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1 Introduction

The main purpose of this paper is to publicize, and to present partial results on, a new

combinatorial conjecture of Brian Taylor and the first author. We begin by stating the

conjecture. (We assume some knowledge of the terminology of integer partitions; readers

lacking this background should consult [16].)

Definition 1. An integer partition µ is a subpartition of an integer partition λ (written

µ ⊆ λ) if the multiset of parts of µ is a submultiset of the multiset of parts of λ. Equivalently,

the Young diagram of µ is obtained by deleting some rows from the Young diagram of λ.

Definition 2. An integer partition λ is wide if µ ≥ µ′ in dominance order for all µ ⊆ λ.

Here µ′ denotes the conjugate of µ.

Conjecture 1 (The Wide Partition Conjecture for Free Matroids). An integer

partition λ is wide if and only if there exists a tableau of shape λ such that (1) for all i, the

entries in the ith row of the tableau are precisely the integers from 1 to λi inclusive, and

(2) for all j, the entries in the jth column of the tableau are pairwise distinct.

We believe that the wide partition conjecture (or WPC for short) for free matroids has

intuitive appeal as stated. However, the reader might prefer one of the following equivalent

formulations.
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• In the language of edge colorings, it states that for bipartite graphs arising from wide

partitions, the set of all color-feasible sequences has a unique maximal element.

• In the language of network flows, it states that certain integer multiflow problems

that are associated with wide partitions satisfy a max-flow min-cut theorem and have

integral optimal solutions.

• In the language of the Greene-Kleitman theorem, it states that the line graph of a bi-

partite graph arising from a wide partition has a stable set cover that is simultaneously

k-saturated for all k.

More precise statements of these reformulations will be given later.

As we explain later, the motivation for the WPC for free matroids comes from Rota’s basis

conjecture, which in turn is motivated by certain questions in classical invariant theory. A

curious consequence of this connection to invariant theory is that the WPC for free matroids

might actually be more interesting if it is false rather than true, because then it would

probably lead to new and unsuspected identities in invariant theory. We do not describe

the invariant-theoretic connection in detail in this paper, but hope to do so elsewhere.

Our main partial result is that the WPC for free matroids is true for certain wide partitions

with only a small number of distinct part sizes. We also show that certain graphs arising

from wide partitions satisfy a property called “∆-conjugacy,” which Greene and Kleitman

famously showed was true of comparability graphs. This result seems interesting in its

own right, because graphs satisfying ∆-conjugacy are rather hard to come by [5], and our

examples seem to be new. Finally, we show that to prove the WPC for free matroids, it

suffices to consider self-conjugate shapes.

2 Basic definitions

We follow [16] for most of our notation and terminology for (integer) partitions, but the

reader should note two important exceptions. Firstly, the subpartition relation µ ⊆ λ

defined above is different from the usual one. Secondly, for us a tableau is simply a Young

diagram with a positive integer entry in each cell; there is no implicit condition of semi-

standardness.

Young diagrams may be identified with bipartite graphs in a natural way. If λ is a partition,

we define Gλ to be the bipartite graph whose vertices are the rows and columns of λ and
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that has an edge between row i and column j if and only if (i, j) is a cell of the Young

diagram of λ (i.e., if and only if j ≤ λi).

Sometimes it is more convenient to consider L(Gλ), the line graph of Gλ, than to consider

Gλ itself. The vertices of L(Gλ) are the cells of the Young diagram of λ, and two vertices

are adjacent if the cells lie in the same row or column.

The Young diagram of λ may also be identified with a 0-1 matrix with ℓ(λ) rows and λ1

columns; the (i, j) entry is one if and only if (i, j) is a cell of the Young diagram.

We will employ all the above ways of looking at Young diagrams, so the reader should get

used to switching freely between the different viewpoints.

There are two well-known theorems that we need later. See [1, 7, 14] for proofs.

Proposition 1 (Gale-Ryser Theorem). Let λ be a partition of n with ℓ parts and let µ

be a partition of n with m parts. Then there exists an ℓ ×m 0-1 matrix A whose ith row

sums to λi (for all i) and whose jth column sums to µj (for all j) if and only if λ′ ≥ µ.

Proposition 2 (Birkhoff-von Neumann Theorem). A nonnegative integer square ma-

trix whose rows and columns all sum to n may be written as the sum of n permutation

matrices.

3 Wide partitions

As we said in the introduction, a partition λ is wide if µ ≥ µ′ for all µ ⊆ λ. In this section

we prove some fundamental facts about wide partitions.

The number of wide partitions of n is an integer sequence that begins

1, 1, 2, 3, 3, 5, 6, 9, 11, 14, 18, 23, 29, 35, 45, 56, 68, 85, 103, 125, 150, 183, 217, 266, 315,

380, 449, 534, 628, 745, 874, 1034, 1212, 1423, 1665, 1944, 2265, 2627, 3055, 3536, 4099,

4735, 5479, 6309, 7273, 8358, 9599, 11012, 12605, 14421, 16480, 18825, 21456, 24474, 27822,

31677, 35934, 40825, 46217, 52420, 59253, 67056, 75699, 85532, 96407.

Superseeker does not recognize this sequence.

Ostensibly, checking wideness requires checking all subpartitions, a potentially exponential-

time computation. We show next that checking wideness takes only polynomial time.

Definition 3. A subpartition µ ⊆ λ is a lower subpartition if µ is obtained from λ by

deleting the largest i parts of λ for some i ≥ 0.
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The following fact was first conjectured by Xun Dong (personal communication).

Proposition 3. If λ is a partition such that µ ≥ µ′ for all lower subpartitions µ of λ, then

λ is wide.

Proof. If λ is a partition, let λi denote the subpartition of λ obtained by deleting the ith

part of λ. Thus λi
j = λj if j < i and λi

j = λj+1 if j ≥ i.

The proof is by induction on the number of parts of λ. Let λ be a partition such that µ ≥ µ′

for all lower subpartitions µ of λ. Then in particular, λ ≥ λ′ and λ1 ≥ (λ1)′. We claim that

λi ≥ (λi)′ for all i. To see this, fix any i. We need to show that for all j,

j
∑

k=1

λi
k ≥

j
∑

k=1

(λi)′k.

Note that it suffices to consider only those j ≤ λ1, so we henceforth assume that j ≤ λ1.

If j < i then because λ ≥ λ′, we have

j
∑

k=1

λi
k =

j
∑

k=1

λk ≥

j
∑

k=1

λ′
k ≥

j
∑

k=1

(λi)′k,

so let us suppose that j ≥ i. We split into two cases, the first case being the case in which

j ≤ λi. Then

j
∑

k=1

λi
k =

j+1
∑

k=2

λk + (λ1 − λi)

≥

j+1
∑

k=2

λk

≥

j
∑

k=1

(λ′
k − 1) (because λ1 ≥ (λ1)′ and j ≤ λ1)

=

j
∑

k=1

(λi)′k (because j ≤ λi).

In the second case, j > λi, so

j
∑

k=1

λi
k =

j+1
∑

k=2

λk + (λ1 − λi)

≥

j+1
∑

k=2

λk + (j − λi) (because j ≤ λ1)
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≥

j
∑

k=1

(λ′
k − 1) + (j − λi)

=

λi∑

k=1

(λi)′k +

j
∑

k=λi+1

(

(λi)′k − 1

)

+ (j − λi)

=

j
∑

k=1

(λi)′k.

This proves the claim. Now note that by induction, λ1 is wide. It follows that λi is wide

for all i, because we have just shown that λi ≥ (λi)′, and every proper lower subpartition µ

of λi is a subpartition of λ1 and therefore satisfies µ ≥ µ′, so we can again apply induction

to conclude that λi is wide.

Finally, suppose µ is a subpartition of λ. If µ = λ then µ ≥ µ′ because λ ≥ λ′. Otherwise,

µ ⊆ λi for some i, and therefore satisfies µ ≥ µ′ because λi is wide.

The following easy but useful lemma has been independently observed by several people,

including D. Waugh.

Lemma 1. If λ is wide then λℓ(λ)−i > i for all i ≥ 0.

Proof. Since λ is wide, so is the subpartition µ consisting of the last i + 1 rows of λ. The

largest part of µ is λℓ(λ)−i. The first column of µ is i + 1. Since µ ≥ µ′, it follows that

λℓ(λ)−i ≥ i+ 1 > i.

Definition 4. If λ and µ are partitions then λ+ µ denotes the partition whose ith part is

λi + µi.

Proposition 4. If λ is wide and µ is a single column whose height is at most λ′
1 +1, then

λ+ µ is wide.

Proof. We claim that it suffices to show the following statement.

If λ is wide and µ is a single column whose height is at most λ′
1 + 1, then

λ+ µ ≥ (λ+ µ)′.

For if we can prove this, then we can apply it to any subpartition of our original partition λ

to deduce the proposition.

5



Fix i. We want to show that the sum of the first i rows of λ+ µ is at least the sum of the

first i columns of λ+ µ. We split into two cases.

Case 1: i ≤ µ′
1. In passing from λ to λ + µ, the sum of the first i rows increases by i. As

for the columns, note that in passing from λ to λ+ µ, all we are doing is adding a column

of height µ′
1. Therefore this causes the sum of the first i columns to increase by at most

µ′
1 − λ′

i. But by Lemma 1, λ′
i ≥ λ′

1 − i+ 1. Therefore the increase in the sum of the first i

columns is at most

µ′
1 − λ′

i ≤ (λ′
1 + 1)− (λ′

1 − i+ 1) = i,

which completes the proof of this case.

Case 2: i > µ′
1. In passing from λ to λ+µ, the sum of the first i rows increases by µ′

1. But

the sum of the first i columns cannot increase by more than µ′
1 either, so this case is also

settled.

Corollary 1. If λ and µ are wide then so is λ+ µ.

Proof. Since λ+ µ = µ + λ we may assume that λ′
1 ≥ µ′

1. Add the columns of µ to λ one

by one, applying Proposition 4 each time.

Definition 5. A wide partition λ is decomposable if there exist wide partitions µ and ν

such that λ = µ+ ν; it is indecomposable otherwise.

Caution. Although every wide partition is a sum of indecomposables, the decomposition

need not be unique.

Proposition 5. For any fixed ℓ, the number of indecomposable wide partitions with ℓ parts

is finite.

Our proof of Proposition 5 uses the following lemma.

Lemma 2. Let λ be a wide partition of n and let a be a positive integer. Then for all

sufficiently large b, the partition

µ = (

a times
︷ ︸︸ ︷

b, b, . . . , b, λ1, λ2, . . . , λℓ(λ))

is wide.

Proof. We may obtain a weaker claim than Lemma 2 by replacing “µ is wide” by the weaker

conclusion “µ ≥ µ′.” Proving this weaker claim suffices to prove the lemma, because by
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Proposition 3 one need only check lower subpartitions of µ, and all such lower subpartitions

are either covered by the weaker claim or are subpartitions of the wide partition λ.

We now prove the weaker claim. Write ℓ for ℓ(µ). Pick any b ≥ n/a+ ℓ; we shall see that

this is sufficiently large. We want to show that for all i ≤ ℓ, the sum of the first i rows of µ

is at least the sum of the first i columns of µ. We split into two cases.

Case 1: i ≤ a. The sum of the first i rows of µ is ib. The sum of the first i columns of µ is

at most iℓ. But b ≥ ℓ by construction.

Case 2: a < i ≤ ℓ. The sum of the first i rows of µ is at least ab. By choice of b, ab ≥ n+aℓ.

But n+aℓ is at least the sum of the first ℓ columns of µ (since n is large enough to encompass

all of λ, and aℓ is large enough to encompass the sum of the first ℓ columns of the first a

rows of µ), which in turn is at least the sum of the first i columns of µ, since ℓ ≥ i.

Proof of Proposition 5. Call a partition µ squarish if µℓ(µ) ≥ ℓ(µ). Any squarish partition

with ℓ parts may be obtained by starting with an ℓ× ℓ square shape and adding columns

of height at most ℓ to it. Therefore, by Proposition 4, all squarish partitions are wide.

Let λ be an indecomposable wide partition with ℓ parts. We show by induction on i that

λℓ−i − λℓ−i+1 is bounded for all i ≤ ℓ− 1. This implies the proposition.

If i = 0, then λℓ ≤ 2ℓ− 1; otherwise we would have λ = µ+ ν with µ an ℓ× ℓ square and ν

a squarish partition.

For larger i, we know by induction that the lower subpartition κ consisting of the last i

parts of λ can only be one of a finite set of possible partitions. For any fixed κ, observe

that if λℓ−i−λℓ−i+1 is sufficiently large, then we may write λ = µ+ ν where ν is a squarish

partition with ℓ− i parts and µ is of the form given in Lemma 2 (with the “λ” of Lemma 2

being κ and “a” being ℓ− i). So since λ is an indecomposable wide partition, λℓ−i−λℓ−i+1

is bounded. There are only finitely many choices for κ, so the proof is complete.

4 Latin tableaux and the Wide Partition Conjecture

Definition 6. If M is a matroid, then an M -tableau is a Young diagram with an element

of M in each cell of the diagram.

Definition 7. Let λ be a partition. We say that λ satisfies Rota’s conjecture if, for any

matroid M and any sequence (Ii) of independent sets of M satisfying |Ii| = λi for all i, there

exists an M -tableau T of shape λ such that (a) for all i, the set of elements in the ith row
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of T is Ii, and (b) for all j, the elements in the jth column of T comprise an independent

set of M . (In particular, the elements in the jth column are pairwise distinct.)

Conjecture 2 (The Wide Partition Conjecture). A partition λ satisfies Rota’s con-

jecture if and only if it is wide.

We shall see shortly that wideness is necessary; it is sufficiency that is the real question.

The WPC contains Rota’s basis conjecture [11] as a special case. It was formulated by

Brian Taylor and the first author, originally with the hope that it would allow Rota’s basis

conjecture to be proved by induction on the number of cells in a wide partition.

Unfortunately, the WPC does not seem to be any easier than Rota’s basis conjecture. Nev-

ertheless, we believe that the WPC is interesting in its own right, because in the invariant-

theoretic context that originally motivated Rota’s basis conjecture, there is nothing special

about square shapes. If you believe Rota’s basis conjecture, then you should probably

believe the WPC too.

Since the WPC seems hard, we have focused on the special case of free matroids.

Definition 8. Let λ and µ be partitions. A Latin tableau T of shape λ and content µ is

a Young diagram of shape λ with a single positive integer in each cell such that (a) no two

cells in the same row or column have the same entry and (b) the total number of occurrences

of the integer i equals µi. A partition λ is Latin if there exists a Latin tableau T of shape λ

and content λ′.

It is not hard to see that in a Latin tableau T of shape λ and content λ′, the entries in row i

are precisely the integers from 1 to λi. It follows that if λ = λ′, then in a Latin tableau T

of shape λ and content λ′ = λ, the entries in column i are also precisely the integers from

1 to λi.

The WPC for Free Matroids. A partition λ is Latin if and only if it is wide.

We have verified the WPC for free matroids by computer for all partitions whose Young

diagram has at most 65 cells. This set of partitions includes all indecomposable wide

partitions with at most five parts. We have also verified the WPC for free matroids for all

partitions whose Young diagram fits inside a 10× 10 square.

Readers familiar with the Alon-Tarsi conjecture on Latin squares may wonder if the WPC

for matroids representable over a field of characteristic zero follows from an Alon-Tarsi-like

conjecture that the number of “even” Latin tableaux is not equal to the number of “odd”
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Latin tableaux of the same shape. We expect this to be true and provable in the same way

that it is proved for square shapes, but we have not verified the details.

As Victor Reiner was the first to observe, it is easy to see that if λ is Latin, then it is wide.

For let T be a Latin tableau of shape λ and content λ′. If µ ⊆ λ, then T restricted to µ is

a Latin tableau—call it S—of shape µ and content µ′. We want to show that µ ≥ µ′. Fix

i and erase all the entries of S except those that are less than or equal to i. There are at

most i entries remaining in each column of S, so if we “push them up” as far as possible,

we can fit them all into the first i rows of S. Therefore the first i rows of µ contain at least

as many cells as the sum of the first i parts of µ′.

As an aside, we remark that Latin tableaux, especially of self-conjugate shapes, seem to be

quite pleasing structures. Many concepts associated with Latin squares, such as orthogo-

nality, can be generalized to Latin tableaux. We speculate that Latin tableaux may have

applications to error-correcting codes and/or the design of experiments.

5 Relationship with list coloring

There is an alternative form of the WPC for free matroids, which we now describe.

Definition 9. A partition λ is strongly Latin if, for any sequence (Ii) of sets of distinct

integers satisfying |Ii| = λi for all i, there exists a tableau T of shape λ such that (a) for

all i, the set of integers in the ith row of T is Ii, and (b) for all j, the integers in the jth

column of T are pairwise distinct.

The WPC for Free Matroids, alternative form. A partition λ is strongly Latin if and

only if it is wide.

If we recall the statement of the (full) WPC, then this alternative form of the WPC for

free matroids might seem more natural than the form we stated in the previous section. It

matters little, however, since we shall see that the two forms are equivalent.

It is clear that a strongly Latin partition is Latin. One might think that the converse would

be easy to prove since intuitively the “worst case” is the one in which the sets Ii intersect as

much as possible. However, this is the same intuition that leads to the false conclusion that

the list chromatic number of a graph must always equal its ordinary chromatic number.

Therefore we must tread carefully.

Definition 10. An orientation of a graph G is an assignment of a direction to each of the
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edges of G.

Proposition 6 (Galvin). Let G be the line graph of a bipartite graph, and suppose that

each vertex of G is equipped with a list of available colors. If there exists an orientation

of G in which every complete subgraph of G is acyclic and in which the outdegree of every

vertex is less than the number of (distinct) colors in its list, then there is a list coloring of G

(i.e., a choice, for each vertex, of a color from its list in such a way that distinct colors are

chosen for adjacent vertices).

Proof. See [8].

Theorem 1. If λ is Latin then it is strongly Latin.

Proof. Assume that λ is Latin, so that there exists a Latin tableau T of shape λ and

content λ′. Use T to define an orientation of L(Gλ), as follows: Let an edge between two

cells in the same row point to the cell whose entry in T is larger, and let an edge between

two cells in the same column point to the cell whose entry in T is smaller. It is easily

verified that in this orientation, the outdegree of a vertex in the ith row is at most λi − 1.

To see that λ is strongly Latin, suppose we are given a sequence (Ii) of sets of distinct

integers satisfying |Ii| = λi. The existence of the tableau in the definition of “strongly

Latin” is equivalent to the existence of a list coloring of L(Gλ) if each vertex in row i

of L(Gλ) is equipped with the list Ii. So the orientation of L(Gλ) constructed above,

combined with Proposition 6, implies the theorem.

Theorem 1 becomes easier to prove if we restrict ourselves to square shapes. Two di-

rect proofs of this special case were given in [2], and it also follows immediately from the

Lebensold-Fulkerson theorem [6, 12] on disjoint matchings in bipartite graphs.

We remark that Galvin’s theorem allows us to prove something slightly stronger than The-

orem 1. Say that an orientation of L(Gλ) is colorable if every complete subgraph is acyclic

and the outdegree of a vertex in the ith row is at most λi − 1. Galvin tells us that to prove

that λ is strongly Latin, we need only construct a colorable orientation. This can be done

using something slightly weaker than the Latin property.

Definition 11. A tableau T of shape λ is weakly Latin if (a) for all i, the set of integers

in the ith row of T is {1, 2, . . . , λi}, and (b) for all j and k, there are at most k entries in

the jth column of T that are less than or equal to k. A partition λ is weakly Latin if there

exists a weakly Latin tableau of shape λ.
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Proposition 7. A partition is weakly Latin if and only if it is Latin.

Proof. Essentially the same construction as above shows that if λ is weakly Latin then there

exists a colorable orientation of L(Gλ).

We conclude this section with an application of the above results.

Proposition 8. If λ and µ are Latin then so is λ+ µ.

Proof. Assume that λ and µ are Latin. Then by Theorem 1, µ is strongly Latin. Let Tλ

be a Latin tableau of shape λ and content λ′. Let Tµ be a Latin tableau whose ith row

contains the integers λi +1, λi +2, . . . , λi + µi in some order. Such a Tµ exists because µ is

strongly Latin. If we now take the union of the set of columns of Tλ with the set of columns

of Tµ, sort the columns according to height, and combine them to form a tableau T of shape

λ+ µ, then we see that T is in fact a Latin tableau of shape λ+ µ and content (λ+ µ)′.

Corollary 2. If all indecomposable wide partitions with ℓ parts are Latin then all wide

partitions with ℓ parts are Latin.

Proof. This follows from Corollary 1 and Proposition 8.

Our computer calculation therefore shows that all wide partitions with at most five parts

are Latin. Unfortunately, the set of indecomposable wide partitions does not seem to be

any more tractable than the set of all wide partitions, so at this point it is not clear how

useful Corollary 2 is.

6 Relationship with the Greene-Kleitman theorem

Much of what follows can be stated in the general framework of antiblocking hypergraphs,

but for simplicity we restrict our attention to the case of perfect graphs. Readers unfamiliar

with the terminology of perfect graphs can find complete definitions in [15], which we shall

be citing several times.

Let G be a perfect graph. A k-clique is a union of k complete subgraphs of G, and a k-stable

set is a union of k stable sets of G. We let ωk(G) denote the cardinality (number of vertices)
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of the largest k-clique of G and we let αk(G) denote the cardinality of the largest k-stable

set of G. We also define

∆ωk(G) = ωk − ωk−1 and ∆αk(G) = αk − αk−1.

If there is no confusion, then we may drop the “G” from the notation for simplicity.

If ∆ω and ∆α are partitions (i.e., ∆ω1 ≥ ∆ω2 ≥ ∆ω3 ≥ · · · and ∆α1 ≥ ∆α2 ≥ ∆α3 ≥ · · · )

and furthermore are conjugates of each other, then we say that G satisfies ∆-conjugacy .

It is a famous theorem, due to Greene and Kleitman [9, 10], that comparability graphs of

finite posets satisfy ∆-conjugacy.

A clique cover of G is a vertex-disjoint union of complete subgraphs whose union covers all

vertices of G. If λ is a clique cover, then we abuse notation and also let λ denote the integer

partition consisting of the sizes of the cliques (arranged in nonincreasing order of course).

If λk = ∆ωk for all k, then we say that λ is a uniform clique cover. (In general, uniform

clique covers need not exist.) We define stable set covers and uniform stable set covers in

a completely analogous way.

Let k be a positive integer. A clique cover λ is k-saturated if

αk =
k∑

i=1

λ′
i.

If λ is simultaneously k-saturated for all k, then we say that λ is completely saturated .

Similarly a stable set cover λ is k-saturated if

ωk =
k∑

i=1

λ′
i,

and is completely saturated if it is k-saturated for all k. For arbitrary graphs, k-saturated

clique/stable set covers need not exist, and even for comparability graphs, completely sat-

urated clique/stable set covers need not exist.

Proposition 9. If G is a perfect graph satisfying ∆-conjugacy, then for every positive

integer k, there exists a clique cover that is simultaneously k-saturated and (k+1)-saturated,

and there also exists a stable set cover that is simultaneously k-saturated and (k + 1)-

saturated.

Proof. Theorem 4.13 of [15].

The conclusion of Proposition 9 is sometimes referred to as the t-phenomenon.
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The concept of uniform clique/stable set covers does not seem to be as standard as the

other concepts above. We have not found a reference for the following simple proposition,

although it is unlikely to be new.

Proposition 10. Let G be a perfect graph. Every completely saturated clique cover is

uniform. If for all k there exists a k-saturated clique cover, then every uniform clique cover

is completely saturated. Both statements hold with “stable set” in place of “clique.”

Proof. The complement of a perfect graph is perfect [13], so it suffices to consider clique

covers.

Let λ be a completely saturated clique cover. Fix k. There exists a λk-stable set S with

cardinality
∑λk

i=1 λ
′
i. Now, S contains at most min(λk, λi) vertices from the ith clique of λ.

But the cardinality of S forces S to contain exactly min(λk, λi) vertices from the ith clique

of λ. Therefore, each of the k largest cliques of λ (which all have cardinality at least λk)

contains one element from each stable set of S. It follows that each stable set of S has at

least k vertices.

Now augment S to a stable set cover S+ by adjoining singleton sets. These singletons are

precisely the vertices in the k largest cliques of λ that are not in S. Therefore, for any

k-clique C—in particular, one of maximum cardinality—we have

|C| ≤
∑

s∈S+

min(k, |s|) =
∑

s∈S

min(k, |s|) +
k∑

i=1

(λi − λk) = kλk +

k∑

i=1

(λi − λk) =

k∑

i=1

λi.

Since k was arbitrary, λ is uniform.

Conversely, let λ be a uniform clique cover. Fix k and let µ be a k-saturated clique cover.

Because λ is uniform, λ ≥ µ, i.e., λ′ ≤ µ′, so in particular

k∑

i=1

λ′
i ≤

k∑

i=1

µ′
i.

Because µ is k-saturated, there exists a k-stable set S such that

k∑

i=1

µ′
i = |S|.

Finally, because λ is a clique cover,

|S| ≤
k∑

i=1

λ′
i.

Combining these facts forces the inequalities to be equalities, and therefore λ is k-saturated.

Since k was arbitrary, λ is completely saturated.
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Line graphs of bipartite graphs enjoy certain properties that arbitrary perfect graphs do

not, as the following proposition illustrates.

Proposition 11. If G is the line graph of a bipartite graph, then ∆α is a partition, and

for every positive integer k, there exists a k-saturated clique cover of G. Moreover, if ∆ω

is a partition, then G satisfies ∆-conjugacy.

Proof. Theorems 4.18 and 4.23 of [15]. (That ∆α is a partition was already proved in

Lemma 2.1 of [3].)

Not much beyond the conclusions of Proposition 11 can be said, even if we require G to equal

L(Gλ) for a (not necessarily wide) partition λ. For example, if we take λ = (7, 7, 6, 6, 3, 3, 3)

and G = L(Gλ), then there is no uniform clique cover, and in fact ∆ω is not even a partition.

Moreover, there is no 5-saturated stable set cover. However, one interesting question does

remain open.

Latin Tableau Question. Let G = L(Gλ) for an arbitrary partition λ. Does there

necessarily exist a uniform stable set cover?

Note that line graphs of arbitrary bipartite graphs need not have uniform stable set covers.

If the answer to the Latin Tableau Question is yes, then this would not only verify the WPC

for free matroids, but would also give a necessary and sufficient condition for the existence

of a Latin tableau of shape λ and content µ, for arbitrary λ and µ.

If λ is required to be wide, then one easily deduces much stronger conclusions.

Lemma 3. If λ is wide then the set of rows of the Young diagram of λ is a uniform clique

cover of L(Gλ).

Proof. It suffices to show that the maximum cardinality of any k-clique is the sum of the

first k parts of λ, for all k ≤ ℓ(λ). Let C be a k-clique. Since we are trying to maximize |C|,

we may assume that the cliques of C are maximal. Then C is the union of i rows and

j columns for some nonnegative integers i and j satisfying i + j = k. Again, since we are

trying to maximize |C|, we may assume that C is the union of the first i rows and the first

j columns. But because λ is wide, the lower subpartition µ of λ comprising the last ℓ(λ)− i

parts of λ satisfies µ ≥ µ′, and therefore the number of vertices in the first j columns but

not in the first i rows of the Young diagram of λ is at most the total number of vertices in

rows i + 1 through i + j of the Young diagram of λ. Therefore |C| is at most the sum of

the first i+ j = k parts of λ.
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Theorem 2. If λ is wide then the set of rows of the Young diagram of λ is a completely satu-

rated clique cover of L(Gλ). Moreover, L(Gλ) satisfies ∆-conjugacy and the t-phenomenon.

Proof. By Propositions 10 and 11, any uniform clique cover of the line graph of a bipartite

graph is completely saturated. So in the case at hand, Lemma 3 implies that the set of

rows is completely saturated. The existence of a uniform clique cover implies that ∆ω is a

partition, so the remaining claims follow from Propositions 9 and 11.

The obvious remaining question is whether there exists a uniform (or equivalently, by Propo-

sition 10 and Theorem 2, a completely saturated) stable set cover of L(Gλ) if λ is wide. It

is easy to see that the existence of such a cover is equivalent to the WPC for free matroids.

7 Relationship with network flows and with edge colorings

of bipartite graphs

In the introduction we mentioned the existence of a relationship between the WPC and

integer multicommodity flows (a.k.a. “integer multiflows”). To see this, direct the edges

of Gλ so that rows point to columns, and give each edge a capacity of one. Enlarge Gλ to

a directed graph Hλ by adjoining λ1 source vertices s1, . . . , sλ1
and λ1 destination vertices

d1, . . . , dλ1
, and adding a directed edge of capacity one from each si to each row of λ and

from each column of λ to each di. What we seek is a simultaneous routing of λ1 commodities

on Hλ; specifically, we want to send λ′
i units of commodity i from si to di, where the amount

of every commodity on every link is required to be an integer.

In this language, the WPC for free matroids essentially states that the multiflow problems

coming from wide partitions enjoy a max-flow min-cut property, and have integral optimal

solutions. Multiflow problems in general do not satisfy max-flow min-cut; this is another way

of seeing why the WPC for free matroids cannot be proved purely by “general nonsense,”

and that something is special about wide partitions (if the conjecture is true).

The game of finding technical conditions to ensure max-flow min-cut has been played before

in the literature. Unfortunately, we have been unable to find anything that applies directly

to our situation; the graph Hλ does not satisfy any kind of Eulerian condition or topological

condition that is known to be helpful. It is also readily seen that the coefficient matrix of

the linear programming relaxation of this multiflow viewpoint is not totally unimodular.

Nevertheless, we are able to obtain some partial results, which we present now.
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Lemma 4. A partition λ is wide if and only if for L(Gλ),

∆α = λ′.

Proof. The “only if” part follows from the results of the previous section, but we ignore

this and give a self-contained proof. We show that being wide is equivalent to the condition

∀k : αk =
k∑

j=1

λ′
j .

We construct a directed network by taking Gλ with edges directed from the row vertices to

the column vertices and with capacity 1, adding a source s connected to each row vertex

by an edge of capacity k and a target t connected from each column vertex by an edge of

capacity k. The maximum flow in this network has value exactly αk, because k-stable sets

in the line graph correspond to edge subsets of Gλ of maximum degree k (since line graphs

of bipartite graphs are perfect).

Consider a cut C = (S, S′) in this network (s ∈ S, t ∈ S′). First choose R, the row vertices

in S. The optimal way to add column vertices to S is to include y ∈ S if it has at least k

neighbors in R (because then it is cheaper to have the edge (y, t) in the cut rather than the

edges from y’s neighbors in R to it). Thus the weight of the minimum cut CR for a given

R is

w(CR) = k(n− |R|) +
∑

j

min{k, |N(j) ∩R|}

where n is the number of rows and N(j) is the set of neighbors of column vertex j. |N(j)∩R|

is the size of the j-th column of the subpartition defined by R.

If the partition is wide, we have
∑

j min{k, |N(j) ∩R|} ≥
∑k

j=1 |N(j) ∩R| and thus

w(CR) ≥ k(n − |R|) +
k∑

j=1

|N(j) ∩R| ≥
k∑

j=1

λ′
j

which means that the minimum cut is at least
∑k

j=1 λ
′
j . On the other hand, this value is

achieved by setting S to contain the vertices corresponding to rows of length at most k. By

the max-flow min-cut theorem, the maximum flow is equal to
∑k

j=1 λ
′
j .

Conversely, if αk =
∑k

j=1 λ
′
j, consider a k-stable set Fk of size αk. Since any k-stable set

has at most min{k, λi} squares in each row i and αk =
∑

imin{k, λi} =
∑k

j=1 λ
′
j , we have

that Fk has exactly min{k, λi} squares in each row i. Consider now any subset of rows R,

and let Gk be the restriction of Fk to rows R. Thus the size of Gk is the size of the first k
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columns intersected with R. On the other hand, Gk has at most k squares in each column,

therefore its size is at most that of the first k rows of R. Over all k and all subsets R, this

implies that λ is wide.

Lemma 5. Let G be the line graph of a bipartite graph, and let b be the number of distinct

part sizes of ∆α(G). Let a1 > a2 > · · · > ab be these part sizes and ki the number of parts

of size ≥ ai. Then a uniform stable set cover exists if and only if there exists a chain

F1 ⊂ F2 ⊂ · · · ⊂ Fb

where Fi is a ki-stable set of size αki.

Proof. It is easy to see that if (A1, A2, . . . , Akb) is a uniform stable set cover, then

Fi =

ki⋃

k=1

Ak

is a ki-stable set of size αki and these sets form a chain.

Conversely, suppose that we have such a chain ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fb. Now consider each

Fi as a set of edges in the underlying bipartite graph. Define gi to be the maximum degree

in Gi = Fi \ Fi−1. We would like to have gi ≤ ki − ki−1 for each i. Therefore, take a chain

where the vector (g1, g2, . . . , gb) is lexicographically minimal and assume that j is the first

index where gj > kj − kj−1. Note that ∀i < j : gi = ki − ki−1, otherwise Fj−1 would have

degrees strictly smaller than kj−1. Then it could be extended to a larger kj−1-stable set in

the line graph. But Fj−1 is by assumption the maximum kj−1-stable set. Also, G1 = F1

has degrees at most k1, therefore g1 = k1 and j > 1.

Let x be a vertex with degree gj in Gj . Since gj > kj − kj−1 and Fj has degrees at most

kj , x has degree strictly smaller than kj−1 in Fj−1. Assume x is on the “left-hand side”.

Consider all paths from x, using edges from Gj and Gj−1 alternately. Let H denote the

union of all these paths. We claim that for any vertex y on the right-hand side, reachable

from x in H,

• y has degree ≥ kj−1 − kj−2 in Gj−1.

• y has degree ≤ kj − kj−1 in Gj .

By contradiction, if either of these conditions were violated, y would have degree strictly

smaller than kj−1 in Fj−1. (This follows from the assumptions on Fj−2 and Fj .) Then we
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could switch the edges on the (odd length) x − y path between Gj−1 and Gj , thereby in-

creasing the size of Fj−1, while it would remain a kj−1-stable set in the line graph. However,

Fj−1 had size αkj−1
which was maximum.

This implies that we can estimate the number of edges in Gj∩H and Gj−1∩H. The degrees

in Gj−1 on the right are actually equal to kj−1 − kj−2, because j is the first index where a

higher degree exists. Thus if there are r vertices on the right-hand side, reachable in H, we

have

|Gj−1 ∩H| = r(kj−1 − kj−2),

|Gj ∩H| ≤ r(kj − kj−1).

However, there is a vertex on the left-hand side (x) which has degree strictly greater than

kj−kj−1 in Gj ∩H. By assumption, every vertex on the left has degree at most kj−1−kj−2

in Gj−1, so there must be a vertex z on the left, reachable in H, which has degree strictly

smaller than kj −kj−1 in Gj ∩H. By switching the edges between Gj and Gj−1 on the path

from x to z, we maintain all the properties of Fj−1 and Fj ; however, we have decreased the

number of vertices of degree gj in Gj . If there are still vertices of degree gj in Gj , we repeat

this procedure until we decrease the maximum degree to gj − 1. For each i < j, we have

maintained gi = ki − ki−1. This contradicts the assumption that the vector (g1, g2, . . . , gb)

is lexicographically minimal.

Now we have a chain ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fb where the degrees in Gi = Fi\Fi−1 are at most

ki − ki−1. By Birkhoff-von Neumann, we can decompose each Gi into ki − ki−1 matchings

A
(1)
i , A

(2)
i , . . . , A

(ki−ki−1)
i . Each of these matchings must have size ai otherwise the largest

one together with Fi−1 would form a (ki−1 +1)-stable set larger than αki−1
+ ai = αki−1+1.

We have constructed a stable set cover

A
(1)
1 , A

(2)
1 , . . . , A

(1)
2 , A

(2)
2 , . . . , A

(1)
b , . . . , A

(kb−kb−1)
b

where the sizes of the stable sets are exactly the parts of ∆α.

To see the power of the above lemmas, first note that Proposition 7 follows easily.

Alternative proof of Proposition 7. Consider a weakly Latin tableau. Define Fk to be the set

of all squares containing numbers up to k. Now consider Fk as a set of edges in the bipartite

graph. Since the degrees in Fk are at most k, it can be decomposed into k matchings and

therefore Fk is a k-stable set in the line graph. The size of Fk is
∑k

j=1 λ
′
j which is the
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maximum possible size of a k-stable set. By Lemma 5, there exists a uniform stable set

cover, which corresponds to a Latin tableau.

We can also easily deduce the following result.

Theorem 3. If λ is a wide partition with at most two distinct part sizes, then λ is Latin.

Proof. Let a partition λ have parts of two different sizes k1 < k2. By Lemma 4, ∆α = λ′

which has k1 parts of one size and k2−k1 parts of another (smaller) size. There is a k1-stable

set of size αk1 and a k2-stable set of size αk2 . The latter is the complete set of vertices,

so they form a chain trivially. By Lemma 5, there exists a uniform stable set cover, which

corresponds to a Latin tableau.

It is worth mentioning that Theorem 3 also follows from known results on edge colorings of

bipartite graphs, in particular from the following result of Folkman and Fulkerson.

Definition 12. Let A be an m × n 0-1 matrix with a total of N 1’s. Let µ be a partition

of N . We say that A is µ-decomposable if A can be written as a sum

A = P1 + P2 + · · ·+ Pℓ(µ)

of 0-1 matrices Pi such that for all i, Pi has a total of exactly µi 1’s and has at most one 1

in each row and column.

Proposition 12 (Folkman and Fulkerson). Let A be an m× n 0-1 matrix with a total

of N 1’s. Let µ be a partition of N with at most two distinct part sizes. Then A is µ-

decomposable if and only if every e× f submatrix B of A has at least the following number

of 1’s:
∑

i≥(m−e)+(n−f)+1

µ′
i.

Proof. Theorem 3.1 of [4].

Alternative proof of Theorem 3. Let m = ℓ(λ) and let n = λ1. Let A be the m× n matrix

whose (i, j) entry is 1 if (i, j) is a cell of λ (i.e., if j ≤ λi) and whose (i, j) entry is 0

otherwise. Let µ = λ′. Then µ also has at most two distinct part sizes. Chasing definitions,

we see that A is µ-decomposable if and only if λ is Latin. We therefore need only check

that the wideness of λ implies that the condition on submatrices of A in Proposition 12 is

satisfied. This is straightforward and we leave the details to the reader.
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It is tempting to wonder how far Theorem 3 may be generalized. Perhaps the WPC for

free matroids can be generalized to arbitrary bipartite graphs? Unfortunately, the answer

is no; if the condition on the number of distinct part sizes of µ in Proposition 12 is dropped,

then it no longer remains true, and a counterexample may be found in [4]. However, it is

possible that as far as edge colorings are concerned, it is being a partition that is the crucial

property (rather than being wide). More precisely, the following question remains open.

Latin Tableau Question, alternative form. Does Proposition 12 remain true if the

condition on the number of distinct part sizes of µ is dropped but A is required to arise

from a Young diagram (i.e., A must satisfy the condition that whenever Aij = 1 then

Ars = 1 for all r ≤ i and s ≤ j)?

It is not hard to show that this question is indeed equivalent to the Latin Tableau Question

as previously formulated. Surprisingly, in spite of the sizable literature on edge colorings of

bipartite graphs, the condition that A arise from a Young diagram does not seem to have

been directly addressed before.

The set of all color-feasible partitions (i.e., partitions µ for which there exists an edge

coloring in which color i is used exactly µi times) for a given bipartite graph does not in

general have a unique maximal element in dominance order. But as we mentioned in the

introduction, the WPC for free matroids is equivalent to the claim that for Gλ (with λ

wide), there is a unique maximal element. Now, a necessary and sufficient condition for

the existence of a unique maximal element is given in [3]. Unfortunately, this necessary and

sufficient condition does not seem easy to verify for wide partitions. However, the main

theorem of [3] does imply the following.

Theorem 4. If λ is a wide partition with three distinct part sizes and either the second or

third part size occurs with multiplicity one, or if λ is a wide partition with four distinct part

sizes and the second and fourth part sizes both occur with multiplicity one, then λ is Latin.

Proof. This may be deduced from Corollary 3.3 of [3] in the same manner that we deduced

Theorem 3 from Proposition 12.

We have one final result along the same lines.

Theorem 5. If λ is a self-conjugate wide partition with at most three distinct part sizes,

then λ is Latin.

Proof. Let λ be a self-conjugate wide partition with exactly three distinct part sizes. (The

case of one part size is trivial and the case of two part sizes is covered by Theorem 3.) Let
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m1 be the multiplicity of the largest part size, let m2 be the multiplicity of the next largest

part size, and let m3 be the multiplicity of the smallest part size. Call the integers from 1

to m1 the low range, call the integers from m1 + 1 to m1 +m2 the mid range, and call the

integers from m1 +m2 + 1 to m1 +m2 +m3 the high range.

The Young diagram of λ subdivides naturally into six rectangular subregions, which we give

names as shown in the picture below.

A B D

B′ C

D′

In addition, we define E to be the square region A ∪B ∪B′ ∪ C.

In view of Lemma 5, it suffices to construct a subset α ⊆ A containing exactly m3 cells from

each row and each column of A, and a subset β ⊆ E, disjoint from α, containing exactly

m2 cells from each row and each column of E. We split into two cases.

Case 1: m1 ≥ m2 + m3. Temporarily place any m1 × m1 Latin square L into region A.

(The only purpose of L is to help describe α and β.) Let α be the set of cells of L with

an entry between 1 and m3 inclusive. Let b be the set of cells of L with an entry between

m3 + 1 and m3 +m2 inclusive, and let β = b ∪ C. It is easily checked that α and β have

the desired properties.

Case 2: m1 < m2 + m3. The set α may be constructed exactly as in Case 1, but the

construction of β requires several steps.

Let b be a subset of B with the following two properties: (1) each row of b contains m2 +

m3 −m1 cells, and (2) the number of cells in any two columns of b differ by at most one.

It easy to see that the Gale-Ryser theorem implies that such a subset b exists.

Let ci be the number of cells in the ith column of b. We claim that ci ≤ m2 for all i. To see

this, note that
∑

i ci = m1(m2+m3−m1). Since any two ci differ by at most one, it follows

that if ci > m2 for some i then cj ≥ m2 for all j. Since B has m2 columns, it follows that
∑

i ci > m2
2. Therefore, m

2
2 < m1(m2 +m3 −m1). However, we claim that the wideness of

λ implies that

m2
1 +m2

2 ≥ m1(m2 +m3), (1)
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yielding the desired contradiction. To see why the inequality (1) is true, suppose first that

m2 < m1. The lower subpartition B′ ∪ C ∪ D′ of λ is wide, so in particular the sum of

its first m1 rows is at least the sum of its first m1 columns. Then inequality (1) follows

immediately. On the other hand, suppose m2 ≥ m1. The rectangle D
′ is wide, so m1 ≥ m3.

Therefore,

m2
1 +m2

2 ≥ m2
1 +m1m2 = m1(m1 +m2) ≥ m1(m2 +m3),

yielding inequality (1) again.

Since ci ≤ m2, the quantity m2− ci is a nonnegative integer for all i. Since any two ci differ

by at most one, another easy application of Gale-Ryser implies that there exists a subset

c ⊆ C whose ith row contains exactly m2 − ci cells and whose ith column also contains

exactly m2 − ci cells.

Finally, we set

β = (A\α) ∪ b ∪ b′ ∪ c,

where b′ is the subset of B′ that is the transpose of b. Again one easily checks that α and β

have the required properties.

8 Reduction to self-conjugate partitions

Theorem 6. Let λ = (λ1, . . . , λn) be a wide partition, and let m = λ1. Let µ be the

following partition with 2m+ n parts:

µ = (2m+ λ′
1, . . . , 2m+ λ′

m,m, . . . ,m, λ1, . . . λn).

(In other words, µ is a 2m × 2m square with λ added on the bottom and λ′ added on the

right.) Then µ is a wide partition.

Proof. We use Lemma 4 and prove that for any k, there is a k-stable set in L(Gµ) of size
∑k

j=1 µ
′
j. We distinguish three cases:

Case 1: k ≤ m. We know L(Gλ) has a k-stable set of size
∑k

j=1 λ
′
j . Denote this set by F .

We define a k-stable set F ′ in L(Gµ): First, include (2m + i, j) ∈ F ′ and (j, 2m + i) ∈ F ′

for each (i, j) ∈ F . To define the remaining part of F ′ (in the 2m× 2m square), we need to

find a bipartite graph on 2m+ 2m vertices with a given sequence of degrees on both sides:

m degrees equal to k and the remaining degrees smaller than k.
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Figure 1:
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We find the bipartite graph using the Gale-Ryser theorem (Proposition 1), which may be

restated as follows. There is a bipartite graph with degrees σ1 ≥ σ2 ≥ · · · ≥ σp on the left

and ρ1 ≥ ρ2 ≥ · · · ≥ ρp on the right, if and only if σ and ρ as partitions satisfy

σ′ ≥ ρ.

In this case, we have σ = ρ and σ1 = · · · = σm = k, i.e. ∀i : σ′
i ≥ m ≥ k. On the other

hand, ∀i : ρi ≤ k which implies that σ′ ≥ ρ.

Case 2: m < k ≤ 2m. In this case, we include in F ′ all squares (i, j) with either i > 2m or

j > 2m. Also, we include the squares (m+ i,m+ j) for 1 ≤ i, j ≤ m and squares (m+ i, j)

and (j,m + i) satisfying (j − i) mod m ∈ {0, 1, . . . , k −m − 1}. To complete F ′, we must

find a bipartite graph on m+m vertices (the top-left m×m square) with degrees on both

sides equal to di = m− λ′
i.

Figure 2:
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Again, we apply the Gale-Ryser theorem. We find the complement of the required bipartite

graph, which should have degrees m− di = λ′
i on both sides. Here σ = ρ = λ′ and λ ≥ λ′
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because λ is a wide partition.

Case 3: k > 2m. Here, we include all squares (i, j) with i > m or j > m. To complete

F ′, we must find a bipartite graph on m +m vertices with degrees on both sides equal to

di = min{m,k −m− λ′
i}.

Figure 3:
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Similarly to Case 2, we find the complement of the bipartite graph which should have

degrees m− di = max{λ′
i − (k − 2m), 0} on both sides. Here σ′ = ρ′ is equal to λ without

the first k − 2m rows. Since λ is wide, again σ′ ≥ ρ.

Corollary 3. If the Wide Partition Conjecture holds for self-conjugate wide partitions, then

it is true for all wide partitions.

Proof. Let M be a matroid, λ a wide partition and Ii an independent set given for each

row. We define a self-conjugate wide partition µ containing λ as above. We assign the same

set Ii to each row of λ. We assign arbitrary independent sets to the remaining rows. (If

necessary, we extend the matroid to a sufficiently large M ′ such that A is independent in

M ′ iff A ∩M is independent in M .)

Assume that the Wide Partition Conjecture holds for self-conjugate partitions. Then there

exists a permutation of Ii in each row so that the set in each column is independent.

Obviously, the assignment restricted to λ satisfies the same property.

9 Counterexamples

One might hope that even for wide partitions with more than two part sizes, one could

build the desired chain of k-stable sets greedily, either from the top or from the bottom.
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However, this is impossible, since some maximum ki-stable sets cannot be extended to any

maximum ki+1-stable set and some maximum ki-stable sets do not contain any maximum

ki−1-stable set.

Figure 4:

Figure 4 shows a maximum 4-stable set that is not extendible to any maximum 5-stable set.

Figure 5:

Figure 5 shows a maximum 5-stable set that contains no maximum 4-stable set.

As we mentioned before, uniform stable set covers do not always exist for line graphs of

bipartite graphs. Even for graphs of some “skew shapes” (differences of two partitions),

there may be no chain of k-stable sets along the lines of Lemma 5.

For example, the shaded area in Figure 6 is the unique maximum 2-stable set, while the

shaded area in Figure 7 is the unique maximum 3-stable set. Thus there is no chain of

maximum k-stable sets.

On a different note, it is tempting to try to prove the WPC for free matroids by explicitly

filling in the Young diagram of λ one row at a time or even one entry at a time. Some

such approach may indeed work, but we have tried several such constructions without
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Figure 6:

Figure 7:

success. For example, Sandy Kutin (personal communication) has suggested filling in the

rows one at a time starting from the bottom, and whenever there is a choice, choosing the

lexicographically largest possibility. This method fails for λ = (6, 6, 6, 5, 2, 2), as seen below.

? ? ? ? ? ?
4 6 5 1 3 2
6 5 4 3 2 1
5 4 3 2 1
1 2
2 1
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