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Abstract

We describe a new projectively invariant representation of disjoint contour groups
which is suitablefor shape-bsed rérieval from an imagelatabae. I consiss of
simultaneous polar reparametrizatiof mutiple curves where an invariant point is
usedas the orign. Fa each rg orientaton, a crossatio of its intersetions with
other curves is taken as a value associated to the radius. With respect to other meth-
ods this repesentation is les relianton single crve propertis, both br the con-
structon of the projetive bais and for elculating he signaturelt is therdore
morerobust to ontour gaps and imagmwise &ad is bettesuited to decribing com-

plex planaishapes defined by multgpdigoint curves. Theproposedepresentation

has been originally deveped for plana shapes, but anxéenson is proposedrad
validated for 3D faceted objects. Moreover, we show that illumination invariance
fits well within the proposed framework and can easily be introduced in the repre-
sentaton in orde to make it more ppropriatefor shapebasel retrieval. Experi-
ments are reported on a database of real trademarks.

Keywords: Projective invariance, Cross-ratio, Geometry, lllumination invariance,
Shape-based retrieval, Object representation.

*, This work is supported by a grant from the Swiss National Fund for Scientific Research 20-40239.94



Projective and illumination in variant r epresentation of disjoint shapes

Abstract

We describe a new projectively invariant representation of disjoint contour groups
which is suitablefor shape-bsed rérieval from an imagedatabae. k consiss of
simultaneous polar reparametrizatiof mutiple curves where an invariant point is
usedas the orign. Fa each ra orientaton, a crossatio of its interse¢ions with
other curves is taken as a value associated to the radius. With respect to other meth-
ods this repesentation is les relianton single crve propertis, both br the con-
structon of the projetive basis and for elculating he signaturelt is therdore
morerobust to ontour gaps and imagmwise ad is bettesuited to decribing com-

plex planashapes defined by mullpdigoint cuives. Theproposedepresentation

has been originally deveped for plana shapes, but anxéenson is proposedrad
validated for 3D faceted objects. Moreover, we show that illumination invariance
fits well within the proposed framework and can easily be introduced in the repre-
sentatbn in orde to make it more ppropriatefor shapebasel retrieval. Experi-
ments are reported on a database of real trademarks.

Keywords: Projective invariance, Cross-ratio, Geometry, lllumination invariance,
Shape-based retrieval, Object representation.



1. Introduction

The emeging field of image deabases,10,22,30] has eateda demad for newquerying tech-
niques. Such techniquesust be able to cope withuge amourst of image datawithout restrictions
on the image content. Computer visiorethods ca be employed, provided thttey ae fast, reliable
and not reliant on application-specific constraints [12].

A user neds to etrieve images aceding to somesemantic description. We hypothesibat pat
of these degiptions can berepresented in €rms of image perties. Seahing fa images containing
a particular objet(e.g. atrademak in figure 1.@)), amourd to seaching for propeiies like olour
[7] or shape [6,10]. However, all such properties are influenced by the viewing conditions. The reli-
ability of a seach method degnds on how wll it can sg@arate informabn influenced byiewing
conditions from object properties, and detect the latter. Separable object properties are called invari-
ants and theirgplication to computer vision was first brdly reviewedn [19]. The geomiic chang-
es introduced by varying viewing conditions can be modelled by either projective or affine transfor-
mations, while linear transformationsrche usd to model chromatic changes under different illumi-
nants.

"—?.“i' i

Figure 1 Example of a trademark image (a). The large number and form of the curves, extracted from the image (b),
illustrates the highly distributed nature of a shape.

Several attemptt obtain invalant representations of gemetic propeties wee summarize in
[19]. For mathenatical regons, invariantsre obtained more ady for plana geometric structuse
[24,3]. This has limited their use to object facets and trademark recognition. Some studies have pro-
posed the use @llgebrac invariants, i.e. mesaires that a& obtainedfomregulargeometic structure
like a group of lines [29] or conics [20]. The difficulty of characterizing real objects with such struc-
tures has constrained the use of algebraic invariants to specific (mostly industrial) classes of objects.
Also, as pointed out in [15], the small number of these invariants fails to provide sufficient discrimi-
native capability when the amount of objects increases.

Differential invariants (based on derivatives) were designed to generalize previous approaches to a
larger class of objectsd consist of gpressing the deaviour ofa shae in areference frame, defined
by some regular invariant geometric structures [32,31]. Such structures could be invariant points [2],
tangents [18,24], lines [9]As an dternative to theprojective camera model, anfede model @n be
used. Thidas tle advantage of simplifying the invariantgmrerties, and proves efulin a wide range
of applications [21,28]. Advantag of differential invaiants include lochty, and the coveageof a
relatively large classof shapes. These methodmwever, repgsent onecurve ata time and most
curves (like those in figure 1.b) do not possess a sufficient number of invariant properties to charac-
terize them. A lot of geometric information is thus lost. For completeness, two more shape represen-
tation method should be rantioned, namely shape decposition with ellipses [2] and deformable
templates [27].

In pradice, when invarant representatiorge used foshape-baed retieval, two major weaknesses
can be observed. First, théycus on singt-curve properties, thereby neglecting the fact that shapes
are generally defined over neighbourhood containinguttiple curves. Tle second weakness et
tendency of puely geometric ad local representations to produckrgenumbe of false matbes. A
solution to thisproblem s to enrich the representationth a (posdbly invariant) descripon of the



chromatic properties of the shape. This paper proposes a technique that combines a geometric shape
representation integrating multiple curves with illumination invariant information.

The rest of this paper is structured as follows: section 2 outlimesdea of the proposedpeesen-
tation andshows its pojective invariancgSedion 3 focuse®n theproblem offinding reference lines,
necessary for invariant reparametrieat in Sedion 4 the method is &ended with illumination in-
variance. Finally, in section 5 experimental results on invariance and database aspects such as shap
comparison and indexing are reported.

2. Projectively Invariant Description of Disjoint Curves

In this sedbn we epress invariant relationships between multiple disjoint curves. A representation
is deaived and used for fuher experiments. Special attention is paidjuarateeng projective invar-
iance at each step of the representation construction.

2.1 Building multi-curve descriptors

In order to repesent geometric arrangements of multiple planar curves, one needs to represent rela-
tions between points on those curves. Let us suppose that eachccurve  in an image has its associate(
length parameter and each of its points iried as a point vector(t) for some value of [ [0,]] .

Letus tkeN, suclturvesinto acount wih one point perarve, so that edtpont is allowed to nove

freely along its corresponding curve. The dimensionality of the representation space for the relation-
ship between those points will bén thecase of three such curves, the 3D parameter space is already
too large to search for relationships between the curves and to extract invariants.

This dimensionality cabe reducedby imposng some constraints on the free points taken from dif-
ferent curves. The snplest sub relatonship iscollineaity of points. Any two pointsfrom two curves
uniquely specify one line and therefore all other points are uniquely defined with respect to this line.
So, withthe collinearity condition, the dimensionalitfthe repesentation spacetiwo, whateverte
number of curves. It should be noted that collinearity is a projectively invariant condition.

As thenumber ofcurvesin an image approaches a fdwndred, two-dimensional degations for
each par of curves arestill not a promising gpproach. Wecan reduce ths description spae to one
dimension by constraining the line to pass through one point (&.g. in figure 2.a). By selecting this
point asone extrene of the line, onebtains a one-parameter faynof rays, uniquely defind by their
angle of orientatior

For each ray(6) , we can detect its intersection poitsP, , , ... with all image curves (cf. figure
2.a).1t is now possibleto chaacterizethis setof points with somdunction andplot this function
against the paramet® . This provides a “signatu(€} for any choice of the @jgin  , which is
based ommultiple curves and destbes information about their spatialrangenent. The number of
raysN, castfronC, overthe intervfD, 2] defines the signature’s resolution, and can be defined
a priori.

This representation scheme will be of interest only if it guarantees projective invariance of the sig-
nature. For thigo be true all stages of the sighature constractimethod shdd be piojectively in-
variant. Collineaity of intersection pointss dready so. Thenvarianceof the position of the centre
point C, is provided by construmn methods addssel in Sedion 3. Also,the way rays de cast from
C, shoud be invariant. This is equivalentto the invariance of the parametrizafin , and is studied
in thefollowing subsection. Sulestion 2.3 then dscribes how to obtain an invariant value for a set
of intersection points on the ray, and how to construct a shape signature.

2.2 Reparametrization of rays

Let N, be atotal number of rays originating frol€, . A pointonthe ray is characterized by a
homogeneous vectét, = [lic, l;s, 1] whele the potion along the ray, and, ands, are
the cosine and sine of the orientation parameter . A configuration wbgre  is the centre of coor-



dinates and the distribution of orientation parameter  is uniform ove2the  interval is referred to
ascanonical

In the example of figure 2.b a family &, = 30 rays is in its canonical coordinate system, where
the orientation paraetera is equéato the polaangle. In figure2.c a projetively transformed version
of these rgs is presented. This configuration will be referred toiasagecoordinate frame and cor-
responds to the unknown projective transformation of the canonical fr@ge. corresponds to the in-
variant point detected in the image.

Figure 2 Intersection ofmage cureswith raysoriginating from apoint Co White guaregepresenthe intersectins
points. Canonical coordinate frame and its projectively transformed version.

Let 8 be anew orientation parameter which now deserthe unknown, mjectively distorted, dis-
tribution of rays in theimage. This non-uniform distibution hasto be mmpensted for projedive
transformawn or, in oher words, a carespondene betwen the canonial and the pojected rgs
should be found.

LetM = (my;) denote the 3x&natrix of the unknowr2D projective transformatin from canoniel
to image frame. This matrix is expressed in homogeneous coordinates up to a scale factor which can
befixed by seting its mg; elemento 1. Thetransformatiorthus ha eéght degreesf freedom (DOFs).

As dready pointedout, C, is by construction annvarlant pont, daectedin the image and thus
known. Denoting its homogeneous coordinatepcgsc 1] , itimplies that its pre-image in the ca-
nonical coordinate system is the centre or zero ve@tor AppIMng to the zero vector and writing
this correspondence of centres in a matrix form gives:

MOT = |:m13 M3 1} = [Cx Cy 1} = Co (1)

This equation directly givetwo elenents ofthe marix M which, aftertheir substitition, leaves six
DOFs (let us denote the new form by ).

Sinceray orientations ca be desgbed by hetangents of the coesponding angles, wesed to find
a correspondence betwetangents in canonitand projected frames. The questiis what amount
of information is necessary to establish such a correspondent®ufh in thecanonical frame the
orientation is &eady given by theanglea , in the imagesystem the pameterd has to baletemined.
A point P, inthe canonical frame is transforoh® thepoint P (cf. figure 2.b) by applying/' t®,,
and taking the affine coordinates. The polar version of the pintith respect to theentreC, is
thus the vectoC,P denoted by:

Pg = P-Cy = (M'P,).x—Co (2)

Polar coordinates with respect@, are characterlzed by their orienthation and pé&sition along
the ray, thereford®y can bewritten as[kcy ks, 1" wheree; = cosB andy = sin@ . To obtain
the angentty othe rgy orientationthe raio betwesn its second and first coordinatehould beéaken.
Doing this with theright sideof eq.2and earranging tams giveghefollowing expression for thean-
gent in image space, which does not dependl on kand
Sa (Mg — C,May) + Cy (M — C, M)
Se (Mg — CxMg,) + Co (Mg — CMg;y)

tg = 3)



Coefficientsc, ands, arethe unknowns of this equation. Dividing numerator and denominator by

Cq(My; —CyMg,) , We obtain an expression for the tanggnt  of the image ray:
ty T Ug
fo = teU, + Ug @

wheret, isthetangentang are the new unknown coefficients which depend on the elements of
M and C,. The ®mnsequene of this expession ighat in orde to obtain an oriatation correspond-
ence between y& in canonical frame and rays in the image we nézdssolve threainknowns. With
one expression (such as eq.4) per ray, this meanshitesgreference rays are needed to establish the
full correspondence.

a)

cates tlie symméry frontier. The sanpling rays(black) follow the projective transformation determinlegthe reference

rays0,, 0,, 65.

Taking three rays with predefined orientatiomg o, 05  inthe canonical frame and three corre-
sponding rays invariantly identified in the image spaath orentations6, 8, 85 will give three
equations of the type of eq.4. Solg them for theu; and making substitutions in the general form of
the equation, we obtain an expression relating any image orientation and canonical orientation
for any ray.

In prectice, ld us take thecanonical referenceorientations asd,,a,,05] = [-1/2,0,1/ 2] (cf.
figure 3.a) which correspond to tangenit§1[ta2,ta3, JA[0 1 , ] (interval of highest tangent stabil-
ity). Substituting them intthe exprasions ofu;, we obtairnthe mapping between the tangefifs  and
tg in the canonical and image frames:

- (to,te,)(tq + 1) + (tg,tg,) (g —1) — 2t g tg, )
0 (to,(1—ty) —tg (tg + 1) + 2tyty )

Once this correspondence is established, we constiyetigh auniform distribution in the canon-
ical frame and &nsform them to the imageaime with the above formula (cf. figure 3.b). All rays so
defined in thamage spee are projectively inugant with respec to the eeference rays. They are fully
invariant provided that refence rgys were invariantlydentified. It shouldenoted thatvorking with
tangents in eq.5 provide®wrespondence oynlup to the entralsymmetry. This diretton ambiguity
is removed during ray construction. As will be shown later, at least one point is available on one ref-
erence ray, thereby allowing the selection of the positive direction.

Itis interesting to notethat exactly thesame onclusionsabout réerencerays could ésobe obténed
in the framework of dual cross-ratio reagam[13]. In fact, a cross-atio of four concurrent lines is an
absolute pojedive invariant (constant), séheorientationof thefourth line can beexpresseds aone-
parameter expression in the orientations of the other three.

To summarize, we now possea methoddr projective normalization of saorientations from a
invariant point, given three reference rays. This normalization has removed five DOFs from the pro-
jective transformation matrix. In the next section, we will concentrate on how to resolve the three re-
maining DOFs by attributing an invariant value to each ray.




2.3 Calculating the signature

In this section we show how, given one ray and some points of intersection with image curves, itis
possible to find a projectively invariant measure for a subset of such points. Each point on the ray is
a one-dimensional entity. With three DOFs remaining, three points are needed to eliminate them, and
one extra point to obtain an invariant value. Indeed, this is the case of an unknown projective line. A
well-known projective inariant on such line ia cross-atio based on four points [19,3,13]. By taking
the centre point and thérst three othe points on onegay, onecancomputetheir crossratio, providing
an invariant value fothatray. Using the notation of figure 2.a the cross-ratio will be calculated as:

cr(ry) = (|CoPy/[P1P3])/ (|P1P|CoP4|) (6)
where|xy| denotes the distapdx —y| or the déerminant of @rresponihg homogeneus coordinge
vectors.It is now dear thatonly the three closescurvesto the pointC, will determinghe points
P,, P,, P selected for each ray. This is an attractive property because our signature will be based on
multiple curves, expressing their relative position. At the same time, this signature will remain local,
without going beyond the three closest curves.

Projective invariance is now achieved. To construct a signature, we take in the canonicaNframe
uniformly spaced rays and transform them, with the help of the reference lines, to the image domain.
For each ray obtained, a cross ratio of three intersection points gives the signature value. In practice,
cross-ratio values are bound. If curves can not be closedthat pixels due to edge detector proper-
ties and the i |mageS|ze does notexceedd,,,, pixels then the uppebound fr the cross-atio is:

Cliax = (Amax—dmin) /(4(dmaxdmm)) Wwith d.;, = 3 and d,, = 600 the cr,, we have
Crmax = D50 which can be used as a normalization factor for signature comparison. tWéeamber
of intersections is less than three, the signature value is undefined and arbitrarily set to zero.

To compare the signatures of two pattems and , we need a matching measu(a) Let be the
value of a signature for the orientation  (which correspondsr{o,) ). In order to stress the suita-
bility of thesignaturetself, weconsider the siplestversion of matching function betweesignatures
S,, ands, given by the normalized sum of Euclidean distances across all rays:

1 -
s ) = 5y Do - oISn(@) ~S,(@)] ™)

where|x| denotes in this case the absolute value but could be extended.tp the ~ norm for multidi-
mensional signatures (cf. section 5).

The following example illustrates the invar@of these signatures. In figure 4)(@nd (b) he same
group of curves is viewed from two different viewpoints (they are projectively equivalent). For both
images, one invariant poirand thre reference rays (gray)eshown. In ths caseN, = 100 and the
two correspondig signatures arshownm figure 4.c Their normalized difrence, according to eq.7,
is 003. More extensive tests with variations of distance under projective transformation are presented
in the experimental results section.

b)

a)

Figure 4 Projectively equivalent shapes (a), (b). Example of signatures (c) computed from these shapes. In (d) The
“cover zone” of the signature in the original image is shown.



It should be noticed that for the simpler case of affine projection the number of DOFs is six, which
is two degrees less than in the projective case. If we remove one DOF from rays and one from point
cross #tio along echray, we obtain thatfor theaffine case, two eferene rays ae suficient together
with only three points on the curve. This simpler case is not further studied in this paper.

Given a tripetof lines repesenting the reference frame, it is possible to defireggon of he image
whoseperimete is formed by he last aurves paticipating in thesignaure(i.e. thethird curvefor each
ray). Figure 4.d. contains one example of such region called “cover zone”. Two interesting observa-
tions ca be made from thisexanple. First, the signdure ranairs loca while gpanningmultiple
curves. Second, attention should be paidaps insome cures producing unpredidiée variations
in signature values. This also suggests a possible way to improve our definition of distance between
signatures, namely the possilylio disregardsmallintervals ofa whee two signatures clely di-
verge.

3. Construction of invariant reference frames

In the previous seain wehave showrthat exatly three projectively invariant hes passg through
one point are necessary to build an invariant signature for aypdimnt. The pesent section addresses
the issue of constructing these reference lines from such invariant curve properties as points and tan-
gents.

3.1 Construction of new lines

Projectively invariant propertgeof a arve include points and straight &s. Points on the curve are
projectiely invariant f they ae cuspsinflections or biangent pointsf contad. A straightline, given
either by a bitangent line, inflection tangent or by a piece of straight curve is also projectively invar-
iant [24]. Due to he relatively high instabily of cusps, we rstricted our nterest titangents, inflec-
tions and straight pieces of curves. Moreover, for bitangents and inflections either tangents or points
can be used but tangents are used first whenever possible because of their higher stability [19, 32].

Unfortunately, none of these properties has a configuration where three lines meet in one point. At
most we have one poinnhd one line (bitangent, infléion). Therefore, different invariant properties
should be combined touild a frame. If we starfrom one invaiantpoint, we ned to add the missing
lines, whereas if we start with one existing tangent, one point and more lines need to be constructed.
By takingthe intersection ofwotangent®f invariant properties otihe cuve, one obains aninvariant
point C, and tvo lines.The thirdline cannotbe producd without extra informabn and sa third
curve property should be considered. In this case linking one further invariant poi@and by a line
would complete the construction.

In order to reduce the number of combinations, the grouping operation underlying the construction
of invariant frames should respethe orde of invanant components lang thecurve.All invariant
lines ae assocated with ®mepoints onthe cuve. Bitangents have two pointg contact with he
curve and can be considerad two sparate points with equal tangents (of coutiseir inteisection
will in this case be avoided). The straight part of a curve can be approximated by a line segment. For
grouping purposes, its two endpoints can be considasgubints otontactfor this line. All invaiant
properties of one curve arthus ordeed and their successive triples can be used for frame construc-
tion.

It should be noted that the unknown direction of a curve still leads to an ambiguity about the global
order of points, i.e. the same frame should be obtained if the order of points in the triple is reversed.
To achieve thisn a locd fashion, we suggest to constrube entre pointC, as the interseion of
tangents of thewo externalpoints of the tripe. The thrd line would then pass hroughC, and the
middleinvariant point.

Let us take, for example, a triple of invariant points, such as the bitangent®pint  and the two in-
flectionsl, ,I, of figure 5.a with their respective tangebis |, ,I, , . Taking the intersection of tan-
gents from theifst and third pointsB; andl,) gives the catre pointC, . The third line is passed



throughC, and the middlpoint in thetriple which is |, . The order between the three constructed
rays is selected in correspondence with canonical rays and becomes the follbyihg:1; , ,

Figure 5 Three-line configuration constructed from a bitangent and two inflections (a). A bitafigent and two in-
flections|; ,1, are used to construct a reference frame of three Ilmesl, 1z , . Fitting common bitangents to mul-
tiple curves (b) and further construction of a reference frame.

The constructive approh described abovés a geneal methodfor construting reerence franes
by selecting successive triples of invariant properties. The only exception is the particular case when
a straight linas the middle invariant propeytin thetriple. Fortunately, this specific situation is com-
pensated by one important advantage of the whole approach. Indeed, taking the intersestier: of
nal (rathe than neighbouring) points irhé triple placesthe centrepoint distinctly outside ofthe
curve.This prevats ponts on theray from being too seto the centre point andthus poduces a
more distinctive signature pattern in each configuration. Indeed, if the intersection oetgltbour-
ing tangens was taken, the ogre point would often lie almost on the curve. One of the distances in
the aoss-ratio calculatiomvould thenbecomezero and thesignaturevaluebeidentically onefor a
whole range of orientations.

3.2 Bitangents of multiple curves

As mentioned above, curves play the role of grouping operator for invariant points. However, prac-
tice shows thathe topology of arves in the image is affected by perspective priopecand image
noise. In curve zones where a particular projective transformation increases the curvature, a potential
gap ca be expeted beause ofthefixed geomety and finite resoluton ofedge deectors. Thus, curve
topology depends on the transformation and can not be relied on for grouping remote invariant prop-
erties. To overcome thigroblem, more invariant prop@s are needed to increase their density along
the curves. We make the assumption that within a local neighbourhood curved contours belongto the
same object and so are coplanar. In the case of trademarks, curved contours rarely correspond to 3D
edges and we expect this hypothesis to hold. Quantitatively, this assumption depends on the number
of planar faces in thescene and on the number of cuniedonging to ach facet. To validate ex-
perimentally wehave bund that fo our datdase of tademaks (cf. setion 5) approximately 4% of
neighbouring curve pairs do not belong to the same object.

If neighbouring curves do belong to the same rigid object, flo@it projectively invariant proper-
ties can be used. In thisase, only biangents are suitable smthey havewo-point contact and so can
be fitted to a pair of cur@s. For ach curve asubset oheighbouring curgs is thus onstructed and
bitangents are fitted to them. Wenpose the conditin thatsuch bitangents do nointersect other
curves so as to keep properties local.

Figure 5.b illstrates this stag&he curvec,; doesnot haveany invarant poins ofits own; therefore
no invariant frame could be found for it. However, several invariant properties can be found in com-
mon with its neighbourg, ¢; and, ,such as the three bitanggnts, h; , . These lines are suf-



ficient to construtat least one eference frame foc, . Taking the intersetion of b; andb; produces
the centre poinC, and the third line would pass thro&gh

We statistically estimted the avantage of using multi-curve properties for signature construction
with respetto methods bagkon a single curve. For our database we found an average of 0.19 bitan-
gents, 062 lines, and 0.1flectionsper curve. This gves atotal of 0.98 nvariant propeties per
curve while the number of triplets of these properties, necessary for frame construction is on average
below 0.24 for each individual curve. However, if we consider bitangents spanning two curves, their
occurrenceercurveis1.7 and thegerage number ofriples incease$o 0.76. This afécts the density
of reference framein theimagemaking it high @ough to nobnly cover the whole object with in-
variantdesciptors,but also b providesufficient level of redundangto ded with noise and occlusion.

3.3 Extension to 3D faceted objects

The construton of theinvariant sgnaure desaibed abovehas bea defined br shapes sutas
trademaks locded ona planar surface. Howekdrademaks ake often placed on paclhboxeshathave
orthogonal sides. If a box corner is visible from the camera, two or three facets are visible simultane-
ously. Trademarks lo¢ad on eah facet ca be r@presented independently, batthis casehe inte-
gration of the information from different fatswould also be ofansiderable interest. In this section
we address the issue of finding a reference frame of three ragaébifacet using the assumption of
facet orthogonality.

b)

Figure 6 (a) Projective cofiguration for the casef anorthogonal coner with three visible face{seen fom Co ). (b)
Three rays configuration recovered for the faget X, . (c) Three ray configuration reconstructed fo fa¥es
with correct definition of the midray

Figure6.a illustrates a homogeneous projae configurdion, mrregponding to a visike orthogonal
corner.In this casep is theprojective plane (image plane) ari@}  is the optical centre. The corner
point X, will be selected as coordinate cerfseconvenience. Lethe basis unit vector¥; X, X;
lay on 3D corner edges. For now we will study the case when all the three facets are visible.

The vectorsX; X, X; will projectonto vectorg X, X3 onthe plgne .Aswe are interested
only in rayscorresponding to the edges of the corner, onlydhentation of the veors x; , X, , X3
is important, and not thelength. This coresponds to an arbitrary depth of the carim the sene or,
equivalently, to arbitrary position of the projective plane along the Gg¥, . Thus we can consider
that it passes through, and it is defined by its normal= [a, b, c] inthe X, , X5,  frame.

Let us take the facet spanned By  axgl as an example (cf. figure 6.a). As we saw in section 3,
ray normalization in theplanerequires threereferencerays. Thetwo vedors spanning théacd al-
ready give two such rays and so we need to find the third one. One excellent candidate is the bisector
of the angle beveenX; andX, beause the triple ofays will then corespond to tcanonial frame
[a,,0,,05] defined in setion 2.2. SinceX; anX, amrthogonal ad of unit length, their bisector
is spanned by the vectot; + X, .L&t;, denote ths vector andk,, its projection orthe planep
(not shown on the figure). In the following, we shall show that orthogonality of facets imposes a ri-



gidity constrainton the orentation of three ngs and eploit this to deive a dosed-form expression
for the orientation ok, .

The vectorx, which defines the ray of projection¥{ pn is defined by:

Xp = (Npx Xq) xn, (8)

and the samérmula applies to tfee other vectorg, x5 X%;, . By defition, all these vectors lay
on thep planein spee. Letx, denote therientation(tangent) of ay such vetor x; in the projetive
plane with respedb some bas, we then negto find x;, fromx; ,X, ,X; . Togetherwitkx; X, ,the
X1, Will become the third referenceyréor thefacetX; X, ad will complete the constrtion of pro-
jectively invariant frame described in the previous section. The same reasoningdpyhe other
two facets.

The orientatiorx;, of a vectox; lying in theprojective plane, can be measudy with respect to
a selected basis in this plane. The coordinates of vegtors  are already expressed with respect to the
three unit vectors<; X, X5 . Keping the sme basis we rotate the projective plape together with
the four orientation vectors; around the celfge  so as to align it with one facet. Selecting, for ex-
ample, the one spanned by t@s X, and X,, these lattevectors beome the basi of the tras-
formed plane (cf. figure 6.b). So, we can use coordinates of the transformed vectors to calculate their
orientations (tangents).

In practice, the rotation of the plage  can be sought as a rotation of its nagmal  so that after the
transformatn thenormal isaligned with X 5. This rotation can bedecomposed into two rotations.
The first, denoted bij , fotatesn, arounthe vedtor X5 and brings itinto the planspanned b,
and X5 . The second, denoted By , rotatgs ~ around the v&Gtor  to finally put the normal onto
X3. The matrices of the transformatloﬁ§ aRg are easily expressed in coordlnages of  only
(since all rotations are fiaed by this vetor posmon) Multiplying two matrices together give the fi-
nal transformation matrix in unknown coordinatesgf

b/l —a/1 0
ca/l cb/I - 9
a b c

wher | = Ja2+b2.

Applying this transformation (eq.9) four vedors x; in the projective plane defindxy (eq.8)we
obtain new vectors’, all belonging to th¢, X,  plane (cf. figure 6.b). Taking the ratio dfrgte
andsecondcoordinates of each vector gives a tangent for each ray as follows:

X; = b/(ca) X, = —a/(ch) X1, = (b—a)/((b+ a)c) (10)
By construdtion, x5 is alignedwith the X, axis and sats orientationx; is zero. By rearranging
terms and using the factthaf,  has unit length we obtain an expressigp,for x; in x;and  only:
k(X —K)
X1 = W wherek =, /—X; X, (1)

The first observation is that;, @ends only on twaays spanning the faté belongs to. This is
true as long ax; is aligned with the horizontal axis and the order betwieen x,and s correct. Se-
lecting thecorrect order, howeveran notbe donein the absene of x; and should bedone inthe
clockwisedirection as illustrated in figer6.b. A seond remark is thax, ang, should be of difér-
ent sign. This condition is a consequence of the rigidity imposed by the orthogonality of facets and it
is always satisfied wher; is aligned with the horizontal axis. So, if we find a Y-junction in the im-
age, we align one ray with the horizontal axis and evaluate the midray for the other two according to
the proposed formula.

Let us considenow the case when onltwo facets are visible (). Rays projected iritoage plane
areshown in figure 6.cThis casediffers from the preious oneby the fact thatall pairwise agles
between rays in the image plane are less tha and thus can be easily detected in the image. The
same rotations arapplied to alignx; with the horzontal axis. Howeer, two other rays, due to the



rigidity constraint, are now placed on the opposite sides oithe . Though, the expression in eq.11
will give a correct midray orentation only when orientations of; x,  rays are measured with first
and second coordinates reversed.

Let us take figur& for a pratical example. A box cornaran be detded in the image by searching
for Y-junctions of lines. Three rays were detected, shown in the figure 7.a. F& the facet a bisector
was deteted acording to he proposed method and a signatesaluate. This opeationwas also
performed with a different view of the same box, shown in fegdrb. Again, a signatumgas evalu-
ated anch comparien betwea the wo is provided n figure 7.c.It can be sen hatexcept for few
points, the signature profiles match rather well.

Figure 7 (a) A bisector ray found for the fac& . In (b) the same ray is found for an image of the same corner viewed
from another viewpoint. In (c) the signatures constructed from the two corresponding facets are shown.

To summarize, we have shown that, even in the 3D case the projective normalisation with lines al-
lowsto representrademarks with afficient precision. It shouldbenoticed hat,unlike the planacase
in 3D signaturs for dl facets correpond to threer/ 2 intervalsin the @nonical frame. Theris no
circular order for these intervals. A comparison technique that takes the best distance over 3 circular
permutations of intervals should thus be considered.

4. lllumination invariance for indexing

The method preented abovéor computing a pattern signature is purely geometric. In otden-
crease its discriminating capability we propose to add chromatic information to the signature. In line
with the wholeappro&h, we shall try taobtain invarance to ilumination change Seveal models
exist to dscribe chromatichanges underliiminant vaiations [5,7] Invarianceto illumination is
then possible to seek as invariance to a specific transformation model.

One ofthe optimal approximations ishe scaing model p] where, under illunmant change, each
colour channel canges its intensgitacmrding to a sparate scale factor. In this case chromatic values
measured onpoint under onelbminantfR G B] changdo[R G' B'] according tothe following
expression:

Ra B = [SRR %6 SBB:I (12)

Let usassume thatvo neighbouring piels1 and Zbelong tahe same surface. Dae their proximity
we consider them as subject to the same illuminant. In this case, the following relation [7] allow the
scaling factors of the previous expression to be discar(lRdG',)/ (R,G'1) = (R;G,)/ (R,G,).
Suchratios argherdorelocdly i nvariant to illumination. In chomaticdly uniform image aeas, this
ratio should be approximately constant. The disadvantage afisod is that local chrges of col-
ours occurring at the border of two surfaces result in large variations of this ratio, making recognition
unstable.
In our case, we hge an invaiantly constructed ray with four poist It would be intersting if we
could complement the geometric information represented by their cross-ratio with a more stable chro-
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matic measure computed amervalsbetweensuch points. Bice cuves in a image correspond to
chromatic variations, the areas they enclose tend to be more uniform or textured and can thus be well
described by simpl&inctions. Byanalysing therofiles of three colour chanels &ong oneof therays

we can see an example of typical global and local variations of intensity (cf. figure 8). Global varia-
tions come from the illuminant while local ones originate from object-specific chromatic variations.

Figure 8 (Left) Example of radius in input image; (right) radius profiles for red, green, blue channels.

The simplest method to model their variations is to take averages over the profile between points of
intersection and work with these valuedittd a possible invariant tdlumination. Such an illurma-
tion invariant value ca be stoed with eab geometric signatungoint and usd asan additional di
mension for discrimination.

Lety = bf denote the average value of the part of the chromatic profile under some canonical il-
luminant. Hereb is simply the average over the interval, the index { 1, 2, 3} indicates the inter-
val andthe indexF = { R, G, B} indicates the chromatic ahnel. Under a chang# illumination
each pointn the intervawill be subjectto a vetical scalhg with a factor s, S, Sz corresponding to
thechromdic channelsR, G, B . Thaveaages, whib arein fact fitted horizontal ihes will exactly
follow this transformation. For instance, the equation of the first inteofahered profiley = bR
will becomey = s;bR .

Due to the projective transformation the above line equation is also subject to additional changes.
The projective transformation along the ray modifies deasityof points n the whole interval. For
the operation of averaging this amounts to weighting differently chromatic values of each point over
the inteval. The net dkcton the Ine position is a vertical displaceent that can be modelled also by
a scale factorn, . So, the modified@ation of, for instancgehe first intenal of the rel profile finally
becomesy = s;a;bR whose right partan be denoted ds} . Given nine lines equations, three un-
known diromaticfactors, thre unknowntransformatn paametersa, andone line paametery
leaves three indepdent invariant valug T&ing ratios ® as to eliminate all parametg one obtains,
the following three expressions:

bRo'S/ (DRL'S), bSbS/ (bB0'S), RS/ (D5LE). (13)

These can based to chaacterze thesignatwe froma chromatic pait of view in addiion to the
geometric invariant descriptors. Overall, the proposed invariant signature consists of ~ vectors con-
taining the cross-ratio of points detected on each ray, plus three chromatic invariants.

5. Experimental Results

In this sestion, wefir st test thestabilty of the proposed invariant repsentation undedifferent
types of image noise. Second, we assess its usefulness for image database applications with standart
performance measures used in information retrieval.

A database of 203 images of 41 planar objects (c.f. figure 9 for a few samples) was collected using
different acquisition devices (camcodmard twodigital cameras). Images were taken from different
viewpointsundervarious illuminaton conditios (dayight, neon/bu lamp). The signaturextrac-
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tion process warun ully automaticand poduced an averagto valid signaturesdr each image. For
eah imagewe computedthe mver one €f. section 2.3) ofall its signaures whid, on aveage,
amounts to 2.1 times the image surface. The average overlap is thus 50% of the cover zone.

Figure 9 Fifteen typical images from the database. The last row features faceted objects

Separate tests were conducted for faceted objects. A database of 170 corner views of 53 boxes was
collectedunder thesame ondiions as dscribed above. Retrieval tests are presgatehe @d of this
section.

5.1 Stability of the invariant representation

The construction of the invariant representation lsamlivided into thre steps: arve detection, ex-
traction of invarant properties, grouping and signatureaduation. The stabily of each step is esti
mated with respect to “image noise” produced from various sources. These include viewpoint trans-
formation and resolution changes. The latter can be modelled by a scaling transformation while view-
point change can be appximated by a geneal projective transirmation (cf. section 2.2).
lllumination changes are produced differentlamps, and their effects are tynegimated with re-
spect to database retrieval (cf. section 5.2).

In order to make curve extraction less sensitive to changes in resolution, scale and illumination, we
use amultiscaleedgedetedor [14] on the RGB colour plaree In this way we consideably reduce
curve gaps. Furthermera mutiscale approach prevenfrom deteting spurious cwes as the 1so-
lutions increases. Because of this multiscale analysis the edge detector cannot separate two curves if
they are less than 5 pixels apart.

The scaling range that a shape can withstand depends améiliest distarebetween its curves
with respect to its full size. Lat be such aratioad be the image size (maximum camera resolution
in pixels). It is straightforwad to expres the maximum resolution reduction aftehich theclosest
curves ca sill be discriminated, whih is: sr/5. Given typical values sut as r = 0.06 and
s = 512 the maximum scaling factor allowed for full-image objects amoun& 1o and will be used
as a reference scale for resolution stability tests.

A similar reasoning can be made about the allowed range of the projective transformation (change
in viewpoint). In this casdor the sane viewpoint position, remote pig of the objetare subject to
stronger contraction. Thus, distancduetion depends nainly on he transformation parameters, but
also ontheimageposiion of thepointto betransforme. Toquantify this reluction, avaluethat mm-
bines both pamaetes and positionisould be used. For this purpose use homogeneous depth” i.e.
the value of the third homogeneous coordinate after the transformigtion  (cf. section 2.2).

The depth for the frontal view of the adgt is equal tdl.0 and under any projective transformation
the maximum reduction will occur abject cornes. For thesame vaues ofr ands introduced above,
the avrerage maiimum distancebetween closest arves d highest rsoluions is 15pixels. If two
curves sepaated by this distnce ardound in the comer of the image, thelistancebeween th@
transformed versions can be expressed as a function of the “depth”. The upper bound for the range of
allowed pojedive transformations is equao 1.68 (homogenaus coordinates)This valueis ob-
tained by setting the obtained distance equal to the minimal allowed distance of 5 pixels and by solv-
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ing for the “depth”. For the real images of the database the viewpoint position with respect to the ob-
ject was unknown and so the depth is estimated by recovering transformation with respect to a refer-
ence frontal image.

Next, we &aluate the robustness of the recovery of invariant propertie®gsas crves are de-
tected, the det#ion of bitangents,nflections and lines presem® major problems. However these
properties exhibit different degree of numerical stability, as can be seen in figure 10.a for scaling and
in figure 10.b for the projective transformation. Each graph represents the proportion of detected fea-
tures (manually wéfied a posteriori)with respetto ideal situation, averaged ovlie datdase. It ca
be seen that up to 75% of the allowed transformation range we still obtain 80% of the same invariant
properties. Irfigure 10.cwe show an xample imag of an objed taken fom a viewpoint of the ex-
treme of the allowed interval.

Finally, we consider the stability of the grouping and signature construction process. The grouping
operation is clearly sensitive to curve gaps. The decreasing number of detected reference frames as a
function of viewpoint transformation is also shown in figure 10.b (triples). This can be explained by
the fact that extreme viewpoints increase the number of curve gaps at high curvature points.

By definition, the stage of signature construction itself is not sensitive to gaps in curves (cf. section
5). These might causeachange nthe sgnaturevaluesonly within limited intervak and her influence
on the distance between signatures can be neutralized by the use of robust estimators [11]. Neverthe-
less, the presenad spuriouscurves ca undermine a largpart of the gynaure. That isvhy thesame
curvesshould baleteced when viewed from different viewpoints. Thiss achievedby theuseof mul-
tiscale detector, as illustrated by variation of the proportion of curves in figure 10.b.

ijl

L
'

Figure 10 Robustnes of the signature construction prosestoportion of detead featires as dunction of resolution
changes (a) and projective transformations (b). (c) Example of the extreme projective image transformation withstood
by the method, for a typical shape.

For the case of orthogonal facets, reference frame detection is greatly simplified. Detection of lines
is facilitated by specular reflections on box edges, by different illumination conditions for each facet
(higher contrasbn the edgeand finallyby the relaively long edges of hebox that aréhardly subject
to projective distortion. The grouping operation is performed by selecting linesrgmd byverifying
that three criteria are satisfied. First, three lines rarely intersect at one unique point, but rather form a
“triangle ofintersection” Therefore, thasurface ofthis triangleshouldbe small. The second condition
is on the orientation of rays. Orthogonality faicets imposes a condition on treys orientation that
shoud be satisfied. fally, lines often danot reach the “cornerjoint, introducinggaps betwen their
endpointand e caner point Therdorethe hird constrainimposeghat he sunof these gapshould
not exceed a fixed percentage of the three lines total length.

5.2 Evaluation of the content-based retrieval capabilities

In this section we presétwo types of expeiments in orde to assess the suitdity of the proposed
invariant signature for content-based shape reditidnitially, an individual signatures usedasaque-
ry to the database while in the second stage all signatures, automatically extracted from the same im-
age are used as queries.

In both cases, sepdeatests wih four differentsubsets of the datataare perfornek In caseone,
only one version of each image is included in the database (frontal view). In case two, close views of
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the sameobject but undedifferent illumination conditions areonsiderd. In the third case, objet
views from different viewpoints arincluded within he allowed range. The fourth case combines the
images of the last two.

Shape-based retrieval was performed by pairwise comparison between signatures, using the Eucli-
dean distancen the whole equly-weighted vector including geometrand chomatic information
(cf. eq. 8). The search progeis thus lineain thedatabase sizalthough fater approaches can easily
be introduced [1]. Given a query signature, the retrieval performance was assessed using standard in-
formation retrieval measures on the ranked hits, namely precision and Rrealkionis the propor-
tion of correct hits in the set of retrieved items up to the last correct Beeallis the proportiorof
target images that have been retrieved among thé&ltop Nhits]

In the first expe&iment, individual signatures were used for matghwith the contats of four data-
sets. However, only the signatures for which a correct answer exist in the database were used. Table
1 shows the average values of the precision for all signatures of the frontal view, matched against all
other signature in the four searatedatasés. Images flom which the quey was extacted verere-
moved from their corresponding “front-view” dataset.

Table 1: Performance of image querying using individual signatures from frontal views

Frontal views only

lllumination changes

Viewpoint variatior

Both

Precision

69%

65%

58%

56%

Recall (N=15)

78%

73%

65%

61%

On average, mogif the corectsignatures & amonglie N = 15 top-ranked I, for all types of
allowed transformations. In general, if at least one signature of an object (complex objects may pro-
vide several signatures) is detected in the image its discriminative power is sufficient enough to per-
form shape-based retrieval.

In the second exparient, the same four datdsare used as the dase contents, btie way to
definea quey is different. For all objects in the datad® other fontal views (diferentfrom those
already in the déabase) a used or signature extraction. All automatically extracted signatures are
used for separately querying the database. Nlle 15 top-ranked hits were retained for each case.
By using a simple voting scheme for all signatures of the same object, the rank of each signature was
accumulated into aabjectrank. Table 2 shows the precision results using this rank, averaged across
all queries.

Table 2: Querying with frontal views

One frontal view

lllumination changes

Viewpoint variatior

Both

Precision

73%

70%

66%

62%

Recall(N=15)

82%

75%

69%

64%

Using thesane procedure,we then perforned rdrieval testfor facetad objects. Similar datasets
were constructed. Views taken from different points in space but under the same illumination condi-
tions wee includel in the first se. Views with al condtions allowed to var weregatheed in he
second set (“Both”). Retrieval was performed by comparing three signatures of a test image with the
whole collection of signatures.

Table 3: Performance of image querying using facet signatures

Viewpointvariation Both
Precision 78% 72%
Recall N=10 85% 78%

It can be ®en, that retrieval performacensore sable and better thaim a mere planar case. This
stability can beexplained by the moreobust extration of reference rgs and by he fact that when
one facet becomes hardly visible, the others automatically offers a good view to the camera.
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6. Conclusions

In this aticle we have presged an apgrach for r@resenting planar complex shapes. The proposed
representation is projectively invandand descibes the local arangemat of neighbouring cuns
with respet to theinvariant popeties of oneor move wrves. This method peents two major ad-
vantages. First, less information is required with respect to previous approaches for one curve to pro-
duce areference frame. Only three conaotrrays arenecessay, against four paits in a general pro-
jective case. Second, the local arrangement of neighbouring cisriresorpoated into thedescrip-
tion. This nakes cuves wihout any invaiant propeties at all alsausefil. Both advantages ca be
exploited to extend the application of invariant methods to a broad class of shapes found in the real-
world situations ands extension to 3D feeted objects broadeits field of goplication to package
boxes.

The poposedgeometric construction is appropria for the integration of chromatic information.
Togethemwith projedive invanance, ilumination invariantneasureare associated with thehapede-
scription. This helps disaninategeometrially similar cases ad lead€o a morecompleteobjed rep-
resentation.

The applicabilityof the proposednvariant repesentation to databasenetval has been valated
with statistical tests. The representation maintains, within small variations, the property of projective
invariance under reasonable viewpoint changes. At the same time, it allows discrimination among a
few hundreds three-ray configurations selected from a database of real flat or faceted trademarks.
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