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Abstract

We describe a new projectively invariant representation of disjoint contour groups
which is suitable for shape-based retrieval from an image database. It consists of
simultaneous polar reparametrization of multiple curves where an invariant point is
usedas the origin. For each ray orientation, a cross-ratio of its intersections with
other curves is taken as a value associated to the radius. With respect to other meth-
ods this representation is less reliant on single curve properties, both for the con-
struction of the projective basis and for calculating the signature. It is therefore
more robust to contour gaps and image noise and is better suited to describing com-
plex planar shapes defined by multiple disjoint curves. The proposed representation
has been originally developed for planar shapes, but an extension is proposed and
validated for 3D faceted objects. Moreover, we show that illumination invariance
fits well within the proposed framework and can easily be introduced in the repre-
sentation in order to make it more appropriate for shape-based retrieval. Experi-
ments are reported on a database of real trademarks.
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1. Introduction

The emerging field of image databases [6,10,22,30] has created a demand for new querying tech-
niques. Such techniques must be able to cope with huge amounts of image data, without restrictions
on the image content. Computer vision methods can be employed, provided that they are fast, reliable
and not reliant on application-specific constraints [12].

A user needs to retrieve images according to some semantic description. We hypothesize that part
of these descriptions can be represented in terms of image properties. Searching for images containing
a particular object (e.g. a trademark in figure 1.(a)), amounts to searching for properties like colour
[7] or shape [6,10]. However, all such properties are influenced by the viewing conditions. The reli-
ability of a search method depends on how well it can separate information influenced by viewing
conditions from object properties, and detect the latter. Separable object properties are called invari-
ants and their application to computer vision was first broadly reviewed in [19]. The geometric chang-
es introduced by varying viewing conditions can be modelled by either projective or affine transfor-
mations, while linear transformations can be used to model chromatic changes under different illumi-
nants.

Several attempts to obtain invariant representations of geometric properties were summarized in
[19]. For mathematical reasons, invariants are obtained more easily for planar geometric structures
[24,3]. This has limited their use to object facets and trademark recognition. Some studies have pro-
posed the use of algebraic invariants, i.e. measures that are obtained from regular geometric structures
like a group of lines [29] or conics [20]. The difficulty of characterizing real objects with such struc-
tures has constrained the use of algebraic invariants to specific (mostly industrial) classes of objects.
Also, as pointed out in [15], the small number of these invariants fails to provide sufficient discrimi-
native capability when the amount of objects increases.

Differential invariants (based on derivatives) were designed to generalize previous approaches to a
larger class of objects and consist of expressing the behaviour of a shape in a reference frame, defined
by some regular invariant geometric structures [32,31]. Such structures could be invariant points [2],
tangents [18,24], lines [9]. As an alternative to the projective camera model, an affine model can be
used. This has the advantage of simplifying the invariant properties, and proves useful in a wide range
of applications [21,28]. Advantages of differential invariants include locality, and the coverage of a
relatively large class of shapes. These methods, however, represent one curve at a time and most
curves (like those in figure 1.b) do not possess a sufficient number of invariant properties to charac-
terize them. A lot of geometric information is thus lost. For completeness, two more shape represen-
tation methods should be mentioned, namely shape decomposition with ellipses [2] and deformable
templates [27].

In practice, when invariant representations are used for shape-based retrieval, two major weaknesses
can be observed. First, they focus on single-curve properties, thereby neglecting the fact that shapes
are generally defined over a neighbourhood containing multiple curves. The second weakness is the
tendency of purely geometric and local representations to produce a largenumber of false matches. A
solution to this problem is to enrich the representation with a (possibly invariant) description of the

Figure 1   Example of a trademark image (a). The large number and form of the curves, extracted from the image (b), 
illustrates the highly distributed nature of a shape.

a) b)
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chromatic properties of the shape. This paper proposes a technique that combines a geometric shape
representation integrating multiple curves with illumination invariant information.

The rest of this paper is structured as follows: section 2 outlines the idea of the proposed represen-
tation and shows its projective invariance; Section 3 focuses on the problem of finding reference lines,
necessary for invariant reparametrization; in Section 4 the method is extended with illumination in-
variance. Finally, in section 5 experimental results on invariance and database aspects such as shape
comparison and indexing are reported.

2. Projectively Invariant Description of Disjoint Curves

In this section we express invariant relationships between multiple disjoint curves. A representation
is derived and used for further experiments. Special attention is paid to guaranteeing projective invar-
iance at each step of the representation construction.

2.1 Building multi-curve descriptors

In order to represent geometric arrangements of multiple planar curves, one needs to represent rela-
tions between points on those curves. Let us suppose that each curve  in an image has its associated
length parameter and each of its points is defined as a point vector  for some value of .
Let us take such curves into account with one point per curve, so that each point is allowed to move
freely along its corresponding curve. The dimensionality of the representation space for the relation-
ship between those points will be . In the case of three such curves, the 3D parameter space is already
too large to search for relationships between the curves and to extract invariants.

This dimensionality can be reduced by imposing some constraints on the free points taken from dif-
ferent curves. The simplest such relationship is collinearity of points. Any two points from two curves
uniquely specify one line and therefore all other points are uniquely defined with respect to this line.
So, with the collinearity condition, the dimensionality of the representation space is two, whatever the
number of curves. It should be noted that collinearity is a projectively invariant condition.

As the number of curves in an image approaches a few hundred, two-dimensional descriptions for
each pair of curves are still not a promising approach. We can reduce this description space to one
dimension by constraining the line to pass through one point (e.g. in figure 2.a). By selecting this
point as one extreme of the line, one obtains a one-parameter family of rays, uniquely defined by their
angle of orientation 

For each ray , we can detect its intersection points , , ... with all image curves (cf. figure
2.a). It is now possible to characterize this set of points with some function and plot this function
against the parameter . This provides a “signature”  for any choice of the origin , which is
based on multiple curves and describes information about their spatial arrangement. The number of
rays cast from  over the interval  defines the signature’s resolution, and can be defined
a priori.

This representation scheme will be of interest only if it guarantees projective invariance of the sig-
nature. For this to be true, all stages of the signature construction method should be projectively in-
variant. Collinearity of intersection points is already so. The invariance of the position of the centre
point is provided by construction methods addressed in Section 3. Also, the way rays are cast from

 should be invariant. This is equivalent to the invariance of the parametrization , and is studied
in the following subsection. Subsection 2.3 then describes how to obtain an invariant value for a set
of intersection points on the ray, and how to construct a shape signature.

2.2 Reparametrization of rays

Let  be a total number of rays originating from . A point on the ray is characterized by a
homogeneous vector  where  is the position along the ray, and  and  are
the cosine and sine of the orientation parameter . A configuration where is the centre of coor-
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dinates and the distribution of orientation parameter  is uniform over the interval is referred to
as canonical.

In the example of figure 2.b a family of rays is in its canonical coordinate system, where
the orientation parameter  is equal to the polarangle. In figure 2.c a projectively transformed version
of these rays is presented. This configuration will be referred to as image coordinate frame and cor-
responds to the unknown projective transformation of the canonical frame. corresponds to the in-
variant point detected in the image.

Let be a new orientation parameter which now describes the unknown, projectively distorted, dis-
tribution of rays in the image. This non-uniform distribution has to be compensated for projective
transformation or, in other words, a correspondence between the canonical and the projected rays
should be found.

Let  denote the 3x3 matrix of the unknown 2D projective transformation from canonical
to image frame. This matrix is expressed in homogeneous coordinates up to a scale factor which can
be fixed by setting its  element to 1. The transformation thus has eight degrees of freedom (DOFs).
As already pointed out,  is by construction an invariant point, detected in the image and thus
known. Denoting its homogeneous coordinates as , it implies that its pre-image in the ca-
nonical coordinate system is the centre or zero vector . Applying to the zero vector and writing
this correspondence of centres in a matrix form gives:

(1)

This equation directly gives two elements of the matrix  which, after their substitution, leaves six
DOFs (let us denote the new form by ).

Since ray orientations can be described by the tangents of the corresponding angles, weneed to find
a correspondence between tangents in canonical and projected frames. The question is what amount
of information is necessary to establish such a correspondence. Although in the canonical frame the
orientation is already given by the angle , in the image system the parameter has to be determined.
A point  in the canonical frame is transformed to the point (cf. figure 2.b) by applying to
and taking the affine coordinates. The polar version of the point  with respect to the centre  is
thus the vector  denoted by:

(2)

Polar coordinates with respect to  are characterized by their orientation and position  along
the ray, therefore  can be written as  where  and . To obtain
the tangent ofthe ray orientation, the ratio between its second and first coordinates should be taken. 
Doing this with the right side of eq.2 and rearranging terms gives the following expression for the tan-
gent in image space, which does not depend on  and :

(3)

Figure 2  Intersection of image curves with rays originating from a point . White squares represent the intersections 
points. Canonical coordinate frame and its projectively transformed version.
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Coefficients  and  are the unknowns of this equation. Dividing numerator and denominator by
, we obtain an expression for the tangent  of the image ray:

(4)

where  is the tangent and  are the new unknown coefficients which depend on the elements of
 and . The consequence of this expression is that in order to obtain an orientation correspond-

ence between rays in canonical frame and rays in the image we need to resolve three unknowns. With
one expression (such as eq.4) per ray, this means that three reference rays are needed to establish the
full correspondence.

Taking three rays with predefined orientations , ,  in the canonical frame and three corre-
sponding rays invariantly identified in the image space with orientations , ,  will give three
equations of the type of eq.4. Solving them for the  and making substitutions in the general form of
the equation, we obtain an expression relating any image orientation  and canonical orientation 
for any ray.

In practice, let us take the canonical reference orientations as [ , , ] = [ , , ] (cf.
figure 3.a) which correspond to tangents [ , , ] = [ , , ] (interval of highest tangent stabil-
ity). Substituting them into the expressions of , we obtain the mapping between the tangents and

 in the canonical and image frames:

(5)

Once this correspondence is established, we construct rays with a uniform distribution in the canon-
ical frame and transform them to the image frame with the above formula (cf. figure 3.b). All rays so
defined in the image space are projectively invariant with respect to the reference rays. They are fully
invariant provided that reference rays were invariantly identified. It should be noted that working with
tangents in eq.5 provides correspondence only up to the central symmetry. This direction ambiguity
is removed during ray construction. As will be shown later, at least one point is available on one ref-
erence ray, thereby allowing the selection of the positive direction.

It is interesting to note that exactly the same conclusions about reference rays could alsobe obtained
in the framework of dual cross-ratio reasoning [13]. In fact, a cross-ratio of four concurrent lines is an
absolute projective invariant (constant), so the orientation of the fourth line can be expressed as a one-
parameter expression in the orientations of the other three.

To summarize, we now possess a method for projective normalization of ray orientations from an
invariant point, given three reference rays. This normalization has removed five DOFs from the pro-
jective transformation matrix. In the next section, we will concentrate on how to resolve the three re-
maining DOFs by attributing an invariant value to each ray.

Figure 3   Canonical (a) and image (b) coordinate frames with reference and sampling rays. In (b), the fourth ray indi-
cates the symmetry frontier. The sampling rays(black) follow the projective transformation determined by the reference 
rays , , .
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2.3 Calculating the signature

In this section we show how, given one ray and some points of intersection with image curves, it is
possible to find a projectively invariant measure for a subset of such points. Each point on the ray is
a one-dimensional entity. With three DOFs remaining, three points are needed to eliminate them, and
one extra point to obtain an invariant value. Indeed, this is the case of an unknown projective line. A
well-known projective invariant on such line is a cross-ratio based on four points [19,3,13]. By taking
the centre point and the first three other points on one ray, one can compute their cross-ratio, providing
an invariant value for that ray. Using the notation of figure 2.a the cross-ratio will be calculated as:

(6)

where denotes the distance or the determinant of corresponding homogeneous coordinate
vectors. It is now clear that only the three closest curves to the point will determine the points

 selected for each ray. This is an attractive property because our signature will be based on
multiple curves, expressing their relative position. At the same time, this signature will remain local,
without going beyond the three closest curves.

Projective invariance is now achieved. To construct a signature, we take in the canonical frame 
uniformly spaced rays and transform them, with the help of the reference lines, to the image domain.
For each ray obtained, a cross ratio of three intersection points gives the signature value. In practice,
cross-ratio values are bound. If curves can not be closer that  pixels due to edge detector proper-
ties and the image size does not exceed  pixels, then the upper bound for the cross-ratio is:

. With  and  the  we have
which can be used as a normalization factor for signature comparison. When the number

of intersections is less than three, the signature value is undefined and arbitrarily set to zero.
To compare the signatures of two patterns  and , we need a matching measure. Let  be the

value of a signature for the orientation  (which corresponds to ). In order to stress the suita-
bility of the signature itself, we consider the simplest version of matching function between signatures

 and  given by the normalized sum of Euclidean distances across all rays:

(7)

where  denotes in this case the absolute value but could be extended to the  norm for multidi-
mensional signatures (cf. section 5).

The following example illustrates the invariance of these signatures. In figure 4 (a) and (b) the same
group of curves is viewed from two different viewpoints (they are projectively equivalent). For both
images, one invariant point and three reference rays (gray) are shown. In this case, and the
two corresponding signatures are shown in figure 4.c. Their normalized difference, according to eq.7,
is 003. More extensive tests with variations of distance under projective transformation are presented
in the experimental results section.

Figure 4   Projectively equivalent shapes (a), (b). Example of signatures (c) computed from these shapes. In (d) The 
“cover zone” of the signature in the original image is shown.
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It should be noticed that for the simpler case of affine projection the number of DOFs is six, which
is two degrees less than in the projective case. If we remove one DOF from rays and one from point
cross ratio along each ray, we obtain that, for the affine case, two reference rays are sufficient together
with only three points on the curve. This simpler case is not further studied in this paper.

Given a triplet of lines representing the reference frame, it is possible to define a region of the image
whose perimeter is formed by the last curves participating in the signature (i.e. the third curve for each
ray). Figure 4.d. contains one example of such region called “cover zone”. Two interesting observa-
tions can be made from this example. First, the signature remains local while spanning multiple
curves. Second, attention should be paid to gaps in some curves producing unpredictable variations
in signature values. This also suggests a possible way to improve our definition of distance between
signatures, namely the possibility to disregard small intervals of where two signatures clearly di-
verge.

3. Construction of invariant reference frames

In the previous section wehave shown that exactly three projectively invariant lines passing through
one point are necessary to build an invariant signature for such a point. The present section addresses
the issue of constructing these reference lines from such invariant curve properties as points and tan-
gents.

3.1 Construction of new lines

Projectively invariant properties of a curve include points and straight lines. Points on the curve are
projectively invariant if they are cusps, inflections or bitangent points of contact. A straight line, given
either by a bitangent line, inflection tangent or by a piece of straight curve is also projectively invar-
iant [24]. Due to the relatively high instability of cusps, we restricted our interest to bitangents, inflec-
tions and straight pieces of curves. Moreover, for bitangents and inflections either tangents or points
can be used but tangents are used first whenever possible because of their higher stability [19, 32].

Unfortunately, none of these properties has a configuration where three lines meet in one point. At
most we have one point and one line (bitangent, inflection). Therefore, different invariant properties
should be combined to build a frame. If we start from one invariant point, we need to add the missing
lines, whereas if we start with one existing tangent, one point and more lines need to be constructed.
By taking the intersection oftwo tangents of invariant properties on the curve, one obtains an invariant
point  and two lines. The third line cannot be produced without extra information and so a third
curve property should be considered. In this case linking one further invariant point and  by a line
would complete the construction.

In order to reduce the number of combinations, the grouping operation underlying the construction
of invariant frames should respect the order of invariant components along the curve. All invariant
lines are associated with somepoints on the curve. Bitangents have two points of contact with the
curve and can be considered as two separate points with equal tangents (of course their intersection
will in this case be avoided). The straight part of a curve can be approximated by a line segment. For
grouping purposes, its two endpoints can be considered as points of contact for this line. All invariant
properties of one curve are thus ordered and their successive triples can be used for frame construc-
tion.

It should be noted that the unknown direction of a curve still leads to an ambiguity about the global
order of points, i.e. the same frame should be obtained if the order of points in the triple is reversed.
To achieve this in a local fashion, we suggest to construct the centre point  as the intersection of
tangents of the two external points of the triple. The third line would then pass through and the
middle invariant point.

Let us take, for example, a triple of invariant points, such as the bitangent point  and the two in-
flections ,  of figure 5.a with their respective tangents , , . Taking the intersection of tan-
gents from the first and third points (  and ) gives the centre point . The third line is passed

α

C0
C0

C0
C0

B1
I1 I2 b1 l1 l2
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through  and the middle point in the triple which is . The order between the three constructed
rays is selected in correspondence with canonical rays and becomes the following: , , .

The constructive approach described aboveis a general method for constructing reference frames
by selecting successive triples of invariant properties. The only exception is the particular case when
a straight line is the middle invariant property in the triple. Fortunately, this specific situation is com-
pensated by one important advantage of the whole approach. Indeed, taking the intersection ofexter-
nal (rather than neighbouring) points in the triple places the centre point distinctly outside of the
curve. This prevents points on the ray from being too close to the centre point and thus produces a
more distinctive signature pattern in each configuration. Indeed, if the intersection of two neighbour-
ing tangents was taken, the centre point would often lie almost on the curve. One of the distances in
the cross-ratio calculation would then become zero and the signature value be identically one for a
whole range of orientations.

3.2 Bitangents of multiple curves

As mentioned above, curves play the role of grouping operator for invariant points. However, prac-
tice shows thatthe topology of curves in the image is affected by perspective projection and image
noise. In curve zones where a particular projective transformation increases the curvature, a potential
gap can be expected because of the fixed geometry and finite resolution of edge detectors. Thus, curve
topology depends on the transformation and can not be relied on for grouping remote invariant prop-
erties. To overcome this problem, more invariant properties are needed to increase their density along
the curves. We make the assumption that within a local neighbourhood curved contours belong to the
same object and so are coplanar. In the case of trademarks, curved contours rarely correspond to 3D
edges and we expect this hypothesis to hold. Quantitatively, this assumption depends on the number
of planar facets in the scene and on the number of curves belonging to each facet. To validate it ex-
perimentally we have found that for our database of trademarks (cf. section 5) approximately 4% of
neighbouring curve pairs do not belong to the same object.

If neighbouring curves do belong to the same rigid object, their joint projectively invariant proper-
ties can be used. In this case, only bitangents are suitable since they havetwo-point contact and so can
be fitted to a pair of curves. For each curve a subset of neighbouring curves is thus constructed and
bitangents are fitted to them. We impose the condition that such bitangents do notintersect other
curves so as to keep properties local.

Figure 5.b illustrates this stage. The curve  does not have any invariant points of its own; therefore
no invariant frame could be found for it. However, several invariant properties can be found in com-
mon with its neighbours ,  and , such as the three bitangents , , . These lines are suf-

Figure 5   Three-line configuration constructed from a bitangent and two inflections (a). A bitangent  and two in-
flections ,  are used to construct a reference frame of three lines: , , . Fitting common bitangents to mul-
tiple curves (b) and further construction of a reference frame.

C0 I1
b1 l2 l1

l3

a) b)

c1

b1

b2

C0

b3

B1

b1

I 1

I 2

l2

B1

B2
B3

c3

b1
I1 I2 b1 l2 l3

c1

c2 c3 c4 b1 b2 b3



8

ficient to construct at least one reference frame for . Taking the intersection of  and  produces
the centre point  and the third line would pass through .

We statistically estimated the advantage of using multi-curve properties for signature construction
with respect to methods based on a single curve. For our database we found an average of 0.19 bitan-
gents, 0.62 lines, and 0.17 inflections per curve. This gives atotal of 0.98 invariant properties per
curve while the number of triplets of these properties, necessary for frame construction is on average
below 0.24 for each individual curve. However, if we consider bitangents spanning two curves, their
occurrence per curve is 1.7 and the average number oftriples increasesto 0.76. This affects the density
of reference frames in the image making it high enough to not only cover the whole object with in-
variant descriptors, but also to providesufficient level of redundancy to deal wi th noise and occlusion.

3.3 Extension to 3D faceted objects

The construction of theinvariant signature described above has been defined for shapes such as
trademarks located on a planar surface. However, trademarks are often placed on pack boxes that have
orthogonal sides. If a box corner is visible from the camera, two or three facets are visible simultane-
ously. Trademarks located on each facet can be represented independently, but in this casethe inte-
gration of the information from different facets would also be of considerable interest. In this section
we address the issue of finding a reference frame of three rays for each facet using the assumption of
facet orthogonality.

Figure 6.a illustrates a homogeneous projective configuration, corresponding to a visible orthogonal
corner. In this case  is the projective plane (image plane) and  is the optical centre. The corner
point will be selected as coordinate centre for convenience. Let the basis unit vectors , , 
lay on 3D corner edges. For now we will study the case when all the three facets are visible.

The vectors , ,  will project onto vectors , ,  on the plane . As we are interested
only in rays corresponding to the edges of the corner, only the orientation of the vectors , , 
is important, and not their length. This corresponds to an arbitrary depth of the corner in the scene or,
equivalently, to arbitrary position of the projective plane along the line . Thus we can consider
that it passes through  and it is defined by its normal  in the , ,  frame.

Let us take the facet spanned by and  as an example (cf. figure 6.a). As we saw in section 3,
ray normalization in the plane requires three reference rays. The two vectors spanning the facet al-
ready give two such rays and so we need to find the third one. One excellent candidate is the bisector
of the angle between  and  because the triple of rays will then correspond to the canonical frame
[ , , ] defined in section 2.2. Since and are orthogonal and of unit length, their bisector
is spanned by the vector . Let  denote this vector and its projection on the plane 
(not shown on the figure). In the following, we shall show that orthogonality of facets imposes a ri-

Figure 6   (a) Projective configuration for the case of anorthogonal corner with three visible facets (seen from ). (b)
Three rays configuration recovered for the facet . (c) Three ray configuration reconstructed for facet 
with correct definition of the midray
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gidity constraint on the orientation of three rays and exploit this to derive a closed-form expression
for the orientation of .

The vector  which defines the ray of projection of  on  is defined by:
(8)

and the same formula applies to three other vectors , , . By definition, all these vectors lay
on the  plane in space. Let  denote theorientation (tangent) of any such vector  in the projective
plane with respect to some basis, we then need to find from , , . Together with , , the

 will become the third reference ray for the facet  and will complete the construction of pro-
jectively invariant frame described in the previous section. The same reasoning applies to the other
two facets.

The orientation of a vector  lying in the projective plane, can be measured only with respect to
a selected basis in this plane. The coordinates of vectors  are already expressed with respect to the
three unit vectors . Keeping the same basis we rotate the projective plane  together with
the four orientation vectors  around the centre  so as to align it with one facet. Selecting, for ex-
ample, the one spanned by vectors  and , these lattervectors become the basis of the trans-
formed plane (cf. figure 6.b). So, we can use coordinates of the transformed vectors to calculate their
orientations (tangents).

In practice, the rotation of the plane  can be sought as a rotation of its normal  so that after the
transformation the normal isaligned with . This rotation can be decomposed into two rotations.
The first, denoted by , rotates  around the vector and brings it into the plane spanned by 
and . The second, denoted by , rotates  around the vector  to finally put the normal onto

. The matrices of the transformations  and  are easily expressed in coordinates of  only
(since all rotations are defined by this vector position). Multiplying two matrices together give the fi-
nal transformation matrix in unknown coordinates of :

(9)

where .
Applying this transformation (eq.9) to four vectors in the projective plane defined by (eq.8)we

obtain new vectors all belonging to the  plane (cf. figure 6.b). Taking the ratio of the first
and second coordinates of each vector gives a tangent for each ray as follows:

(10)

By construction,  is aligned with the  axis and so its orientation  is zero. By rearranging
terms and using the fact that  has unit length we obtain an expression for  in  and  only:

 where (11)

The first observation is that depends only on two rays spanning the facet it belongs to. This is
true as long as  is aligned with the horizontal axis and the order between  and  is correct. Se-
lecting the correct order, however, can not be done in the absence of  and should be done in the
clockwise direction as illustrated in figure 6.b. A second remark is that  and  should be of differ-
ent sign. This condition is a consequence of the rigidity imposed by the orthogonality of facets and it
is always satisfied when is aligned with the horizontal axis. So, if we find a Y-junction in the im-
age, we align one ray with the horizontal axis and evaluate the midray for the other two according to
the proposed formula.

Let us consider now the case when only two facets are visible (). Rays projected into image plane
are shown in figure 6.c. This case differs from the previous one by the fact that all pairwise angles
between rays in the image plane are less than  and thus can be easily detected in the image. The
same rotations are applied to align  with the horizontal axis. However, two other rays, due to the
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rigidity constraint, are now placed on the opposite sides of the . Though, the expression in eq.11
will give a correct midray orientation only when orientations of , rays are measured with first
and second coordinates reversed.

Let us take figure7 for a practical example. A box corner can be detected in the image by searching
for Y-junctions of lines. Three rays were detected, shown in the figure 7.a. For the facet a bisector
was detected according to the proposed method and a signature evaluated. This operation was also
performed with a different view of the same box, shown in figure 7.b. Again, a signature was evalu-
ated and a comparison between the two is provided in figure 7.c. It can be seen that except for few
points, the signature profiles match rather well.

To summarize, we have shown that, even in the 3D case the projective normalisation with lines al-
lows to represent trademarks with sufficient precision. It should be noticed that, unlike the planar case,
in 3D signatures for all facets correspond to three  intervals in the canonical frame. There is no
circular order for these intervals. A comparison technique that takes the best distance over 3 circular
permutations of intervals should thus be considered.

4. Illumination invariance for indexing

The method presented above for computing a pattern signature is purely geometric. In order to in-
crease its discriminating capability we propose to add chromatic information to the signature. In line
with the whole approach, we shall try to obtain invariance to illumination changes. Several models
exist to describe chromatic changes under illuminant variations [5,7]. Invariance to illumination is
then possible to seek as invariance to a specific transformation model.

One of the optimal approximations isthe scaling model [5] where, under illuminant change, each
colour channel changes its intensity according to a separate scale factor. In this case chromatic values
measured onepoint under one illuminant  changeto  according to the following
expression:

(12)

Let us assume that two neighbouring pixels 1 and 2 belong to the same surface. Due to their proximity
we consider them as subject to the same illuminant. In this case, the following relation [7] allow the
scaling factors of the previous expression to be discarded: .

Such ratios are therefore locally i nvariant to illumination. In chromatically uniform image areas, this
ratio should be approximately constant. The disadvantage of this method is that local changes of col-
ours occurring at the border of two surfaces result in large variations of this ratio, making recognition
unstable.

In our case, we have an invariantly constructed ray with four points. It would be interesting if we
could complement the geometric information represented by their cross-ratio with a more stable chro-

Figure 7 (a) A bisector ray found for the facet . In (b) the same ray is found for an image of the same corner viewed 
from another viewpoint. In (c) the signatures constructed from the two corresponding facets are shown.
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matic measure computed on intervals between such points. Since curves in an image correspond to
chromatic variations, the areas they enclose tend to be more uniform or textured and can thus be well
described by simplefunctions. By analysing the profiles of three colour channels along one of the rays
we can see an example of typical global and local variations of intensity (cf. figure 8). Global varia-
tions come from the illuminant while local ones originate from object-specific chromatic variations.

The simplest method to model their variations is to take averages over the profile between points of
intersection and work with these values to find a possible invariant to illumination. Such an illumina-
tion invariant value can be stored with each geometric signature point and used as an additional di-
mension for discrimination.

Let  denote the average value of the part of the chromatic profile under some canonical il-
luminant. Here  is simply the average over the interval, the index  indicates the inter-
val and the index  indicates the chromatic channel. Under a changeof ill umination
each point in the interval will be subject to a vertical scaling with a factor  corresponding to
the chromatic channels . The averages, which arein fact fit ted horizontal lines will exactly
follow this transformation. For instance, the equation of the first interval of the red profile
will become .

Due to the projective transformation the above line equation is also subject to additional changes.
The projective transformation along the ray modifies the density of points in the whole interval. For
the operation of averaging this amounts to weighting differently chromatic values of each point over
the interval. The net effect on the line position is a vertical displacement that can be modelled also by
a scale factor . So, the modified equation of, for instance, the first interval of the red profile finally
becomes  whose right part can be denoted as . Given nine lines equations, three un-
known chromatic factors, three unknown transformation parameters  and one line parameter 
leaves three independent invariant values. Taking ratios so as to eliminate all parameters, one obtains,
the following three expressions: 

, , . (13)

These can be used to characterize thesignature froma chromatic point of view in addition to the
geometric invariant descriptors. Overall, the proposed invariant signature consists of  vectors con-
taining the cross-ratio of points detected on each ray, plus three chromatic invariants.

5. Experimental Results

In this section, we first test the stability of the proposed invariant representation under different
types of image noise. Second, we assess its usefulness for image database applications with standard
performance measures used in information retrieval.

A database of 203 images of 41 planar objects (c.f. figure 9 for a few samples) was collected using
different acquisition devices (camcoder and two digital cameras). Images were taken from different
viewpoints undervarious illumination conditions (daylight, neon/bulb lamp). The signature extrac-

Figure 8   (Left) Example of radius in input image; (right) radius profiles for red, green, blue channels.
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tion process was run fully automatic and produced an average 40 valid signatures for each image. For
each image we computed the cover zone (cf. section 2.3) of all its signatures which, on average,
amounts to 2.1 times the image surface. The average overlap is thus 50% of the cover zone.

Separate tests were conducted for faceted objects. A database of 170 corner views of 53 boxes was
collected under the same conditions as described above. Retrieval tests are presented at the end of this
section.

5.1 Stability of the invariant representation

The construction of the invariant representation can be divided into three steps: curve detection, ex-
traction of invariant properties, grouping and signature evaluation. The stability of each step is esti-
mated with respect to “image noise” produced from various sources. These include viewpoint trans-
formation and resolution changes. The latter can be modelled by a scaling transformation while view-
point change can be approximated by a general projective transformation (cf. section 2.2).
Illumination changes are produced by different lamps, and their effects are only estimated with re-
spect to database retrieval (cf. section 5.2).

In order to make curve extraction less sensitive to changes in resolution, scale and illumination, we
use a multiscale edge detector [14] on the RGB colour planes. In this way we considerably reduce
curve gaps. Furthermore a multiscale approach prevents from detecting spurious curves as the reso-
lutions increases. Because of this multiscale analysis the edge detector cannot separate two curves if
they are less than 5 pixels apart.

The scaling range that a shape can withstand depends on the smallest distance between its curves
with respect to its full size. Let be such a ratio and be the image size (maximum camera resolution
in pixels). It is straightforward to express the maximum resolution reduction after which the closest
curves can still be discriminated, which is: . Given typical values, such as and

 the maximum scaling factor allowed for full-image objects amounts to  and will be used
as a reference scale for resolution stability tests.

A similar reasoning can be made about the allowed range of the projective transformation (change
in viewpoint). In this case, for the same viewpoint position, remote parts of the object are subject to
stronger contraction. Thus, distance reduction depends not only on the transformation parameters, but
also on the image position of the pointto be transformed. To quantify this reduction, a value that com-
bines both parameters and position should be used. For this purpose we use “homogeneous depth” i.e.
the value of the third homogeneous coordinate after the transformation  (cf. section 2.2).

The depth for the frontal view of the object is equal to and under any projective transformation
the maximum reduction will occur atobject corners. For the same values of  and  introduced above,
the average maximum distance between closest curves at highest resolutions is 15 pixels. If two
curves, separated by this distance are found in the corner of the image, the distance between their
transformed versions can be expressed as a function of the “depth”. The upper bound for the range of
allowed projective transformations is equal to 1.68 (homogeneous coordinates). This value is ob-
tained by setting the obtained distance equal to the minimal allowed distance of 5 pixels and by solv-

Figure 9   Fifteen typical images from the database. The last row features faceted objects
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ing for the “depth”. For the real images of the database the viewpoint position with respect to the ob-
ject was unknown and so the depth is estimated by recovering transformation with respect to a refer-
ence frontal image.

Next, we evaluate the robustness of the recovery of invariant properties. As long as curves are de-
tected, the detection of bitangents, inflections and lines presents no major problems. However these
properties exhibit different degree of numerical stability, as can be seen in figure 10.a for scaling and
in figure 10.b for the projective transformation. Each graph represents the proportion of detected fea-
tures (manually verified a posteriori)with respect to ideal situation, averaged over the database. It can
be seen that up to 75% of the allowed transformation range we still obtain 80% of the same invariant
properties. In figure 10.c we show an example image of an object taken from a viewpoint of the ex-
treme of the allowed interval.

Finally, we consider the stability of the grouping and signature construction process. The grouping
operation is clearly sensitive to curve gaps. The decreasing number of detected reference frames as a
function of viewpoint transformation is also shown in figure 10.b (triples). This can be explained by
the fact that extreme viewpoints increase the number of curve gaps at high curvature points.

By definition, the stage of signature construction itself is not sensitive to gaps in curves (cf. section
5). These might cause achange in the signature values only within limited intervals and their influence
on the distance between signatures can be neutralized by the use of robust estimators [11]. Neverthe-
less, the presence of spurious curves can undermine a large part of the signature. That is why thesame
curves should be detected when viewed from different viewpoints. Thisis achieved by the use of mul-
tiscale detector, as illustrated by variation of the proportion of curves in figure 10.b.

For the case of orthogonal facets, reference frame detection is greatly simplified. Detection of lines
is facilitated by specular reflections on box edges, by different illumination conditions for each facet
(higher contrast on the edge) and finally by the relatively long edges of thebox that arehardly subject
to projective distortion. The grouping operation is performed by selecting line triples and by verifying
that three criteria are satisfied. First, three lines rarely intersect at one unique point, but rather form a
“triangle of intersection”. Therefore, the surface of this triangle should be small. The second condition
is on the orientation of rays. Orthogonality of facets imposes a condition on the rays orientation that
should be satisfied. Finally, lines often do not reach the “corner” point, introducing gaps between their
endpoint and the corner point. Thereforethe third constraint imposes that the sum of these gaps should
not exceed a fixed percentage of the three lines total length.

5.2 Evaluation of the content-based retrieval capabilities

In this section we present two types of experiments in order to assess the suitability of the proposed
invariant signature for content-based shape retrieval. Initially, an individual signature is used as a que-
ry to the database while in the second stage all signatures, automatically extracted from the same im-
age are used as queries.

In both cases, separate tests with four different subsets of the database are performed. In caseone,
only one version of each image is included in the database (frontal view). In case two, close views of

Figure 10 Robustness of the signature construction process. Proportion of detected features as a function of resolution 
changes (a) and projective transformations (b). (c) Example of the extreme projective image transformation withstood
by the method, for a typical shape.
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the same object but under different illumination conditions are considered. In the third case, object
views from different viewpoints are included within the allowed range. The fourth case combines the
images of the last two.

Shape-based retrieval was performed by pairwise comparison between signatures, using the Eucli-
dean distance on the whole equally-weighted vector including geometric and chromatic information
(cf. eq. 8). The search process is thus linear in the database size, although faster approaches can easily
be introduced [1]. Given a query signature, the retrieval performance was assessed using standard in-
formation retrieval measures on the ranked hits, namely precision and recall. Precision is the propor-
tion of correct hits in the set of retrieved items up to the last correct one. Recallis the proportion of
target images that have been retrieved among the top  hits, .

In the first experiment, individual signatures were used for matching with the contents of four data-
sets. However, only the signatures for which a correct answer exist in the database were used. Table
1 shows the average values of the precision for all signatures of the frontal view, matched against all
other signatures in the four separate datasets. Images from which the query was extracted were re-
moved from their corresponding “front-view” dataset.

On average, most of the correct signatures are among the  top-ranked hits, for all types of
allowed transformations. In general, if at least one signature of an object (complex objects may pro-
vide several signatures) is detected in the image its discriminative power is sufficient enough to per-
form shape-based retrieval.

In the second experiment, the same four datasets are used as the database contents, but the way to
define a query is different. For all objects in the database, other frontal views (different from those
already in the database) are used for signature extraction. All automatically extracted signatures are
used for separately querying the database. The top-ranked hits were retained for each case.
By using a simple voting scheme for all signatures of the same object, the rank of each signature was
accumulated into anobject rank. Table 2 shows the precision results using this rank, averaged across
all queries.

Using the same procedure, we then performed retrieval test for faceted objects. Similar datasets
were constructed. Views taken from different points in space but under the same illumination condi-
tions were included in the first set. Views with all  conditions allowed to vary were gathered in the
second set (“Both”). Retrieval was performed by comparing three signatures of a test image with the
whole collection of signatures.

It can be seen, that retrieval performace is more stable and better thanin a mere planar case. This
stability can be explained by the more robust extraction of reference rays and by the fact that when
one facet becomes hardly visible, the others automatically offers a good view to the camera.

Table 1: Performance of image querying using individual signatures from frontal views

Frontal views only Illumination changes Viewpoint variation Both

Precision 69% 65% 58% 56%
Recall (N=15) 78% 73% 65% 61%

Table 2: Querying with frontal views

One frontal view Illumination changes Viewpoint variation Both

Precision 73% 70% 66% 62%
Recall (N=15) 82% 75% 69% 64%

Table 3: Performance of image querying using facet signatures

Viewpointvariation Both

Precision 78% 72%

Recall (N=10) 85% 78%

N N 1≥

N 15=

N 15=
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6. Conclusions

In this article we have presented an approach for representing planar complex shapes. The proposed
representation is projectively invariant and describes the local arrangement of neighbouring curves
with respect to the invariant properties of one or move curves. This method presents two major ad-
vantages. First, less information is required with respect to previous approaches for one curve to pro-
duce a reference frame. Only three concurrent rays are necessary, against four points in a general pro-
jective case. Second, the local arrangement of neighbouring curves is incorporated into the descrip-
tion. This makes curves without any invariant properties at all also useful. Both advantages can be
exploited to extend the application of invariant methods to a broad class of shapes found in the real-
world situations and its extension to 3D faceted objects broadens its field of application to package
boxes.

The proposed geometric construction is appropriate for the integration of chromatic information.
Together with projective invariance, illumination invariant measures are associated with the shape de-
scription. This helps discriminate geometrically similar cases and leads to a more complete object rep-
resentation.

The applicability of the proposed invariant representation to database retrieval has been validated
with statistical tests. The representation maintains, within small variations, the property of projective
invariance under reasonable viewpoint changes. At the same time, it allows discrimination among a
few hundreds three-ray configurations selected from a database of real flat or faceted trademarks.
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