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Abstract 

This paper presents a new color-lighting/stereo method for 3D range data acquisition by combining color structured lighting and 
stereo vision. A major advantage of using stereo vision together with color stripes lighting is that there is no need to solve the problem 
of finding the correspondence between the color stripes projected by the light source and the color stripes observed in the images. That 
is, the more difficult problem of finding the correct color stripe correspondence problem between the light source and the image is 
replaced by an easier image-to-image stereo correspondence - which is not only easier than the above lighting-to-image correspon- 
dence problem, but also easier than the traditional stereo correspondence because a good color pattern has been projected onto the 
object. Another advantage of using stereo vision is that there is no need to calibrate the position and orientation for each of the 
projected light stripes in 3D space. In this work, a pattern of color stripes is projected onto the objects when taking images, after which 
edge segments are extracted from the acquired stereo image pair, and then used for finding the correct stereo correspondence. A 
systematic procedure is proposed in this paper for generating good color stripe patterns. To find the correct stereo correspondence, a 
global search method based on in&a-scanline dynamic programming is adopted. A winner-take-all scheme using edge-based inter- 
scanline consistency is then proposed to refine the results obtained from intra-scanline search. Experimental results have shown that 
the proposed method can successfully generate a dense range map with only one pair of stereo images. 

Keywords: Range data acquisition; Stereo vision; Structured lighting 

1. Introduction 

Aquisition of 3D range data has received considerable 
attention in recent years [l-7]. The most popular 
approach in structured lighting is to use a single-line 
stripe. The advantage of this approach is that it greatly 
simplifies the matching problem, but this approach has 
the drawback that only one single line of 3D data points 
can be obtained with each image shot at one time. To 
speed up the acquisition of 3D range data, one can adopt 
a multiple-line stripe pattern instead. However, the 
matching problem in the multiple-line case becomes 
much more difficult. One possibility is to use color 
information to simplify this difficult matching problem 
[ 1,8,9]. In this work, we have successfully developed and 
implemented a new method for 3D range data acqui- 
sition by combining color structured lighting and stereo 
vision. In the proposed range data acquisition system, we 
project a pattern of color stripes onto the objects because 
chromatic information can help a lot in solving the 
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correspondence problem. Once the correspondence 
problem is solved, the 3D range data can then be com- 
puted by using triangulation. To determine stereo corres- 
pondence correctly, the projected color pattern should 
provide enough texture information for stereo matching. 
Such a good color pattern can be generated by the pro- 
cedure described in Section 2. 

Among the existing methods for range image acquisi- 
tion, the technique proposed by Boyer and Kak [l] is 
most similar to our approach. However, their approach 
used only one single camera together with a calibrated 
color light source. In a single-camera approach, it is 
required to find the correspondence between the color 
stripes projected by the light source and the color stripes 
observed in the image. In general, due to different reflec- 
tion properties (or surface albedos) of the object surface, 
the color of the stripes recorded by the camera is usually 
different from that of the stripes projected by the light 
source - even in the case that the objects are perfectly 
Lambertian. For example, a green light stripe projected 
by the light source may be observed as a blue one after 
reflection. Hence, it is difficult to solve the above 
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lighting-to-image correspondence problem in many 
practical applications. On the other hand, this does not 
affect our color-lighting/stereo approach if the object 
is Lambertian, because the color observed by the two 
cameras in our system will be the same, even though 
this observed color may not be exactly the same as 
the color projected by the light source. Therefore, by 
adding one more camera, we can replace the more diffi- 
cult problem of lighting-to-image correspondence by an 
easier problem of image-to-image stereo correspondence. 
Here, stereo correspondence problem is also easier than 
the traditional stereo correspondence problem because a 
good color pattern has been projected onto the object. 
Notice that, for the Boyer and Kak approach, the above 
color correspondence problem between projection and 
observation becomes even more severe when the object 
surface has richer texture or color information. As for 
our color-lighting/stereo approach, the color and texture 
of the object surface will not hold up the stereo matching 
process so long as they do not blot out the texture pattern 
projected by the structured lighting. 

Another advantage of our approach is that there is no 
need to calibrate the position and orientation for each of 
the projected light stripes in 3D space. In other words, 
camera is the only device needed to be calibrated. Since, 
in any case, we have to calibrate at least one camera for 
most triangulation methods, the effort of calibrating the 
second camera is trivial. On the other hand, accurate 
calibration of the structured light pattern in 3D space 
is not an easy task in general. 

Compared to the passive-stereo approach, our color- 
lighting/stereo approach can produce artificial textures 
on the object surfaces by projecting a color stripe 
pattern. Hence, the stereo-matching problem can be 
solved in a more stable manner. Notice that for any 
range acquisition method using triangulation (either 
the single-camera approach or the stereo approach), 
occlusion is always a significant issue to be considered 
and is, in principle, difficult to solve. In our system, a 
global stereo matching technique (i.e. the intra-scanline 
search method) is used for stereo matching, and a new 
cost function has also been proposed for dealing with 
occlusion. With the proposed method, the problem of 
occlusion can be solved to some extent. In this work, 
edge-based stereo matching is used because the color 
structured pattern is designed to contain many sharp 
edges. These sharp edges are utilized to improve the 
accuracy of our range data acquisition system. 

This paper is organized as follows. Section 2 presents a 
systematic method for generating a good color struc- 
tured pattern. In Section 3, the intra-scanline search 
followed by a winner-take-all scheme using edge- 
based inter-scanline consistency is proposed for reliable 
stereo matching. Some experimental results are shown 
in Section 4. Section 5 gives some conclusions and 
discussions. 

2. Generation of color structured pattern 

Experimental results [8] have shown that HSI model 
[lo] is a good color model for stereo matching. Hence, 
we use the HSI model for both the color pattern genera- 
tion and for the matching error computation in this 
work. In general, we want to design a color pattern 
which can satisfy the following two requirements: (1) 
the goodness of edge detection result directly affects the 
quality of the obtained range data because edge-based 
stereo vision is used. The pattern should have strong 
contrast at the borders of any two adjacent stripes. (2) 
The correlations between any two segments of a conse- 
cutive sequence of light stripes should be as small as 
possible, so that false stereo matching can be avoided. 

The main idea used for color pattern generations is as 
follows. We first generate a sequence of light stripes with 
brighter colors, called C,, C,, . . . , C,. To increase the 
intensity variation between adjacent light stripes, a 
black stripe B is inserted between each Ci and Ci+l 
(i= 1,2,... , N - 1). Hence, the final generated pattern 
is C1,B,C2,B,C3 ,..., B,CN. 

To ensure each Ci is brighter enough such that the 
border between each Ci and B can be easily extracted 
by the edge detection procedure, the intensity value of 
each Ci is set to be larger than a threshold Z,,,in. On the 
other hand, if the intensity value of Ci is too large (i.e. Ci 
is nearly white), the hue of Ci in the HSI model carries 
little information. Therefore, we also want to generate 
colors with intensity values smaller than another thresh- 
old I,,,. Hence, in general, the intensity of Ci is des- 
ignated to within the range [Zmin,Zmax]. A random 
number generator is used to generate the intensity values 
in this range. 

A trial-and-error approach is used to select a pattern 
such that the correlations between any two consecutive 
color sequences are small enough. In our algorithm, an 
initial value of hue (Hinit) and a jumping value (Hjmp) are 
first selected. To increase the randomness of the hue 
value for each Ci, we use a random number generator 
to generate a jumping value Ejmp lying within the range 

Of IHjmp - E, Hjmp + E], where E is a selected constant. 
The equation used for hue generation is 

Hi+* = (Hi + Ejmp) mod 360”, Ho = Hinit 

In the above, we have described the generation of 
intensity and hue in the HSI model for each Ci. The 
next step is to determine the saturation of Ci by find- 
ing the largest possible saturation value given that 
H=ZZi and Z=Zi. Let C={(Z,H,S)IZ=Zi,H=Hi, 
i= 1,2,... , N}. We transform all the colors in the set 
C into the RGB coordinate system and check whether 
they are valid (i.e. all the R, G, B values are within 
[0,255]) or not. The largest possible S which satisfies that 
(Zi, Hi, S) is valid in the RGB space, is then selected as the 
saturation of Ci. 
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There are some parameters which need to be specified 
in our color pattern generation algorithm: Zmin, Imax, 
ZZi,i, Hjmp and E. Fig. 1 shows some generated patterns 
associated with different parameter sets. In principle, 
a color sequence can be modeled as a discrete-time 
signal. The auto-correlation function of the signal 
can be computed. The quality of each generated pattern 
is then evaluated by using the energy of the auto- 
correlation function of this sequence. For our purpose, 
it is desired that the energy of the auto-correlation 
function should be as small as possible. One can then 
minimize this energy with respect to all the above- 
mentioned parameters. In our experiment, we simply 
ran a series of random trials, and then selected the 
best set of parameters, which turned out to be 
Zmi* = 153, Zm,, = 245, Hinit = 0, Hjmp = 140 and 
E = 20. The color stripes generated by this set of param- 
eters is shown in Fig. 2. It can be seen that this pattern 
has large variations between adjacent light stripes, and 
the correlation between any two consecutive color 
sequences is quite small. In our experiment, the color 
pattern generated was printed on a transparency and 
then projected onto the objects. The following section 
will describe the stereo matching technique used in 
this work. 

3. Stereo-matching 

The stereo-matching method used in this paper is a 
variation of the intra/inter-scanline method originally 
proposed by Ohta and Kanade [ 111. The major advant- 
age of this method is that it is a global matching tech- 
nique in which the correspondences were not only deter- 
mined by local similarities, but also global similarities. 
There are two reasons for adopting this m&hod in this 
paper. First, in our approach the projected ‘light pattern 
is a set of vertical light stripes; hence, vtrtical edge- 
segments can be easily extracted from the images. Since 
the feature-primitives used in the Ohta end Kanade 
method are non-horizontal edges, their method is quite 
suitable for our work. Second, matching errors caused by 
some local similarity of the projected color stripes can be 
avoided, because this method uses a global search, i.e. 
dynamic programming, to find the optimal solution of 
stereo correspondences. 

It is well known that the epipolar constraint can 
considerably reduce the searching complexity. Consider 
Fig. 3. For a point P in the left image plane, its corres- 
pondence point must lie on line a in the right image 
plane. Also, the correspondence point of Q must lie on 
PI P2. Therefore, line P, P2 and line QlQ2 can be 

Fig. 1. Some generated color patterns 
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Fig. 2. The color stripes to be projected on the objects. 

regarded as a scanline pair. Searching along a scanline 
pair for finding the optimal stereo correspondence is 
called the intra-scanline search. To solve this searching 
problem, Ohta and Kanade proposed a method based on 
dynamic programming [ll]. This method is adopted in 
this work for intra-scanline search, as reviewed in Section 
3.1.1. However, our method has two major differences 
compared to that used by Ohta and Kanade [I l] for 
intra-scanline search. First, we have redefined the cost 
function so that the chromatic information can be used 
in stereo matching, as described in Section 3.1.2. Second, 
we have developed a more general definition of the cost 
function for dealing with stereo occlusion, as described in 
Section 3.1.3. 

Next, consider an edge extends across several 
scanlines. The correspondence in one scanline should 
have a strong dependency (along the edge) on the 
correspondence in its neighboring scanlines, which is 
called the inter-scanline consistency. To utilize the inter- 
scanline consistency, Ohta and Kanade [l l] adopted a 
dynamic-programming-based method which is a direct 

3D space 

generalization of their method used in the intra-scanline 
search. However, the complexity of the inter-scanline 
search using dynamic programming is rather high. 
Hence, we propose a simple winner-take-all scheme to 
determine the match of an edge across several scanlines 
based on the result of the intra-scanline search, as 
described in Section 3.2. According to our experience, 
this method can refine the matching results of the 
intra-scanline search in an effective way with much 
lower cost of computation. 

3.1. Intra-scanline search 

3.1.1. Review of intra-scanline search using dynamic 
programming 

In this section, we briefly review the intra-scanline 
search method based on dynamic programming, which 
has been proposed by Ohta and Kanade [l 11. The intra- 
scanline search can be viewed as a path finding problem 
on a 2D search plane. As shown in Fig. 4, the horizontal 
axis is the intensity profile of the left scanline, and the 
vertical axis is the intensity profile of the right scanline. 
The vertical lines show the positions of edge points on 
the left scanline, and the horizontal lines show the posi- 
tions of edge points on the right scanline. The inter- 
sections of the vertical and horizontal lines can be 
regarded as the matching edge pairs on the scanlines. 
Each intersection is referred to as a node. Now, the 
problem of finding correspondences along a scanline 
pair is transformed to that of finding the optimal path 
on the 2D search plane. 

The edge points are ordered from left to right on each 
scanline: from 0 to N on the left scanline and from 0 to 
M on the right scanline. Both ends of each scanline 
are included as edge points for convenience. If node 
m = (m, n) and node m' = (m', n’) are two successive 
points in the path, the line segment within node m and 
node m' is called a primitive path. A primitive path is 
a partial path which corresponds to matching of inter- 
vals delimited by edges. The nodes at the two ends of a 

left lens center right lens center 

Fig. 3. The corresponding scanline pair. 
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Left Intensity Profile 

M 

Fig. 4. 2D search plane for intra-scanline seat-ch. 

primitive path are vertices. A vertex at node m= (m,n) 
indicates that left edge n and right edge m are matched. 
The optimal matching can be viewed as the path with 
minimal cost. To simplify the search procedure, the 
ordering constraint [12] is used in the intra-scanline 
search. Dynamic programming can be used to compute 
the minimal cost of each node in the 2D-scanline search 
plane. The cost of a path can be recursively defined as 
follows: Let C(m, k) be the minimal cost of the partial 
path from node k to node m. In particular, C(m, 0) is the 
cost of the optimal path from the origin 0= (0,O) to 
node m. We simplify the notation C(m, 0) as C(m) for 
convenience. The cost of a path is the sum of the costs of 
its primitive paths. Let Cost(m, k) denote the cost of the 
primitive path from node k to node m. Then, C(0) = 0, 
and C(m) (m # 0) can be recursively defined as 

C(m) = min{ Cost(m, m - u) + C(m - u) 

lu is a primitive path coming to node m}, 

where u = (u,zt), and 0 5 u 5 m, 0 < w 5 n. 
The exact form of the cost function of the primitive 

path, Cost(m, m - u), will be given in Section 3.1.2. At 
each node, the optimal primitive path u that gives the 
minimal cost is recorded. The sequence of all optimal 
primitive paths from node 0 = (0,O) to node m = 
(m, rz) is then the optimal path of m. 

3.1.2. Cost function using chromatic information 
Now let us describe the computation of the cost 

of the primitive path from node ml to node m2, i.e. 
Cost(m2,ml), used in this work. Since chromatic 
information is used in our approach, a new cost func- 
tion is defined in this paper for the stereo matching of 
color images. Assume that ml = (ml, nl) and 
m2 = (m2, n2). From the camera geometry, the corre- 
sponding 3D coordinates of ml and m2, referred to as 
P mt and Pm2, can be easily obtained as shown in 

Fig. 5. The line segment connected by P,,,, and P,,,z 
is called L. Let En1 and En2 be the edge points of the 
nl-th and n2-th edges in the left scanline, and Em, and 
Em2 can be the edge points of the ml-th and m2-th 
edges in the right scanline, respectively. Assume that 
there are k pixels al, a2,. . , ak, within the interval 
[E,,l, En21 in the left scanline. Given each ai, the cor- 
responding point bi can be found by projecting Qj to 
the right image plane, where Qi is the intersection 
point of line B and line L, and B is the back-project- 
ing line of a;. Cost(m2,ml) can then be defined as 

Cost(m2, ml) = 2 dist(ai, bi) 
i=l 

where dist(ai, bi) denotes the Euclidean distance in the 
HSI color space [8] and can be expressed as 

dist(ai, bi) = { [Z(ai) - Z(bi)12 + S2(ai) + S2(bi) 

- 2S(ai)S(bi) cos 0}1’2 

and 0 = min(lH(ai) - H(b,)l, 360”-IH(ai) - H(bi)I). 

3.1.3. Cost function for dealing with stereo occlusion 
Next, let us consider the case of stereo occlusion when 

defining the cost function. Stereo occlusion occurred 
in the situation where some parts of objects can be seen 
in the left (or right) image but cannot be seen in the right 
(or left) image. Here, we call it right stereo occlusion if the 
object surface is occluded in the right image but not in 
the left image, and we call it left stereo occlusion if the 
object surface is occluded in the left image but not in the 
right image. In the case of stereo occlusion, the primitive 
path will be either vertical or horizontal, as shown in 
Figs. 6(a) and (b). The horizontal primitive paths are 
caused by right stereo occlusion, and the vertical primi- 
tive paths are caused by left stereo occlusion. 

First, let us consider the cost function defined for right 
stereo occlusion, that is, the primitive path is horizontal. 
Suppose a primitive path is horizontal, and from node 
(m, n - w) to node (m, n), as shown in Fig. 6(a). Denoting 
U and R to be the following sets: 

U = {[(m, n - v), p] j p is on the upper left side of 

(m,n -u)) 

where [(m, n - v), p] is the primitive path from node p to 
(m, n - w) and 

R = {[p, m] 1 p is on the lower right side of m} 

where [p, m] is the primitive path from node m to node p. 
Let a be the optimal primitive path in U, that is, 

a = arg n$ {Cost(q)} 

where Cost(q) = Cost(q)/ r, and r is the number of pixels 
of q in the left image. 

Let b be the optimal primitive path in R, that is, 
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left lens center 

I 
bi 

right image plane 

right lens center 

Fig. 5. Determination of the correspondence point for computing the cost of a primitive path. 

6 = arg 2; {Cost(q)} where 

If there is an occlusion, both II and b should achieve 
good match, and paths drawn in dotted lines in 

j = ayg 1$$C+4)) 
{--- > 

Figs. 6(a) and (b) all have poor match. Notice that 
when processing node m = (m, n), the cost of a should u = (0, w) represents the primitive path coming to node 

have been computed, while the cost of b is not known m, and th,,, is a threshold. Since only the paths bl, bZ, b3 

yet. We define the cost of occlusion by the following and b4 in R are used to get an estimate for the cost of b, a 

equation: weighted sum of Cost(a) and Cost(b) is used to compute 

where w1 + w2 = 1 and wI > w2, and 

Cost(m, m - u) 

wlCost(a) + w2Cost(bi), 

{- 

if Occ > th,,, 
= 

00, if Occ 5 th,,, 

the total cost, where the weight of Cost(b) is set to be 
smaller than that of Cost(u). In our work, w1 and w2 are 
chosen to be 0.7 and 0.3, respectively. 

Similarly, we can define the cost when the primitive 
path is vertical, that is, the case of left stereo occlusion. 
The vertical primitive path, u = (u, 0), coming to node 
n = (m, n) is shown in Fig. 6(b). The cost of this vertical 

Left Intensity Profile 

n-v-l n-v n n+l n+2 

Left Intensity Profile 

n-2 n-l n n+l n+2 

0 
z m-2 

% m-l 
x 
.r 
2 
S m 
B 
B m+l 
.M 
d 

m+2 

.J$ m-u-l 
% 
k m-u 
x 

.Z 
2 

: m 
- m+l 
2 

m+2 

(a) (b) 

Fig. 6. The case of occlusion. (a) The primitive path is horizontal - right stereo occlusion; (b) the primitive path is vertical - left stereo occlusion. 
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primitive path representing occlusion is 

451 

where 

Cost(n, n - u) 

w1 Cost(c) + w,Cost(~), if Occ > th,,, 

if Occ 5 th,,, 

and 

3.1.4. Reduction of the computational complexity 

In general, we can apply some geometric constraints 
[ 121 to reduce the complexity of computation. By limiting 
the maximal range of disparity, there are forbidden zones 
on the search plane, as shown by the region within the 
back slash lines in Fig. 7. Another useful constraint is to 
limit the maximum number of edges that can be skipped 
by a primitive path. Because we use good projected 
stripes pattern, the SNR is high and the detected edges 
are quite stable. Therefore, the possibility of having 
many noisy edges between two consecutive true edges 
is very low. Hence the search region with respect to 
node m can be further reduced to be within region A, 
as shown in Fig. 7. With these constraints, the time 
required for matching can be considerably reduced. 

3.2. Inter-scanline consistency 

So far, the pairs of corresponding scanlines in the left 
and right images have been processed independently. 

0 N . 

0 

M 

Fig. 7. Forbidden zones and the search region. 

However, as mentioned above, if there is an edge extend- 
ing across several scanlines, the correspondences in one 
scanline have a strong dependence on the correspond- 
ences in the neighboring scanlines. In the following, a 
new method based on a voting scheme is proposed to 
deal with this problem. 

The inter-scanline consistency is used to refine the 
results of stereo correspondence obtained by the intra- 
scanline search. Since the inter-scanline consistency deals 
with connected edges, we have to label and link the 
isolated edge points into connected edges first. In this 
work, the principle used for inter-scanline consistency 
is a winner-take-all scheme. As shown in Fig. 8(a), if 
most points on edge 1 are corresponding to the points 
on edge r in the intra-scanline search, the edge r is treated 
as the correct correspondence for all points on edge 1. 
That is, edge r is called the winner for edge 1. Let us 
consider two typical cases in Fig. 8(b). In case 1, edge 
E, in the left image is shorter than its winner E, in the 
right image. Since most pixels on edge EI are correspond- 
ing to edge E,, we assert that each pixel on edge E, should 
correspond to one pixel on edge E, in the same scanline. 
Then, for those pixels on edge E, whose correspondences 
are not E,, their correspondence will be corrected to be 
E,. In case 2, edge E, in the left image is longer than its 
winner E,, in the right image. Under this circumstance, 
we only correct those pixels of edge E, within tl and t2. 
After this, the other pixels of edge E, within t2 and t4 
need to go through the winner-take-all procedure again, 
until all pixels on edge EL have been processed. The 
detailed algorithm for edge-based inter-scanline consist- 
ency is shown in Algorithm 1. 

Algorithm 1. Edge-based inter-scanline consistency 

Step I. 

Step 2. 

Find a connected edge which has not been pro- 
cessed yet in the left image, and call it edge E,, 

Find the winner edge in the right image, namely, 
E,,, of EI. That is, most points on edge E, 

correspond to the points on edge E,, in the 
intra-scanline search. 

Step 3. 

Step 4. 

Assume that edge E,, starts at scanline t, and 
ends at scanline t2, where tl -c t2, and edge E, 

starts at scanline t\ and ends at scanline ti, 
where t\ -c t)2. Then, t,s = max(t,, t’,) and 
t, = min(t2, ti). 
On edge E,, find each point p whose correspond- 
ing point in the right image is not on E,, within 
scanline t, and t,. Assume that point p is on scan- 
line t. Let q be the intersection point of E,, and 
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case1 Case 2 

the length of El is shorter 
than that of the winner E,. 

the length of Et is shorter 
than that of the winner E,t. _____ -____ 

El 1 I _____ _____ ___________ 
__---__---_ 

left image right image left image right image 

Fig. 8. (a) The edge-consistency constraint; (b) two different cases of the winner-take-all scheme using edge-based inter-scanline consistency. 

Step 5. 

Step 6. 

scanline t, in the right image. Then point p is 
corrected to correspond to point q. 
Mark all points on edge El within scanline ts and 
te as ‘processed’. 
If there are points in the left edge image that are 
not ‘processed’, go to Step I, else stop. 

4. Experimental results 

In our experiment, the designed color pattern is first 
printed on a transparency, and then the pattern is pro- 
jected onto the object by an overhead projector. The 
camera calibration method used in this work is the one 
proposed by Shih et al. [13], where the unit used for 
the object coordinate system (OCS) is millimeters, and 
for the image coordinate system (ICS) is pixels. The 
grabbed stereo images are first transformed into epipolar- 
corrected image pairs, where the same row in the left 
and right images correspond to the same scanline. To 
extract the object by eliminating the background of 
images, an auto-thresholding method [14] is first per- 
formed on the intensity image. Then, the edge is 
extracted by Canny’s method [ 151. Edge linking is done 
for edge elements that are within f45” with respect to the 

vertical axis, since the projected light pattern is nearly 
vertical in the captured images. The %connected neigh- 
bors [16] are used for connected edge labeling. In 
the following, we show the experimental results for the 
following four different objects: plane, cylinder, sphere 
and polyhedron. 

Fig. 9 shows the epipolar-corrected image pair of a 
planar object. Fig. 10 shows one of the optimal path 
on the 2D search plane at scanline 125. The obtained 
range data is shown in Fig. 11. 

Fig. 12 shows the epipolar-corrected images of a 
cylinder. Fig. 13 shows the optimal path on the 2D 

Fig. 9. Epipolar corrected image pair of a plane (512 by 512). 
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Fig. 10. The optimal matching path of the planar object at scanline 125 
of Fig. 9. 

in Section 3.1.3, this occlusion has successfully been 

detected as shown in Fig. 13. In Fig. 13, it can be seen 
that the horizontal primitive path occurs on the left 

boundary of the cylinder, which represents the occur- 
rence of right stereo occlusion. 

Figs. 15 and 16 are the epipolar-corrected images 

and the obtained range data of a semi-sphere, respec- 
tively. Figs. 17 and 18 are the epipolar-corrected images 

and the obtained range data of a polyhedron object, 
respectively. 

To estimate the accuracy of the acquired range data, 
three smooth surface objects have been used to compute 

the fitting errors: the planar object (as shown in Fig. 11); 
the cylinder object (as shown in Fig. 14); and the sphere 
object (as shown in Fig. 16). The heights of these objects 

range from 150-300 mm, and the distance between these 
objects and the stereo cameras is approximately one 

meter. We fit a plane, a cylinder and a sphere to the 
acquired range data of the three objects. respectively. 

Fig. 11. 3D range data obtained for the planar object. 

search plane for one scanline pair. Fig. 14 shows the 
obtained range data. Since the cylinder is a curved object, 
its left side can be seen in the left image but cannot be 
seen in the right image. By using the cost function defined 

For the planar object, the mean-square error (mse) 
between the acquired range data and the fitted surface 
is 0.15 mm. For the cylinder object, the mse is 0.32mm. 
For the sphere object, the mse is 0.20mm. 

Fig. 12. Epipolar corrected image pair of a cylinder. 
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Fig. 13. Optimal matching path of the cylinder at scanline 250 of 

Fig. 12. 

5. Concluding remarks 

In this work, we have successfully developed and imple- 
mented a new method for 3D range data acquisition by 
combining color structured lighting and stereo vision. The 
range data obtained can be used for many higher level 
vision tasks, such as 3D object modeling and 3D object 
recognition. One significant advantage of our approach is 
that there is no need to solve the problem of finding the 
correspondence between the color stripes projected by the 
light source and the color stripes observed in the image. In 
general, it is quite difficult to solve the above matching 
problem of finding lighting-to-image correspondence 
because surface albedos are usually unknown a priori. 
Instead of solving the difficult lighting-to-image corre- 
spondence problem, we solve an easier image-to-image 
stereo correspondence problem - which is not only easier 
than the lighting-to-image correspondence problem, but is 
also easier than the traditional stereo correspondence 
because a good color pattern has been projected onto 
the object. By projecting ample texture information 

Fig. 14. 3D range data obtained for a cylinder. 

Fig. 15. Epipolar corrected image pair of a semi-sphere. 
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Fig. 16. 3D range data obtained for a semi-sphere. 

Fig. 17. Epipolar corrected image pair of a polyhedron 

onto the object surfaces, and using a global stereo 
matching method based on intra-scanline search and 
inter-scanline consistency, our approach can provide 
3D range data in a more stable and accurate manner. In 

addition, our method does not require the calibration 
of the position and orientation for each of the projected 
light stripes in 3D space. Another advantage of our 
method is that it requires only one pair of stereo images 

Fig. 18. 3D range data obtained for a polyhedron. 
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to acquire a dense range map. When using a single line 
method, 256 images will be needed to acquire one range 
image having resolution of 256 by 256. When using a 
binary coded method [7], log2256 = 8 images will be 
needed to acquire one 256 by 256 range map. In sum- 
mary, this work has the following contributions: 

rapid active ranging. IEEE Trans. Pattern Analysis and Machine 
Intelligence, (1987) 14-28. 

[2] C.S. Chen, Y.P. Hung and J.L. Wu, A 3D range data acquisition 
system combining laser lighting and stereo vision. J. Chinese 
Institute of Electrical Engineering (May 1996) 157- 168. 

[3] R.A. Jarvis, A perspective on range finding techniques for 
computer vision. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 5 (1983) 1222139. 

1. 

2. 

3. 

4. 

5. 

With the proposed color-lighting/stereo method, it is 
not necessary to solve the difficult matching problem 
of finding the correct color stripe correspondence 
between the light source and the observed image. 
We have proposed a systematic procedure for gener- 
ating good color stripe patterns for our color-lighting/ 
stereo method. 
For dealing with stereo occlusion, we have formulated 
a new way to compute the cost function for the intra- 
scanline search. Our experiments have shown that 
stereo occlusion can be successfully detected. 
We have also modified the cost function used in the 
intra-scanline search to make use of chromatic 
information. 
To utilize inter-scanline consistency but with less 
computational complexity, we have proposed a 
winner-take-all scheme to further improve the match- 
ing result of the intra-scanline search. 
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