
OAK RIDGE
NATIONAL
LABORATORY

c
MANAGED BY
MARTIN MARlElTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

ORNL/TM-13060

F.1 E c E I v ED
OCT 1 3 1995
O S T I

2-D Image Segmentation Using
Minimum Spanning Trees

Ying Xu
Edward C. Uberbacher


~~~~~~ 

This report has been reproduced directly from the best available copy. 

Available to DOE and DOE contractors from the Office of Scientific and Tech& 
cal Information, P.O. Box 62, Oak Ridge, M 37831; prices availablo from (615) 
576-8401. FTS 626-8401. 

Available to the public from the National Technical Information Service, U.S. 
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. 

~ 

This report was prepared as an account of work sponsor& by an agency of 
the United States Government. Neither :he United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or 
implied, cr assumes any legal IiabiIiQ or responsibility for the accuracy, com- 
pletenoss. or usefulness of any information, apparatus, product, or process dis- 
closed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product. process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constk 
tute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Computer Science and Mathematics Division 

2-D Image Segmentation Using Minimum 
Spanning Trees 

Ying Xu and Edward C. Uberbacher 

DATE PUBLISHED - September 1995 

Research supported by the Office of Nonproiiferation and National Security 
and by the Office of Health and Environmental Research, 

U.S. Department of Energy, and the 
Laboratory Directed Research and Development Programs 

Prepared by the 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 37831 
Managed by 

LOCKHEED MARTIN ENERGY SYSTEMS, INC. 
for the 

U.S. DEPARTMENT OF ENERGY 
under Contract No. DE-AC05-840R21400 

PH STEW OISTRIBUTION OF THIS DOCUMENT IS UNLlMITEa 





ABSTRACT 

1. Introduction 

2. Spanning Tree Representation of an Image 

3. Tree Segmentation Algorithm 
3.1. Statement of the problem 
3.2. A dynamic programming algorithm 

4. Heuristic Implementations 
4.1. Heuristic #1: Using penalty functions 
4.2. Heuristic # 2  Linearization of a spanning tree 

5. Applications and Discussions 

6. Conclusion 

Acknowledgements 

References 

V 

2 

6 
6 
7 

9 
9 
10 

11 

12 

12 

12 





ABSTRACT 

This paper presents a new algorithm for partitioning a gray-level image into connected 
homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a 
minimum spanning tree representation of a gray-level image, it reduces a region partitioning 
problem to a minimum spanning tree partitioning problem, and hence reduces the compu- 
tational complexity of the region partitioning problem. The tree-partitioning algorithm, in 
essence, partitions a minimum spanning tree into subtrees, representing different homoge- 
neous regions, by minimizing the sum of variations of gray levels over all subtrees under 
the constraints that each subtree should have at least a specified number of nodes, and 
two adjacent subtrees should have significantly different average gray-levels. Two (faster) 
heuristic implementations are also given for large-scale region partitioning problems. Test 
results have shown that the segmentation results are satisfactory and insensitive to noise. 

V 



1 Introduction 

Image segmentation is one of the most fundamental problems in low-level image processing 
and pattern recognition. The problem is to partition (segment) an image into connected 
regions of similar textures or similar colors/gray-levels, with adjacent regions having sig- 
nificant dissimilarity. Many algorithms have been proposed to  solve this problem6. Most 
of these algorithms can be classified into two classes: (1) boundary detection-based ap- 
proaches, which partition an image by discovering closed boundary contours, and (2) region 
growing and clustering-based approaches, which group “similar” (adjacent) pixels into dif- 
ferent regions. Region-based approaches can be further classified into two classes, those 
using global information to do segmentation and those using only local information. Many 
of the global information-based segmentation algorithms are very computationally time- 
consuming, while the local information-based approaches are usually sensitive to  noise. 

In this paper, we present a new region-based segmentation algorithm based on a min- 
imum spanning tree representation of a gray-level image and a tree partitioning algo- 
rithm. The algorithm partitions a gray-level image into a number (not pre-determined) 
of arbitrarily-shaped regions by globally optimizing an objective function, which measures 
similarities among pixels of each partitioned region, under constraints which prevent from 
partitioning a homogeneous region into smaller regions. The computational efficiency of the 
algorithm is the result of a representation of the 2-D image as a tree structure over the pix- 
els of the image, which effectively reduces the region partitioning problem to a simpler tree 
partitioning problem, Test results have shown that the algorithm is robust in the presence 
of noise. 

The basic idea of the algorithm is as follows. It first builds a weighted planar graph 
from the given 2-D gray-level image, and then constructs a minimum spanning tree of the 
graph in such a way that a connected homogeneous region, a region with similar gray levels, 
corresponds to one subtree of the spanning tree. The tree-partitioning algorithm partitions 
a tree into a set of subtrees, whose nodes have similar gray levels. In order to  prevent the 
algorithm from forming many small regions or partitioning one homogeneous region into a 
number of smaller ones, we require that each partitioned region have at least a specified 
number of pixels and that two adjacent regions have average gray levels that differ by more 
than a specified value. The algorithm uses dynamic programming to construct an “optimal” 
segmentation. If we use Z gray levels to represent an image of N pixels the algorithm runs 
in O(max{(N- IC), l}Z(log(Z) + IC2)) time and O(N1CZ) space, where K, li << N ,  is the 
size of a smallest partitioned region. 

The development of this algorithm is a part of the visGRAIL project at Oak Ridge 
National Lablo. visGRAIL is a multi-sensor/neural network based satellite imagery pro- 
cessing/pattern recognition system. The system recognizes areas of significant structure in 
satellite imagery by recognizing regular features from edge detection and geometric shapes 
and by combining the features using a neural network system. In visGRAIL, the region seg- 
mentation algorithm serves as a front-end of the shape recognition subsystem and also serves 

1 



as a robust edge-detection subsystem (using the boundaries of the partitioned regions). 
This paper is organized as follows. Section 2 explains the minimum spanning tree 

representation of a gray-level image. Section 3 presents a tree partitioning algorithm using 
a dynamic programming approach. Section 4 gives two faster heuristic implementations of 
the algorithm given in Section 3 for larger images and images with special features. Section 
5 describes some applications of the segmentation algorithms. 

2 Spanning Tree Representation of an Image 

As a powerful graph-theoretic concept, minimum spanning trees have long been used in 
pattern recognition and classification p r o b l e m ~ ~ * ~ > ~ .  In this section, we give a minimum tree 
representation of a gray-level image. 

We assume that an image is given as a p x q array and each pixel has an integral gray 
level E [O ,K] ,  Le., the whole gray scale [O, 11 is divided and discretized into K -I- 1 gray 
levels. For a given 2-D gray-level image I ,  we define a weighted planar graph G ( I )  = 
(V, E ) ,  where the vertex set V = { all pixels of I } and the edge set E = {(u,v)Iu,v E 
V and distance(u, v) 5 4 }, where distance(u, v) is the Euclidean distance in terms of 
the number of pixels; each edge ( u , v )  E E has a weight w(u,v) = IG(u) - G(v)l, with 
G ( x )  E [O,K] representing the gray level of a pixel x E I .  Note that G(I )  is a connected 
graph, i.e., there exists a path between any pair of vertices, and any vertex of G ( I )  has at 
most 8 neighbors. 

A spanning tree T of a connected weighted graph G is a connected subgraph of G such 
that (1) T contains every vertex of G, and (2) T does not contain cycles. A minimum 
spanning tree is a spanning tree with a minimum total weight. 

A minimum spanning tree of a general weighted graph can be found using greedy 
methods', as illustrated by the following strategy: the initial solution is a singleton set 
containing an edge with the smallest weight, and then the current partial solution is repeat- 
edly expanded by adding the next smallest weighted edge (from the unconsidered edges) 
under the constraint that no cycles are formed until no more edges can be added. For 
the above defined planar graph G(I ) ,  a minimum spanning tree can be constructed in 
O(llVll log(llVll)) time and O(llVll) space', where 11 - 11 denotes the cardinality of a set. 

We have used Kruskal's algorithm5 to construct minimum spanning trees. The following 
gives a pseudo-code of the algorithm. Let the given graph be G = (V ,E)  and T be the 
(partial) solution to the minimum spanning tree problem. 

T + 0; S +- 0; 
construct a priority queue Q containing all edges of E ;  
for each vertex v E V do add {v} to S; 
while IS1 > 1 do 
begin 

choose (v,w), an edge in Q of smallest weight; 

2 



delete ( v ,  tu) from Q; 
if ZJ and w are in different sets s1 and sg in S then 
begin 

replace s1 and s2 in S by s1 U s2; 
add (v, w) to  T; 

end 
end 

The main reason we have used Kruskal’s algorithm to  construct minimum spanning trees 
is that the algorithm tends to  group pixels of similar gray levels (edges with small weights) 
together. As a (weak) argument in support of this, we have the following lemma. 

Lemma 1 For a non-negatively weighted connected graph G and its minimum spanning 
tree T constructed by Kruskal’s algorithm, i f  G, is the subgraph of G, formed by deleting 
all non-zero weight edges, and C is a connected component of G,, then the subgraph of T 
induced by the vertices of C is connected. 

Proof. This follows directly from the fact that Kruskal’s algorithm always chooses the edge 
of (globally) smallest weight among the remaining candidates as the next edge. 0 

This lemma implies that if an image contains a number of objects, each of which has a 
uniform gray level, then the pixels representing each object will form a (connected) subtree 
of the spanning tree obtained by Ihskal’s algorithm. 

The following example illustrates the ideas of representing a gray-level image by a min- 
imum spanning tree. Figure l (a)  is a graph representation of an image of a letter “T” on 
a uniform background with some noise in both the letter and the background. Figure l(b) 
is the minimum spanning tree obtained by Kruskal’s algorithm. As we can see from Figure 
l(b), the letter “T” (slightly deformed) and the background form two (connected) subtrees 
of the minimum spanning tree (even in the presence of noise) when we cut the spanning 
tree at “+”. It is not difficult to see that a tree partitioning algorithm as outlined in the 
Introduction Section partitions the image into two regions, the letter “T” and the back- 
ground, assuming that areas formed by noise are all smaller than the (required) smallest 
partitioned region. 

In general, we would expect that if an image consists of a number of objects represented 
by homogeneous regions Kruskal’s algorithm would build a minimum spanning tree so that 
each object forms one (connected) subtree. In the following section we present a tree 
partitioning algorithm that partitions a tree into subtrees based on the similarities of gray 
levels. 

3 



Figure 1: (a) Each circle (node) represents a pixel. Each node has at most four neighbors 
as represented by the edges (we use four, instead of eight, neighbors for the simplicity of 
drawing). The number attached to each edge is the weight of the edge. Letter “T” is 
represented by the solid circles in the middle of the image with some added noise. 

4 



Figure 1: (b) Dark lines represent the minimum spanning tree obtained by Kruskal’s algo- 
rithm. If the tree is cut at “+” we get the letter “T” and the background as two (connected) 
sub trees. 

5 



3 Tree Segmentation Algorithm 

We first give a formal definition of the tree segmentation problem, and then present a 
dynamic programming algorithm to solve the problem. 

3.1 Statement of the problem 
Given is a tree 2‘. Each vertex v of T has a gray level G(v)  E [O,/c]. We want to  partition 
T into a set of subtrees Ti, i.e., T = UiTi and T; n Tj = 0 for i # j ,  such that 

where ci is the average gray level of T;, zi is the j t h  vertex of T;, T; and Til are adjacent 
subtrees, and K and D are two (application-dependent) parameters, both of which are 
positive numbers. 

One of the difficulties in (efficiently) solving this problem is the need for calculating 
averages of partitioned subtrees. In this paper we solve a closely related problem formulated 
as follows, which does not involve calculating averages explicitly. We divide the gray scale 
into Z equally-sized intervals. Now the problem is redefined to find a partition T = Ui  Ti and 
an assignment g; = g ( T i ) ,  where g is a mapping from subtrees to  the centers of gray-scale 
intervals, so the following function is minimized. 

minimize Ci C j ( g ;  - ~(4))~ 

To see the relationship between the two problems consider the following problem. We 
modify problem (P) by replacing centers of gray-scale intervals by the set of averages of 
gray levels of all possible subtrees Ti. It can be shown that the modified problem ( P )  is 
equivalent to the first problem by simply checking the first and second derivatives of the 
objective function of the modified (P) on g;’s. So we can consider the (P) is a “discreti~ed~~ 
version of the modified problem. As Z gets larger the solution to  (P) is approaching to the 
solution of the first problem as illustrated by the following statements. (1) If Ti is one of 
the partitioned subtrees in a minimum solution to the problem (P) then 19; -c;l 5 1/Z; (2) 
Let ( g i , c ; )  denote the corresponding relation of g; and ci. If { g i }  form a feasible solution 
(see Section 3.2) to (P) then { g i }  form a solution to the first optimization problem after 
changing its constraint (2) to IGi - G;tI 

Section 3.2 gives a dynamic programming algorithm to  solve the “discretized” tree par- 
titioning problem ( P ) .  

D - 1/Z, and vice versa. 

6 



3.2 A dynamic programming algorithm 

We first define some notation. Any partition T = U; T; with an associated assignment (from 
subtrees to  the centers of gray-scale intervals) g; = g(T;) is called a feasible solution to the 
optimization problem (P) if constraints (1) and (2) are satisfied. For any feasible solution, 
a vertex 21 of subtree T; is said to  be labeled in 9; if g; is the center value of the interval 
assigned to  T;. 

The tree-partitioning algorithm first converts a tree into a rooted tree by selecting a 
pixel from one corner of the image (or any other pixel) as the root. Now the parent-children 
relation is well defined. For each tree vertex, the algorithm constructs a minimum solution 
on the subtree rooted at the vertex based on the minimum solutions to  the subtrees rooted 
at its children. It extends a partial solution in such a bottom-up fashion and stops when it 
reaches the root. 

We label the vertices of T consecutively from 1 to IlTll (the labels are given to tree 
vertices in any arbitrary order except that 1 is assigned to the root). We use Ti to denote 
the subtree rooted at vertex i ,  also referred as subtree Ti. Note the difference between Ti  
and Ti, the later denoting one of the partitioned subtrees. 

Let score(i, k , g ; )  denote the minimum value of the objective function among all possible 
partitions and associated assignments on subtree Ti  which satisfy both constraints (1) and 
(2) except that constraint (1) can be violated for the partitioned subtree containing i, which 
has at least k ,  0 5 k 5 I<, vertices and all are labeled in 9;. If we define scores() to be +oo 
for all undefined values (note scores() is not defined everywhere by the above definition) 
we have the following lemma. 

I 

Lemma 2 (a) If il, i p ,  ... ,in are the children of vertex i, n 5 8 ,  and 1 5 k 5 IC, we have 

where D ( i )  is the set of all i's descendants, i is defined to be E D ( i )  and score(ij, 0,g;) is 
defined to be 

(b) min, score(1, K , g )  is a minimum solution of (P) ,  where 1 represents the tree root. 

Proof. The essence of this lemma is the recursive relation of sco~es() 's  on a tree vertex 
and its children. This can be checked by an inductive argument on the number of children. 
0 

Based on Lemma 1, we can solve the optimization problem (P) by calculating score() 
for each tree vertex in a bottom-up fashion using the recurrence from Lemma l(a),  and 
stopping at the tree root. To get the tree partition corresponding to mingscore(l,K,g), 
some simple bookkeeping needs to be done while calculating score()'s. 

7 



The pseudo-code to calculate score()'s is given below. We omit further details on the 
bookkeeping for recovering the tree partition. The input to the algorithm is the minimum 
spanning tree T obtained by Kruskal's algorithm. To efficiently calculate the recurrence of 
Lemma l(a), we need to introduce an auxiliary quantity scoretemp(i,k,g) for each i , k , g .  
For the simplicity of discussion, in the following we use g E [1,Z] to denote that g is the 
center of one of the gray intervals from 1 through Z. 

~~ ~ ~~ ~ 

Procedure caZscores( i) 
1. if vertex i has more than Ir' descendants t hen  
2. begin 
3. 
4. 
5. for  j = 1 s tep  +1 until n do 
6. for g = 1 step +1 until Z do 
7. for  k =  1 step +1 until  Ir' do 
8. 
k2,kl,k2 L 0; 
9. for k = 1 step +1 until  lr' do 
10. score(i, k,g) + minj>k{SCoretemp(i,j,g) - + (9 - G ( i ) ) 2 } ;  
11. for g = 1 step +1 until  Z do 
12. 
13. e n d  
14. else 
15. begin 
16. for g = 1 step +1 until  Z do 
17. for k = 1 s tep  +1 until K do 
18. 
19. 
20. e n d  

for each of the n children, ij, of i do call caZscores(ij); 
set SCoTetemp(i,k,g) c 0, for all k E [l,K], and g E [l,Z]; 

scoretemp(i, k,g) + min{scoretemp(i, k1,g) + score(ij, k2,g)}, for k = kl + 

set score(i,O,g) + minscore(i,li,g'), for 1s'- gl 2 D,g' E [1,Z]. 

if I = ~ I T ' I I  t h e n  set score(i, k,g) c CpED(i)(g - ~ ( p ) ) 2 ;  
else set score(i, k,g) t +m. 

Theorem 1 shows the efficiency of our tree partitioning algorithm. 

Theorem 1 min, score( 1, K ,  g) can be correctly calculated by the above algorithm in O(max 
{(llTll - K ) ,  l}Z(log(Z) + IC2)) time and O((llTllZ1r') space. 

Proof. The correctness of the algorithm can be checked easily based on Lemma 1. 
It takes O(IlTII) time to calculate the numbers of descendants for all the tree vertices 

using a post-order traversal on the tree. For each tree vertex, Line 4 takes O(ZK) time 
and space; Lines 5 - 8 take 0(K2Z) time and O(ZIr') space; Lines 9 - 10 take O ( K  + 1) 
time and space; and Lines 16 - 19 take O(KZ) time and space. To calculate Lines 11 - 12 
efficiently we can use a seurch tree data structure' to represent the list {score(i ,  0, l), ..., 

8 



score(;, 0,Z)). So Line 12 can be calculated using two search tree operations, which takes 
O(log(Z)) time and constant space. 

To initialize the search tree data structure takes O(Z) time and space. Lines 2 - 13 
are executed O([lTII - K) times and Lines 15 - 19 are executed O([lTII) times. Hence the 
theorem follows. 0 

In many applications, Z is at most 256, and hence can be considered as a constant. So 
the computational resources used are O(max((llTl1- I<), 1}K2}) in time' and O(llTllIi) in 
space. 

4 Heuristic Implementations 

The algorithm presented in Section 3 works effectively for images of moderate sizes, but 
when images get larger, perhaps 1000x1000 pixels or above, the computational time and 
memory required can become too large for practical applications. This section gives two 
faster heuristic implementations of the algorithm of Section 3, which avoid using I<, the 
smallest region size, as a parameter. 

4.1 Heuristic # 1: using penalty functions 
One way to avoid using the amount of memory and time required for the above algorithm 
is to  use penalty functions to approximately realize the requirement of each subtree having 
at least K vertices, i.e., we penalize each time a division needs to  be done. Instead of 
minimizing the above objective function we solve the following problem. Partition T into 
Ui=* Ti and find assignments gi to each T; to minimize the following function. 

minimize 

subject to: 

where penalty-factor is a fixed positive integer, which can be adjusted based on the practical 
applications. 

'This time bound can be further improved to O(max{(llTII-K), l}Klog(K))) using a theoretically faster 
algorithm to solve the following convolution problem. Let A and B be defined as 

We want to calculate C, with each of C's element c i ,  i E [O,n - 11, defined as 

ci = min aj + b k .  

Using a technique similar to Fast Fourier transform (FFT), this problem can be solved in O(nlog(n)) time'. 

i= j + k ,  j , k l O  

9 



This problem can be solved as follows. Define score(i, g) to be the minimum score of the 
objective function of (I” among all feasible solutions over subtree Ti under the constraint 
that the vertex i is labeled in g. In the following, we omit discussions on cases where 
llT’ll < K .  

For each tree vertex i, and its children il, i2 ,  ..., in, we can show the following. 
n 

score(i, g >  = min{score(ij ,g),  min scoTe(ij, g’) + penalty-factor) + (g - G(i>l2 ,  
j=1 I9-9’lLD 

and min, score(1,g) corresponds to the minimum solution of (P’). By a similar discussion 
to the one in Theorem 1, we have the following result. 

Theorem 2 The tree partitioning problem using the penalty-function heuristic can be solved 
in O(llTllZlog(Z)) time and O(llTllZ) space. 0 

4.2 

Another heuristic we have used for images with special features is to first “linearize” the 
tree T and then solve a one-dimensional list partitioning problem. Since some relational 
information among pixels may be lost during the linearization this strategy only works 
well when the given image is structurely not very complicated. For example, it works very 
effectively when an image has a number of objects in the same background and no objects 
contains other objects. 

The linearization of a tree is achieved by constructing a mapping from the tree vertices 
to a linear list. We achieve this by first converting the tree into a rooted tree as before, 
and then labeling each tree vertex using the depth-first search order from 1 to  IlTll. By 
ordering the tree vertices in the increasing order of their mappings, we get a linearization of 
the tree (in the following we still use T to represent the mapped list). A useful property of 
this mapping is that when the image is not very complicated each subtree representing an 
object corresponds a very small number of sub-intervals of [l, ~ ~ T ~ ~ ] .  In the ideal situation, 
each object only corresponds to one sub-interval and the background may be divided into 
a number of sub-intervals. 

When this premise holds for a practical application the following algorithm for one- 
dimensional path segmentation has proven to be effective. 

Now we give the formulation of the 1-D list segmentation problem. We want to  partition 
T = UT; and find an assignment y; = g(T;), so the following function is minimized. 

Heuristic # 2: linearization of a spanning tree 

minimize Ei Ejki - G(i)12  

subject to: (1) llTill 2 IC7 
(2) 1% - s:l L D. 

Let score( i ,g ,s)  denote the minimum score of the objective function of (P”) among 
all feasible solutions on the sublist Ti which satisfy both constraints (1) and (2) except 

10 



constraint ( 1 )  can be violated for the partitioned sublist containing i when s = 0, s is either 
0 or 1. We can show the following. 

score(i,g,O) = min {score(i - l ,g ,O),score( i -  1 ,g‘ ,  1 ) )  + ( g  - o(i))2, 
Id-, I ZD 

h‘-1 

and min,,, score ( l , g , s )  corresponds to the minimum solution of (P”). We have the follow- 
ing. 

Theorem 3 The tree partition problem can be solved using the linearization heuristic in 
O( llTllT log(Z)) time and O( llTllZ) space. 0 

5 Applications and Discussions 

We have implemented the algorithms presented in the previous sections in the visGRAIL 
system to  process satellite imageries and extract features for high-level pattern recognition. 
In one application of the minimum spanning tree representation and the tree partitioning 
algorithms we extracted geometric shape information from different regions (objects). In 
another application we used the region segmentation algorithms to  detect edge lines. We 
have combined traditional edge detection algorithms2 and the region segmentation result 
to  obtained more reliable edge lines. A simple way for such an application is to  use a pixel- 
by-pixel “and” operation on the region boundaries and edges detected by edge detection 
algorithms after some dilation/erosion operations4. The rationale is that edges obtained by 
edge detection algorithms represent pixels in gray-level local optima and region boundaries 
represent delineation lines of regions while true edge lines should satisfy both criteria. 

While the heuristic implementation using linearization is the weakest algorithm the 
performances of the other two algorithms are comparable. In cases with no prior knowledge 
about the minimum size of an object to be recognized, the heuristic implementation using 
penalty functions may even give better segmentation results. In general, the segmentation 
performance of these two algorithms are very adequate for the application of visGRAIL to 
date. 

The Figure 2 gives an example of image segmentation by the heuristic algorithm given 
in Section 4.1. 

Some research work is under way to study the limitations of our image segmentation 
algorithm under different types of noise. In the following we show two test cases. In these 
tests, we used an artificially-made example consisting of two letters, “T” and “E”, in a 
uniform background. Both letters are in gray level 100 and the background is in gray level 
150 (on a 0 to  255 scale). Two types of noise are added separately to the given image and 
the segmentation results in the presence of noise are shown. 

11 



In the first test, we use the following model to generate noise. Each pixel of the given 
image has probability P to keep its current gray level and probability 1 - P to randomly 
take a gray level E [0,255]. Figures 3 and 4 show the results for P = 0.65 and P = 0.3, 
respectively. 

The second test shows the segmentation results in the presence of additive Gaussian 
noise. We add to  each pixel a random integral value according to  the censored normal 
distribution N ( 0 , a 2 )  to  [-128, 1281. Figures 5 and 6 give the test results for Q = 40 and 
Q = 50, respectively, after a preprocessing of averaging (we average the gray levels of each 
pixel and its 8 neighbors). 

Computational efficiency is gained by reducing a region partitioning problem to a tree 
partitioning problem. But we may have to  pay for this gain by lossing some (region) parti- 
tioning accuracy in some very noisy imagery, as indicated by some preliminary tests we have 
conducted. Part of the reason for lossing some accuracy is due to the “incorrect” configu- 
ration of the minimum spanning tree constructed, e.g., an “object” may be represented by 
more than one (not connected) subtrees due to  noise as illustrated in Figure 6 .  Our current 
scheme in assigning weight to  each edge uses only local information, which is vulnerable to  
noise. Some study is currently under way to  make the algorithm even less sensitive to  noise 
in the level of tree construction. 

6 Conclusion 

We have proposed and implemented an effective and efficient 2-D image segmentation al- 
gorithm. Additional theoretical and empirical analysis is underway to  assess limitations 
of the algorithm in the presence of noisy imagery. Although the algorithm is presented to  
solve 2-D image segmentation problems it can be applied to 3-D gray level images without 
increasing any of the asymptotic complexity results. 

Acknowledgements 

This research was supported by the United States Department of Energy, under contract 
DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. 

The authors would like to  thank Dr. Reinhold C. Mann and Dr. Victor Olman for 
many helpful discussions related to  the work presented in this paper and for their critical 
review of the manuscript. The authors also want to express their great appreciation to  Ron 
Lee for answering their endless software/system questions during the implementation of the 
algorithms. 

References 

[l] AHU A. V. Aho, J. E. Hopcroft, and J. D. Ullman (1974), The Design and Analysis 
of Computer Algorithms, Readings, MA, Addison-Wesley Publishing Company. 

12 



[2] J. F. Canny (1986), “A Computational Approach to Edge Detection”, IEEE Trans- 
action on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679 - 
698. 

[3] R. 0. Duda and P. E. Hart (1973), Pattern Classification and Scene Analysis, New 
York, John Wiley and Sons. 

[4] R. C. Gonzalez and P. Wintz (1987), Digital Image Processing (second edition), Read- 
ings, MA, Addison-Wesley Publishing Company. 

[5] J. B. Jr. Ihskal(1956),  “On the shortest spanning subtree of a graph and the traveling 
salesman problem”, Proc. Amer. Math Soc, Vol. 7, No. 1, pp. 48 - 50. 

[6] N. Pal and S. Pal (1993), “A review on image segmentation techniques”, Pattern Recog- 
nition, Vol. 26, No. 9, pp. 1277 - 1294. 

[7] N. S. V. Rao (1995), Private communication. 

[SI R. E. Tarjan (1983), Data Structures and Network Algorithms, Philadelphia, PA, So- 
ciety for Industrial and Applied Mathematics Press. 

[9] G. Toussaint (ed.) (1985), Computational Geometry, North-Holland, Elsevier Science 
Publishers. 

[lo] E. C. Uberbacher, Y .  Xu, M. Beckerman, C. Glover, R. Lee and R. C. Mann (1995), 
“Analysis of Satellite Imagery Using Multi-sensors/Neural Network Systems”, Submit- 
ted to Applied Imagery Pattern Recognition 95’. 

13 



Figure 2: (a) is a 496x494 gray level image. 

14 



Figure 2: (b) is the result of image segmentation. 

15 



Figure 2: (c) shows the boundaries of the segmented regions. 

16 



Figure 3: The image with noise and segmentation results for P = 0.65. 

17 



Figure 4: The image with noise and segmentation results for P = 0.3. 

18 



Figure 5:  The averaged noisy image and segmentation results for B = 40. 

19 



J 

Figure 6: The averaged noisy image and segmentation results for c7 = 50. 

20 



INTERNALDISTRIBUTION 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

8-10. 
11. 
12. 
13. 
14. 
15. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 
48. 

49. 

B. R. Appleton 
J. Barhen 
M. Beckerman 
J.R Einstein 
C. W. Glover 
X Guan 
J. P. Jones 
R. C. Mann 
S. Matis 
S. k McKenney 
R. J. Mural 
E. M. Oblow 
C. E. Oliver 

16. S. Petrov 
17. N.S.V. Rao 
18. D. B. Reister 
19. M. B. Shah 
20. R E Sincovec 

21-22. E. C. Uberbacher 
23-27. X Ying 
29. EPMD Report Office 

30-31. Laboratory Records Department 
32. Laboratory Records, ORIVL-RC 
33. Document Reference Section 
34. Central Research Liirary 
35. ORNL Patent Office 

EXTERNALDISTRIBUTION 

Office of Assistant Manager for Energy Research and Development, Oak Ridge 
Operations, U.S. Department of Energy, P.O. Box 2008, Oak Ridge, TN 37831 
Martha A. Krebs, Director, Office of Energy Research, FORS, ER-1, Dept. of 
Energy, Washington, DC 20545 
Mr. Joseph L. Mundy, Senior Research Fellow, General Electric Corporate 
Research and Development Center, 1 River Road, Schenectady, N Y  12309 
Dr. Rama Chellappa, Center for Automation Research, University of Maryland, 
College Park, MD 20742 
John Wooley, Acting Director, Office of Energy Research, FORS, ER-1, U.S. 
Department of Energy, Washington, DC 20545 
Mr. William Glatz, NPIC, Room 3N500, National Exploitation Laboratory, P.O. 
Box 70967 Southwest Station, Washington, DC 20024-0%7 
M. D. Zorn, Lawrence Berkeley Laboratory, MS SOB-3216, 1 Cyclotron Road, 
Berkeley, CA 94720 
Dr. Thomas Strat, Software & Intelligent Systems Technology Office, Advanced 
Research Projects Agency, 3709 North Fairfax Drive, Arlington, VA 22203 
Mr. Donald Gerson, Office of Research and Development, P.O. Box 4132, 
Washington, DC 20505 
Dr. Kevin Boywer, University of South Florida, 4202 East Fowler Avenue, Tampa, 
FL 33620-5399 
Dr. Sudeep Sarkar, Department of Computer Science and Engineering, University 
of South Florida, 4202 East Fowler Avenue, ENB118, Tampa, FL 33620-5399 
Mr. John Blair, TBX Technologies, 25 Moore Road, Wayland, MA 01778 
Dr. Avi Kak, Department of Electrical Engineering, Purdue University, Lafayette, 
IN 47907 
Dr. Peter Allen, Department of Computer Science, Columbia University, 450 
Computer Science Bldg., New York, NY 10027 

21 



50. 

51. 
5 2  

Dr. J. K Aggarwd, Computer and Vision Research Center, University of Texas, 

Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831 
Dr. 0. P. Manley, Division of Engineering and Geosciences, ER-15, Department 
of Energy, Washington, DC 20874-1290 

Amtin, TX 78712-1084 

22 


	2 Spanning Tree Representation of an Image
	3 Tree Segmentation Algorithm
	3.1 Statement of the problem
	3.2 A dynamic programming algorithm

	4 Heuristic Implementations
	4.1 Heuristic #1: Using penalty functions
	4.2 Heuristic #2 Linearization of a spanning tree

	5 Applications and Discussions
	6 Conclusion
	Acknowledgements
	References

