

Edinburgh Research Explorer

Applying Adversarial Planning Techniques to Go

Citation for published version:
Wilmott, S, Richardson, J, Bundy, A & Levine, J 2001, 'Applying Adversarial Planning Techniques to Go',
Theoretical Computer Science, vol. 252, no. 1-2. https://doi.org/10.1016/S0304-3975(00)00076-1

Digital Object Identifier (DOI):
10.1016/S0304-3975(00)00076-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1016/S0304-3975(00)00076-1
https://doi.org/10.1016/S0304-3975(00)00076-1
https://www.research.ed.ac.uk/en/publications/1bab7632-6c7c-4a5b-b877-ebdcef448bcd

Applying Adversarial Planning Techniques to
Go

Steven Willmott a Julian Richardson b Alan Bundy b

John Levine c

a(,bom toire d'Intelligence Artificielle,
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

email: willmott@lia.di.epfl.ch

blnstitute of Representation and Reasoning
Division of Informatics

University of Edinburgh, Scotland
email:{julianr, bundyl@dai.ed.ac.uk

CA rtificial Intelligence Applications Institute
Division of Informatics

University of Edinburgh, Scotland
email: johni@aiai.ed.ac.uk

Abstract

Approaches to computer game playing based on a—fl search of the tree of possible
move sequences combined with a position evaluation function have been successful
for many games, notably Chess. For games with large search spaces and complex
positions, such as Go, these approaches are less successful and we are led to seek
alternatives.

One such alternative is to model the goals of the players, and their strategies
for achieving these goals. This approach means searching the space of possible goal
expansions, typically much smaller than the space of move sequences. Previous
attempts to apply these techniques to Go have been unable to provide results for
anything other than a high strategic level or very open game positions. In this
paper we describe how adversarial hierarchical task network planning can provide a
framework for goal-directed game playing in Go which is also applicable to tactical
problems.

1 Introduction

Most approaches to computer game playing are based on game tree search

and position evaluation functions (data-driven approaches). Data-driven ap-

Preprint submitted to Elsevier Preprint 	 24 March 1999

proaches are appropriate for games with low branching factors, and for which
it is possible to accurately assign values to positions which indicate who is
winning. While this approach has been very successful for many games in-
cluding Chess, it has been less successful when applied to games with high
branching factors and complex positions, such as Go or for games with a high
degree of uncertainty such as Bridge.

An alternative to the data-driven approach is goal-driven search in which a
single agent tries to satisfy its goals in the game. Goal-driven search has been
extensively explored in the Artificial Intelligence literature, in particular as Hi-
erarchical Task Network (HTN) planning (42,15). When multiple agents need
to be modelled and can compete against one another this approach becomes
adversarial planning. In this paper we describe how adversarial hierarchical
task network planning can provide a framework for goal-directed game play-
ing in Go. We also consider different types of goal expansion in HTN planning
and suggest how to make planning approaches more applicable to tactical
problems.

1.1 Paper Overview

In §1.2, we review two different approaches to making move choices in game
playing - goal-driven and data-driven. §1.3 presents a brief overview of pre-
vious work on computer Go (1.3.2) and Go's search space (1.3.1). §1.4 com-
pletes the first section with an outline of previous work in the field of adver-
sarial planning.

The main body of the paper includes the following two principle contributions:

• The description of a new adversarial planning framework (2.2), based on hi-
erarchical task network planning (2.1). The framework models two agents,
each of which attempts to satisfy its own goals while refuting those of its
opponent. This behaviour is achieved by backtracking, and the enforcement
of a time linearisation during goal decomposition (discussion of the decom-
position strategy can be found in §2.3).

• The application of the planning framework to the game of Go (3). In order
to prove the concept without coding large amounts of knowledge, our im-
plementation, GoB!, focuses on life-and-death problems of the type found in
Go teaching books (although there is no restriction to enclosed problems).

GOBI was systematically tested on examples from volume I of "Graded Go
Problems for Beginners" [49], finding the correct answer for 74% of the prob-
lems. We analyse both successes and failures in §3.4.2.

The remainder of the paper examines the advantages and disadvantages of

2

applying a goal-driven approach to computer Go (4), and compares our work
to adversarial planning systems in other domains (5).

1.2 Goal-driven and Data-driven approaches

Within a specific game, move or action choices often depend upon the state
of the game, the phase of the game (e.g. opening, endgame etc.), the future
actions of the opponent, the ability of a player to follow up an action appro-
priately and many other diverse factors. It is these interacting influences on
the choice and effect of moves which make games so fascinating for human
players and so challenging for machines.

In computer game playing there are two main approaches to making move
choices:

• Data-Driven: At each step, rules, patterns or heuristics are applied to the
game state to suggest useful moves. The resulting set of plausible actions is
then evaluated using search in the tree of moves. Each move is played out
in a world model followed by the possible responses of the opponent. The
search continues until the leaves of the tree are reached. I These leaf nodes
are then evaluated and used to select one of the original plausible actions
as the one which leads to the most desirable (by some measure) set of leaf
states.

• Goal-Driven: During play, a goal-driven system keeps a number of abstract
goals 2 in an agenda. The goals in the agenda represent the things the system
would like to achieve in the short, medium and long term. To choose a move,
goals are expanded into plans (which are conjunctions of goals at lower levels
of abstraction) and eventually into concrete moves (actions in the world).
Repeated decompositions form a plan for achieving the goal.

In a data-driven search tree, each node represents a possible game position and
has one branch for every move suggested in that position. In contrast, each
node in a goal-driven search tree represents a plan for achieving the top level
goal with some parts still sketchy (abstract goals) and others fixed (concrete
actions), and each node in the search tree has one branch for each way the
system suggests to further refine the plan.

Which approach (goal-driven or data-driven) is most advantageous is heavily
dependent upon the domain, in particular on the size of the data-driven and

Which nodes are the "leaves" can be variously defined by a depth cut off point,
quiescence, or further domain dependent heuristics.
2 Abstract goals are aims which cannot in general be achieved by a single primitive
action in the world.

3

goal-driven search trees. In Bridge, for example, the locations of the cards are
not in general known during play, which leads to a large space of possible
card plays and therefore a prohibitively large data-driven search tree. 3 Smith
et. al. (in (38]) show that a goal-driven approach can very successfully play
Bridge, and [18] demonstrates that a relatively small number of operators is
sufficient to describe all the relevant plays.

1.3 The Game of Go

The game of Go is considered by many to be the next great challenge for
computational game playing systems. It presents new, significant and differ-
ent challenges to Chess which has been long been considered the "task par
excellence" for Artificial Intelligence and computer game playing [3]. A good
introduction to the game can be found in [4].

1.3.1 Size of the Go Search Space

The search space of Go is both wider and deeper than that of Chess; there are
estimated to be about io'° states (cf. Chess iO °), games last approximately
300 moves (cf. Chess 80) and the branching factor at each turn is on average
235 states (di Chess 35). The number of possible games of Go is estimated
at 10700 compared to 10120 for chess [5]. It is often hard to evaluate the
relative strength of Go positions during play, since guiding principles such as
value of material which are very useful in chess are often misleading for Go.
The difficulty of Go is as much due to this difficulty in state evaluation as to
the large raw search space. Useful complexity results have also been shown:

• [24] shows that determining the eventual winner for an arbitrary Go position
on an it x it board is PSPACE-hard. 4

• [33] extends this result to show that deciding whether or not black can
win from an arbitrary position is EXPTIME-complete (taking into account
situations arising from Ko positions).

Given these difficulties, the brute-force game tree search which has been so
effective for Chess will potentially have much greater difficulty with Go.

A data-driven search can still be practicable, but only by dramatically limiting
the part of the move space which is searched. For example, Ginsberg's GIB [20]
adopts a sampling approach, aiming to sample a representative part of the search
tree, and choosing its moves on this basis.

[41] gives proofs for a similar result for a class of generalisations of Chess ton x it

boards.

51

1.3.2 Approaches to Computer Go

Although Go has received far less attention than Chess in terms of research,
there have been many varied approaches to computer Go:

• Hybrid approaches such as Go 4++ [6], MANY OF FACES OF Go (16]
and HANDTALK [6] are by far the most successful at playing the complete
game to date. These systems are mainly data-driven (Go 4++ for example,
works almost exclusively on pattern recognition) but their long period of
development (10-15 years for MANY FACES OF Go) has seen the addition
of many other types of reasoning and specialist modules.

• Non-symbolic techniques have been used to learn/evolve controllers and
rules based upon patterns of stones for use during play. The techniques
applied include Genetic Programming [10], Genetic Algorithms [32,22,12],
and Neural Networks [13]. These approaches have so far been less successful
than the hybrid programs but have the advantage that Go knowledge does
not need to be added by hand.

• Cazenave's G0G0L [8] applies learning techniques to good effect. An off-
line program uses introspection to prove theorems about Go tactics which
can be used to generate knowledge useful in pruning Go search trees. This
knowledge is then added into G0G0L's playing procedures. As reported in
[9] GoGob finished 6th out of 40 participants in the IJCAI'97 international
computer Go tournament [17] and was the top ranked non-commercial pro-
gram.

• Progress has also been made by focusing on specific subproblems in Go.
Wolf's GoTooLs [47,48] uses very deep search to analyse closed "life and
death" game positions and can often solve very complex problems. [26]
applies combinatorial game theory to endgame situations, which enables
precise calculation of the values of sub games and hence perfect play, but is
intractable except for the last few moves of the endgame.

• There have also been several applications of planning techniques to Go.
These systems are discussed seperately in §1.4 below.

The top Go programs are now able to challenge good amateur players, but
there remains substantial room for improvement. The advantages mentioned
in §4.1, earlier work on Go planners [37,23], and the success of the goal-driven
approach in other domains (notably Bridge [40]) suggest that a goal-driven
approach may be useful. It also has much psychological validity, since pro-
tocol analysis indicates that Go players consider few candidate moves, and
concentrate on their own and on their opponents' purposes [36]. Finally, even
in data-driven approaches to computer Go, it is still necessary to consider
high-level goals, for example in order to decide whether or not a satisfactory
result has been achieved in life and death problems (e.g. some strings may be
allowed to die but others must live) [48].

-

5

1.4 Applications of Adversarial Planning

Domains in which agents compete against one another are termed adversarial.
The first attempts to use goal-driven reasoning in adversarial domains include
work by Pitrat [29] and Carbonell [7]. The former was extended by Wilkins in
[43] to produce the PARADISE system for Chess. Using goals to guide search,
PARADISE was able to find moves which involved looking as far ahead as 20 ply
in certain situations, a depth well beyond its contemporary search-intensive
competitors. More recent work studies battlefield management [1], command
and control [50], and Bridge [39,40]. The work on Bridge is perhaps the most
successful application of goal-driven reasoning to games to date, presenting a
system for Bridge declarer play (TIGNuM2) good enough to beat the current
top commercial computer player [39]. [19] describes the FINESSE program for
Bridge which also applies a plan-based approach. Extensive testing has shown
that FINESSE can find optimal plans for single-suit play, and correctly calculate
their probability of success.

Go has also been used as an application domain for adversarial planning sys-
tems:

• The INTERIM.2 Go program [30] was probably the first Go program to use
the idea of goals to guide move choice.

• This initial interest was followed by two Go planners due to Sander and
Davies [37] and Lehner [23] which both addressed only very open positions.

• More recently, Hu [21] also concentrates on high level strategy looking at
the possible use of multipurpose goals.

• Finally the GOBELIN system developed by Ricaud [31] also has aspects of a
goal-driven approach. GOBELIN uses an abstract representation of the Go
game state to form plans before mapping these back into the ground state.

A common feature of all 5 of the goal-driven Go programs to date is that
although some are able to report good results for high level strategic planning
[37,23] or during opening play [31], none adequately addresses the tactical level
of Go play. There has been little success for this type of approach in the middle
or end-game where tactical and strategic considerations become closely linked.
Contributions of this paper include offering an explanation for this lack of
progress, based upon the type of decomposition strategy used during planning,
and presenting an approach which makes goal-driven reasoning applicable at
both the strategic and tactical levels.

Except INTERIM.2 which applies data-driven search for local tactical lookahead.

2 An Adversarial Planning Architecture

This section describes an adversarial planning architecture which models goal-
driven reasoning for adversarial domains. 6 The goal-driven approach and use
of abstract plans is motivated by work on hierarchical task network (HTN)
planning. HTN systems were first used in NOAH [34] and INTERPLAN (42] and
have since been extensively studied in the Al planning field. Erol et. al. [15]
give a complete definition for an HTN scheme and present UcMP, which is a
provably sound and complete HTN planner and provides a good template for
this type of system.

2.1 Principles of HTN Planning

HTN planning is based on three types of object: Goals, Operators and Plan

Schemas. Operators are actions which can be performed in the world (such
as flicking a switch, taking a step). Goals are more abstract and express aims
in the world such as "Go to the Moon", "Become Prime Minister". Schemas
(also called Task Networks or Methods), specify the subgoals which must
be achieved in order to satisfy the goal. For example, the following schema
expresses the fact that G can be achieved by satisfying the conjunction of
subgoals G 1 , G2 and G3 :

The G, should be at a lower level of abstraction than G, and can generally be
satisfied in any order. Operators are at the lowest level of abstraction.

Given these three types of object, HTN planning starts with an initial world
state and a set of goals which form the initial abstract plan. The plan is then
refined step by step by expanding the goals within it. Goals are expanded
by selecting a schema whose antecedent (the G above) matches the chosen
goal, and replacing the instance of G in the current plan by the subgoals (the

G2 above) listed in the consequent of the schema. I As the planning process
continues, interactions, incompatibilities and conflicts may arise between com-
binations of goals. These "interactions" in the plan must be resolved, which
can result in backtracking and (in partial order planners) ordering constraints
between goals.

6 More details can be found in [45].
Some planners may also instantiate variables as part of this expansion process

which adds extra complexity [14].

7

The process is complete when all goals have been expanded into sets of opera-
tors and all arising interactions have been resolved. The sequence of operators
thereby generated should, upon execution in the initial world state, lead to
the achievement of the planner's goals in the world.

The characteristics of an HTN planner are principally determined by its goal
expansion strategy. At any stage a plan can be totally ordered, which means
that every step is time ordered with respect to every other step or partially
ordered, in which case some steps do not have ordering constraints between
them. A partial order planner allows goals to remain unordered until ordering
becomes necessary whereas a total order planner chooses a linearisation over
the plan steps to ensure that the steps are always totally ordered. Planners
may also use two different inference mechanisms: backward chaining and for-
ward chaining. Backward chaining planners begin with the goal state and use
their knowledge to work backwards towards the start state, forward chaining
planners do the opposite - starting with the initial state and applying se-
quences of operators to reach the goal. 8 Most standard HTN planners in use
are backward chaining partial order planners.

The extension of this idea into adversarial domains is non-trivial since plans
are no longer sequences of actions but trees of contingencies which take into
account the actions of opponents. The interactions in the plan are considerably
more complex and serious since the goals of opponents in the world are often
conflicting and the planning agents are non cooperative. HTN planning for
adversarial domains is therefore computationally considerably more complex
than HTN planning in standard domains.

2.2 Adversarial Planning Framework

The adversarial planner presented in this paper models two agents (named
Alpha and Beta) which represent two players (adversaries) in a game. 10 Each
agent keeps an open agenda of goals which represents its current plan of action.
To solve a problem in a domain, each agent is given an abstract goal (or set of
goals) to achieve. The agents then attempt to find sequences of moves which
satisfy their goals. Since the goals of the agents are usually contradictory and
the agents must take turns in performing actions, their interaction in trying

8 Note that there is a distinction between forward and backward chaining and data
and goal driven: forward and backward chaining describe ways of traversing the
search space, whereas data and goal driven relate to the motivations behind move
choice.

In terminology we follow [25].
10 The framework can be generalised to more than two players.

to satisfy their goals can be used to find a plan for the problem."

ALPHA I BETA
(Player) (Opponent)

Action

Key:

Acdo,i Abstract Goal

0-
- — Plan Flow

Fig. 1. Planning steps alternating between two agents.

The system allows the two agents to take control of the reasoning apparatus in
turns. Once an agent has control it expands some of its abstract goals until it
is able to decide upon a concrete action. The chosen action is then performed
in a world model 12 before control is passed to the other agent. Figure 1 shows
the flow of control during the reasoning process. An agent may need to expand
several abstract goals before being able to decide upon an action in the world.
During this "active" period it uses its own agenda of goals and has control
of the shared reasoning apparatus. Once an action is chosen, control passes
to the other agent. Agent Alpha models the player who is next to move in
the game and agent Beta the opponent. The planner is thus trying to plan for
Alpha's move (Alpha takes control first).

At any one time an agent has a plan which consists of actions already taken
(square boxes in figure 2) and goals at various levels of abstraction (circles
in figure 2). The actions (squares) are represented in the world model, the
abstract goals (circles) are held in the agenda.

A planning step involves selecting an abstract goal (such as X in figure 2) and
expanding it. A plan schema is selected for X which expresses how X could be
achieved using a conjunction of subgoals at a lower level of abstraction. For
example, in figure 2, X is replaced in the plan by the two subgoals Xl and
X2. Once expansion has reached the lowest level of abstract goals these lowest

11 See below for how this process helps choose moves.
12 A world model is not a standard feature of HTN planners - see §2.3.2 and §5.3
for more explanation of its use.

level goals need to be shown to be already true or replaced by actions which
make them true.

j n 1 .hQT1 ,, ,±
Fig. 2. Plan refinement: abstract goals are expanded to and replaced by sets of
subgoals at lower levels of abstraction.

Once one of the agents (Alpha say) has achieved all of its goals (been able
to perform actions in the world model which make them true) it knows that
it must have satisfied its top level goals (since all its subgoals are strictly de-
scended from these). The opposing agent is made aware of this fact and, since
in general a good outcome for one agent is a bad outcome for the other, both
agents are allowed to force backtracking. Agents are allowed to backtrack to
any of their previous goal or expansion choices but only to their own decisions.
Neither agent may force the other to change plans directly.

Fig. 3. The plan tree on the left is reduced to the contingency tree on the right by
dropping the abstract reasoning nodes.

The backtracking activity explores the various interacting plans Alpha and
Beta have for the situation and creates a plan tree as shown on the left of
figure 3. Each choice made by an agent creates a new branch. Underlying the
plan tree is the contingency tree which is found by removing all the abstract
goal decomposition steps in the plan tree to leave only the operators/actions
(shown on the right in figure 3). Moves in the contingency tree are directly

10

descended from the goals of the two agents, and the tree structure naturally
reflects the interactions between the two adversaries. Taking any branch, the
moves chosen near the leaf (at the end of a move sequence) descend from the
same goal as those near the root of the tree, and therefore serve the same
purpose.

The final contingency tree acts as a form of proof that the first move is a
good step towards achieving Alpha's goals. Hence it supports the choice of
the first move in the tree. 13 In general, the final contingency tree contains
only a small subset of the move tree which would be generated by considering
all the available options at each turn as in a data-driven approach. (See §4.1
below.)

2.3 Goal Decomposition Schemes and a World Model

To better describe how the planner works, this section concentrates on its
goal decomposition scheme. The method of goal decomposition defines how
the planner applies its knowledge to problems and defines the fundamental
characteristics of the planner.

2.3.1 Standard HTN Goal Decomposition

The standard scheme for HTN decomposition (widely used to good effect in
non-adversarial domains) is as shown in Algorithm 1. 14

At each refinement step a goal is chosen and decomposed to reduce the overall
level of abstraction in the plan. In general all goals are kept at roughly equal
levels of abstraction. The average abstraction level of the goals in the plan
then gradually decreases as the goals are decomposed, eventually reaching the
stage where all goals are concrete actions in the world (primitives) and the
plan can be executed. This approach is a purely backward chaining strategy
in the space of plans. The systems starts with the top level goal state and
systematically fleshes the plan out using plan knowledge. The algorithm also
says nothing about ordering and fits a total or partial order strategy. A total
order planner would additionally make execution order choices in step 1.

13 The tree itself can also be used to respond to any of the opponent's moves which
are represented in it, but replanning may be required if other moves are made.
The question of how long (for how many moves) such a plan remains valid is not
addressed here.
14 The algorithm given here is a simplified version; more detailed coverage can be
found in (15).

11

procedure Refine-Plan
while Not Empty(Agenda) do

1. choose a goal NextGoal from Agenda to decompose
for goal NextGoal do

2. select a decomposition schema S
3. remove goal NextGoal from Agenda

L 4. insert schema S into Agenda

Algorithm 1: At each step one goal is chosen and decomposed. (Agenda is the
list of open goals held by each agent.)

At each level of abstraction (in fact after each decomposition) the relationships
and interactions between goals can be used to guide the choice of schemas. In
a partial order scheme, interactions between goals would lead the planner to
constrain available orderings.

B,Ipha B.

	

II
Time Ordering 	-

----------J

Fig. 4. Goal decomposition in "standard" HTN planning. The dashed arrows rep-
resent the decomposition of goals (eventually) into concrete actions.

The dashed box in Figure 4 represents the items the planner can reason about
when decomposing the goal marked X. In this standard HTN model the plan-
ner can reason about all the goals (and hence their interactions) at their cur-
rent level of abstraction and about the world in its initial state. The effects of
actions subsequent to the initial state and how goals might interact must be
modelled explicitly by the plan knowledge.

2.3.2 Modified HTN Goal Decomposition

In the adversarial planning architecture presented here, goals are expanded
in time order using a linearisation. The linearisation is used to make goals
concrete as soon as possible and model the effect of the resulting actions in a
"world model". This linearisation behaviour contributes to the planner's abil-
ity to reason simultaneously and consistently about both abstract (strategic)
and concrete (tactical) aspects of the game. As noted above, a world model is

12

not a standard feature of HTN planning systems and goal expansion is quite
different from the standard version described above. Goal expansion in the
modified approach is shown in Algorithm 2.

procedure Refine-Plan- (Modified)
while Not Empty(Agenda) do

1. choose a goal NextGoal from Agenda to decompose
while NextGoal has not resulted in a primitive action do

2. select a decomposition schema S for NextGoal (taking into
account the world model)
3. remove goal NextGoal from Agenda
if S describes a primitive action then

L 4. perform the action in the WorldModel

else

I choose a goal DescendentGoal from schema S
5. let NextGoal = DecendentGoal

L 6. insert schema (S - DecendentGoal) into Agenda

Algorithm 2: This expansion algorithm is similar to to the standaçd expansion
algorithm (1) but additionally ensures that one of the subgoals descended from
NextGoal produces an action in the world before another NextGoal can be
chosen.

There are three key differences between the two decomposition strategies:

• In the modified algorithm, steps 1, 4 and 5 contribute to the linearisation
of the plan by forcing the planner to choose a time order for goal expansion
(and execution). Once a goal has been chosen for expansion the planner
works on its descendent subgoals until at least one of these can be used to
choose an action in the world.

• When actions are chosen, their effect is played out in a world model. The
information in the world model can subsequently be applied to the choice
of plan schema (step 2).

• The planner is performing backwards chaining in the space of plans (starting
with the top level goals and decomposing) but with an element of forward
chaining in the space of moves. That is, the initial state and subsequent
modelled states clearly show which options are available for the achievement
of low level goals. Plans and world state come together to choose the move.

This approach necessarily leads to a total-order planner. At each stage there
can be goals of all abstraction levels in the plan but there must also be a
linearisation and goals are decomposed in time order. Once the action has been
performed, other subgoals at varying levels of abstraction remaining from the

13

decomposition of the initially chosen goal remain in the agenda to be expanded
at some time in the future.

-I

	

(WT) 	
A'pha

Ix.

(a"ij8a'\ 	 fl
'4i 	 In

	

•.• 	 y
At 	 Bela '

I 	\ 	I 	I 	 I

Fig. 5. Goal decomposition in modified HTN planning. The dashed arrows represent
the decomposition of goals (eventually) into concrete actions.

Figure 5 illustrates goal decomposition for the modified RTN model. Again,
the dashed box represents the items the planner can reason about when de-
composing the goal marked X. The decomposition progresses left to right in
time order; here the planner can reason about the outstanding abstract goals
and about the current state of the world. 15 The first two primitive actions
(one chosen by Alpha and one by Beta) are now represented in the world
model and their effect on the state of play clearly seen.

The planning process can now be seen as guiding search using goals, similar
to the way PARADISE applied chess knowledge (see §5.1). This process helps
choose the moves but the complex interactions between goals are partly mod-
elled in the world model. As the planner traverses the space of plans (explores
the different options for attack/defence that might apply), it also traverses
the space of moves. For comparisons with other planning systems see §5.

3 An Adversarial Go Planner

The planning architecture was instantiated as a Go reasoning system called
corn both to test the architecture in a challenging domain and to investigate
the usefulness of the goal-driven approach for Go. GoB! consists of a set of
knowledge modules which plug into the planning architecture. The knowledge
modules provide the Go domain knowledge, plan schemas and goal types which
the reasoner can use to solve problems.

15 Note: the dashed box can be enlarged again upon backtracking.

14

3.1 An Example Go Plan

1

Fig. 6. Example A: Black to play and kill the white group.

Figure 6 shows a problem from Volume I of "Graded Go Problems for Be-
ginners" [49]. The aim is for black to move first and kill the white group of
stones. The task is specified to GOBi as two abstract goals: the goal kill-group

for agent Alpha (playing black) and the goal save-group for agent Beta (play-

ing white). 16 Agent Alpha takes control first, decomposing the kill-group goal
using one of the available plan schemas. An abstract plan for killing this group
might be a conjunction of the following subgoals: 17

• surround-group - stop the group from running and connecting.
• squeeze-space - reduce the space the group has to live.
• prevent-eye-formation - block any attempt by the group to make eyes. 18

One of these subgoals is then expanded further to the next level and so on
until at the lowest level in the hierarchy a move such as play at A is chosen to

satisfy a simple goal such as prevent-escape-at-i (figure 6).

Alpha plays the move onto the board in the world model which gives the new
world state for Beta to work with. Alpha still has a set of goals at various
levels of abstraction remaining in its agenda. These remaining goals represent
the plan on how to follow the first move, i.e which other subgoals/actions
need to be achieved to make the plan complete. To validate that this first
move is good (in this case playing at A would not be), Alpha must eventually
show that all these goals can be achieved no matter what Beta does. These
remaining goals are kept by Alpha until after Beta's turn.

16 Note that the goals need not be directly opposing.
17 This abstract plan is quite intuitive. It is not obvious how a data-driven system
would represent the equivalent of such a plan.

eye in Go is an enclosed space where the opponent may not play - a group
with two eyes is unconditionally alive.

Beta now begins by expanding its single goal save-group in the context of the
new board position (after Alpha playing at A in Figure 6). A possible plan
schema for this goal is:

• make-eye-space.
• make-eyes (try to form two eyes).

After Beta's move (whatever it is) is played into the world model, control
is returned to Alpha which then tries to satisfy the rest of its goals. The
interleaving of goal expansions by the two agents continues until one is able to
satisfy all of its aims (and thus implicitly its main aim). The opposing agent is
informed of this fact and then backtracks to explore any alternative options it
has which might produce a better outcome for itself. In this way a contingency
tree is generated which either proves or refutes the validity of the first move
(Alpha's).

Fig. 7. Example A: GoB' plays at B and this kills the group.

For this example (figure 6) G0BI returns the move at B in figure 7, which kills
the group. Among the defences tried by Beta are trying to run out at 1 and
counter-attacking by playing at 2 (which puts the single black stone in the
bottom right hand corner under threat). Since all the moves tried by both
agents must be part of plan of action, the number of possible moves searched
is very small compared to the number of available moves (which is quite large
even in this small problem).

3.2 Representing Go Knowledge

The planning architecture and Go knowledge modules which make up G0BI

are all written in Common Lisp. Around 1400 lines of code make up the plan
knowledge (i.e., schemas and goal types) G0BI has. Writing a full-board Go-
playing program is a significant exercise in knowledge engineering, so to enable
us to add enough depth in knowledge to do useful testing in a short time,

16

GOBI'S knowledge is focused on the area of killing and saving groups. 19 The
knowledge base is made up of 45 goals at five different levels of abstraction.
The average number of applicable plan schemas per goal is approximately two
(thus the knowledge has a relatively low branching factor). The two highest
level goals available in GOBi are kill-group and save-group, which emphasises
the focus on life and death problems.

The following example plan schemas taken from GOBI's knowledge base illus-
trate the structure of the knowledge the program holds (the save-group goal
was also mentioned in the previous example). Note that the plan knowledge
is not complete (for example making eyes is not the only way of following up
a counter attack); more work is needed to extend the knowledge base.

GOAL: save-group,
LEVEL = 5,

Schema 1 - Find Eyes:
*make-eye-space,
*make-eyes.

Schema 2 - Escape Group:
*running-sequence,
* secure-escape.

Schema 3 - Counter Attack String:
*locate-vulnerable-string,
*kill-string,
*make-eyes.

In turn, the make-eye-space goal from Schema 1 has two alternative schemas:

GOAL: make-eye-space,
LEVEL = 4,

Schema 1 - Ambitious Extend:
*large-extending move,
*consolidate-space.

Schema 2 - Creep extension:
*creeping-extending-move, 	I/A single
*consolidate-space. 	I/step extension.

The structure of the knowledge shown here is intuitive for Go and is very
different from the kind of heuristic information used in data-driven approaches.

19 This does not mean G0BI is limited to enclosed problems (see 3.5).

17

The knowledge represented can be seen as an AND-OR tree with the AND
component represented in the conjunction within the plan schema and the
OR component represented in the choice between alternative schemas. Goals
within plans are not evaluated at every step. Simple goals are established by
finding a satisfying move or using a test. For higher level goals, truth is inferred
from the fact that all the goals descended from them were achieved.

3.3 The Planning Process

This section provides some more details of how the Go instantiation of the
planning architecture works.

3.3.1 Choosing Top Level Goals

To be able to plan the planner needs to have goals to achieve. In G0BI these
goals are given by hand. In order to extend GoB! to whole-board play, one of the
most important tasks is to define goals and abstract plans above the current
highest level. The planner may keep these goals open (and still unexpanded)
from one turn to another and indeed for long periods of the game. Since shorter
term tactical goals for choosing individual moves are also expressed in terms of
goals (these are the goals GoB! already has) this should provide for a smooth
transition between the tactical and strategic levels of Co.

The current top level goals in GOB! are save-group and kill-group which is
quite limiting. Potential additional higher level goals include, for example:
rnake-moyo, prevent-invasion, extend-influence, extend-territory, hold-corner,
right up to win-game.

3.3.2 Planning Steps

As described in §2 during the reasoning process a planning step is made up of
two parts:

(1) Choosing a current goal to replace in the plan and
(2) Choosing an appropriate plan schema to apply to the goal.

In GoB!, the choice of which goal to expand next is unordered, but after choos-
ing a goal from the agenda, GOB! uses a linearisation and continues working
on the same goal down through several levels of expansion. Goal expansion
follows the algorithm presented in 2.3.2. Once a goal has been chosen in step
2 of the algorithm, one of its associated set of plan schemas must be selected
for use. The plan schemas in GoB! are tried in a fixed order designed to try the

most promising goal decompositions first. Plan preconditions can also be used
to screen out schemas not thought to be suitable for the current situation. If
one schema leads to a dead-end, backtracking allows 0081 to try the others
available for the situation.

The expansion of goals into plan schemas eventually leads to goals at the
lowest level of abstraction. These goals need to be checked for satisfaction and
used to choose moves. Some example lowest level goals are:

• fill-a-liberty,
• play-a-hane-move (near here),
• play-a-connecting-move (between stringi and string2),
• play-a-placement-move,
• play-a-blocking-move (near here),
• play-an- extending-move (near here).

The plans stored in the Go modules are not preprogrammed solutions and
are expanded in the context of the current game state. The development of a
plan is influenced by schema preconditions and by the choices in the world for
making the lower level goals true. The failure of goals early in the plan forces
choice of alternative sub plans for making these goals true.

3.3.3 The Cost of Move Choice

The cost of move choice can be divided into three components:

(1) Abstract Planning Cycles are very cheap since they consist purely of two
cycles of matching items in a list (choose a goal, choose one of its plans).
The process can be more expensive if complex preconditions are used to
select between plans.

(2) Checking the satisfaction of low level goals is also inexpensive, since the
goals are very focused (are these two strings connected? could black run
out here?). 20 Checking is made easier by the fact that it can be supported
by various representations of the game state - strings, groups, influence
etc.

(3) Using low level goals to generate moves is the most expensive part of the
process, although the cost is kept down by the fact that the goals by
this stage are focused and limited to a small area (the here in the section
above). In G0BI, selection is done using simple rules which define the type
of move which could satisfy a goal. 2 ' An example set of rules is that a

20 Again, some checks can be more costly such as checking for simple eyes (Goal
currently has a very simple eye recognition module).
21 Move selection could just as well have been done with local pattern matching. The
planning framework poses no restriction on how this relationship between abstract

19

connecting-move must:
(a) be a liberty of (next to) stringi and
(b) be a liberty of (next to) string2.

Although the workload is divided between these three parts, it is clear that
this move choice method is considerably more expensive for choosing a single
move to try in the move tree than most data-driven methods. The potential
gain of using this method is in reducing the number of candidate moves in the
move tree which need to be tried, and simplifying the application of evaluation
functions by restricting both the parts of the board on which they operate,
and allowing them to consider only how well a position satisfies a given goal
instead of trying to somehow produce an estimate of the absolute value of this
position.

For the examples in test set I (see §3.4) there were on average 5.9 planning
cycles per move chosen (including the cycles which choose moves). This av-
erage was relatively constant over the whole range of problems. To analyse
the cost of using planning knowledge in GOB! we converted the planner to run
without its plan knowledge and perform depth first search with a—/I cutoffs.
The a—/I search running in the planning framework used the same board data
structures, checks for move legality, backtracking mechanism and evaluation
functions as GoB!. That is the search used available goals to test for termi-
nation of search and for leaf nodes. The analysis showed that given GOBI's

current knowledge, each move tried in the game tree involves an average over-
head of 2.5p, where p is the average cost of a move taken by a—/I in this
setup. Consequently, the cost of choosing a move in GOBI is about 3.5 times as
much as a move made by the search algorithm. We note that although keeping
the other features apart from the knowledge constant makes for good compar-
ison (since modules such as the board manager could be implemented much
more efficiently) general comparison with a - /I search is dependent upon the
efficiency of using GoBI's goals as an evaluation function.

Regarding the cost of move choice there are two important tradeoffs in the
planning process:

• If goal selection and expansion mechanisms get more complex (i.e., through
the extensive use of complex preconditions) their time cost will increase,
but their applicability will be restricted, reducing search during planning.

• The simpler and more specific the lowest level goals are, the easier it is to
establish their truth and choose actions with them but the more planning
is needed to decide upon them.

goals and concrete actions is established (in general this is domain dependent).

20

3.3.4 Ntrnber of Nodes Visited

Many data-driven game playing systems are based on some form of a—fl
search which makes it a good scheme for comparison with GOB!. The aim of
this section is to discuss the number of nodes in the search tree GOB! visits
compared to the number a standard a—fl search might visit. Unfortunately,
the search spaces for the test problems quickly become very large so empirical
testing of an a—fl algorithm is inaccurate and time consuming. We therefore
rely on a theoretical estimate which is derived in Appendix A.

Figure 8 compares estimates of the size of the search spaces for each of the
63 examples from test set I which GoB! answered correctly (see §3.4.1 below).
The results have been grouped together into sets of five to make the graph
more readable.

n I
III 	 _

tTiIifIIIII?IPIPIFII

0
2 	3 	4 	5 	6 	7 	6 	•1011ll3 - ..

Fig. 8. This graph shows the number of moves and planning cycles taken by GOB!,
plus the estimated a—fl search space size for the 63 correctly answered problems
from test set I.

For each group the graph shows: the average number of moves taken by GOBI
(moves), the average number of planning cycles required (cycles) and the size
of the estimated a—fl search space (alpha-beta). To group the results, the 63
cases were ordered in ascending order of estimated a - fi search space (primary
criterion) followed by ascending order of number of moves taken by GoB!

(secondary criterion). The values were then grouped together in fives according
to this order (the first five, the next five etc.). The full table of these results
is available in Appendix B.

Since the graph's vertical axis is on a loglo scale, the graph clearly shows
the cost of a—fl increases rapidly as the problems become more open (larger
search spaces). GOB! on the other hand is able to dramatically reduce this rate
of increasing cost both in the number of nodes visited and in the number of
knowledge cycles. For small search spaces, GoB! requires more planning cycles

21

than a—fl visits nodes in the search tree. This result is to be expected since
even for simple problems G0BI needs to go through its reasoning process. Since
the planning cycles are much cheaper than making moves in the world this
extra cost is not a significant problem. More important is the gain in using
the plan knowledge as the problems become larger. As a commentary to the
results in the graph:

• Already for problems in Group 5 GoB! requires less planning cycles and less
moves in the move tree. The problems in this group have search spaces in
the order of 90 nodes 22 and GoB! solves them in 3 - 10 moves.

• Typical results from group 7 include trying 10 moves, with 46 planning
cycles for estimated search space 630.

• Typical for group 10 is 28 moves tried with 125 planning cycles (the esti-
mated a - fi search space has 2520 moves).

• By groups 12 and 13, the difference is already several orders of magnitude.
GOB! typically takes around 33 moves to solve problems with 10 or 11 points
to play on (and hence estimated a—fl search spaces of size greater than a
hundred thousand and a million nodes).

The average number of moves tried by GOB! averaged over all 85 problems in
the test set is 31 moves (for an average of 174 planning cycles per problem).
Averaging over only the 63 correctly answered problems (those shown in Fig-
ure 8) this becomes 24 (with average 144 planning cycles per problem). Giving
the a—fl average is not very useful since it is dominated by the largest terms.

For the problems that GoB! failed on, 9 used an average number of moves
before giving up, 8 resulted in no moves at all (or very few) and the remaining
5 timed out after 30 seconds without having found a solution and having tried
between 72 and 410 moves. (A full listing of results is given in Appendix B.)

8.3.5 Using a World Model to take Opportunities

Although the work here focuses on goal-driven approaches to Go, it is clear
that human players mix both types of reasoning. Patterns are thought to play
a large part in human Go play. Thus, there is a need to consider how the two
approaches can be mixed successfully.

One of the advantages of using a world model in the planner is that the
changing situation of the state during planning is reflected in the world model.
The changing world state may highlight interesting opportunities (or obvious
problems) which arise as a result of the plan actions but were not expected
effects. The architecture described above was extended to include plan critics
which have access to the world model and watch for important situations. The

22 See Appendix A for explanation of these estimates.

22

critics are able to insert goals into the agendas of the agents for the planner
to consider in parallel with the current track of reasoning. Thus, the planner
is made aware of opportunities or obvious problems during planning and can
react to them. 23

Two critics were added to G0BI which detect groups under immediate threat
of capture and insert (optional 24) group-saving/group-attacking goals into
the agents' agendas. The planner may have a good plan of attack but have
plan knowledge falling short of suggesting the final killing move and hence
the system would normally decide that the plan had failed and try another
approach. 25 With the critic switched on, the strong positions from the good
attack can be checked to see if there are opportunities for killing a group and
the planner told about them. The application of critics increases the size of
the search space, but makes the system more robust in situations where the a
priori plan knowledge is insufficient.

3.4 Testing and Evaluating GoBI

Yoshinori's four-volume series [49] provides an excellent source of problems for
testing Go programs. The books provide problems designed to teach human
players how to play Go. Each Go problem gives a board configuration and asks
the player to choose the move or moves to achieve a particular aim (such as
defending a group). The configurations of stones are usually situations which
could arise during normal play but taken out of a full game context. Most
problems have a unique solution which is useful for evaluation.

Since setting up each test problem was time-consuming, we chose (test set I)
a representative sample (85 problems, approximately one third) of the prob-
lems from volume I of [49]. Problems were chosen for the test set essentially
randomly, with a bias towards harder problems and excluding the simple cap-
turing problems at the beginning of the book (which were considered too easy).
A second set of tests using problems from volume II [49] and from "Life and
Death" [11] was also conducted. All the tests were limited to 30 seconds of
runtime on a SUN UltraSparc.

23 As noted in §2.3.2 the use of a world model also provides for forward chaining
in the space of moves. The forward chaining however is only to model which moves
are available for goal satisfaction. The critics here represents situations where the
game state prompts explicit motivation for a move or new goal.
24 Optional in this context means precisely that satisfaction of the top level goals is
not contingent on also achieving the additional optional goal.
25 All moves have to be part of a subgoal to be suggested.

-

23

3.4.1 Test Results

The system successfully solved 74% 26 of the examples in test set I, which is
a significant achievement given its limited knowledge and the complexity of
some of the problems. GoBI has also solved considerably harder problems from
volume II [49] and [11]. These further tests were not comprehensive however,
and used a range of hand picked examples, so the most useful indicator of
performance remains the performance on problems from volume I [49].

In 98% of the correct solutions, GoBI considered the most significant defences
or opponent responses in its plan (and refuted them). This statistic is encour-
aging since not only were the answers correct - so was the reasoning behind
them. Most of the failures were due to incomplete plan knowledge. Several
problems relied on groups connecting and escaping to live, for example, for
which GoB! currently has no plans. Another weak area was in problems which
required a lot of forcing moves (e.g. ladders). GOB! has no special way of han-
dling these and so is not able to take advantage of the problem simplification
they provide (they are planned for in the normal way).

Strengthening 0081's defensive knowledge led to an improvement in attacking
plans and vice versa, reflecting the fact that the better opponent model is more
likely to find refutations for poor attacking plans. For some of the more difficult
problems in [49] and [11] reasoning was less complete (fewer of the possible
counter strategies were explored). On these harder problems, as GoBI's plan
knowledge ran out there was a trend of increasing reliance on the critics (data-
driven aspect) for finding solutions. This trend is encouraging since it shows
that data-driven and goal-driven approaches can be successfully combined in
this way (but less encouraging for our knowledge engineering!).

3.4.2 Examples from the Test Sets

To provide a better idea of the kind of problem GoB! was tested on this section
gives six commented examples from the test sets. In each case the * symbols

26 67% when critics were disabled.

24

in the figure mark the correct first move (black plays first in each case).

Figure 9: Example B, black to play
and save the group (number 30, test
set I).

Figure 10: Example C, black to play
and kill the partly enclosed white
string (hand-picked example).

The problem in figure 9 was solved in 22 moves and 107 cycles (estimated
a—fl search space 22680). The move at * ensures that there is enough room
for black to subsequently make a second eye. A determined attack from white
can still make saving the group difficult and can go up to 7 moves deep.

Example C (figure 10) is harder than it appears. A standard attack on the
white string would be to play one point to the left of the * (this attack is called
a net move). For this problem when corn tries the net move, the opponent
counter-attacks and kills the black string closest to the edge of the board. The
successful counterattack forces GoB! to consider another plan. By playing at

, GoB! forces the white string to the left, trapping it against the black stone
on the far left. G0B1's move also strengthens the vulnerable black string at
the same time (though this is not the primary objective). The plan takes 67
moves and 244 cycles to construct (estimated a—fl search space 113400).

Figure 11: Example D, black to play
and save the group (number 26, test
set I).

Figure 12: Example E, black to play
and kill the white group (number 48,
test set I).

GOBI successfully solves the problem in figure 11 using 21 moves and 146
planning cycles (estimated a—fl search space 630). The move at * is correct

25

in this case since it is the only way to ensure that black can make two eyes
for its group.

Figure 12 shows a harder problem with several interacting groupings of stones.
GOB! takes 60 moves and 294 planning cycles to solve this problem (estimated
a — fl search space 1 247 400 since there may well be captures during search).
The move at * breaks the linkage between two parts and must be followed up
by at least one more telling move to ensure that the white group eventually
dies.

Figure 13: Example F, black to play
and save the group (number 73, test
set I).

Figure 14: Example G, black to play
and kill (from volume II [49]).

GoB! fails for both examples F and G. In example F (figure 13) it takes 15
moves and 68 planning cycles before giving up (the size of the a—fl search
space is hard to estimate since the problems involves a possible breakout
through the diagonal line of white stones on the top left). This problem is
difficult since it relies on a Ko threat being applied.

Failure for example C (figure 14) is due to lack of knowledge. GOBI sees all the
white stones as a single group and tries a plan to encircle them but gives up
without trying any moves. GoB! has no plans for breaking up groups before
attacking them. This problem also raises the point that the top-level goal here
needs to be redefined to allow GOB! to settle for taking just the larger part of
the group. (For completeness GOB! takes 0 moves and 5 planning cycles, again
search space estimation is difficult).

To give an idea of how representative these problems are compared to the rest
of the test sets: Problems B and D are about average, problems C and E and
F are quite hard (C in particular), problem G is easy (although GOBI still fails
on it).

26

8.5 Open Examples

Although currently limited by its knowledge base, GOBI is more general than
specialist life-and-death programs. Knowledge for other parts of the game can
be freely added and GoB! is also able to handle more open positions, such
as example H in figure 15 (which for example GoTooLs would have trouble

with [481). One would expect GoB! to compare well against existing systems
in open (though still tactical) positions where the number of possible move
sequences increases rapidly. The plan knowledge in the system acts to focus
on only the relevant parts of the move tree. This effect can be clearly seen in
figure 8 (3.3.4) where the cost in moves increases much more slowly than for
a — fl.

Fig. 15. Example H: G0BI solves this more open position, killing the white string
marked A by playing a net move at 1. Adding white stones at X or Y for example
(or various other places) would cause GoB! to realise that the string can no longer
be killed directly.

4 Evaluation of the Goal-Driven Approach to Go

As with any method for applying knowledge to searching large spaces, the
success of the goal-driven approach depends upon features of the domain of
application. This section examines the advantages and disadvantages of ap-
plying this approach to Go play.

4.1 Advantages of the Goal-Driven Approach

The goal-driven approach which is presented here has some clear advantages
for Go and other similar games. Together with some of the previous work
on the usefulness of planning at the strategic level of Go, GOB! shows that
this approach can be used for reasoning at all levels. The hope is that it will

27

eventually be possible to move transparently between tactical and strategic
levels of play and providing a unifying framework for Go.

4.1.1 Representation and Communication of Domain Knowledge

Go knowledge in books and folklore is often expressed in a form appropriate for
encoding as decompositions of abstract goals into other goals at different levels
of abstraction. As reported in [35}, there is a rich vocabulary which Go players
can use to express their reasons for making a move. There are many popular
proverbs, which convey strategies at various levels of abstraction, for example
"death lies in the hane" is more tactical, whereas "don't push along the fifth
line" is quite strategic. It may be easier to add this kind of knowledge to a
goal-driven system than to a data-driven system which requires the delicate
balancing of heuristics.

Adding knowledge in the form of plans is made very much easier by the exis-
tence of natural levels of abstraction when describing the game state. Game
positions are often considered not only in terms of stones but in terms of macro
structures such as strings groups and areas of influence.

By following the trace of the goal decompositions one can see why the Go
player is trying to do something - its aims and plans. Access to aims and
plans is not only helpful for adding knowledge and debugging, but could be
useful in the context of a Go tutoring aid. Some of the current commercial Go
systems (MANY FACES OF Go for example) have teaching mechanisms but
it is not clear whether these mechanisms are based directly on the reasoning
process of the computer player, or are instead based on a high-level post-hoc
analysis (which therefore will not accurately reflect the reasoning which led to
this choice of move).

4.1.2 Search Properties

Using a goal-driven approach leads to a very different search from a data-
driven approach. Some key advantages are:

• There is less need for global evaluation functions: Full board evaluation re-
duces to checking if lower level goals can be satisfied. Evaluation functions
may still be used in a limited way to carry out judgements which cannot
be made on a move-by-move level, for example using an influence function
to judge whether or not a group can successfully run, or using a fast a — fl
search to determine the life or death of enclosed groups. When an evalu-
ation function is employed in determining whether or not a goal has been
satisfied, the goal can be used to provide a focus for the evaluation func-
tion to a limited area of the board. The use of goals to focus evaluation

0

makes sense when thinking about how humans play go - often making in-
stinctive judgements (evaluations) of a local situation but rarely considering
(evaluating) the whole board.

• Quiescence (a problem for many game-playing programs) is defined auto-
matically, thus avoiding problems such as the horizon effect in search. Since
each agent has an agenda of goals, a situation can be defined as "open"
(unsettled) until all goals are achieved.

• What seem like heuristically bad moves (e.g. sacrifices) are not discriminated
against because the only consideration is their value to the plan.

While these advantages are important, perhaps the overriding advantage often
associated with goal-driven approaches is their resilience in domains with large
search spaces and branching factors. As the figures in §3.3.4 show, the planner
dramatically reduces the number of nodes searched in the move tree. The
advantage is still significant even if the extra cost of planning is taken into
account.

4.2 Disadvantages of Goal-Driven Search

Obviously the goal-driven approach is not always the best choice and has its
own difficulties:

• The goal-driven approach requires significant effort to encode strategies as
goal decompositions. By contrast, in the data-driven approach, good play
can be achieved using even relatively simple evaluation functions if the game
tree can be searched deeply enough.

• There are some types of knowledge which are hard to express in a goal/plan
oriented framework, such as knowledge which is not reliant on understanding
the motivation behind a move (patterns for example). It seems clear that
good Go play requires both pattern (data-driven) and abstract plan (goal-
driven) knowledge which is what leads us to try and integrate the two
approaches (see §3.3.5).

• For games with low branching factors, shallow search trees or where near
exhaustive search is possible data-driven approaches have a strong advan-
tage: It is only when searching most of the move tree is infeasible and large
amounts of knowledge are needed to prune the tree that goal-driven ap-
proaches become more useful. 27

27 This point was illustrated by PARADISE [43) in the early eighties which despite
being able to solve Chess problems requiring search up to 20 ply deep (far be-
yond other Chess programs of the time), still saw its knowledge based approach
outstripped by the ever increasing efficiency of fast search techniques.

29

The main problem with 0081 itself is still lack of knowledge: much more is
needed before GOBI could be used as a tool to play the complete game of
Go. Unfortunately adding knowledge takes a long time since it must be hand
coded; most of the top programs have had knowledge added over periods of
years. In this respect the goal-driven approach (and many current approaches)
are at a disadvantage to learning or non-symbolic approaches which can use
automatic training to improve.

4.3 Scaling Issues

As with all knowledge based approaches, the search space is determined by
the knowledge in the system. The key to making knowledge based approaches
work is good organisation of that knowledge. The size of the search space is
determined by the number of goal schemas, and by how much they overlap.
A small number of goal schemas, which are mutually exclusive, lead to a
relatively small search space. Conversely, a very large number of goal schemas
which overlap in many ways lead to a large search space. In practice, the size
of the search space lies between these two extremes.

Schemas which do not overlap, for example schemas which address differ-
ent parts of the game, can be added without adversely affecting performance.
Adding more detailed plans needs to be done carefully, since it can lead to over-
laps and redundant search. The levels of abstraction used in GOB! (and in many
Al planners) are key in avoiding redundancy since knowledge can be appropri-
ately structured and similar plans can be grouped together and expressed in
a compact form. Badly structured or overlapping knowledge can cause similar
problems to occur in data-driven approaches where pattern matching is used
to suggest moves.

In Wilkins' PARADISE [43] work, as in our work, there was a worry that
extending the system by adding new knowledge would have adverse affects
on system performance. New production rules were added to PARADISE in
order to allow it to solve problems outside the initial development set [43,
p.193]. The new problems were correctly solved, and system performance was
not degraded. In fact, the extended system now found better plans for some
of its previously solved positions. This result is heartening for our own work.

5 Comparisons With Other Approaches to Adversarial Planning

One of the advantages of building a generic planning framework (2.2) and
then separately instantiating this to play Go (3) is that the characteristics

Kill

of the planner are clearly laid out. This separation improves understanding of
the planner's behaviour and facilitates comparison with systems from other
domains.

The most useful comparisons can be made using a classification based up on
the expansion scheme used during planning, since this is the defining feature of
any HTN planning system. The planning systems can be classified as follows:

• Total order decomposition: PARADISE, TIGNUM2, G0BI, the battlefield
management system in [1].

• Partial order decomposition: Work in [21], (23], [37] and the INTERIM.2,

and GOBELIN programs.

In this classification and leaving aside the application domain, GOBI is most
similar to PARADISE and TIGNUM2. In fact these planners not only use a
form of total order expansion but also incorporate aspects of forward chaining
(2.3.2).

5.1 PARADISE

The idea of using goals to guide search originally comes from [29] and was
then incorporated into PARADISE. Although PARADISE is based on rule-based
expert systems and in this sense is quite far removed from HTN planning,
its search approach leads to a type of goal guided search at two levels of
abstraction. Each goal is expanded by a rule based knowledge source in the
context of its final place in the plan. This guided search model is conceptually
very similar to the modified HTN expansion scheme described in §2.3.2. There
are many differences between PARADISE and the planner used in GOBI, but
perhaps the most significant at a conceptual level are that:

• PARADISE only used two levels of abstraction - the ground space (moves)
and one abstract level (goals or concepts). With its current knowledge GOBI

uses five levels of abstraction.
• PARADISE'S starting plans are formed from a static evaluation of the initial

game state and global static evaluations may be applied at various points
throughout the search. In G0BI, goals can have associated information about
what information to apply from the environment for expansion (in the form
of preconditions). This precondition mechanism gives a full range of flexi-
bility (from very focused detailed evaluations of a local area for low level
goals to very sketchy high level evaluations of the whole board for high level
goals).

• PARADISE can analyse failed plans and use the extracted information in
constructing a new plan.

31

• PARADISE uses different models for attacking and defending players. While
the attacker uses the plan suggested by static analysis to focus on only a
few candidate move choices, the defender tries all "reasonable" moves. In
0081, attack and defence use the same plan schemas. Indeed, both players
may be attacking simultaneously.

Above all, the planning architecture used by G0BI provides a simple generic
framework which is simpler to understand than the mixture of different ele-
ments which come together to make up PARADISE.

5.2 TIGNUM2

TIGNUM2 [40,39] also has a decomposition model very similar to that used
in GoB! (and is explicitly based upon HTN planning). The propositional logic
formulas used by T1GNUM2 to represent the state of play directly correspond
to the use of a world model in GoBI. The most significant difference between
G0B1's planner and the one used in TIGNUM2 is in the expressiveness of the
planning language. TIGNuM2's planner is kept total order by restricting plan
knowledge to being totally ordered, preventing subgoals descended from dif-
ferent higher level goals from being interleaved. 28 In TIGNUM2, given the
decomposition tree shown in Figure 16, goals descended from 02 could not
be interleaved with goals descended from goal 01. Furthermore the goals de-
scended from 01 must be fulfilled in the order given in the schema - 011,
then 012, then 013.

Fig. 16. Goal decomposition tree: the top level goal G decomposes into two subgoals
Gi and G2, each of which is again decomposed.

There is no such restriction in the planning framework presented in this paper:
subgoals can be interleaved and all linearisations of subgoals are valid 29 . This
flexibility preserves the expressiveness of standard HTN planning (which is
semi-decidable, see [14]) while TIGNUM2's planner is strictly less expressive
(EXPSPACE-hard and in DOUBLE-EXPTIME, [27]). The extra flexibility

28 This definition of total order planning is slightly different to the one used in [25]
and that adopted in this paper.
29 Note that constraints can be placed on orderings but these constraints form part
of the explicit plan knowledge.

32

in GOBI'S planner is crucial for games such as Go where interleaving goals
is a natural part of play. In Go, capturing a group for example may involve
several tasks (surrounding it, preventing eyes etc.) which need to be achieved
in pseudo-parallel. That is, concentrating on thoroughly surrounding a group
will result in the opponent making eyes and saving the group (and vice versa).
Steps need to be taken towards achieving both subgoals while stopping the
opponent countering either (having enough spare moves to do so).

5.3 Using Total Order Expansion in Adversarial Domains

For many practical problems the total order decomposition systems identified
in §5 above have significant advantages over those using partial order decom-
positions. This observation runs contrary to conventional wisdom in the Al
planning community. The least commitment aspect of partial order decom-
positions was always thought to bring significant advantages. Recent work in
[27] discusses the assumptions underlying the use of partial order, backwards
chaining strategies for HTN planners and suggests that they are not always
valid (and in particular do not apply for Bridge play and process planning).
In the context of an adversarial planning domain we can elaborate on these
reasons (and include observations noted in [46]).

As is noted in [14] "handling interactions among non-primitive tasks [goals]
is the most difficult part of HTN planning". In adversarial domains these
difficulties are compounded. More precisely:

• The interactions are significant: Goal expansion is usually heavily depen-
dent on the game state. The simplifying assumption often taken in Al plan-
ning research that expansion choices (how to do something) and ordering

choices (when to do it) are independent [2] is less valid in adversarial do-
mains.

• More of the interactions need to be taken into account: In an adversarial
domain, the adversaries have control over some of the actions, therefore
not only must there be at least one valid ordering, the opponents must not
be able to order their actions in such a way as to make the plan fail. The
planner must explore many more of the options and orderings possible to
ensure they all lead to a desirable outcome.

• The interactions are difficult to model: The interactions between moves in
a game are generally designed to be complex. So complex, in fact, as to fool
and entertain human players. Effects are often cumulative, subtle and only
obvious over long sequences of moves. This complexity makes interactions
inherently hard to model and even harder to model in the abstract where
much of the detail is stripped away. In his 1979 paper [44] Wilkins observes
that defining abstract spaces for Chess is very difficult because "small details

-

are very important".

Games tend to be built around the effects of complex interactions between
the moves of the players. It becomes increasingly difficult to model all these
interactions adequately at higher levels of abstraction. If important details
(interactions) are not somehow modelled in the abstract space and taken into
account during planning, plans will repeatedly fail at the lowest level and
cause repeated backtracking.

The use of a total order scheme which is able to model interactions between
moves and goals directly in a world model is very important in avoiding some
of these problems. It also means that an aspect of forward chaining can be
introduced at the move level to reduce the number of options available (since
the starting state is always known even though the goal state may not be per-
fectly described). These differences appear to be critical in enabling total order
planners to outperform standard HTN planners in tight tactical situations.

6 Conclusions

In this paper we have presented an adversarial planning architecture capable
of reasoning about games, and an application of this architecture to Go. The
planning architecture and Go reasoner reported here represent an advance on
previous work for goal-driven planning in Go. The system:

• Has a clear separation of domain knowledge from the abstract planning
architecture and a clear model of the opponent in the game.

• Can reason at multiple levels of abstraction simultaneously.
• Can address complex tactical situations as well as high level strategic prob-

lems.
• Can provide support for the integration of data-driven and goal-driven am

proaches.

We presented the advantages that a goal-driven approach could have for Go.
GOBI as a prototype is certainly no match for current systems which play
the full game of Go, but it does represent a step towards understanding how
goal-driven approaches can be applied to Go, even at a tactical level.

We believe that 0081 demonstrates that an approach based on adversarial
planning can be effective for Go. The two main limitations of G0BI as a Go-
playing program are:

• The lack of top-level goals. We have indicated how G0BI could be extended
with high-level persistent goals which would enable it reason about the

34

entire game.
• The small knowledge base. The knowledge base needs to be very significantly

extended in order to make a realistic Go program.

Go has several strong domain features which make goal-driven approaches
applicable: very large search spaces, clear layers of abstraction in domain de-
scriptions (stones, strings, groups etc), and a wealth of knowledge similar in
structure to abstract plans. GOB! represents a further step towards turning this
theoretical possibility into a reality. The work described in this paper again
shows that Go is an excellent test bed for Artificial Intelligence research. There
has been very little work on adversarial planning in recent years - the chal-
lenge of Go really motivated this work.

We have outlined why GoB! outperforms previous Go planners at tactical play.
The total order decomposition scheme and use of a world model were key in
making progress. Taken together with previous work on Chess and Bridge
this suggests that the techniques we have described in this paper should be
strongly considered when applying planning techniques in future game playing
systems.

Acknowledgements

The first author is very grateful for financial support from EPSRC under grant
number 96417312. The second and third authors are supported by EPSRC
grants GR/L/11724 and GR/M/45030. The fourth author is partly funded by
DARPA/AFRL contract F30602-95-1-0022. Special thanks also go to Martin
Muller for suggestions regarding test data and to Neil Firth for numerous
instructive games of Go. We are grateful to the anonymous referees whose
comments have resulted in numerous improvements to previous versions of
this paper.

A Theoretical Estimate of a—/i Search Space

As stated in §3.3.4 estimating the size of a—fl search spaces for given problems
empirically is difficult since search spaces and search times rapidly increase.
The performance of a - /3 is also heavily dependent on the evaluation func-
tion used. This difficulty forces us to rely on theoretical estimates. A number
of papers published by UCLA in the late 70s and early 80s give theoretical
analyses of the a—fl algorithm's performance. Many of these results are sum-
marised in [28]. However, the results generally rely on a constant branching
factor (which in tight tactical Go problems is not valid) and sampling leaf

35

node values from a continuous distribution. For a theoretical analysis closer
to the type of problem GoB! solves we need to go a little outside these results.

The following assumptions allow a simple treatment:

• Assumption 1: The number of available moves is reduced by one each round
and both players play moves from the same finite set of moves. These as-
sumptions do not always hold for Go since captures can increase the number
of moves available, some moves may only be legal for one player and players
may choose to pass, however they are acceptable for a simple treatment.

• Assumption 2: There is only one solution (i.e., one correct move to play
first which leads to a win being possible in all of the subtrees following this
move). This assumption also does not hold for general Go play but is valid
in the type of problems in the test sets.

Considering a search with n options at the top level, assumption 1 gives the
total number of leaf nodes as n! where leaf nodes are defined as the nodes
at depth n (or equally n - 1 in the search). We now estimate the number of
leaf nodes visited, on average, by an ct—fl search algorithm which is able to
evaluate leaf states as win or lose, does not evaluate intermediate (non-leaf)
nodes, and stops once it finds the correct first move (as GOB! does).

Over all orderings of moves and solutions for a given problem one would expect
the algorithm on average to choose the correct move having tried half the
possible moves (contingent on assumption 2). Following a move selection, all
the opponents responses need to be tried to ensure the move leads to a win
everywhere, thus making the number of leaf nodes visited equal to:

ii 	 n-2
—x(n-1)x

2
 x(n-3)x... 	 (Ad)

i
which gives:()

n
in! 	 (A.2)

(The odd it are those multiplied by the factor half.) It is interesting to note
that the pruning power (21) of a—fl is not simply a linear factor of the search
space size (See the table in Figure A.1). For an accurate comparison in the
number of moves tried by the search, we also need to count the number of
moves tried in reaching the leaf nodes. The number of moves required becomes:

1 i 	 1 n-2

)
2 it!

(—)

, 	
(in! + +

2 	(n—(n-2))! 	(n—(n-3))! +....
	 (A.3)

Note again that this figure is valid in the limit, but generally the power of the
pruning factor is rounded down to the nearest integer, reflecting the fact it al-
ternates on the levels with odd n. In the limit the new value in Equation A.3 is

36

around double the value given in Equation A.2. Thus the number of nodes vis-
ited is dominated over n by the number of leaf nodes visited, ()tn! (although

it may be around twice as large).

Options Raw Pruning Factor E[Leaf nodesi
3 6 2 3
4 24 4 6
5 120 4 30
6 720 8 90
7 5040 8 630
8 40320 16 2520
9 362 880 16 22680
10 3 628 800 32 113400
11 39 916 800 32 1 247 400
12 479 001 600 64 7 484 400
13 6 227 020 8000 64 97 297 200

Fig. A.1. Calculating the expected number of leaf nodes searched. The column
headed Options is the number of moves considered in the initial position, Raw is
the size of the unpruned search space, Pruning Factor is the factor by which a—fl
search reduces the number of leaf nodes visited, and E[Leaf nodes] is the expected
number of leaf nodes visited.

Analysis of the number of moves tried becomes considerably more complex
if the algorithm can evaluate intermediate (non-leaf) nodes since the perfor-
mance of a—/I algorithms is generally sensitive to the evaluation function
used. We have not taken this possibility into account in our analysis.

The result obtained for the pruning power of a—/i on this type of problem
(a binary set of state values, one correct move, stopping on finding this move
and having a steadily decreasing branching factor), seems to concur with the
UCLA results [28] which also predict low order exponential pruning power for
their problems.

Al Estimating the search space for Go Problems

To estimate the search space that would be required by a—fl search each prob-
lem has a search area mask defined for it. The mask defines which points on
the board need to be tried as moves by the search in order to find a satisfactory
solution (meaning one which chooses the correct move but also encompasses
checking all significant defences). Figure A.2 shows a mask defined for one of
the problems from test set 1. The * characters mark the points which define
the limited search space.

In general defining which points are necessary for the solution of a particular
problem requires suitable knowledge of Go and is very difficult to do automat-

['vi

Fig. A.2. A mask for a Go problem from test set I. The * symbols indicate the area
that needs to be considered for search.

ically. For our estimates all the masks were defined by hand. Once the mask
has been defined for a problem, the number of points defined in it gives the
number of moves available in the search space. Some masks also included occu-
pied points where stones were captured as part of attack or defence. Together
with the formula in Equation A.2 (or Figure A.1), this gives the estimate of
the expected search space for that problem. We use Equation A.2 rather than
Equation A.3 since the number of leaf nodes is the dominating term.

B Test Results

For completeness we include a listing of the results for the 85 problems tested
in test set I (results are from tests using critics). In the following table, the
column headings are: the problem number (N), the number of planning cycles
GOB! takes to plan the problem (P), the number of moves GOB! tried (Al),

whether G0BI succeeded in finding a correct problem solution (Result), and
the estimated number of moves in the a—/I search tree for this problem (E).

W I 	P M Result E -w P M Result
T 42 8 correct 6 44 814 147 correct 1 247 400
2 20 3 correct 30 45 49 7 correct 30
3 17 2 correct 6 46 1002 410 fail 30
4 49 7 correct 6 47 285 44 correct 113400
5 30 4 correct 6 48 294 60 correct 1 247 400

184 35 correct 2520 49 20 3 correct 30
7 74 13 correct 90 50 22 3 fail 30
8 75 19 correct 90 51 47 7 fail 90
9 70 14 correct 30 52 9 1 fail 90
10 176 39 correct 113400 53 20 3 correct 90
iT 25 4 correct 2520 Ir 61 12 correct 2520
12 136 22 fail 90 55 120 20 correct 1 247 400
13 41 4 correct 3 56 33 5 correct 2520
14 38 10 correct 6 57 62 22 correct 2520
15 132 18 correct 2520 58 1002 155 fail 2520

[1C P M Result E FN1P M Result E
iT 46 10 correct 630 39 32 7 fail 1 247 400
17 1002 164 fail 2520 60 1002 151 fail 113400
18 724 138 correct 2520 61 122 18 correct 2520
19 104 14 fail 630 62 23 2 fail 3
20 17 2 correct 3 63 434 54 correct 2520
21 42 7 correct 30 64 609 110 correct 2520
22 106 12 correct 30 65 125 28 correct 2520
23 29 4 correct 90 66 21 2 correct 6
24 116 20 correct 2520 67 31 3 correct 6
25 54 6 correct 30 68 20 2 correct 3
26 - 146 21 correct 630 139 17 6 fail 3
27 93 16 correct 90 70 11 1 fail 6
28 279 59 correct 630 71 4 1 fail 3
29 77 13 correct 90 72 23 5 fail 1 247 400
30 107 22 correct 22680 73 68 15 fail 113400
31 20 2 correct 30 7 90 19 fail 630
32 129 20 correct 90 75 12 2 fail 90
33 55 8 correct 90 76 118 23 correct 22680
34 36 5 correct 630 77 20 2 fail 6
35 90 13 correct 630 78 59 12 correct 22680
36 18 5 correct 6 79 767 118 correct 630
37 54 6 correct 630 80 518 53 correct 22680
38 65 18 correct 113400 81 103 17 fail 90
39 93 9 correct 630 82 56 10 correct 90
40 50 6 correct 630 83 12 1 fail 30
41 113 14 correct 30 ir 35 5 correct 6
42 87 10 correct 22680 85 1002 72 fail 2520
43 814 147 correct 2520

References

[1] C. Applegate, C. Elsaesser, and D. Sanborn. An Architecture for Adversarial
Planning. IEEE Thansactions on Systems, Man and Cybernetics, 20(1):186-294,
1990.

[2] A. Barrett and D. S. Weld. Partial-order planning; evaluating possible efficiency
gains. Artificial Intelligence, 67(1):71-112, 1994.

[3] H. J. Berliner. A chronology of computer chess and its literature. Artificial
Intelligence, 10:201-214, 1978.

[4] R. Bozulich. Second Book of Go. The Ishi Press Inc, 1987.

[5] D. J. H. Brown and S. Dowsey. The Challenge of Go. New Scientist, 81:303-305,
1979.

[6] J. Burmeister and J. Wiles. An Introduction to the Computer Go field and
Associated
Internet Resources. Technical report, The University of Queensland, January
1997. Available online at: http://www/psy.uq.edu.au/jay/go/go..page.html.

39

[7] J. G. Carbonell. Counterplanning: A Strategy Based Model of Adversarial
Planning in Real World Situations. Artificial Intelligence, 16(1):295-329, 1981.

[8] T. Cazenave. Système d'Apprentisage par Auto-Observation. Application aujeu
de Go. PhD thesis, L'Université Paris 6, 1996.

[9] T. Cazenave. Metaprogramming Forced Moves. In Henri Prade, editor,
Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI'98), pages 645-649. John Wiley and Sons, 1998.

[10] S. F. Da Silva. Go and Genetic Programming, Playing Go with Filter Functions.
Master's thesis, Leiden University, Netherlands., 1996. Available online at:
http://www.wi.leidenuniv.nl/MScThesis/dasilva.html.

[11] J. Davies. Life and Death. The Ishi Press Inc, 1978.

[12] P. Donnelly, P. Corr, and D. Crookes. Evolving Go Playing Strategy in Neural
Networks. AISB Workshop in Evolutionary Computing, 1994.

[13] M. Enzberger. The Integration of a priori Knowledge into a Go Playing Neural
Network. Technical report, University Munich., 1996.

[14] K. Erol, D. Nau, and J. Hendler. HTN Planning: Complexity and Expressivity.
Proceedings of AAAI'94, July 1994.

[15] K. Erol, D. Nau, and J. Hendler. UMCP: A Sound and Complete Planning
Procedure for Hierarchical Task-Network Planning. Proceedings of AIPS-94,
June 1994.

[16] D. Fotland. 	Knowledge Representation in The Many Faces of Go.
Technical report, American Go Association, 1993. 	Available online at:
ftp://bsdserver.ucsf.edu/Go/comp/mfg.Z.

(17] D. Fotland and A. Yoshikawa. The 3rd FOST Cup World-Open Computer-Go
Championship. ICCA Journal, 20(4):276-278, 1997.

[18] I. Frank. Search and Planning under Incomplete Information: a study using
Bridge card play. PhD thesis, Department of Artificial Intelligence, University
of Edinburgh, 1996.

[19] I. Frank, D. Basin, and A. Bundy. An Adaptation of Proof-Planning to Declarer
Play in Bridge. In Proceedings of the 10th European Conference on Artificial
Intelligence (ECAI'92), pages 72-76, Vienna, Austria, 1992. Longer Version
available from Edinburgh as DAT Research Paper No. 575.

[20] M. L. Ginsberg. GIB: Steps Toward an Expert-Level Bridge-Playing Program.
1999. Submitted to IJCAI'99.

[21] S. Hu. Multipurpose Adversary Planning in The Game of Go. PhD thesis,
George Mason University, 1995.

[22] T. Kojima, K. Ueda, and S. Nagano. An Evolutionary Algorithm Extended
by Ecological Analogy and its Application to the Came of Go. Proceedings of

the 15th International Joint Conference on Artificial Intelligence (IJCAI'97),
pages 684-689, 1997.

40

[23) P. Lehner. Strategic Planning in Go. In M. A. Bramer, editor, Computer Game
Playing: Theory and Practice, pages 167-176. Ellis Horwood, 1983.

[24) D. Lichtenstein and M. Sipser. Go is Polynomial-Space Hard. Journal of ACM,
27(2):393-401, April 1980.

[25] S. Minton, J. Bresina, and M. Drummond. Total-Order and Partial-Order
Planning: A Comparative Analysis. Journal of Artificial Intelligence Research,
2:227-262, 1994.

(26] M. Muller. Computer Go as a Sum of Local Games: An application of

Combinatorial Game Theory. PhD thesis, Swiss Federal Institute of Technology,
Zurich, 1995.

[27] D. S. Nau, S. J. J. Smith, and K. Erol. Control Strategies in HTN Planning:
Theory Versus Practice. In Proceedings of the Innovative Applications of

Artificial Intelligence Conference (in conjunction with AAAI'98), pages 1127-

1133. AAAI Press, 1998.

[28] J. Pearl. The solution for the branching factor of the a-fl pruning algorithm and
its optimality. Research Paper UCLA-ENG-CSL-8019, University of California,
Los Angeles (UCLA), June 1981.

[29] J. Pitrat. A Chess Combination Program which uses Plans. Artificial
Intelligence, 8(1) :275-321, 1977.

[30] W. Reitman and B. Wilcox. The Structure and Performance of the INTRJM.2
Go Program. In Proceedings of the International Joint Conference on Artificial
Intelligence (I1CAI'79), pages 711-719. 1979.

(31] P. Ricaud. A Model of Strategy for the Game of Go Using Abstraction
Mechanisms. Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI'97), pages 678-683, 1997.

(32] N. Richards, D. Moriarty, and R. Miikkulainen. Evolving Neural Networks to
Play Go. Technical report, The University of Texas at Austin., 1997.

[33] J. M. Robson. The complexity of GO. Technical Report TR-CS-82-
14, Department of Computer Science, The Australian National University,
Canberra 0200 ACT, Australia, October 1982. 	Also published IFIP:
International Federation of Information Processing 1983.

[34] E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier, 1977.

[35] Y. Saito and A. Yoshikawa. Do Go players think in words? - interim report of
the analysis of Go player's protocols. In Hitoshi Matsubara, editor, Proceedings
of the Second Game Programming Workshop. Computer Shogi Association,
1995.

[36] Y. Saito and A. Yoshikawa. An analysis of strong Go-players' protocols.
In Hitoshi Matsubara, editor, Proceedings of the Third Game Programming
Workshop. Computer Shogi Association, 1996.

41

[37] P. T. Sander and D. J. M. Davies. A strategic approach to the game of Go.
In M. A. Bramer, editor, Computer Game Playing: Theory and Practice, pages
152-166. Ellis Horwood, 1983.

[38] J.J. Smith and D.S. Nau. Strategic planning for imperfect information games.
In Games: Planning and Learning, Papers from the 1993 Fall Symposium, pages
84-91, AAAI Press, 1993.

[39] S. J. J. Smith, D. S. Nau, and T. A. Throop. A Planning Approach to Declarer
Play in Contract Bridge. Computational Intelligence, 12(1), 1996.

[40] S. J. J. Smith, D. S. Nau, and T. A. Throop. Total-Order Multi-Agent Thsk-
Network Planning for Contract Bridge. Proceedings of AAAI'96, pages 108-113,
1996.

[41] J. A. Storer. On the complexity of chess. Journal of Computer and System
Sciences, 27(1) :77-100, August 1983.

[42] A. Thte. Generating Project Networks. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence (IJCAI'77). 1977.

[43] D. E. Wilkins. Using Patterns and Plans in Chess. Artificial Intelligence,
14(1):165-203, 1980.

[44] David E. Wilkins. Using plans in chess. In Proceedings of the 6th International
Joint Conference on Artificial Intelligence (IJCAI'79), pages 960-967, Tokyo,
Japan, 1979.

[45] S. Willmott. Adversarial Planning and the Game of Go. Master's thesis,
Department of Artificial Intelligence, University of Edinburgh, September 1997.

[46] S. Willmott, A. Bundy, J. Levine, and J. Richardson. Adversarial Planning
in Complex Domains . Technical report, Department of Artificial Intelligence,
University of Edinburgh, January 1998. Research Paper Number 889.

[47] T. Wolf. The program GoTools and its computer-generated tsume go database.
In Proceedings of the First Game Programming Workshop, pages 84-96.
Computer Shogi Association, 1994.

[48] T. Wolf. About problems in generalizing a Tsumego program to open positions.
In Hitoshi Matsubara, editor, Proceedings of the Third Game Programming
Workshop. Computer Shogi Association, 1996.

[49] K. Yoshinori. Graded Go Problems for beginners (Volumes I - IV). The Ishi
Press Inc, 1985.

[50] P. R. Young and P. Lehner. Applications of a Theory of Automated Adversarial
Planning to Command and Control. IEEE Transactions on Systems, Man and
Cybernetics, 16(6): 186-294, 1990.

42

