-erating systems of < s >, with s1 � s2 � � � � � sn and t1 � t2 � � � � � tm.Sin
e < s >�< t >, we gets1 = tiai + � � � tmam; with ai 6= 0; ai 2 N:This implies that ti � s1, and thus t1 � s1. Conversely we get s1 � t1 andthen s1 = t1.Let us now suppose that < (s2; :::; sn) >6=< (t2; :::; tm) > and s2 � t2.If s2 belongs to < (t2; :::; tm) >, we get t2 � s2, s2 = t2. If not, s2 does notbelong to < (t2; :::; tm) > and s2 � t2 � � � � � tm. Thens2 = s1b1 + t2b2 + � � �+ tmbm with b1 6= 0; bi 2 N:7



Sin
e s2 � t2 � � � � � tm, we get b2 = � � � = bm = 0. This implies thats = (s1; s2; :::; sn) is not minimal.We now have s1 = t1 and s2 = t2. We iterate the pro
ess with the samearguments by assuming for instan
e that s3 � t3. If s3 does not belong to< (t2; : : : ; tm) >, s3 = s1b1 + s2b2 + t3b3 + � � �+ tmbmwith b1 or b2 non null. Sin
e s3 � t3, we get b3 = � � � = bm = 0 and s is againnon minimal sin
e s3 = s1b1+s2b2. We iterate the pro
ess for the remainingindi
es and get the result sin
e both generating systems are minimal. �We 
an remark that even if the minimal generating system is unique,the de
omposition in a nonnegative integral linear 
ombination of elementsof the system is not.The minimal generating system of the system generated by the lengthdistribution of a �nite set X is 
alled the signature of X or the signature ofthe shift SX .We now prove that the weak equivalen
e for 
ower edge shifts is de
id-able. This is a 
onsequen
e of the two following propositions.Proposition 6 Let S = SX and T = TY be two 
ower edge shifts whereX and Y have respe
tively the length distributions s = (s1; :::; sn) and t =(t1; :::; tm). Then S � T if and only if < s >=< t >.Proof: In one dire
tion, if < s >=< t >, we have smin = tmin, wheresmin (resp. tmin) denotes the minimal generating system extra
ted from s(resp. t). A sub
ode X1 of X (resp. Y1 of Y ) has smin (resp. tmin) aslength distribution. We de�ne a 2-sliding blo
k map f from S to T with anull anti
ipation from �f that maps ea
h allowed blo
k ab of length two of S,where b is the letter of index i of a word of X1, to the letter of index i ofthe word of same length of Y1. Let now u = u1 : : : uk be a word of X whi
hdoes not belong to X1. Then the length of u is the sum of the lengths ofwords z1; : : : ; zi of Y (the words zi are not supposed to be distin
t). Thisallows us to de�ne a mapping g whi
h asso
iates to ea
h letter of u a letterof z1; : : : ; zi su
h that g(u) is an allowed blo
k of T . Wew then de�ne �f forany allowed blo
k of length two ab of S where b is a letter of u as g(b). If abis not an allowed blo
k of S, we de�ne �f(ab) = $, where $ is not a symbolof T . We get S = f�1(T ). By symmetry, S � T .In the other dire
tion, we 
onsider that S � T . By Proposition 1, weget that if S has a word of period k, then T has a word of period dividing8



k. Without loss of generality, we 
an assume that s and t are minimalgenerating systems of < s > and < t >. Sin
e the set < s > is the setof values of periods of words of S, we get that there is a matrix A withnonnegative integral 
oeÆ
ients su
h thats:A = t(the dividing property is satis�ed 
oeÆ
ients by 
oeÆ
ients). There is alsoa nonnegative integral matrix B su
h thatt:B = s:We get s:AB = s:We obtain < s >�< s:AB >�< s:A >�< s >Sin
e s:A = t, we also have:< t >�< s:A >=< s > :Symmetri
ally, we get < s >=< t >. �Proposition 7 Let S = SX and T = TY be two 
ower edge shifts whereX and Y have respe
tively the length distributions s = (s1; :::; sn) and t =(t1; :::; tm). It is de
idable if < s >=< t >.Proof: If < s >=< t >, then smin is equal to tmin, where smin is theminimal generating system of the spe
trum of X. The 
omputation of sminfrom s 
an be done as follows. It 
an be redu
ed to the problem of 
he
kingwhether s1 
an be removed from < s2; : : : ; sn >, that is whether s1 belongsto < s2; : : : ; sn >. This is 
omputable sin
e the 
oeÆ
ients are nonnegativeintegers and there only a �nite number of values to 
he
k. �Example The 
ower edge shifts (2; 3), (2; 3; 3), (2; 3; 5) are all weakly equiv-alent sin
e 5 = 2+3. Remark that they all have di�erent topologi
al entropy.They all have the same signature (2; 3).Corollary 1 Let S and T be two 
ower edge shifts. It is de
idable whetherS � T . 9



In the more general 
ase of edge shifts that are not 
ower edge shifts, wehave the partial following result. Let G be a graph. We 
all the spe
trum ofthe lengths of the 
y
les of G the sequen
e s = (s1; s2; : : : ; sn) where si = 1if there is a 
y
le of length i and si = 0 if not.Proposition 8 Let S and T be two edge shifts given by two �nite graphs Gand H. It is de
idable whether the spe
trum of the lengths of 
y
les of thetwo graphs are equal.Proof: Let A (resp. B) be the adja
en
y matrix of G (resp. H). The
oeÆ
ient of index ij of the adja
en
y matrix is 1 if there is at least oneedge from i to j in the graph. The 
oeÆ
ients of A and B 
an be seen inthe boolean ring. Che
king whether the spe
trum of the lengths of 
y
les ofthe two graphs are equal is equivalent to 
he
king whether tr(An) = tr(Bn)for ea
h positive integer n, where tr denotes the tra
e of a matrix. For anymatrix A in the boolean ring, there are two positive indi
es i < j su
h thatAi = Aj. There is then a �nite number of equalities to 
he
k. This provesthe de
idability of the problem. �The 
ondition given in the statement of Proposition 8 is a ne
essary 
on-dition for weak equivalen
e. But we don't know if it is a suÆ
ient 
ondition.Moreover, a 
ower edge shift 
an be weakly equivalent to a non 
ower oneas it is shown in the following example.
t

zx

y

a

Figure 3: Two weakly equivalent edge shifts : S (on the left) and T (on theright)Example The two edge shifts S � fagZ and T � fx; y; z; tgZ given by thegraphs of Figure 3 are weakly equivalent. Indeed, the graph of the edgeshift S = (1) is a subgraph of the other edge shift T . Thus we have S ! Tsin
e we 
an take the one blo
k map from S to T that maps the letter ato the letter x. In the other dire
tion, a 2-sliding blo
k map with a null10



anti
ipation f from T to S is de�ned by �f(xx) = �f(xy) = �f(yz) = �f(yt) =�f(zz) = �f(zt) = �f(tx) = �f(ty) = a, and by �f(u) = $ for any forbiddenblo
k u of length two of T . Then T = f�1(S). The equivalen
e S � T isalso a 
onsequen
e of Proposition 4.Referen
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