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Abstract

We consider the problem of self-calibrating a moving camera which is equip-
ped with a zoom lens. This consists essentially in estimating the 5 intrinsic param-
eters of the pinhole camera model. However, these parameters are not independent,
subject to zooming. Thus, we propose to do a pre-calibration of the camera, with
the aim to model the interdependence of the intrinsic parameters. We show that
self-calibration then comes down to the estimation of only 1 intrinsic parameter.
‘We propose a method which exploits this and which does not need an initialization
of the intrinsic parameters.

1 Introduction

In this paper we address the problem of self-calibration of a moving camera. This
means essentially the determination of the camera’s intrinsic parameters, only from the
information of image feature correspondences. In the pioneering work of Maybank and
Faugeras [1], the authors consider constraints on the intrinsic parameters which arise
from the rigidity of the camera motion and which are based on the epipolar geometry
of two views. These constraints are known as Kruppa’s equations. Experimentations
with methods based on these equations reveal imprecision and inaccuracy due to high
sensitivity to noise, and also convergence problems [2].

To moderate these effects, it is proposed to reduce the number of unknowns by
fixing some of the intrinsic parameters to predefined values [2, 3, 4]. While there is no
problem for fixing the aspect ratio and the skew of the pixel coordinate axes, which are
very stable over long time periods, the position of the principal point depends on the
zooming position and lens focus of the camera [5, 6] (see Figure 1). This phenomenon
is due to optical and mechanical misalignments in the lens system of a camera and can

*This work has been done in the context of the MOVI project which belongs to CNRS, INPG, INRIA and
UJF.



occur in such an extreme manner as shown in Figure 5, where the coordinates of the
principal point vary up to 100 pixels while zooming !
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Figure 1: Image center as a function of lens focus and zoom motors [5].

On one hand, this illustrates that fixing the position of the principal point can bias
heavily the results of self-calibration. On the other hand, although the intrinsic param-
eters are correlated, the correlation seems to be simple and stable.

This led to the idea that, if it is possible to obtain a simple analytical model which
approximates the behavior of intrinsic parameters as a function of other parameters,
this knowledge could be introduced into any self-calibration method in order to reduce
the number of unknowns and to improve the accuracy of the results. Thus, we want to
model the interdependence of intrinsic parameters, concretely between the position of
the principal point and the horizontal and vertical scale factors.

We propose to precede the application of a dynamic vision system by a pre-calibration
stage, where a model for the interdependence of intrinsic parameters is established. We
show, that dynamic self-calibration may then be reduced to the estimation of one pa-
rameter, on which the other parameters depend. The advantages of this approach are a
simpler and faster computation, higher accuracy and no need of an initial estimation,
thanks to the off-line elimination of correlation.

The paper is organized as follows. (1) We discuss the pinhole camera model and es-
pecially several aspects of the intrinsic parameters. (2) Kruppa’s equations are derived
and it is shown how to use them for self-calibration. (3) We show how information
on the interdependence of intrinsic parameters can be introduced in the self-calibration
process. (4) Based on this consideration, we propose a self-calibration method, which
exploits this information. (5) Results of experiments with the self-calibration method
are reported. (6) Finally, we discuss our observations and propositions and indicate
how this work can be extended.



2 Intrinsic Parameters of a Zooming Camera
2.1 The Pinhole Model

In the following we model cameras by the pinhole scheme which is a good approxi-
mation to the physical reality. A camera is represented by a projection center O and a
retinal plane R. The projection q of a 3D point Q is the intersection of the line (O, Q),
with the retinal plane. This projection can be represented by a 3 x 4 projection matrix
P such that q ~ PQ, where Q and q are represented by homogeneous coordinates
and ~ means equality up to a scalar factor. The optical axis is the line through the
projection center and perpendicular to the retinal plane. Its intersection with the retinal
plane is the principal point.

2.2 Extrinsic and Intrinsic Parameters

We can identify two groups of physically meaningful parameters which describe en-
tirely the pinhole projection: 6 extrinsic parameters stand for the position and orien-
tation of the camera, and 5 intrinsic parameters characterize the camera’s projection
properties. The intrinsic parameters are :

e ug and vy, the coordinates of the principal point.

e o, and a,, the horizontal and vertical scale factors.

e @, the skew angle between the coordinate axes in the pixel coordinate system.
The projection matrix can be decomposed as

Q, —0gcotld  ug

P=A R —Rt|=[0 & oy R ~Rt
0 0 1

where A is the calibration matrix of the camera, t the position of the projection center
and the orthonormal matrix R represents the camera’s orientation.

2.3 The Absolute Conic and the Intrinsic Parameters

Let Q be the absolute conic, i.e. the conic which is formed by the points (z,y, z, w)T
€ P? with 22 + 92 + 22 = 0 and w = 0 [7]. An interesting property of this conic is that
its projection w depends only on the intrinsic parameters of a camera, i.e. w is fixed for
a moving camera with fixed intrinsic parameters. The projection of the absolute conic
by a camera with calibration matrix A is given by [2]

C* ~ AAT

where C is the matrix representation of w and C* denotes its dual matrix!. Determi-
nation of the intrinsic parameters is equivalent to determination of the projection of the
absolute conic, since A may be uniquely computed from C by Cholesky decomposi-
tion. This principle is used for self-calibration via Kruppa’s equations (see 3.2).

The dual to a conic C of points is the conic which consists of the tangent lines of C.



2.4 Stability of the Intrinsic Parameters

Some of the intrinsic parameters are constant over long time periods. Especially, the
aspect ratio 7 = ‘;—: and the skew angle # do not change in general. In practice 6 is
often very close to 90°. So, in many works concerning calibration or self-calibration,
6 is assumed to be 90° and is not estimated.

As for the principal point, it has been shown that it is not stable, rather its position
varies when the zoom position and the lens focus change [5, 6]. These authors have
observed that zooming causes the principal point to move on a nearly translational
trajectory (for most zoom objectives). However, in the following we will not restrict
ourselves to the case of a translation, rather we consider a generic model. The reasons
for this phenomenon are optical and mechanical misalignments in the lens system of a
camera.

In the following we suppose that the influence on the intrinsic parameters comes
mainly from the zoom position and neglect the effects of changing the focus. The focus
however, will affect the pre-calibration proposed in section 4. In the conluding section
7, we propose a mechanism for dealing with this problem.

2.5 Interdependence of Intrinsic Parameters

Despite the revelation of the influence of zooming on the parameters a,,, .y, ug and vy,
the interdependence of these parameters, subject to zooming, has to our knowledge not
yet been used in the context of self-calibration. We want to profit from these interde-
pendencies and try therefore to obtain an analytical model which expresses the intrinsic
parameters as functions of one of them, say «, (the skew angle 4 is considered to be
fix) :

ay(ay) —ay(ay)cotd  wuglay)
A= 0 o vo(ay)

sin

0 0 1

Qy

For the horizontal scale factor we always have the relation o, () = 7575,
the functional relationships ug(a,) and v (a,) are more difficult to model.

In the following we call pre-calibration of a camera the off-line determination of
the aspect ratio 7, the functional relationships ug (@, ) and vg (v, ), and the skew angle 6.
If a camera is pre-calibrated, self-calibration will therefore be reduced to the estimation
of the sole parameter ¢, and it will be possible to develop special methods exploiting
this. We will discuss this in sections 4 and 5.

whereas

3 Sdf-Calibration of a Moving Camera

3.1 Problem Specification

By self-calibration we mean the estimation of the intrinsic parameters of a camera, by
just pointing it at a rigid scene. Especially, no 3D model of the scene and no informa-
tion on the camera motion are available. The only information needed are correspon-
dences of image points (or other features).



In this paper, we adopt the self-calibration approach which is based on Kruppa’s
equations, however the remarks on self-calibration of a pre-calibrated camera in section
5 are also valid for other paradigms [8, 9].

In the sequel, we suppose the epipolar geometry of pairs of views known (it can be
computed from point matches). We use its representation by the fundamental matrix F
[10] which includes the position of the epipoles e and e’.

3.2 Kruppa’s Equations

The classical (though recent) self-calibration approach in the computer vision domain
is based on Kruppa’'s eguations [1]. If we assume that the intrinsic parameters are
the same for two positions of one camera, then constraints on the projection of the
absolute conic can be derived from the epipolar geometry of the two positions. This
will be described in the following.

Let B and B’ be the corresponding projections of a 3D conic B in two views (see
Figure 2). There are two planes which contain the baseline of the views (the line
joining the projection centers) and which are tangent to B. Since these planes contain
both projection centers, they are projected on corresponding epipolar lines which are
tangent to B respectively B'. We derive a kind of “epipolar constraint” for the matching
of projections B and B’ of a 3D conic: if B and B’ are in correspondence, then the
epipolar line corresponding to an epipolar line tangent to B, is tangent to B’, and vice
versa. This can be written as” :

(enq)"B*(enq) =0 & (Fq)"(B')*(Fq) =0 . (1

Figure 2: Illustration of the epipolar matching constraint for conics.
Tangent planes on 3D conics containing the baseline are projected on corresponding
epipolar lines tangent to the image conics.

Considering equation (1) for the absolute conic and since its projection by a camera
with invariant intrinsic parameters is fix, we get:

(enq)"K(enq)=0 & (Fq)"K(Fq)=0 |, )

2 A denotes the cross product.



where K = C* is the matrix representation of the dual conic to w. If we suppose
that the epipole e is not at infinity, we can parameterize the first epipolar pencil by the
points (1,,0)7, and equation (2) becomes

(en(1,t,001)TK(e A (1,t,00T) =0 < (F(1,t,007)TK(F(1,t,007) =0

The two terms of this equivalence are quadratic polynomials in ¢. Thus, we can formu-
late the equivalence as

et? +et+c=0 & bt +cit+chy=0

where the coefficients ¢; and ¢} depend on F, e and K. This condition leads finally to
the 3 Kruppa equations of a pair of views,

! / ! !/ / !/
C2C] =C1Cy €2 = CpCy  Ci1Cy = CoCy - 3)

Only two of them are algebraically independent.

3.3 Kruppa’s Equations and Self-Calibration

When the epipolar geometry, i.e. F and e, is known, the equations (3) are constraints
on K and hence on the intrinsic parameters. Thus they can be used for self-calibration.
The usual approach of self-calibration consists in minimizing the criterion [2]

#pairs of views

(Cp2 _ Cplyo Cp2  Cp0.2 Cp1  Cp0.o (4)
! ! ! ! ! ! °
p=1 Cp2 p1 2 Cpo Cp1 Cpo

It is known that this estimation process is very sensitive to noise. Thus, several
researchers tried to reduce the number of unknowns by fixing some of the intrinsic
parameters. In [3], the skew angle and the coordinates of the principal point are fixed
and the aspect ratio is supposed to be known. So, there remains only 1 parameter to
estimate?.

However, especially fixing the principal point is not always corresponding to the
physical reality of a zoom lens, as we stated in section 2.4. We therefore generalize this
approach in the next section, using generic models of the interdependence of intrinsic
parameters.

4 Pre-Calibration

In this section, we discuss how the interdependence of the intrinsic parameters can be
modeled and how this affects Kruppa’s equations.

3To be precise, in [3] two cameras with possibly different intrinsic parameters are considered and thus
that work deals with two unknowns. However, the approach can be specialized to our context.



4.1 Modeling the Interdependence of Intrinsic Parameters

We suppose that the relation between the horizontal and vertical scale factors is given
by a, = Ta,, with the constant aspect ratio 7. Furthermore, the skew angle 8 is
constant (90°) and hence does not depend on other parameters. As for the coordinates
of the principal point, we try to model them by functional relationships on «,. Here
we restrict ourselves to polynomial models, i.e.

up(Qy) = cmalt + ...+ cray + ¢

5
vo(aw) =dpal + ...+ dia, +dy )

To determine the degrees m and n and the coefficients ¢; and d; of the models, the
camera has to be calibrated by a classical method [11] for several zoom positions,
which results in an array of parameter values (see Figure 5). From these, c¢; and d; can
be obtained such that the model approximates well the calibration data. To obtain a
sufficiently good model, but of minimal degree m respectively n, a robust regression
method [12] can be applied.

4.2 How Do Interdependencies Affect Kruppa’s Equations ?

The Kruppa equations (3) have the following form (the coefficients of the terms are not
presented; these depend on the epipolar geometry)* :

0 = oi+
o (ud +v§ + wovo + uo + vo + 1)+
a?(ug + udvo + udvd + ugvd + vy + ud + udvo + ugvd +vg +ui +...+1).

Thus, if ug and vy are modeled as in equations (5), Kruppa’s equations become poly-
nomials in the sole parameter ., of degree max{4,4 max{m,n}}.

In the following, we discuss first the special casesm =n = 0and m = n = 1 and
then the general case.

m = n = 0: fixed principal point. This case has already been considered in [3]. It
is interesting to note that here, Kruppa’s equations have the form aa? + ba2 + ¢ = 0.
Hence, we obtain «,, by solving quadratic polynomials which leads to a closed-form
solution of the problem.

m,n < 1: translating principal point. Kruppa’s equations are general polynomi-
als of degree 4, i.e. also the odd coefficients may be non-zero. Hence, there exists also
a closed-form solution for finding possible candidates for a,,.

m > 1orn > 1. Kruppa’s equations are of degree greater than 5. There is no
analytical solution, however, since the equations are univariate polynomials, their roots
can be easily computed by numerical techniques.

“4For one of the 3 equations, the term ué vanishes, and for a second equation, 113 vanishes. However, this

does not influence further conclusions.



5 A Method of Self-Calibration Based on Pre-Calibration
of the Camera

In this section, we are interested in how self-calibration methods can be simplified and
made more accurate, when an analytical expression of the interdependence of intrinsic
parameters is given by pre-calibration (see previous section).

For each pair of views, there are 3 Kruppa equations (only two independent). Let
kpi be the ith Kruppa equation of the pth pair of views. These equations are polynomi-
als in the sole parameter a, (see section 4.2). Thus, a,, is the root which is common to
all considered Kruppa equations. To estimate «,,, we first compute the roots for each
Kruppa equation separately. Since the a,, must be real and positive, only the roots with
these properties are retained.

Let Spi = {rpij | j = 1,... ,np;} be the set of real positive roots of the Kruppa
equation kp;. We search now for the best approximation of the root which is common to
all considered Kruppa equations. In this context we define the “distance” of a number

r to a set of numbers S = {ry,... ,r,} as: d(r,S) = min;j—q ... ,|r — r;|. Hence,
the problem can be formulated as finding the real number r which minimizes
Zd(r, Spi) = Comin |7 —71p] -
. . .7:17"'7npi
P, pst

We propose a simple practical solution to this problem. Consider Figure 3 (a) which
shows the graph of d(r, S) for a givenset S = {r1,... ,7n }.
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Figure 3: (a) d(r,S) for S = {20,40,80}. (b) d(r,S1) + d(r,S2) for S; =
{20,40,80} and S2 = {5,23,69}.

The dotted lines indicate the abscissa where the functions have to be evaluated to find
the global minimum.

The function is piecewise linear and changes its shape only at the abscissae r; and
”"’% Thus, to find the global minimum of the sum 3 ; d(r, Sp;), it is sufficient to



evaluate it at all abscissae 7p;; and T””Jrgi””“ and to pick out the abscissa r for which
we get the minimum value. This abscissa is not uniquely defined if we have an even
number of Kruppa equations (cf. Figure 3 (b), where the global minimum lies between
the abscissae 20 and 23). In this case, we choose the middle value.

An example of the graphs of the 3 Kruppa equations which arise from 2 views is

shown in Figure 4.

2000

Figure 4: Example for the graphs of the 3 Kruppa equations for 2 views.

When many views are used for self-calibration, robust methods [12] should be
applied for the estimation of the common root.

5.1 Outline of Dynamic Self-Calibration

0. Pre-calibrate the camera, i.e. determine the functional relationship of intrinsic pa-
rameters in dependence of o, (see 4.1).

1. Compute the fundamental matrices for pairs of views from correspondences of im-
age points.

Compute the coefficients of the powers of «,, in the Kruppa equations (see 4.2).
Compute the roots of each Kruppa equation and retain the real positive ones (see 5).

Quy 1s the “best” common root of the Kruppa equations (see 5).

o M~ LD

Compute the other intrinsic parameters from «,,, following the functional relation-
ships established in step O.

6 Experimental Evaluation

We have carried out experiments with an E.I.A. Servolens zoom, mounted on a Pulnix
TM-6EX camera. In a first step, the camera was pre-calibrated. For this purpose, a
full off-line calibration was done for various zoom positions, by pointing the camera
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at a calibration grid. The field of computed intrinsic parameters is shown in Figure 5,
where ug, vg and a,, are displayed in relation to c,.

Figure 5: (a) Coordinates of the principal point (ug, vo) With respect to . (b) a,, with
respect to .

The points in these graphs were obtained by classical calibration using a calibration
grid [11]. For each zoom position, several positions of the grid were used. The plotted
lines represent the models found for the parameters’ interdependence.

Next, the functional relationship between the intrinsic parameters was modeled.
We found the following linear relations :

oy = 14660, , up = 0.060c, + 184.44 , vy = —0.007¢, + 273.19

The skew angle 4 is fixed to 90°.

Dynamic self-calibration was then performed by pointing the pre-calibrated cam-
era at the calibration grid, from different viewpoints. We compared our method with an
algorithm performing a Levenberg-Marquardt (LM) minimization of the criterion (4).
In contrast to our algorithm, this non-linear optimization needs an initialization of the
intrinsic parameters. We applied the algorithm on 9 different initializations, which all
verified exactly the model established in pre-calibration and which covered the com-
plete range of considered zoom positions. Furthermore, the LM-algorithm was run in
4 different modes : keeping constant

o the initial values of the aspect ratio 7 and ug and vg.
o the initial value of the aspect ratio 7.

o the initial values of ug and vg.

¢ none of the parameters.

To summarize, one experiment consisted in applying our algorithm without ini-
tialization and running the 4 versions of the LM-method, each one with 9 different
initializations. 27 different experiments were carried out: for each of 9 zoom posi-
tions, 4 images of a calibration grid were taken, and self-calibration was carried out for
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2, 3 and all of the images. The estimation of the intrinsic parameters was then evaluated
based on a model-based calibration performed with the same images of the calibration
grid. In Figure 6 we summarize the results of the estimation of «,,. Each bar represents
the number of experiments for which the relative error of the estimated a, lies in the
corresponding error interval. The upper bars correspond to the method proposed in this
paper and the lower ones to the LM-algorithm for which 7, ¢ and vy, were kept fixed,
which has been found to be the best among the different modes.

2 views 3views 4 views

pre—calibration
method

relative error 5% 10% 15% 20% 25% 30% 35% 40% 45% >50% 5% 10% 15% 20% 25% 30% 35% 40% 45%  >50% 5% 10% 15% 20% 25% 30% 35% 40% 45%  >50%

LM-method

Figure 6: Results of dynamic self-calibration.

The major conclusion is that, for more than 2 views, our method was not subject to
serious failure, contrary to the LM-method, which completely failed in more than 5 %
of the experiments. However, when the initialization was close to the true values, the
LM-method gave also mostly acceptable results.

The graphs for estimation of uy and vy (not shown here) underline the higher reli-
ability of self-calibration using all available pre-calibration information.

7 Conclusions and Further Work

We have examined the interdependence of intrinsic parameters of a zooming camera
in order to reduce the number of unknowns in self-calibration processes. Especially
we have shown that, when the pinhole model is assumed, self-calibration consists in
the estimation of only 1 intrinsic parameter. We propose a special algorithm which
exploits the interdependence of the parameters and which is based on an off-line pre-
calibration of the camera. The algorithm needs only simple computations (roots of
univariate polynomials) and furthermore, no initialization of the parameters is neces-
sary. Experiments have shown, that the proposed method is more reliable than classical
non-linear optimization which does not exploit completely the interdependence of the
intrinsic parameters.

The major drawback is of course the need of a time-consuming pre-calibration pro-
cess. It is also not clear if the proposed mechanism will be very effective for imaging
systems where the interdependence of parameters follows a more complicated model
as the one found with our equipment.
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In this paper we have neglected the effect of focusing. This could be dealt with
by doing pre-calibration for different focus settings and establishing different interde-
pendence models which then cover the whole range of focus and zoom settings. The
method could then be run for these different models and the self-calibration which gives
the lowest re-projection residue for the reconstruction of the observed scene, would be
retained. This scheme must still be validated experimentally.

The actual implementation of the algorithm could be extended in several directions:
The search for the common root of many Kruppa equations can be done by a robust
method. Uncertainty estimates for the fundamental matrices can be taken into account
when many views are given. On the experimental side, experiments with more than 4
images and with real images (not a calibration grid) should be undertaken.
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