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1 Introduction.

A recent paper [7] of McKay, Morse, and Wilf considers the number N(n;T )
of standard Young tableaux (SYT) with n cells that contain a fixed standard
Young tableau T of shape α ⊢ k. (For notation and terminology related to
symmetric functions and tableaux, see [6] or [12, Ch. 7].) They obtain the
asymptotic formula

N(n;T ) ∼ tnf
α

k!
, (1)

where fα denotes the number of SYT of shape α and tn denotes the number
of involutions in the symmetric group Sn. Note that N(n;T ) = N(n;U)
whenever T and U are SYT of the same shape. Hence we can write N(n;α)
for N(n;T ). Moreover, it is clear that

N(n;α) =
∑

λ⊢n
fλ/α, (2)

where fλ/α denotes the number of SYT T of skew shape λ/α.

In Section 2 we extend equation (1), using techniques from the theory of
symmetric functions, to give an explicit formula for N(n;α) as a finite linear
combination of tn−j’s, from which in principle we can write down the entire
asymptotic expansion of N(n;α). In Section 3 we apply similar techniques,
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together with asymptotic formulas for character values of Sn due to Biane
[2] and to Vershik and Kerov [14], to derive the asymptotic behavior of fλ/α

as a function of λ for fixed α.

2 A formula for N(n;α).

Let χα(λ) denote the value of the irreducible character χα of Sk on a permu-
tation of cycle type λ ⊢ k (as explained e.g. in [6, §1.7] or [12, §§7.17–7.18]).
Let mi(µ) denote the number of parts of the partition µ equal to i, and write
µ̃ for the partition obtained from µ by replacing every even part 2i with the
two parts i, i. For instance,

µ = (6, 6, 5, 4, 2, 1) ⇒ µ̃ = (5, 3, 3, 3, 3, 2, 2, 1, 1, 1).

Equivalently, if w is a permutation of cycle type µ, then w2 has cycle type
µ̃. Note that a permutation of cycle type µ̃ is necessarily even. We will use
notation such as (µ̃, 1k−j) to denote a partition whose parts are the parts of
µ̃ with k− j additional parts equal to 1. Finally we let zµ denote the number
of permutations commuting with a fixed permutation of cycle type µ, so

zµ = 1m1(µ)2m2(µ) · · ·m1(µ)!m2(µ)! · · · .

The main result of this section is the following.

2.1 Theorem. Let α ⊢ k. Then for n ≥ k we have

N(n;α) =

k
∑

j=0

tn−j

(k − j)!

∑

µ⊢j
m1(µ)=m2(µ)=0

z−1
µ χα(µ̃, 1k−j). (3)

Proof. Let λ ⊢ n ≥ k, and let pλ = pλ1pλ2 · · · denote the power sum
symmetric function indexed by λ. Similarly sλ/α denotes the skew Schur
function indexed by λ/α. Since for any homogeneous symmetric function f
of degree n − k we have that 〈pn−k

1 , f〉 is the coefficient of x1 · · ·xn−k in f ,
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and since the coefficient of x1 · · ·xn−k in sλ/α is fλ/α, we have (using a basic
property [6, (5.1)][12, Thm. 7.15.4] of the standard scalar product 〈·, ·〉 on
symmetric functions)

fλ/α = 〈pn−k
1 , sλ/α〉

= 〈pn−k
1 sα, sλ〉.

Summing on λ ⊢ n gives

N(n;α) =

〈

pn−k
1 sα,

∑

λ⊢n
sλ

〉

. (4)

Now [6, Exam. I.5.4, p. 76][12, Cor. 7.13.8]

∑

λ

sλ =
1

∏

i(1− xi) ·
∏

i<j(1− xixj)
,

summed over all partitions λ of all n ≥ 0. Since

1
∏

i(1− xi) ·
∏

i<j(1− xixj)
= exp

∑

n≥1

1

n

(

∑

i

xn
i +

∑

i<j

xn
i x

n
j

)

= exp

(

∑

n≥1

p2n−1

2n− 1
+
∑

n≥1

p2n
2n

)

,

there follows

∑

λ⊢n
sλ =

∑

λ=(1m1 ,2m2 ,...)⊢n
z−1
λ pm1+2m2

1 p2m4
2 pm3+2m6

3 p2m8
4 · · ·

=
∑

λ⊢n
z−1
λ pλ̃, (5)

where (1m1, 2m2 , . . .) denotes the partition with mi parts equal to i.

It follows from [6, p. 76][12, solution to Exer. 7.35(a)] that for any sym-
metric functions f and g we have

〈p1f, g〉 =
〈

f,
∂

∂p1
g

〉

,
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where ∂
∂p1

g indicates that we are to expand g as a polynomial in the pi’s and

then differentiate with respect to p1. Applying this to equation (4) and using
(5) yields

N(n;α) =

〈

sα,
∂n−k

∂pn−k
1

∑

λ⊢n
z−1
λ pλ̃

〉

=

〈

sα,
∑

λ⊢n
z−1
λ (m1 + 2m2)n−k p

−n+k
1 pλ̃

〉

, (6)

where mi = mi(λ) and (a)n−k = a(a− 1) · · · (a− n+ k + 1).

Fix m1 + 2m2 = n − j in equation (6). Thus λ = (µ, 2m2, 1m1) for some
unique µ ⊢ k satisfying m1(µ) = m2(µ) = 0. Since n!/zλ is the number of
permutations in Sn of cycle type λ, we have for fixed µ ⊢ j that

∑

λ=(µ,2m2 ,1m1 )

n!

zλ
= tn−j

(

n

j

)

j!

zµ
.

Moreover,
p−n+k
1 pλ̃ = pk−j

1 pµ̃.

It follows that

N(n;α) =

〈

sα,

k
∑

j=0

j!

(

n

j

)

(n− j)n−k
tn−j

n!

∑

µ⊢j
m1(µ)=m2(µ)=0

z−1
µ pk−j

1 pµ̃

〉

=

〈

sα,
k
∑

j=0

tn−j

(k − j)!

∑

µ⊢j

m1(µ)=m2(µ)=0

z−1
µ pk−j

1 pµ̃

〉

.

Since [6, (7.7)][12, p. 348]

〈sα, pk−j
1 pµ̃〉 = χα(µ̃, 1k−j),

the proof follows. ✷

Note that the restriction n ≥ k in Theorem 2.1 is insignificant since
N(n;α) = 0 for n < k.
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Theorem 2.1 expresses N(n;α) as a linear combination of the functions
tn−j, 0 ≤ j ≤ k. Since tn−j−1 = o(tn−j), this formula for N(n;α) is actually
an asymptotic expansion. The first few terms are

N(n;α) =
1

k!
fαtn +

1

3(k − 3)!
χα(3, 1k−3)tn−3

+
1

4(k − 4)!
χα(2, 2, 1k−4)tn−4 +

1

5(k − 5)!
χα(5, 1k−5)tn−5

+
2

9(k − 6)!
χα(3, 3, 1k−6)tn−6 +O(tn−7). (7)

Note that by symmetry it is clear that if α′ is the conjugate partition to α
then N(n;α) = N(n;α′). Indeed, since a permutation of cycle type µ̃ is even
we have χα(µ̃, 1k−j) = χα′

(µ̃, 1k−j). The exact formulas for N(n;α) when
|α| ≤ 5 and |α| ≤ n are given as follows (where we write e.g. N(n; 21) for
N(n; (2, 1))):

N(n; 1) = tn

N(n; 2) = N(n; 11) =
1

2
tn

N(n; 3) = N(n; 111) =
1

6
(tn + 2tn−3)

N(n; 21) =
1

3
(tn − tn−3)

N(n; 4) = N(n; 1111) =
1

24
(tn + 8tn−3 + 6tn−4)

N(n; 31) = N(n; 211) =
1

8
(tn − 2tn−4)

N(n; 22) =
1

12
(tn − 4tn−3 + 6tn−4)

N(n; 5) = N(n; 11111) =
1

120
(tn + 20tn−3 + 30tn−4 + 24tn−5)

N(n; 41) = N(n; 2111) =
1

30
(tn + 5tn−3 − 6tn−5)

N(n; 32) = N(n; 221) =
1

24
(tn − 4tn−3 + 6tn−4)

N(n; 311) =
1

20
(tn − 10tn−4 + 4tn−5).
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The complete asymptotic expansion of tn beginning

tn ≈ 1√
2
nn/2e−

n
2
+
√
n− 1

4

(

1 +
7

24
√
n
− 119

1152n
+ · · ·

)

was obtained by Moser and Wyman [8, 3.39]. In principle this can be used
to obtain the asymptotic expansion of N(n;α) in terms of more “familiar”
functions than tn−j. The first few terms can be obtained from the formula

tn−j =
1√
2
n

n−j

2 e−
n
2
+
√
n− 1

4

(

1 +

(

7

24
− j

2

)

1√
n
−
(

119

1152
+

7

48
j − 3

8
j2
)

1

n

+O

(

1

n3/2

))

,

though we omit the details.

Instead of counting the number N(n;α) of SYT with n cells containing a
fixed SYT T of shape α, we can ask (as also done in [7]) for the probability
P (n;α) that a random SYT with n cells (chosen from the uniform distribu-
tion on all SYT with n cells) contains T as a subtableau. Since the total
number of SYT with n cells is tn, we have

P (n;α) = N(n;α)/tn.

Let ej(α) denote the coefficient of tn−j in the right-hand side of (3), viz.,

ej(α) =
1

(k − j)!

∑

µ⊢j

m1(µ)=m2(µ)=0

z−1
µ χα(µ̃, 1k−j). (8)

It follows from Theorem 2.1, using the fact that e0(α) = fα/k! and e1(α) =
e2(α) = 0, that

P (n;α) =
fα

k!
+

e3(α)

n3/2
− 3e3(α)− 2e4(α)

n2
+O

(

n−5/2
)

.

The leading term of this expansion was obtained in [7, Thm. 1].

There is an alternative formula for N(n;α) which, though not as con-
venient for asymptotics, is more combinatorial than equation (3) because it
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avoids using the characters of Sn. This formula could be derived directly
from Theorem 2.1, but we give an alternative proof which is implicitly bijec-
tive (since the formulas on which it is based have bijective proofs).

2.2 Theorem. Let α ⊢ k. Then for all n ≥ 0 we have

N(n + k;α) =

k
∑

j=0

(

n

j

)

(

∑

µ⊢k−j

fα/µ

)

tn−j. (9)

Proof. We begin with the following Schur function identity, proved inde-
pendently by Lascoux, Macdonald, Towber, Stanley, Zelevinsky, and perhaps
others. This identity appears in [6, Exam. I.5.27(a), p. 93][12, Exer. 7.27(e)]
and was given a bijective proof by Sagan and Stanley [11, Cor. 6.4]:

∑

λ

sλ/α =
1

∏

i(1− xi) ·
∏

i<j(1− xixj)

∑

µ

sα/µ.

Apply the homomorphism ex that takes the power sum symmetric function pn
to δ1nu, where u is an indeterminate. This homomorphism is the exponential
specialization discussed in [12, pp. 304–305]. Two basic properties of ex are
the following:

ex(f) =
∑

n≥0

[x1x2 · · ·xn]f
un

n!

ex
1

∏

i(1− xi) ·
∏

i<j(1− xixj)
= eu+

1
2
u2

,

where [x1x2 · · ·xn]f denotes the coefficient of x1x2 · · ·xn in f . Since

[x1x2 · · ·xn]sλ/α = fλ/α, when |λ/α| = n,

we obtain
∑

n≥0

un

n!

∑

λ⊢n+k

fλ/α = eu+
1
2
u2

k
∑

j=0

uj

j!

∑

µ⊢k−j

fα/µ. (10)

Taking the coefficient of un/n! on both sides yields (9). ✷
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2.3 Corollary. We have

∑

n≥0

∑

α

N(n + |α|;α)sα
un

n!
=

(

∑

µ

sµ

)

e(p1+1)u+ 1
2
u2

.

Proof. Multiply (10) by sα and sum on α to get

∑

n≥0

∑

α

N(n + |α|;α)sα
un

n!
= eu+

1
2
u2
∑

j≥0

uj

j!

∑

|α/µ|=j

fα/µsα

= eu+
1
2
u2
∑

j≥0

uj

j!

∑

|α/µ|=j

〈pj1, sα/µ〉sα

= eu+
1
2
u2
∑

j≥0

uj

j!

∑

|α/µ|=j

〈pj1sµ, sα〉sα

= eu+
1
2
u2
∑

j≥0

uj

j!

∑

µ

pj1sµ

=

(

∑

µ

sµ

)

e(p1+1)u+ 1
2
u2

. ✷

The case when α consists of a single row (or column) is particularly
simple, since then each χα(µ̃, 1k−j) = 1 in (3). We will then write N(n; k) as
short for N(n; (k)). The coefficient ej(α) becomes simply ej(k) = qj/(k−j)!,
where j!qj is the number of permutations w ∈ Sn with no cycles of length
one or two. By standard enumerative reasoning (see e.g. [12, Exam. 5.2.10])
we have

∑

j≥0

qjx
j =

e−x− 1
2
x2

1− x
. (11)

From this and Theorems 2.1 and 2.2 it is easy to deduce the following results,
which we simply state without proof.

2.4 Corollary. (a) We have

N(n + k; k) =

k
∑

j=0

(

n

j

)

tn−j =

k
∑

j=0

qj
(k − j)!

tn+k−j,
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where qj is given by (11).

(b) Define polynomials An(x) by A0(x) = 1 and

An+1(x) = A′
n(x) + (x+ 1)An(x), n ≥ 0.

Then
∑

k≥0

N(n + k; k)xk =
An(x)

1− x
.

(c) Let

e
1
2
u2+2u =

∑

n≥0

bn
un

n!
.

Then N(n + k; k) = bn if n ≤ k.

The stability property of Corollary 2.4(c) is easy to see by direct combina-
torial reasoning. If n ≤ k, then a skew SYT of shape λ/α, where λ ⊢ n+k and
α ⊢ k, consists of a first row containing some j-element subset of 1, 2, . . . , n,
together with some disjoint SYT U on the remaining n− j letters. There are
tn−j possibilities for U , so

N(n + k; k) =

n
∑

j=0

(

n

j

)

tn−j ,

which is equivalent to Corollary 2.4(c).

3 Asymptotics of fλ/α.

Rather than considering the sum
∑

λ⊢n f
λ/α, we could investigate instead the

individual terms fλ/α. The analogue of Theorem 2.1 is the following.

3.1 Theorem. Let α ⊢ k and n ≥ k. Then for any partition λ ⊢ n we
have

fλ/α =
∑

ν⊢k
z−1
ν χλ(ν, 1n−k)χα(ν). (12)
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Proof. The proof parallels that of Theorem 2.1. Instead of the power
sum expansion of

∑

λ⊢n sλ, we need the expansion of sλ (where λ ⊢ n), given
by [6, p. 114][12, Cor. 7.17.5]

sλ =
∑

µ⊢n
z−1
µ χλ(µ)pµ.

We therefore have

fλ/α =
〈

pn−k
1 , sλ/α

〉

=

〈

sαp
n−k
1 ,

∑

µ⊢k
z−1
µ χλ(µ)pµ

〉

=

〈

sα,
∂n−k

∂pn−k
1

∑

µ⊢n
z−1
µ χλ(µ)pµ

〉

=

〈

sα,
∑

ν⊢k
z−1
(ν,1n−k)

χλ(ν, 1n−k)(n− k +m1(ν))n pν

〉

=
∑

ν⊢k
z−1
(ν,1n−k)

(n− k +m1(ν))n χ
λ(ν, 1n−k)χα(ν).

But
z−1
(ν,1n−k)

(n− k +m1(ν))n = z−1
ν ,

and the proof follows. ✷

Theorem 3.1 can also be proved by inverting the formula given in [12,
Exer. 7.62].

We would like to regard equation (12) as an asymptotic formula for fλ/α

when α is fixed and λ is “large.” For this we need an asymptotic formula for
χλ(ν, 1n−k) when ν is fixed. Such a formula will depend on the way in which
the partitions λ increase. The first condition considered here is the following.
Let λ1, λ2, . . . be a sequence of partitions such that λn ⊢ n, and such that
the diagrams of the λn’s, rescaled by a factor n−1/2 (so that they all have
area one) converge uniformly to some limit ω. (See [2] for a more precise
statement.) We will denote this convergence by λn → ω. The following
result is due to Biane [2], building on work of Vershik and Kerov.
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3.2 Theorem. Suppose that λn → ω. Then for i ≥ 2 there exist
constants (defined explicitly in [2]) Ci(ω), with C2(ω) = 1, such that for any
fixed partition ν ⊢ k of length ℓ(ν) we have

χλn

(ν, 1n−k) = fλn





ℓ(ν)
∏

i=0

Cνi+1(ω)



n− 1
2
(k−ℓ(ν)) (1 +O(1/n)) ,

as n → ∞.

Let cν = z−1
ν χλ(ν, 1n−k)χα(ν). It follows from Theorem 3.2 that c(21k−2) =

O
(

c(1k)n
−1/2

)

, while cν = O
(

c(1k)n
−1
)

and cν = O
(

c(21k−2)n
−1/2

)

for ℓ(ν) ≤
k − 2. Hence if λn → ω then

fλn/α =
(

z−1
(1k)

χλn

(1n)χα(1k) + z−1
(21k−2)

χλn

(21n−2)χα(21k−2)
)

(1 +O(1/n))

= fλn

(

1

k!
fα +

1

2(k − 2)!
C3(ω)χ

α(21k−2)
1√
n
+O(1/n)

)

. (13)

Let us note that by [6, p. 118][12, Exer. 7.51] the integer χα(21k−2) appearing
in (13) has the explicit value

χα(21k−2) = fα

∑
(

αi

2

)

−∑
(

α′

i

2

)

(

k
2

) .

The leading term of the right-hand side of (13) is independent of ω, and
in fact it follows from [2] that fλn/α ∼ 1

k!
fαfλn

holds under the weaker
hypothesis that there exists a constant A > 0 for which λn

1 < A
√
n and

ℓ(λn) < A
√
n for all n ≥ 1.

11



Given ǫ > 0, let

Parǫ(n) = {λ ⊢ n : (2− ǫ)
√
n < λ1 < (2 + ǫ)

√
n

and (2− ǫ)
√
n < ℓ(λ) < (2 + ǫ)

√
n}.

It is a consequence of the work of Logan and Shepp [5] or Vershik and Kerov
[13] (see e.g. [1] for much stronger results) that for any ǫ > 0,

∑

λ∈Parǫ(n)
fλ ∼ tn, n → ∞.

Thus not only is the sum N(n;α) =
∑

λ⊢n f
λ/α asymptotic to fαtn/k! as

n → ∞ (as follows from (7)), but the terms fλ/α contributing to “most” of
the sum are “close” to fαfλ/k!.

Another way of letting λ become large was considered by Vershik and
Kerov in [14] and in many subsequent papers (after first being introduced
by Thoma). Let λ1, λ2, . . . be a sequence of partitions such that λn ⊢ n and
such that for all i > 0, there exist real numbers ai ≥ 0 and bi ≥ 0 satisfying
∑

i(ai + bi) = 1 and

lim
n→∞

λn
i

n
= ai

lim
n→∞

(λn)′i
n

= bi,

where (λn)′i denotes the ith part of the conjugate partition to λn (i.e., the
length of the ith column of the diagram of λn). We denote this situation

by λn TVK−→ (a; b), where a = (a1, a2, . . .) and b = (b1, b2, . . .). For instance, if

λ2n = (n, n) and λ2n−1 = (n, n−1), then λn TVK−→ ((1/2, 1/2, 0, . . .); (0, 0, . . .)).

The following result is immediate from [14].

3.3 Theorem. Let λn TVK−→ (a; b). Then for any fixed partition ν ⊢ k,

χλn

(ν, 1n−k) = fλn

ℓ(ν)
∏

j=1

(

∑

i

α
νj
i + (−1)νj−1

∑

i

β
νj
i

)

(1 +O(1/n)) .
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It follows that from Theorems 3.1 and 3.3 we have for fixed α ⊢ k the
asymptotic formula

fλn/α = fλn





∑

ν⊢k
z−1
ν

ℓ(ν)
∏

j=1

(

∑

i

α
νj
i + (−1)νj−1

∑

i

β
νj
i

)



 (1 +O(1/n)). (14)

Now let sλ(x / y) denote the super-Schur function indexed by λ ⊢ n in the
variables x = (x1, x2, . . .) and y = (y1, y2, . . .) [6, Exam. I.23–I.24], defined by
sλ(x / − y) = ωysλ(x, y) (where ωy denotes the standard involution ω acting
on the y-variables only). (Note that our sλ(x / y) corresponds to sλ(−y / x)
in [6].) It follows that the expansion of sλ(x / y) in terms of power sums is
given by

sλ(x / y) =
∑

ν⊢n
z−1
λ χλ(ν) (pν(x)− pν(y)) .

Hence from equation (14) we obtain the following result.

3.4 Theorem. Let λn TVK−→ (a; b). Then for a fixed partition α we have

fλn/α = fλn

sα(a /−b)(1 +O(1/n)).

An explicit statement of Theorem 3.4 does not seem to have been pub-
lished before. However, it was known by Vershik and Kerov and appears in
the unpublished doctoral thesis of Kerov. It is also a simple consequence of
Okounkov’s formula [9, Thm. 8.1] for fλ/α in terms of shifted Schur functions.
The asymptotics of shifted Schur functions is carried out (in slightly greater
generality) in [3, Thm. 8.1 and Cor. 8.1]. A special case of Theorem 3.4
appears in [10, Thm. 1.3].

Theorem 3.4 can be made more explicit in certain cases for which the
super-Schur function sα(a / −b) can be explicitly evaluated. In particular,
suppose that α consists of an i × j rectangle with a shape µ = (µ1, . . . , µi)
attached at the right and the conjugate ν ′ of a shape ν = (ν1, . . . , νj) attached
at the bottom. Thus

α = (µ1 + j, . . . , µi + j, ν ′
1, ν

′
2, . . .).

13



Then (e.g., [4, pp. 115–118][6, (4) on p. 59])

sα(a1, . . . , ai / − b1, . . . ,−bj) = sµ(a1, . . . , ai)sν(b1, . . . , bj)
∏

i,j

(ai + bj).

In certain cases we can explicitly evaluate sµ(a1, . . . , ai) or sν(b1, . . . , bj), e.g.,
when a1 = · · · = ai or b1 = · · · = bj . See [12, Thm. 7.21.2 and Exer. 7.32].
Note also that when µ = ν = ∅ (so α = (ji)) we have simply

s(ji)(a1, . . . , ai / − b1, . . . ,−bj) =
∏

i,j

(ai + bj).

Acknowledgement. I am grateful to Andrei Okounkov for providing
much of the information about Theorem 3.4 mentioned in the paragraph
following the statement of this theorem.
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