
Theoretical Computer Science 238 (2000) 439–464
www.elsevier.com/locate/tcs

Pattern-matching algorithms based on
term rewrite systems

Joost-Pieter Katoena, Albert Nymeyera;b ;∗

aDepartment of Computer Science, University of Twente, P.O. Box 217,
7500 AE Enschede, Netherlands

bSoftware Veri�cation Research Center, The University of Queensland, St Lucia, QLD 4072, Australia1

Received May 1997; revised April 1998
Communicated by J. Staples

Abstract

Automatic code generators often contain pattern matchers that are based on tree grammars. In
this work we generalise this approach by developing pattern matchers that are based on more
powerful term rewrite systems. A pattern matcher based on a term rewrite system computes all
the sequences of rewrite rules that will reduce a given expression tree to a given goal. While the
number of sequences of rewrite rules that are generated is typically enormous, the vast majority
of sequences are in fact redundant. This redundancy is caused by the fact that many rewrite
sequences are permutations of each other. A theory and a series of algorithms are systematically
developed that identify and remove two types of redundant rewrite sequences. These algorithms
terminate if rewrite sequences do not diverge. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Term rewrite systems; Code generation; Pattern matching; Formal techniques

1. Introduction

Term rewrite systems have traditionally been used to prove properties of abstract
data types, implement functional languages and mechanise deduction systems, to name
just a few areas. Term rewrite systems can also be used to specify part of the back-end
of a compiler – the so-called pattern matcher. In a pattern matcher, rewrite rules are
used to rewrite a given (input) term into a given goal term. A pattern here is simply

∗ Corresponding author.
E-mail addresses: katoen@cs.utwente.nl (J.-P. Katoen), anymeyer@cse.unsw.edu.au (A. Nymeyer)
1 Part of this work was carried out while this author was on study leave at this address.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00041 -4

440 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

a (sub)term that matches the term on the left-hand side of a rewrite rule. This pattern
is replaced by an instantiation of the term on the right-hand side of the rewrite rule.
A term rewrite system de�nes a mapping between the intermediate representation

and the machine instructions. The intermediate representation is code that is gener-
ated by the front-end (usually consisting of a scanner, parser and type-checker) of the
compiler. For the purposes of this work the intermediate representation will simply con-
sist of expression trees. Actually, the mapping between the intermediate representation
and machine instructions is indirect as the machine instructions are only associated
with rewrite rules. During pattern matching, when we transform a given expression
tree (term) using a rewrite rule, we generate the associated instruction. In e�ect, the
semantics of a rewrite rule is the associated machine instruction.
This application of term rewrite systems is fundamentally di�erent from traditional

areas. In code generation, a term rewrite system is neither conuent nor terminating.
It is not conuent because there may be many ways of rewriting a given term, each
resulting in a di�erent normal form. It is not terminating because, in code-generation
grammars, there are invariably rules (for example, commutativity) that lead to cycles.
Because there can be many ways of rewriting a given term, a cost is added to the
rewrite rules. The resulting term rewrite system is referred to as weighted. However,
the costs are not used by the pattern matcher, but by a subsequent phase, the pattern
selector, which is not described in this work. The pattern selector chooses a least-cost
sequence of rewrite rules that will transform (rewrite) the given expression tree into
the given goal. The goal is (invariably) a single node, and is the place where the result
of the calculation that is represented by the expression tree is stored.
In a nutshell, the main problem in code generation is the typically enormous num-

ber (actually an in�nite number) of instruction sequences that correspond to a given
expression tree, where each di�erent instruction sequence corresponds to a di�erent
sequence of rewrites of the expression tree. In code generation, we must not only deal
with this large number, we must select a least-cost instruction sequence.
The costs of rewrite rules and sequences only play an “indirect” role in this work

as we are only interested in enumerating all the possible rewrite sequences, not on
selecting a least-cost one (for this we refer the reader to Nymeyer and Katoen [20]).
However, the role of costs in code generation is so important that we have included
them in the de�nition of a term rewrite system (for example), and we occasionally
refer to them. In the course of this work we make certain assumptions about the costs
of rewrite sequences: for example, do two rewrite sequences that only di�er in the
order that rules are applied always have the same cost? The costs therefore play a role
even in pattern matching.
Having described the context of this research, we now focus on the role that term

rewrite systems play in code generation, namely as a speci�cation formalism of the
pattern matcher. In this work we will not show machine instructions, nor discuss other
aspects of code generation like register and memory allocation.
In the past, there have been only two notable applications of term rewrite systems

to code generation. Emmelmann [8] used a term rewrite system to specify a mapping

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 441

from intermediate to target code, and a tree grammar to specify the target terms and
their costs. This idea of using di�erent formalisms to specify the target code, and
the mapping from intermediate to target code originates from Giegerich [12, 13], who
has carried out extensive, mainly theoretical research into this approach. Emmelmann’s
ambitious work pursued this approach further, and resulted in a large complex system
that would be di�cult to implement. A second, more successful application of term
rewrite systems was that by Pelegri-Llopart and Graham [23, 24]. Their work, in fact,
forms the starting point of our work. While a number of the concepts that we use
are also used by Pelegri-Llopart and Graham, their work is informal and less concise,
and they devote much attention to implementation issues such as the pre-computing of
tables.
Over the last two decades there have been many attempts to �nd the right spec-

i�cation formalism for code generation. The most popular have been LR grammars
and tree grammars. The so-called Graham–Glanville method uses an LR grammar as
a speci�cation. This method had its heyday in the late 1970s and early 1980s [11, 14],
but LR grammars were found to be too restrictive and cumbersome, and the method
fell out of favour. It made way for tree grammars that use either a top-down [1, 4]
or bottom-up [2, 3, 9, 10, 15–17] traversal strategy. Tree grammars using a bottom-up
traversal strategy are used extensively today. The advantage of a term rewrite system
over a tree grammar is that a term rewrite system has more speci�cation ‘power’.
Rules that specify algebraic properties (like commutativity) can be used in a term
rewrite system but not in a tree grammar.
The aim of this work is to present not only a theory of pattern matching in code

generation based on term rewrite systems, but also to systematically develop an (intel-
ligent) pattern-matching algorithm. In Section 2 we will de�ne the basic theory, and
we will de�ne a weighted term rewrite system. For a more elaborate treatment of term
rewrite systems we refer the reader to Dershowitz and Jouannaud [7]. Using the basic
theory, we present in Section 3 a (naive) pattern-matching algorithm that generates all
rewrite sequences for a given expression tree and goal.
In Section 4 we show that many of the rewrite sequences generated by the naive

algorithm are redundant. This redundancy is caused by the fact that many rewrite
sequences are simply permutations of each other, and hence have the same cost. We
eliminate permuted rewrite sequences by considering only rewrite sequences that are
in innermost normal (IN) form. 2 Removing sequences that are not in IN form can be
done after all rewrite sequences are �rst generated, or on-the-y. We present algorithms
that implement both techniques in Section 5. In Section 6 we see that there is another
form of redundancy in the IN rewrite sequences. This redundancy results from the
action during term rewriting of variables in the term rewrite system. We eliminate these
redundant sequences by de�ning weak innermost normal (WIN) rewrite sequences. 3

An algorithm that generates rewrite sequences in WIN form is given in Section 7.

2 In earlier work [20, 21] we referred to the innermost normal form as simply the normal form.
3 In earlier work referred to as strong normal rewrite sequences.

442 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

An important theoretical and practical property of term rewrite systems is termination.
A non-terminating term rewrite system generates rewrite sequences that are of in�-
nite length. We discuss this issue in Section 8. Finally in Section 9 we present our
conclusions.

2. Weighted term rewrite systems

We denote the set of natural numbers by N, the set N\{0} by N+, and the set of
non-negative reals by R+.

De�nition 1 (Ranked alphabet). A ranked alphabet � is a pair (S; r) with S a �nite
set and r ∈ S→N.

Elements of S are called function symbols and r(a) is called the rank of symbol
a. Function symbols with rank 0 are called constants. �n denotes the set of function
symbols with rank n, that is, �n= {a∈ S | r(a)= n}. We assume V is a countably
in�nite universe of variable symbols, and V ⊆V.

De�nition 2 (Terms). For � a ranked alphabet and V a set of variable symbols, the
set of terms, T�(V) is the smallest set satisfying the following:
• V ⊆T�(V) and �0⊆T�(V);
• ∀ a∈�n and t1; : : : ; tn ∈T�(V) implies a(t1; : : : ; tn)∈T�(V), for n¿1:

For term t, Var(t) denotes the set of variables in t. If Var(t)= ∅ then t is called a
ground term.
A sub-term of a term can be indicated by a path, represented as a string of positive

naturals separated by dots, from the outermost symbol of the term, (the ‘root’) to the
root of the sub-term. For P a set of paths and n a natural number, let n ·P denote
{n·p |p∈P}. The position of the root is denoted by �.

De�nition 3 (Positions). The set of positions Pos∈T�(V)→P(N∗
+) of a term t is

de�ned as
• Pos(t)= {�}, if t ∈�0 ∪V;
• Pos(a(t1; : : : ; tn))= {�; 1·Pos(t1); : : : ; n·Pos(tn)}:

A trailing � in a position can be omitted; for example 2·1·� is written as 2·1. By
de�nition, Pos(t) is pre�x-closed for all terms t. Position q is ‘higher than’ p if q is
a proper pre�x of p. The sub-term of a term t at position p∈Pos(t) is denoted t|p.

De�nition 4 (Weighted term rewrite system). A weighted term rewrite system
(WTRS) is a triple ((�; V); R; C), where
• �, a non-empty ranked alphabet,
• V , a �nite set of variables,

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 443

• R, a non-empty, �nite subset of T�(V)× T�(V),
• C ∈R→R+, a cost function.
Additionally, for all (t; t′)∈R, we have the constraints: (1) t′ 6= t, (2) t 6∈V , (3) Var(t′)
⊆Var(t) and (4) variables in Var(t) and Var(t′) occur only once.

Elements of R are called rewrite rules. An element (t; t′)∈R is usually written as
t→ t′ where t is called the left-hand side, and t′ the right-hand side of the rewrite rule.
Elements of R are usually uniquely identi�ed as r1; r2, and so on. The cost function
C assigns to each rewrite rule a non-negative cost. This cost reects the cost of the
instruction associated with the rewrite rule and may take into account, for instance, the
number of instruction cycles, or the number of memory accesses. When C is irrelevant
it is omitted from the WTRS. A term rewrite system (TRS) is in that case a tuple
((�; V); R). A WTRS is called ground if all left-hand sides of rewrite rules are ground
terms.
The �rst constraint in the above de�nition says that R should be irreexive, and

the second constraint that the left-hand side of a rewrite rule may not consist of a
single variable. The third constraint says that no new variables may be introduced by
a rewrite rule, and the last constraint that the set of rewrite rules must be linear. The
�rst three constraints mean that we avoid simple in�nite sequences of rewrites. The
importance of the last constraint will be explained in Section 6.
We only consider �nite WTRSs in this work because instruction sets of machines

are �nite. A �nite WTRS contains �nite sets of function symbols, variables and rewrite
rules. The WTRS shown below will be used as a running example in this work.

Example 5. Let ((�; V); R; C) be a WTRS, where �=(S; r), V = {x; y}, S = {+; i; c;
d; r}, r(+)=2, r(i)= 1 and r(c)= r(d)= r(r)= 0. Here c represents the constant 1,
d represents a data register, r represents a general register, and i stands for increment.
The set R of rules is de�ned as follows:

R= { r1 : +(d; c)→ i(d)

r2 : +(d; r)→ r

r3 : +(x; y)→ + (y; x)

r4 : i(r)→ r

r5 : d→ r

r6 : c→d

r7 : r→d }
The cost function C is de�ned as C(r1)= 4; C(r2)= 5, C(r3)= 0, C(r4)= 2, C(r5)= 1,
C(r6)= 3 and C(r7)= 1. Alternative representations of the �rst three elements of R are
given in Fig 1. Examples of terms are +(c; d) and i(+(c; i(d))). If t= i(+(c; i(d)))
then Pos(t)= {�; 1; 1·1; 1·2; 1·2·1}. Some sub-terms of t are t|� = t, t|1 = + (c; i(d)),
and t|1·2·1 =d.

444 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

Fig. 1. The tree representations of some term rewrite rules.

De�nition 6 (Substitution). Let �∈V →T�(V). For t ∈T�(V), t under substitution �,
denoted t�, is de�ned as

t�=
{
t if t ∈�0;
�(t) if t ∈V;

a(t1; : : : ; tn)�= a(t�1 ; : : : ; t
�
n):

Rewrite rules that are identical, except for variable symbols, are considered to be
the same. In this work we consider rewrite rules modulo rewrite rule equivalence.

De�nition 7 (Rewrite rule equivalence). Rewrite rules r1 : t1→ t′1 and r2 : t2→ t′2 are
equivalent i� there is a bijection �∈ Var(t1)→Var(t2) such that t�1 = t2 and t

′�
1 = t

′
2.

For our purposes it su�ces to informally de�ne the notion of a rewrite step.

De�nition 8 (Rewrite step). Given the TRS ((�; V); R), r : t→ t′ ∈R, t1; t2 ∈T�(V) and
p∈Pos(t1), then t1 〈r;p〉

===⇒ t2 i� t2 can be obtained from t1 by replacing t1|p by t′� in
t1, and using a substitution � with t�= t1|p. We can also write 〈r; p〉 t1 = t2.

A rewrite rule r that is applied at the root position, i.e. 〈r; �〉, is usually abbreviated
to r. A sequence of rewrite steps, called a rewrite sequence, consists of rewrite steps
that are applied one after another.

De�nition 9 (Rewrite sequence). Let t
〈r1 ;p1〉:::〈rn;pn〉=========⇒ t′ i� ∃ t1; : : : ; tn−1 such that

t
〈r1 ;p1〉====⇒ t1

〈r2 ;p2〉====⇒ : : : tn−1
〈rn;pn〉====⇒ t′. The corresponding rewrite sequence of t is S(t)=

〈r1; p1〉 : : : 〈rn; pn〉. We can also write S(t) t= t′.

When convenient, we denote a rewrite sequence S(t) by �. Furthermore, we write
t �==⇒ if and only if ∃ t′ : t �==⇒ t′. The empty rewrite sequence is denoted �, hence

t �==⇒ t for all terms t.

A rewrite sequence �1 is called cyclic if it contains a proper pre�x �2 such that
for some term t, t �1==⇒ t′ and t �2==⇒ t′. Although rules like r3 in Example 5 that
specify commutativity lead naturally to cyclical rewrite sequences, in this work we only
consider acyclic rewrite sequences. In Section 8 we consider in more detail termination
properties of TRSs.

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 445

The cost of a rewrite sequence � is de�ned as the sum of the costs of the rewrite
rules in �. The length of � is denoted |�| and indicates the number of rewrite rules in
�. A rewrite step is a rewrite sequence of length 1. For rewrite sequence � and rewrite
rule r, �\r denotes sequence � with r deleted, 4 and r ∈ � denotes that r occurs in �. If
�= 〈r1; p1〉 : : : 〈rn; pn〉 then we de�ne ��= {r1; : : : ; rn}, i.e. �� is the set of rewrite rules in
�. Actually, �� is a multiset as the same rewrite rule may (and often does) occur more
than once in ��.

Example 10. Consider the WTRS shown in Example 5, and let t=+(c; d). We can

write t
〈r3 ; �〉====⇒ t′, with t′=+(d; c). We can also write 〈r3; �〉 t= t′. The term t′ is ob-

tained from t by replacing t|� by +(y; x)� in t, using substitution � with �(x)= c and
�(y)=d such that (x; y)�= t|�.

Example 11. An example of a derivation for t=+(c; i(d)) of length 4 is

+(c; i(d))
〈r6 ;1〉====⇒+(d; i(d))

〈r5 ;2·1〉=====⇒+(d; i(r))
〈r4 ;2〉====⇒+(d; r) r2==⇒ r

and two sequences of length 7 are:

+ (c; i(d))
〈r6 ;1〉====⇒+(d; i(d))

〈r5 ;2·1〉=====⇒+(d; i(r))
r3==⇒+(i(r); d)

〈r5 ;2〉====⇒

+(i(r); r)
〈r4 ;1〉====⇒+(r; r)

〈r7 ;1〉====⇒+(d; r) r2==⇒ r

+(c; i(d))
〈r6 ;1〉====⇒+(d; i(d));

〈r5 ;1〉====⇒+(r; i(d))
〈r5 ;2·1〉=====⇒+(r; i(r))

〈r4 ;2〉====⇒

+(r; r)
〈r7 ;2〉====⇒+(r; d)

r3==⇒+(d; r) r2==⇒ r

In De�nition 9 we de�ned the rewrite sequence S(t) of a term t. We now go a step
further and label, or decorate, a term with rewrite sequences. Such a rewrite sequence
is called a local rewrite sequence, and is denoted by L(t|p), where t|p is the sub-term
of t at position p at which the local rewrite sequence occurs. Of course, p may be �
(denoting the root). Note that all the positions in the local rewrite sequence L(t|p) are
relative to p.
A term in which each sub-term is labelled by a (possibly empty) local rewrite

sequence is called a decorated term, or decoration. From now on all terms that we
consider will be ground terms.

De�nition 12 (Decoration). A decoration D(t) is a term in which each sub-term of t
at position p∈Pos(t) is labelled with a local rewrite sequence L(t|p).

We can usually decorate a given term in many ways. If we wish to di�erentiate
between the rewrite sequences in di�erent decorations, then we use the notation LD(t|p).

4 This operation is only used when r can be uniquely identi�ed in �.

446 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

Fig. 2. Decorations D(t) and D′(t) of the term +(c; i(d)).

Given a decoration D(t) of a term t, the corresponding rewrite sequence S(t) can
be obtained by a post-order traversal of t. Again, di�erent decorations may lead
to di�erent rewrite sequences, so we denote the rewrite sequence of a decoration
D by SD(t).

De�nition 13. Rewrite sequence corresponding to a decoration. The rewrite sequence
SD(t) corresponding to a decoration D(t) is de�ned as

SD(t)=
{
LD(t|�) if t ∈�0;
(1·SD(t1) : : : n·SD(tn))LD(t|�) if t= a(t1; : : : ; tn):

Here, n·� for rewrite sequence � and (positive) natural number n denotes � where
each position pi in � is pre�xed with n·.

Example 14. Consider our running example again, and let t=+(c; i(d)). Two deco-
rations D(t) and D′(t) are depicted in Fig. 2, on the left and right, respectively. The
corresponding rewrite sequences are

SD(t)= 〈r6; 1〉〈r5; 1〉〈r5; 2·1〉〈r4; 2〉〈r7; 2〉r3r2;
SD′(t)= 〈r6; 1〉〈r5; 2·1〉r3〈r5; 2〉〈r4; 1〉〈r7; 1〉r2:

Sets of patterns, called input and output sets, can now be computed from the dec-
orations of t. These sets de�ne the patterns that match the expression tree.

De�nition 15 (Inputs of a decoration). Let D(t) be a decoration such that; for some

given goal term g; t
SD(t)===⇒ g. For each sub-term t′ of t; the possible inputs; denoted

ID(t′), are de�ned as follows:

ID(t)=
{
t if t ∈�0;
a(t′1; : : : ; t

′
n) if t= a(t1; : : : ; tn);

where ID(ti)
LD(ti)====⇒ t′i ; for 16i6n.

De�nition 16 (Outputs of a decoration). Let D(t) be a decoration such that, for some

given goal term g; t
SD(t)===⇒ g. For each sub-term t′ of t; the possible outputs are de�ned

as OD(t)= t′ with ID(t)
LD(t)===⇒ t′.

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 447

3. An algorithm that computes all decorations

Given a WTRS ((�; V); R; C) and two ground terms t; t′ ∈T�, then, we wish to
determine all rewrite sequences � such that t �==⇒ t′. An algorithm to calculate the

inputs and outputs for term t and goal term g, and the corresponding decorations, is
given in Fig. 3. For convenience, in the algorithm we refer to the type T� as Term and
P(Term) as SetOfTerms. This algorithm, which we refer to as the naive algorithm, is
in fact a generalisation of bottom-up tree pattern matching methods (see, for example,
Hemerik and Katoen [17]). The algorithm consists of two passes.
In the �rst, bottom-up pass, carried out by the recursive function Generate, sets of

triples, denoted by Z(t), are computed for all possible goal terms. A triple is written
〈it; D(t); ot〉, and consists of an input it, decoration D(t), and output ot such that
t SD==⇒ ot, and it

LD(t|�)====⇒ ot. The type Triple in the algorithm is de�ned as Term ×
Decoration× Term. P(Triple) is denoted by SetOfTriples.
In the function Generate, the inputs and outputs at each leaf node a in t are ini-

tialised to a accompanied with decoration D� of t that associates an empty rewrite
sequence to each position in t. The inputs and outputs of a(t1; : : : ; tn) are initialised to
a(tk1 ; : : : ; tkn), where tki is an output of the ith child. The decoration D1⊕ · · · ⊕Dn is
obtained by decorating the root a with an empty rewrite sequence (i.e., LD(t|�)= �), and
LD(t|n·p)=LDn(tn|p) for non-root positions. Note that the rewrite sequence SD〈r; p〉 is
de�ned to be acyclic: this is necessary to ensure termination.
Now consider the triple do-loop in the algorithm. Given some node t in our input

term, for each triple 〈it; D; ot〉, and at each position p in the sub-term rooted at that
node, we apply each of the rewrite rules r to the output ot in the triple. If ot is
rewritten as ot′, then the new triple 〈it; D⊗〈r; p〉; ot′〉 is added to the set of triples at
the node t. D⊗〈r; p〉 is obtained by appending 〈r; p〉 to the local rewrite sequence at
the root (i.e., LD(t|�)). The remaining local rewrite sequences in D are una�ected. We
continue this process until we can add no more triples and we have reached the root
node. The resulting set of triples is denoted W (t). The outputs in the set of triples at
t are all the terms that can be generated by sequences of rewrite rules applied to the
sub-term rooted at t.
In the second, top-down pass, carried out by the function Trim, we ‘trim’ the triples

generated in the �rst pass. At the root position, each triple whose output is not identical
to the goal term is removed. Other nodes in t are trimmed by removing each triple
whose output is not identical to an input of its parent node. The resulting trimmed
sets of triples are denoted by V (t). Under some circumstances it may be possible to
trim the nodes in t while they are being generated (see, for example, [25]). We do not
consider that aspect further here however.

Example 17. Given the input term +(c; i(d)), the sets of (trimmed) triples V (t) that
are generated are shown in the table in Fig. 4. Notice that the cardinality of the
set V (‘+’) is 2775. The cardinality of the corresponding set of untrimmed triples,

448 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

|[con ((�; V); R) : TermRewriteSystem;
t; g : Term;

var W (t); V (t) : SetOfTriples;

func Generate (t : Term) : SetOfTriples
|[var H; Z(t) : SetOfTriples; i : N;
H := Z(t) := ∅;
if t :: a−→ Z(t) := {〈t; D�; t〉};
[] t :: a(t1; : : : ; tn)−→

|[for all 16i6n do Z(ti) :=Generate(ti) od;
(∗ Let O(ti)= {otki | 〈itki ; Dki ; otki 〉 ∈ Z(ti)} ∗)
for all (tk1 ; : : : ; tkn)∈O(t1)× · · · × O(tn)
do Z(t) := Z(t)∪{〈a(tk1 ; : : : ; tkn); Dk1 ⊕ · · · ⊕ Dkn ; a(tk1 ; : : : ; tkn)〉} od

]|
� ;
do H 6= Z(t)−→ |[H := Z(t);

for all 〈it; D; ot〉 ∈ Z(t)
do for all p∈Pos(t)
do for all r ∈R∧ SD〈r; p〉 is acyclic
do if ot

〈r;p〉
===6 ⇒ −→ skip

[] ot
〈r;p〉
====⇒ ot′ −→ Z(t) := Z(t)∪{〈it; D ⊗ 〈r; p〉; ot′〉}

�
od

od
od

]|
od;
return Z(t)
]|;
func Trim (t : Term; tg : SetOfTerms) : SetOfTriples
|[var Z(t) : SetOfTriples; i : N;
Z(t) := {〈it; D; ot〉 ∈W (t) | ot ∈ tg};
if t :: a−→ skip
[] t :: a(t1; : : : ; tn)−→ for all 16i6n do Z(ti) :=Trim(ti ; {it|i | 〈it; D; ot〉 ∈ Z(t)}) od
� ;
return Z(t)
]|;
(∗ main program ∗)
W (t) :=Generate(t);
V (t) :=Trim(t; {g})

]|.

Fig. 3. An algorithm that generates all the local rewrite sequences of an input term.

W (‘+’), by the way, is 19 033! An example of the longest local rewrite sequence that
is generated (the length is 16) is shown below:

+ (c; i(r))
r3==⇒+(i(r); r)

〈r7 ;1〉====⇒+(i(d); c)
r3==⇒+(c; i(d))

〈r6 ;1〉====⇒

+(d; i(d))
r3==⇒+(i(d); d)

〈r5 ;2〉====⇒+(i(d); r)
r3==⇒+(r; i(d))

〈r5 ;2·1〉=====⇒

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 449

Node Triples Cardinality
c {〈c; �; c〉, 〈c; r6; d〉, 〈c; r6r5; r〉} 3
d {〈d; �; d〉, 〈d; r5; r〉} 2
i {〈i(d); �; i(d)〉, 〈i(r); �; i(r)〉, 〈i(d); 〈r5; 1〉; i(r)〉,

〈i(r); 〈r7; 1〉; i(d)〉, 〈i(d); 〈r5; 1〉r4; r〉, 〈i(r); r4; r〉,
〈i(d); 〈r5; 1〉r4r7; d〉, 〈i(r); r4r7; d〉} 8

+ {〈+(d; r); r2; r〉, 〈+(c; r); 〈r6; 1〉r2; r〉,
〈+(d; d); 〈r5; 2〉r2; r〉, 〈+(d; i(r)); 〈r4; 2〉r2; r〉, : : : } 2775

Fig. 4. The sets of (trimmed) triples W (t) for each node in the term +(c; i(d)).

+ (r; i(r))
〈r7 ;1〉====⇒+(d; i(r))

r3==⇒+(i(r); d)
〈r5 ;2〉====⇒+(i(r); r)

〈r4 ;1〉====⇒

+(r; r)
〈r7 ;2〉====⇒+(r; d)

〈r7 ;1〉====⇒+(d; d)
〈r5 ;2〉====⇒+(d; r) r2==⇒ r

4. Innermost normal decorations

We saw in the previous section that the number of rewrite sequences (triples) that
are generated by the naive algorithm can be enormous, even for a simple rewrite system
and input tree. Fortunately, a reduction in the number of rewrite sequences that need to
be considered is possible. This reduction is based on an equivalence relation on rewrite
sequences. The equivalence relation is based on the observation that rewrite sequences
can be transformed into permuted sequences of a certain form, called innermost normal
(IN) form. 5

De�nition 18 (Permutations). Given a term t, rewrite sequences � and �′ are per-
mutations of each other, denoted �∼=t �′, i� all elements in �� and ��′ have the same
cardinality, and t �==⇒ t′ ⇐⇒ t �′==⇒ t′ for all terms t′.

A permutation de�nes an equivalence relation on rewrite sequences. Note that all
permutations of a rewrite sequence have the same cost. This is a stipulation for our
approach. If we use a cost function that does not satisfy this property (for example, if
the cost of an instruction includes the number of registers that are free at a given mo-
ment), then only considering IN rewrite sequences will lead to valid rewrite sequences
being discarded. This property is therefore a restriction on the cost function and is
necessary to keep the number of rewrite sequences manageable. Because permuted
rewrite sequences yield the same result for term t (cf. De�nition 18), and they have
the same costs, we only need to consider rewrite sequences in IN form. IN rewrite

5 Rewrite strategies for term rewriting systems are usually studied to prove conuency or termination.
These strategies involve selecting particular subterms to rewrite next. The terms innermost and outermost
are used to refer to the lowest and highest positions (resp.) in the term that can be rewritten. [7, 22].

450 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

sequences consist of consecutive subsequences such that each subsequence can be ap-
plied to a sub-term of t. We use the concept of permutations to determine whether
decorations are equivalent or not. Decorations are said to be equivalent if and only if
their corresponding rewrite sequences are permutations of each other.

De�nition 19 (Decoration equivalence). The decorations D(t) and D′(t) are equivalent;
denoted by D(t)≡D′(t); i� SD(t) and SD′(t) are permutations of each other; i.e.
SD(t)∼=t SD′(t).

Example 20. The decorations D(t) and D′(t) shown in Fig. 2 are equivalent because
SD(t)∼=t SD′(t) (see also Example 14).

We can de�ne an ordering relation ≺ on equivalent decorations. The intuitive idea
behind this ordering is that D(t)≺D′(t) for equivalent decorations D(t) and D′(t) if
their associated local rewrite sequences for t are identical, except for one rewrite rule
r that can be moved from a higher position q in D′(t) to a lower position p in D(t).
We formally state this in the next de�nition.

De�nition 21 (Precedence relation). For term t and equivalent decorations D(t) and
D′(t) the precedence relation ≺ is de�ned as D(t)≺D′(t) i� ∃p; q∈Pos(t), such that
q is a proper pre�x of p, and the following holds:
• ∀s 6=p; q :LD(t|s)=LD′(t|s),
• ∃r ∈LD(t|p)∩LD′(t|q) :LD(t|p)\r=LD′(t|p)∧LD(t|q)=LD′(t|q)\r.

The transitive closure of ≺ is denoted ≺+. It follows quite easily that ≺+ is a strict
partial order (i.e. irreexive, anti-symmetric and transitive) on equivalent decorations
(under ≡). The minimal elements under ≺+ constitute a special class of decorations.
These decorations are said to be in IN form. IN forms need not be unique as ≺+ does
not need to have a least element.

De�nition 22 (IN decoration). A decoration D(t) of a term t is in IN form i�
¬ (∃D′(t) :D′(t)≺+ D(t)).

We let IN(t) denote the set of decorations of t that are in IN form.

Example 23. In Fig. 2, we have D(t)≺D′(t) because rewrite rule r5, as well as r4
and r7, associated with the root position of t in D′(t), can be moved to lower positions
of t in D(t). In contrast, the local rewrite rules in D(t) are all applied to the root
position of the sub-term with which they are associated. Hence, they cannot be moved
to lower positions, and D(t) is in IN form.

The following theorem allows us to consider only IN decorations of a term t, and
not the entire universe of decorations of t.

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 451

Theorem 24 (IN decoration existence). Given a rewrite sequence � and term t; we
have that t �==⇒ ⇒ (∃D(t)∈ IN(t): SD(t)∼=t �).

Proof. Let � be an arbitrary rewrite sequence and t some term such that t �==⇒ .

A simple decoration D0(t) corresponding to � can be obtained by decorating the root
of t with � and all other sub-terms with the empty rewrite sequence. Suppose D0(t)
is not in IN form. We informally describe a procedure to obtain from D0(t) an equiv-
alent decoration that is in IN form. The decoration D0(t) can be modi�ed into D1(t)
by moving a single rewrite rule from a higher position in t to a lower position in t,
so that SD0 (t)∼=t SD1 (t). This procedure can be repeated, until no rewrite rules can be
moved to a lower position. The procedure must terminate successfully as � is �nite,
at which time there cannot be a decoration D′(t) such that D′(t)≺Dn+1(t). The re-
sult is a chain of decorations D0(t); D1(t); D2(t), etc. so that Dn+1(t)≺Dn(t), for all
n¿0. By construction, the last obtained decoration is a minimal element under ≺+.

The consequence of the existence of an IN decoration is that the local rewrite se-
quence at each position must always begin with a rewrite step that is applied to the
root of the subtree rooted at that position.

Lemma 25. For all decorations D(t)∈ IN(t) and p∈Pos(t); if the local rewrite se-
quence LD(t|p) 6= � then LD(t|p)= 〈r; �〉 �; for some r ∈R and rewrite sequence �.

Proof (by contradiction). Let us assume D(t)∈ IN(t) and for some p∈Pos(t),
LD(t |p)= 〈r; q〉 � with q= n:q′, n∈N+. Let D(t) be identical to D′(t) with the ex-
ception that LD′(t|p)= � and LD′(t|p:n)=LD(t|p : n)〈r; q′〉. By construction D′(t)≺D(t),
contradicting that D(t)∈ IN(t).

Of course, with the exception of the leading rewrite step, local rewrite sequences in
IN decorations may contain rewrite steps that are applied to positions other than the
root.

Example 26. Continuing on with our running example, the term +(c; i(d)) has the
following IN decoration:

+ r3r1; 〈r5; 1〉r4
= \
c � i r4r7

|
d r5

The de�nitions of the inputs and outputs of IN decorations are the same as De�ni-
tions 15 and 16 (resp.), with the extra restriction D(t)∈ IN(t).

452 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

|[con ((�; V); R) : TermRewriteSystem;
t; g : Term;

var W (t); V (t) : SetOfTriples;

func Generate (t : Term) : SetOfTriples
................. as before

func Trim (t : Term; tg : SetOfTerms) : SetOfTriples
................. as before

func Filter (Z : SetOfTriples) : SetOfTriples
|[for all 〈it; D; ot〉 ∈ Z
do Z :=Checkin (Z\{〈it; D; ot〉}; 〈it; D; ot〉) od;
return Z
]|;
func Checkin (Z : SetOfTriples; 〈it; D; ot〉 : Triple) : SetOfTriples
|[var exit : Bool;
exit := false;
for all 〈it′; D′; ot′〉 ∈ Z ∧ ¬ exit
do if D≡D′ ∧D≺D′ −→ |[exit := true;

Z := (Z\{〈it′; D′; ot′〉})∪{〈it; D; ot〉}
]|

[] D≡D′ ∧D′ ≺D−→ exit := true
[] D 6≡D′ −→ skip
�

od;
if ¬ exit−→ Z := Z ∪{〈it; D; ot〉} [] exit−→ skip � ;
return Z
]|;
(∗ main program ∗)
W (t) :=Filter(Generate(t));
V (t) :=Trim(t; {g})

]| :

Fig. 5. An algorithm that generates all rewrite sequences, and �lters out those that are not in IN form.

5. Algorithms that compute IN decorations

We now give two algorithms that compute the sets of triples consisting of inputs,
decorations and outputs, of an input term, where the decorations are in IN form.
In the �rst algorithm, shown in Fig. 5, all triples are generated, and then “�ltered” to

remove those that contain decorations that are not in IN form. The �ltering is carried
out by the function Checkin. This function simply checks every triple against every
other triple. If the two triples contain equivalent decorations, then the decoration with
the highest precedence is discarded. The resulting sets of triples, W (t), contains all
rewrite sequences of the input term that correspond to IN decorations. After all the
triples have been �ltered, the input term is trimmed as before. The obvious drawback
of this approach is that we �rst generate all the triples, which for reasons of space, is
just what we wish to avoid.

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 453

|[con ((�; V); R) : TermRewriteSystem;
t; g : Term;

var W (t); V (t) : SetOfTriples;

func Generate (t : Term) : SetOfTriples
|[var H; Z(t) : SetOfTriples; i : N;
H := Z(t) := ∅;
if t :: a−→ Z(t) := {〈t; D�; t〉};
[] t :: a(t1; : : : ; tn)−→

|[for all 16i6n do Z(ti) :=Generate(ti) od;
(∗ Let O(ti)= {otki | 〈itki ; Dki ; otki 〉 ∈ Z(ti)} ∗)
for all (tk1 ; : : : ; tkn)∈O(t1)× · · · × O(tn)

do Z(t) := Checkin (Z(t); 〈a(tk1 ; : : : ; tkn); Dk1 ⊕ · · · ⊕ Dkn ; a(tk1 ; : : : ; tkn)〉) od

]|
� ;
do H 6= Z(t)−→

|[H := Z(t);
for all 〈it; D; ot〉 ∈ Z(t)
do for all p∈Pos(t)∧ (LD(t|�)= �⇒p= �)

do for all r ∈R∧ SD〈r; p〉 is acyclic
do if ot

〈r;p〉
===6 ⇒ −→ skip

[] ot
〈r;p〉
====⇒ ot′ −→ Z(t) := Checkin (Z(t); 〈it; D ⊗ 〈r; p〉; ot′〉)

�
od

od
od

]|
od;
return Z(t)
]|;
func Checkin (Z : SetOfTriples; 〈it; D; ot〉 : Triple) : sEToFtRIPLES
................. as before

func Trim (t : Term; tg : SetOfTerms) : SetOfTriples
................. as before

(∗ main program ∗)
W (t) :=Generate(t);
V (t) :=Trim(t; {g})

]| :

Fig. 6. An algorithm that computes the IN rewrite sequences on-the-y.

In the second algorithm, shown in Fig. 6, we check whether a triple contains an
IN decoration on-the-y. This check (as in the �rst algorithm we use the function
Checkin) occurs in two places (indicated by the �rst and third boxes) in the function
Generate; once when we initialise, and once when we have found a rewrite step that

454 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

rewrites the output. We also add a check (indicated by the second box) to ensure that
a local rewrite sequence of a subtree begins with a rewrite rule applied to the root of
the subtree. In the worst case, checking whether decorations are in IN form is quadratic
in the number of triples in both algorithms.

6. Weak innermost normal decorations

The idea behind the weak innermost normal (WIN) form is to identify permutations
of rewrite sequences that arise because of the substitution of variables. In the WIN
form, we do not permit positions in sub-terms of the expression tree that have matched
variables in an applied rewrite rule to be rewritten again. These positions are said
to have become weakly non-rewriteable, or non-rewriteable for short. By avoiding
rewriting these positions, we (again) avoid generating local rewrite sequences that are
permutations of each other. All de�nitions in this section are with respect to a WTRS
((�; V); R; C). We begin by de�ning the set of positions in a term at which a variable
occurs.

De�nition 27 (Variable positions). The set VP of variable positions of a term t ∈
T�(V) is de�ned as the set of positions at which a variable occurs. In other words,
VP(t)= {p∈Pos(t) | t|p ∈V}.

A position in a term is either rewriteable or non-rewriteable. A rewriteable position
in a term is a position at which a rewrite rule may be applied. A rewrite rule may not
be applied to a non-rewriteable position. If a term is rewritten using a rewrite rule that
contains a variable, then the positions in the term substituted for the variable become
non-rewriteable. Otherwise, the rewriteability of the positions in the rewritten term do
not change.

Example 28. Consider the TRS with S = {+; a; 0}, corresponding ranks {2; 0; 0}, vari-
able V = {x}, input term +(a; 0), goal term r, and rules:

r1 : +(x; 0)→ x;

r2 : a→ r:

The rewrite sequence shown on the left below is not in WIN form because rule r2 is
applied to a non-rewriteable position (indicated by a circled node). This non-rewriteable
position is caused by the application of rule r1. The sequence on the right is in WIN
form

+
= \
a 0

r1==⇒ ©a r2==⇒ r
+
= \
a 0

〈r2 ;1〉====⇒
+
= \
r 0

r1==⇒ ©r

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 455

Fig. 7. Computing the rewriteable positions in a term after the application of 〈t1→ t2; p〉.

De�nition 29 (Rewriteable positions). The set RPt of rewriteable positions in a term
t after the application of the rewrite sequence � and rewrite step 〈t1→ t2; p〉 is de�ned
as
• RPt(�)=Pos(t);
• RPt(�〈t1→ t2; p〉)= (RPt(�)− Pos(t′|p))∪Pos(t′′|p)− {Pos(t′′|p·q) | q∈VP(t2)}
where t �==⇒ t′

〈t1 → t2 ;p〉======⇒ t′′.

In Fig. 7 we depict how rewriteable positions are computed. Assume that we have
some rewrite sequence t �==⇒ t′. If the left-hand side of the rule t1→ t2 matches t′|p,
then we can rewrite t′ into t′′. We do this by replacing the matched sub-term in t′

(shown lightly shaded in the term t′ in Fig. 7) by the right-hand side t2 (shown lightly
shaded in the term t′′). If t1 also contains variables, then we must substitute for these
variables in t2 (the matching sub-terms are shown in black in t′ and t′′).
In De�nition 29, the set of rewriteable positions in t′′ consists of the rewriteable posi-

tions in t′ (given by RPt(�)), minus the positions in the sub-term that has been matched
by t1 (Pos(t′ |p)), plus the positions in the sub-term t2 that replaced t1 (Pos(t′′ |p)),
and minus the positions in the sub-terms that are substituted for the variables (if any)
in t2 ({Pos(t′′|p·q) | q∈VP(t2)}).

Example 30. Consider the running example again, and let the input term be +(c; i(r)).
Initially, the rewriteable positions in t are given by RPt(�)= {�; 1; 2; 2·1}. If we now
apply the rewrite rule 〈r4; 2〉, which does not involve a variable, then we generate the
term t′′= + (c; r) with rewriteable positions

RPt(〈r4; 2〉) =RPt(�)− Pos(t|2))∪Pos(t′′|2)− {Pos(t′′|2·q) | q∈∅}
= ({�; 1; 2; 2·1} − {2; 2·1})∪{2} − ∅
= {�; 1; 2}:

This says that all the positions in the new term +(c; r) are rewriteable.

456 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

We now apply the rewrite rule 〈r3; �〉 and generate t′′=+(r; c). Note that t′=+(c; r)
here. The rewriteable positions in the term t′′ are

RPt(〈r4; 2〉〈r3; �〉) = (RPt(〈r4; 2〉)− Pos(t′|�))∪Pos(t′′|�)− {Pos(t′′|q) | q=1; 2}

= ({�; 1; 2} − {�; 1; 2})∪{�; 1; 2} − {1; 2}

= {�}

Because only the root position in the term +(r; c) is rewriteable, and +(r; c) does not
correspond to the left-hand side of any rule, we can proceed no further. We cannot
therefore reach the goal term. The rewrite sequence that we were not permitted to
generate could have been

+(c; r)
r3==⇒+(r; c)

〈r7 ;1〉====⇒+(d; c) r1==⇒ i(d)
〈r5 ;1〉====⇒ i(r) r4==⇒ r

In an IN rewrite sequence, a commutativity rule (here r3) cannot be applied until the
‘children’ have �rst been rewritten. In this case, this means:

+(c; r)
〈r7 ;2〉====⇒+(c; d)

r3==⇒+(d; c) r1==⇒ i(d)
〈r5 ;1〉====⇒ i(r) r4==⇒ r

As a convenience, we now de�ne a boolean function Permittedt that determines
whether rules in a rewrite sequence are only applied at rewriteable positions in a
term t.

De�nition 31 (Permitted). Given the rewrite sequence � and term t, the predicate
Permittedt is true if each rewrite rule r in � is applied at a rewriteable position p, and
false otherwise. Formally,
• Permittedt(�)= true,
• Permittedt(�〈r; p〉)=p∈RPt(�)∧Permittedt(�).

De�nition 32 (Weak innermost normal decoration). An innermost normal decoration
D(t) is in weak innermost normal form i� Permittedt(LD(t|p)) is true, for all p∈Pos(t).

We let WIN(t) denote the set of decorations of t that are in WIN form.
The following theorem means that we only need to consider WIN decorations of a

term t, and not the entire universe of IN decorations of t. This theorem is analogous
to Theorem 24.

Theorem 33 (Weak innermost normal decoration existence). Given a rewrite sequence
� and term t; we have that t �==⇒ ⇒ (∃D(t)∈WIN(t) : SD(t) ∼=t �).

Proof (outline). Let � be an arbitrary rewrite sequence and t some term such that
t �==⇒ . From Theorem 24 it follows that there exists a IN decoration D(t) correspond-

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 457

ing to �. If D(t) is not in WIN form, then there is some p such that ¬Permittedt(LD
(t|p)). This means that we can write:

LD(t|p)= · · · t′ 〈t1 → t2 ;p′〉
=======⇒ t′′ �1==⇒ t′′′

〈ta → tb;p
′′′〉

========⇒ · · ·

where t1 (and t2) contain at least one variable v, and ta is a sub-term of the sub-term

tv of t′ that matches v. In the proof, we move a rewrite step (
〈ta → tb;p

′′′〉
========⇒ above) that

is applied to a sub-term that is non-rewriteable to before the rewrite step (
〈t1 → t2 ;p′〉
=======⇒

above) that made the sub-term non-rewriteable in the �rst place. Applying this pro-
cedure repeatedly will result in a local rewrite sequence LD(t |p) that is permissible.
Given an IN decoration D(t), therefore, we can now make each local rewrite sequence
LD(t|p), for all p∈Pos(t), permissible. This results in a WIN decoration. For space
reasons, the full proof is not shown, and the reader is referred to [20].

Note that if the TRS is non-linear (see the 4th constraint in De�nition 4) then there
may be rewrite sequences (decorations) that have no corresponding WIN form. To
reach the goal in this situation you are forced to rewrite a non-rewriteable position.
Consider the following example. (Note that from now on we will dispense with explic-
itly declaring the alphabet and variables in TRSs, and adopt the convention that x is
always a variable, and the rest of the symbols that occur in the rewrite rules constitute
the alphabet. Furthermore, the goal term is always r.)

Example 34. A TRS consisting of the rules

r1 : ∗(2; x)→ + (x; x);

r2 : a→ b;

r3 : +(b; a)→ r

is non-linear because the variable x appears twice on the right-hand side of rule r1.
Consider the IN decoration

∗ r1〈r2; 1〉r3
= \
2 a

The positions 1 and 2 are non-rewriteable after the application of r1. But we cannot
swap the application of r1 and r2 without losing the possibility of performing r3, which
is the (only) rule that leads to the goal term. There is therefore no WIN form.

To better understand the role that the WIN form plays, it is instructive to consider
IN decorations that are not in WIN form. If the underlying TRS does not contain any
variables, then quite obviously, all IN decorations are also in WIN form (because all
positions are always rewriteable). More interestingly, an example of an IN decoration
that is not in WIN form is the following.

458 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

Example 35. Consider the TRS with variable x:

r1 : a(b)→ c(d);

r2 : c(x)→ x;

r3 : d→ r

and the decorations:

D1
a r1r2r3|
b

D2
a r1〈r3; 1〉r2|
b

The rewrite sequences SD1 and SD2 are permutations of each other (as are LD1 (t|�) and
LD2 (t |�)), and both decorations are in IN form. However, unlike D2, the decoration
D1 is not in WIN form because the rule r2 contains a variable x that makes the root
position non-rewriteable (r3 may therefore not be applied).

Note that many decorations that fail to satisfy the WIN property also fail to satisfy the
IN property. In e�ect, both properties require that rules be applied as low as possible,
which means as early as possible when you traverse the expression tree bottom-up.
The worth of the WIN property lies predominantly in excluding rewrite sequences in
which the permutation exists at the local rewrite sequence level.
The de�nitions of the inputs and outputs of WIN decorations are the same as De�-

nitions 15 and 16 (resp.), with the extra restriction D(t)∈WIN(t).

7. An algorithm that computes WIN decorations

We can now give an algorithm that computes the WIN triples of an input term. This
algorithm is shown in Fig. 8. Actually, this algorithm is almost identical to the ‘IN’
algorithm (shown in Fig. 6). The only di�erence is the extra check for the ‘weak’
condition (i.e. the check whether a position is rewriteable). This check is indicated by
a box in Fig. 8.

Example 36. Completing our running example, we can now give the sets of trimmed
triples, V (t), containing only permissible (local) rewrite sequences for the input term
+(c; i(d)). This is shown in the table in Fig. 9. Notice that in this table there are 3
WIN rewrite sequences that rewrite the root node +. This should be compared to the
number of ‘naive’ rewrite sequences, which is 2775 (see Example 17).

8. Terminating term rewrite systems

A TRS that has the property that all rewrite sequences are �nite in length is referred
to as terminating. More formally, a TRS ((�; V); R) is terminating for a set of terms

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 459

|[con ((�; V); R): TermRewriteSystem;
t; g : Term;

var W (t); V (t): SetOfTriples;

func Generate (t : Term): SetOfTriples
|[var H; Z(t): SetOfTriples; i : N;
H := Z(t) := ∅;
if t :: a−→ Z(t) := {〈t; D�; t〉};
[] t :: a(t1; : : : ; tn)−→

|[for all 16i6n do Z(ti) :=Generate(ti) od;
(∗ Let O(ti)= {otki | 〈itki ; Dki ; otki 〉 ∈ Z(ti)} ∗)
for all (tk1 ; · · · ; tkn)∈O(t1)× · · · × O(tn)
do Z(t) :=Checkin (Z(t); 〈a(tk1 ; : : : ; tkn); Dk1 ⊕ · · · ⊕ Dkn ; a(tk1 ; : : : ; tkn)〉) od

]|
� ;
do H 6= Z(t)−→ |[H := Z(t);

for all 〈it; D; ot〉 ∈ Z(t)
do for all p∈RPt(SD) ∧ (LD(t|�)= �⇒p= �)

do for all r ∈R∧ SD〈r; p〉 is acyclic
do if ot

〈r;p〉
===6 ⇒ −→ skip

[] ot
〈r;p〉
====⇒ ot′ −→ Z(t) :=Checkin (Z(t); 〈it; D ⊗ 〈r; p〉; ot′〉)

�
od

od
od

]|
od;
return Z(t)
]|;
func Checkin (Z :SetOfTriples; 〈it; D; ot〉: Triple): SetOfTriples
................. as before

func Trim (t : Term; tg : SetOfTerms): SetOfTriples
................. as before

(∗ main program ∗)
W (t) :=Generate(t);
V (t) :=Trim(t; {g})

]| :

Fig. 8. An algorithm that computes the WIN rewrite sequences.

T�(V) if no in�nite sequence of terms ti ∈T�(V) exists such that t1 ==⇒ t2 ==⇒ t3
==⇒ · · ·. A system is non-terminating if such a sequence exists.

There may be two causes of non-termination: cyclical rewrite sequences and diver-
gent rewrite sequences:
Cyclical: A TRS that contains rewrite rules that express commutativity or associativ-

ity, for example, is cyclical. Furthermore, TRSs that contain a rewrite rules of the form

460 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

Node Triples Cardinality
c {〈c; �; c〉; 〈c; r6; d〉; 〈c; r6r5; r〉} 3
d {〈d; �; d〉; 〈d; r5; r〉} 2
i {〈i(d); �; i(d)〉; 〈i(r); �; i(r)〉; 〈i(r); r4; r〉,

〈i(r); r4r7; d〉} 4
+ {〈+(d; r); r2; r〉; 〈+(r; d); r3r2; r〉,

〈+(c; d); r3r1〈r5; 1〉r4; r〉} 3

Fig. 9. The sets of trimmed WIN triples V (t) for each node in the term +(c; i(d)).

f(a)→f(b), for some function f and a; b∈�0, even simply a→ b, will be cyclical
if there exists some rewrite sequence b==⇒ · · · ==⇒ a.

Divergent: Intuitively, diverging rewrite sequences can occur because the right-hand
side of a rewrite rule can be more complex than the left-hand side. In that case, terms
in a rewrite sequence can continue to grow in size inde�nitely.
The TRSs that we consider in this work are cyclical. In the setting of code gener-

ation, chain rules (see e.g. rules r5 and r7 in Example 5) that can cause cycles are
prevalent because there is often a great deal of data transparency in computer archi-
tectures – the same data may be stored in many ‘di�erent’ ways, and moving from
one form to another is at no cost (no instruction is needed). Approximately 20% of
the rules for even a complex instruction-set machine like the Intel are chain rules,
for example, which means the potential for cycles is large. In general, it is charac-
teristic of code-generation TRSs that they are massively non-conuent, and cycles are
commonplace.
We explicitly check that the rewrite sequences in the algorithms that we present

are acyclic, otherwise the algorithms would not terminate. We do this in the function
Generate in Figs. 3, 6 and 8.
We do not make any attempt to detect the divergence of rewrite sequences in

the algorithms, however. The problem is that, as we traverse the term in a bottom-
up fashion, we do not know which output terms of a given node will contribute
to pattern matches at the node’s parent. The output terms can also be arbitrarily
large. Hence, if we observe that an output term of a node appears to be growing
inordinately large, we still cannot arti�cially terminate rewriting because we do not
know for sure whether we are witnessing divergence or not. Consider the following
example.

Example 37. Consider the TRS with rewrite rules:

r1 : c→m(c);

r2 : m(c)→ a;

r3 : m(a)→ r:

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 461

The TRS is non-terminating because we can generate a divergent rewrite sequence
consisting of repeated applications of the rule r1 for input term c:

c r1==⇒m(c)
〈r1 ;1〉====⇒m(m(c))

〈r1 ;1·1〉=====⇒m(m(m(c)))
〈r1 ;1·1·1〉======⇒ · · ·

In fact, a successful rewrite sequence for this input term and goal term r involves
(only) two applications of rule r1, as shown below:

c r1==⇒m(c)
〈r1 ;1〉====⇒m(m(c))

〈r2 ;1〉====⇒m(a)
r3==⇒ r

Note that the maximum length of a local rewrite sequence in a terminating TRS
may not be bounded, but will depend on the input term.

Example 38. Consider the TRS with rewrite rules:

r1 : m(+(c; x))→m(x);

r2 : m(r)→ r:

Local rewrite sequences for this TRS will be �nite in length, but unbounded. Examples
of rewrite sequences for three di�erent input terms are:

m(+(c; r)) r1==⇒m(r) r2==⇒ r;

m(+(c;+(c; r))) r1==⇒m(+(c; r)) r1==⇒m(r) r2==⇒ r;

m(+(c;+(c;+(c; r)))) r1==⇒m(+(c;+(c; r))) r1==⇒m(+(c; r)) r1==⇒m(r) r2==⇒ r:

In general, determining whether a given TRS is terminating is, of course, undecid-
able. This is also true for the class of �nite, linear TRSs considered in this work.
The best that one can hope for, therefore, is to �nd under which conditions a TRS is
guaranteed to be terminating.
Pelegri-Llopart and Graham state in [23, 24] that a TRS ((�; V); R) is terminating,

if for all (t; t′)∈R and a; b∈�n, one of the following conditions holds:
(i) Var(t)= ∅ and t′ ∈�0;
(ii) t= a(t1; : : : ; tn) and t′= b (t1; : : : ; tn) for n¿0,
(iii) t= a(t1; : : : ; tn) and t′= a(t�(1); : : : ; t�(n)) with � a permutation on [1; n],
(iv) t= a(t1; : : : ; tn) and t′= ti for 16i6n.
They refer to this as the BURS property. The four conditions are referred to as the

(i) instruction fragment rule, (ii) generic operator rule, (iii) commutativity rule, and
(iv) identity rule. 6 Pelegri-Llopart and Graham state that these conditions (rules) are
su�cient to construct term rewrite systems for real machines. Kurtz [18] has shown
that BURS systems are equivalent to �nite linear term rewrite systems, and has applied
the BURS property to these systems as well.

6 They formulate the identity rule as “t= a(t1; t2) and t′ = t1 with Var(t2)= ∅”, which is just a special
case of our formulation.

462 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

Example 39. If we apply Pelegri-Llopart and Graham’s characterisation to the TRS
shown in Example 37, for example, then we �nd that r1 does not satisfy any of the
conditions, and hence we can conclude that the TRS is non-terminating.

Unfortunately, however, there are two shortcomings with Pelegri-Llopart and
Graham’s BURS property:
• The BURS property does not characterise cyclic TRSs. For example, the TRS con-
sisting of the single rule +(x; y)→ + (y; x) clearly does not terminate, but satis�es
the BURS property.

• The BURS property is very weak – the conditions are much too stringent. For
example, any terminating TRS that includes a simple rule like m(a)→m(b) violates
the BURS property.

The �rst shortcoming is not really a problem in our setting because we are interested
in cyclical TRSs. The second, however, is a serious limitation. In spite of these short-
comings, however, there is as yet no better characterisation of divergence of TRSs than
the BURS property.
In the literature, various su�cient conditions on TRSs that guarantee termination

exist; for an overview see Dershowitz [5]. Generally, approaches that guarantee termi-
nation are based on verifying that the rewrite relation ==⇒ is included in a partial-order
relation ¿ on terms. If this relation is well-founded then there are no sequences of
in�nite length.

Example 40. Consider the TRS shown in Example 37, and the rewrite sequence c==⇒
m(c)==⇒m(m(c)) · · ·. Although the ordering mk(c)¿mk+1(c) for k¿0 contains ==⇒ ,

it is not well-founded. The TRS is therefore non-terminating.

In principle, we must consider all rewrite sequences to determine ¿. However, in
the case of simpli�cation orderings, which are orders that possess the property that
terms are always larger (under ¿) than their proper subterms, this is avoided. These
orderings have been intensively investigated [19]. Steinbach [26] provides an overview
and comparison of several simpli�cation orderings (with status). A status determines
the order in which subterms are compared and is necessary to order commutativity
and associativity rewrite rules, for example. But note that the weakest simpli�cation
orderings are stronger than the BURS property. Which simpli�cation ordering is most
appropriate to code generation is an open question. An approach that uses forward
closures (see [6]) is applicable to linear TRSs and is therefore relevant to our work.
Other (more powerful) approaches to prove termination of TRSs such as the semantic-
labelling method of Zantema [27] are less suited for our purpose since automation
seems more complicated.

9. Conclusions

In this work we have described how term rewrite systems can be applied to code
generation. We have provided a theoretical framework for a pattern matcher in a code

J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464 463

generator, and we have developed in a systematic way pattern-matching algorithms that
rewrite a given input term into a given goal term. In code generation, these rewrite
sequences correspond to code that is generated.
We began with a naive algorithm that determines all possible rewrite sequences. By

de�ning an IN form, we could improve the algorithm and avoid generating many re-
dundant permutations of the rewrite sequences (the on-the-y version of the algorithm).
A second improvement involved recognising WIN rewrite sequences. This improvement
meant that permutations caused by the action of variables in the term rewrite system
could also be eliminated.
Term rewrite systems provide a more powerful formalism in code generation than

the more popular tree grammars. There are a number of directions for future research:
• Analyse the performance and complexity of the pattern-matching algorithms. Prelimi-
nary performance measurements of a bottom-up pattern matcher based on our theory
have shown that it still generates too many redundant rewrite sequences. Further
optimisations are being looked at.

• Develop term rewrite systems for real machines.
• Investigate whether certain parts of the pattern-matching algorithm can be
pre-computed.

• Investigate whether code optimisation and register allocation can be expressed in
terms of a term rewrite system.

Acknowledgements

Many thanks to J.E. Jonker (University of Groningen, The Netherlands) who brought
Example 34 to the attention of the authors, and to the referees for constructive criticism
that resulted in an article of greater clarity.

References

[1] A.V. Aho, M. Ganapathi, S.W.K. Tjiang, Code generation using tree matching and dynamic
programming, ACM Trans. Programming Languages and Systems 11 (4) (1989) 491–516.

[2] A. Balachandran, D.M. Dhamdhere, S. Biswas, E�cient retargetable code generation using bottom-up
tree pattern matching, Comput. Languages 15 (3) (1990) 127–140.

[3] D.R. Chase, An improvement to bottom-up tree pattern matching, Proc. 14th Annual ACM Symp. on
Principles of Programming Languages, Munich, Germany, January 1987, pp. 168–177.

[4] T.W. Christopher, P.J. Hatcher, R.C. Kukuk, Using dynamic programming to generate optimised code in
a Graham-Glanville style code generator, Proc. ACM SIGPLAN 1984 Symp. on Compiler Construction;
ACM SIGPLAN Notices 19 (6) (1984) 25–36.

[5] N. Dershowitz, Termination, in: J.-P. Jouannaud (Ed.), Rewriting Techniques and Applications, Lecture
Notes in Computer Sciences, Vol. 202, Springer, Berlin, 1985, pp. 180–224.

[6] N. Dershowitz, Termination of rewriting, J. Symbolic Comput. 3 (1987) 69–116.
[7] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. Van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, Vol. B: Formal Models and Semantics, Elsevier, Amsterdam, 1990, pp. 245–320
(Chapter 6).

464 J.-P. Katoen, A. Nymeyer / Theoretical Computer Science 238 (2000) 439–464

[8] H. Emmelmann, Code selection by regularly controlled term rewriting, in: R. Giegerich, S.L. Graham
(Eds.), Code generation – Concepts, Tools, Techniques, Workshops in Computing Series, Springer,
Berlin, 1991, pp. 3–29.

[9] H. Emmelmann, F.W. Schr�oer, R. Landwehr, BEG – a generator for e�cient back ends, ACM SIGPLAN
Notices 24 (7) (1989) 246–257.

[10] C.W. Fraser, D.R. Hanson, T.A. Proebsting, Engineering a simple, e�cient code-generator generator,
ACM Letters on Programming Languages and Systems 1 (3) (1992) 213–226.

[11] M. Ganapathi, C.N. Fischer, A�x grammar driven code generation, ACM Transactions on Programming
Languages and Systems 7 (4) (1985) 560–599.

[12] R. Giegerich, Code selection by inversion of order-sorted derivors, Theoret. Comput. Sci. 73 (1990)
177–211.

[13] R. Giegerich, K. Schmal, Code selection techniques: pattern matching, tree parsing, and inversion
of derivors, in: H. Ganzinger (Ed.), Proc. 2nd European Symp. on Programming, Lecture Notes in
Computer Science, Vol. 300, Springer, Berlin, 1988, pp. 247–268.

[14] R.S. Glanville, S.L. Graham, A new method for compiler code generation, Conf. Record 5th Annual
ACM Symp. on Principles of Programming Languages, Tucson, AZ, January 1978, pp. 231–240.

[15] K.J. Gough, Bottom-up tree rewriting tool MBURG, ACM SIGPLAN Notices 31 (1) (1996) 28–31.
[16] P.J. Hatcher, T.W. Christopher, High-quality code generation via bottom-up tree pattern matching, Proc.

13th Annual ACM Symp. on Principles of Programming Languages, Tampa Bay, FL, January 1986,
pp. 119–130.

[17] C. Hemerik, J.-P. Katoen, Bottom-up tree acceptors, Sci. Comput. Programming 13 (1990) 51–72.
[18] S. Kurtz, Narrowing and basic forward closures, Technical Report 5, Technische Fakult�at, Universit�at

Bielefeld, Germany, 1992.
[19] A. Middeldorp, H. Zantema, Simple termination of rewrite systems, Theoret. Comput. Sci. 175 (1997)

127–158.
[20] A. Nymeyer, J.-P. Katoen, Code generation based on formal BURS theory and heuristic search, Acta

Inform. 34 (8) (1997) 597–635.
[21] A. Nymeyer, J.-P. Katoen, Y. Westra, H. Alblas, Code generation =A∗+BURS, in: T. Gyim�othy (Ed.),

Compiler Construction, Lecture Notes in Computer Sciences, Vol. 1060, Springer, Berlin, April 1996,
pp. 160–176.

[22] M.J. O’Donnel, Computing in Systems Described by Equations, Lecture Notes in Computer Science,
Vol. 58, Springer, Berlin, 1977.

[23] E. Pelegr��-Llopart, Rewrite systems, pattern matching, and code generation, Ph.D. Thesis, University of
California, Berkeley, December 1987.

[24] E. Pelegr��-Llopart, S.L. Graham, Optimal code generation for expression trees: An application of BURS
theory, Proc. 15th Annual ACM Symp. on Principles of Programming Lanuguages, San Diego, CA,
January 1998, pp. 294–308.

[25] T.A. Proebsting, B.R. Whaley, One-pass, optimal tree parsing – with or without trees, in: T. Gyim�othy
(Ed.), Compiler Construction, Lecture Notes in Computer Science, Springer, Berlin, April 1996, pp.
294–308.

[26] J. Steinbach, Extensions and comparison of simpli�cation orderings, in: N. Dershowitz (Ed.), Proc. 3rd
Internat. Conf. on Rewriting Techniques and Applications, Lecture Notes in Computer Science, Vol.
355, Springer-Verlag, 1989, pp. 434–448.

[27] H. Zantema, Termination of term rewriting by semantic labelling, Fund. Inform. 24 (1994) 89–105.

