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Abstract 

Approaches to computer game playing based on a—fl search of the tree of possible 
move sequences combined with a position evaluation function have been successful 
for many games, notably Chess. For games with large search spaces and complex 
positions, such as Go, these approaches are less successful and we are led to seek 
alternatives. 

One such alternative is to model the goals of the players, and their strategies 
for achieving these goals. This approach means searching the space of possible goal 
expansions, typically much smaller than the space of move sequences. Previous 
attempts to apply these techniques to Go have been unable to provide results for 
anything other than a high strategic level or very open game positions. In this 
paper we describe how adversarial hierarchical task network planning can provide a 
framework for goal-directed game playing in Go which is also applicable to tactical 
problems. 

1 Introduction 

Most approaches to computer game playing are based on game tree search 

and position evaluation functions (data-driven approaches). Data-driven ap- 
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proaches are appropriate for games with low branching factors, and for which 
it is possible to accurately assign values to positions which indicate who is 
winning. While this approach has been very successful for many games in-
cluding Chess, it has been less successful when applied to games with high 
branching factors and complex positions, such as Go or for games with a high 
degree of uncertainty such as Bridge. 

An alternative to the data-driven approach is goal-driven search in which a 
single agent tries to satisfy its goals in the game. Goal-driven search has been 
extensively explored in the Artificial Intelligence literature, in particular as Hi-
erarchical Task Network (HTN) planning (42,15). When multiple agents need 
to be modelled and can compete against one another this approach becomes 
adversarial planning. In this paper we describe how adversarial hierarchical 
task network planning can provide a framework for goal-directed game play-
ing in Go. We also consider different types of goal expansion in HTN planning 
and suggest how to make planning approaches more applicable to tactical 
problems. 

1.1 Paper Overview 

In §1.2, we review two different approaches to making move choices in game 
playing - goal-driven and data-driven. §1.3 presents a brief overview of pre-
vious work on computer Go (1.3.2) and Go's search space (1.3.1). §1.4 com-
pletes the first section with an outline of previous work in the field of adver-
sarial planning. 

The main body of the paper includes the following two principle contributions: 

• The description of a new adversarial planning framework (2.2), based on hi-
erarchical task network planning (2.1). The framework models two agents, 
each of which attempts to satisfy its own goals while refuting those of its 
opponent. This behaviour is achieved by backtracking, and the enforcement 
of a time linearisation during goal decomposition (discussion of the decom-
position strategy can be found in §2.3). 

• The application of the planning framework to the game of Go (3). In order 
to prove the concept without coding large amounts of knowledge, our im-
plementation, GoB!, focuses on life-and-death problems of the type found in 
Go teaching books (although there is no restriction to enclosed problems). 

GOBI was systematically tested on examples from volume I of "Graded Go 
Problems for Beginners" [49], finding the correct answer for 74% of the prob-
lems. We analyse both successes and failures in §3.4.2. 

The remainder of the paper examines the advantages and disadvantages of 
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applying a goal-driven approach to computer Go (4), and compares our work 
to adversarial planning systems in other domains (5). 

1.2 Goal-driven and Data-driven approaches 

Within a specific game, move or action choices often depend upon the state 
of the game, the phase of the game (e.g. opening, endgame etc.), the future 
actions of the opponent, the ability of a player to follow up an action appro-
priately and many other diverse factors. It is these interacting influences on 
the choice and effect of moves which make games so fascinating for human 
players and so challenging for machines. 

In computer game playing there are two main approaches to making move 
choices: 

• Data-Driven: At each step, rules, patterns or heuristics are applied to the 
game state to suggest useful moves. The resulting set of plausible actions is 
then evaluated using search in the tree of moves. Each move is played out 
in a world model followed by the possible responses of the opponent. The 
search continues until the leaves of the tree are reached. I These leaf nodes 
are then evaluated and used to select one of the original plausible actions 
as the one which leads to the most desirable (by some measure) set of leaf 
states. 

• Goal-Driven: During play, a goal-driven system keeps a number of abstract 
goals 2  in an agenda. The goals in the agenda represent the things the system 
would like to achieve in the short, medium and long term. To choose a move, 
goals are expanded into plans (which are conjunctions of goals at lower levels 
of abstraction) and eventually into concrete moves (actions in the world). 
Repeated decompositions form a plan for achieving the goal. 

In a data-driven search tree, each node represents a possible game position and 
has one branch for every move suggested in that position. In contrast, each 
node in a goal-driven search tree represents a plan for achieving the top level 
goal with some parts still sketchy (abstract goals) and others fixed (concrete 
actions), and each node in the search tree has one branch for each way the 
system suggests to further refine the plan. 

Which approach (goal-driven or data-driven) is most advantageous is heavily 
dependent upon the domain, in particular on the size of the data-driven and 

Which nodes are the "leaves" can be variously defined by a depth cut off point, 
quiescence, or further domain dependent heuristics. 
2  Abstract goals are aims which cannot in general be achieved by a single primitive 
action in the world. 
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goal-driven search trees. In Bridge, for example, the locations of the cards are 
not in general known during play, which leads to a large space of possible 
card plays and therefore a prohibitively large data-driven search tree. 3  Smith 
et. al. (in (38]) show that a goal-driven approach can very successfully play 
Bridge, and [18] demonstrates that a relatively small number of operators is 
sufficient to describe all the relevant plays. 

1.3 The Game of Go 

The game of Go is considered by many to be the next great challenge for 
computational game playing systems. It presents new, significant and differ-
ent challenges to Chess which has been long been considered the "task par 
excellence" for Artificial Intelligence and computer game playing [3]. A good 
introduction to the game can be found in [4]. 

1.3.1 Size of the Go Search Space 

The search space of Go is both wider and deeper than that of Chess; there are 
estimated to be about io'° states (cf. Chess iO ° ), games last approximately 
300 moves (cf. Chess 80) and the branching factor at each turn is on average 
235 states (di Chess 35). The number of possible games of Go is estimated 
at 10700  compared to 10120 for chess [5]. It is often hard to evaluate the 
relative strength of Go positions during play, since guiding principles such as 
value of material which are very useful in chess are often misleading for Go. 
The difficulty of Go is as much due to this difficulty in state evaluation as to 
the large raw search space. Useful complexity results have also been shown: 

• [24] shows that determining the eventual winner for an arbitrary Go position 
on an it x it board is PSPACE-hard. 4  

• [33] extends this result to show that deciding whether or not black can 
win from an arbitrary position is EXPTIME-complete (taking into account 
situations arising from Ko positions). 

Given these difficulties, the brute-force game tree search which has been so 
effective for Chess will potentially have much greater difficulty with Go. 

A data-driven search can still be practicable, but only by dramatically limiting 
the part of the move space which is searched. For example, Ginsberg's GIB [20] 
adopts a sampling approach, aiming to sample a representative part of the search 
tree, and choosing its moves on this basis. 

[41] gives proofs for a similar result for a class of generalisations of Chess ton x it 

boards. 
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1.3.2 Approaches to Computer Go 

Although Go has received far less attention than Chess in terms of research, 
there have been many varied approaches to computer Go: 

• Hybrid approaches such as Go 4++ [6], MANY OF FACES OF Go (16] 
and HANDTALK [6] are by far the most successful at playing the complete 
game to date. These systems are mainly data-driven (Go 4++ for example, 
works almost exclusively on pattern recognition) but their long period of 
development (10-15 years for MANY FACES OF Go) has seen the addition 
of many other types of reasoning and specialist modules. 

• Non-symbolic techniques have been used to learn/evolve controllers and 
rules based upon patterns of stones for use during play. The techniques 
applied include Genetic Programming [10], Genetic Algorithms [32,22,12], 
and Neural Networks [13]. These approaches have so far been less successful 
than the hybrid programs but have the advantage that Go knowledge does 
not need to be added by hand. 

• Cazenave's G0G0L [8] applies learning techniques to good effect. An off-
line program uses introspection to prove theorems about Go tactics which 
can be used to generate knowledge useful in pruning Go search trees. This 
knowledge is then added into G0G0L's playing procedures. As reported in 
[9] GoGob finished 6th out of 40 participants in the IJCAI'97 international 
computer Go tournament [17] and was the top ranked non-commercial pro-
gram. 

• Progress has also been made by focusing on specific subproblems in Go. 
Wolf's GoTooLs [47,48] uses very deep search to analyse closed "life and 
death" game positions and can often solve very complex problems. [26] 
applies combinatorial game theory to endgame situations, which enables 
precise calculation of the values of sub games and hence perfect play, but is 
intractable except for the last few moves of the endgame. 

• There have also been several applications of planning techniques to Go. 
These systems are discussed seperately in §1.4 below. 

The top Go programs are now able to challenge good amateur players, but 
there remains substantial room for improvement. The advantages mentioned 
in §4.1, earlier work on Go planners [37,23], and the success of the goal-driven 
approach in other domains (notably Bridge [40]) suggest that a goal-driven 
approach may be useful. It also has much psychological validity, since pro-
tocol analysis indicates that Go players consider few candidate moves, and 
concentrate on their own and on their opponents' purposes [36]. Finally, even 
in data-driven approaches to computer Go, it is still necessary to consider 
high-level goals, for example in order to decide whether or not a satisfactory 
result has been achieved in life and death problems (e.g. some strings may be 
allowed to die but others must live) [48]. 

- 
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1.4 Applications of Adversarial Planning 

Domains in which agents compete against one another are termed adversarial. 
The first attempts to use goal-driven reasoning in adversarial domains include 
work by Pitrat [29] and Carbonell [7]. The former was extended by Wilkins in 
[43] to produce the PARADISE system for Chess. Using goals to guide search, 
PARADISE was able to find moves which involved looking as far ahead as 20 ply 
in certain situations, a depth well beyond its contemporary search-intensive 
competitors. More recent work studies battlefield management [1], command 
and control [50], and Bridge [39,40]. The work on Bridge is perhaps the most 
successful application of goal-driven reasoning to games to date, presenting a 
system for Bridge declarer play (TIGNuM2) good enough to beat the current 
top commercial computer player [39]. [19] describes the FINESSE program for 
Bridge which also applies a plan-based approach. Extensive testing has shown 
that FINESSE can find optimal plans for single-suit play, and correctly calculate 
their probability of success. 

Go has also been used as an application domain for adversarial planning sys-
tems: 

• The INTERIM.2 Go program [30] was probably the first Go program to use 
the idea of goals to guide move choice. 

• This initial interest was followed by two Go planners due to Sander and 
Davies [37] and Lehner [23] which both addressed only very open positions. 

• More recently, Hu [21] also concentrates on high level strategy looking at 
the possible use of multipurpose goals. 

• Finally the GOBELIN system developed by Ricaud [31] also has aspects of a 
goal-driven approach. GOBELIN uses an abstract representation of the Go 
game state to form plans before mapping these back into the ground state. 

A common feature of all 5  of the goal-driven Go programs to date is that 
although some are able to report good results for high level strategic planning 
[37,23] or during opening play [31], none adequately addresses the tactical level 
of Go play. There has been little success for this type of approach in the middle 
or end-game where tactical and strategic considerations become closely linked. 
Contributions of this paper include offering an explanation for this lack of 
progress, based upon the type of decomposition strategy used during planning, 
and presenting an approach which makes goal-driven reasoning applicable at 
both the strategic and tactical levels. 

Except INTERIM.2 which applies data-driven search for local tactical lookahead. 



2 An Adversarial Planning Architecture 

This section describes an adversarial planning architecture which models goal-
driven reasoning for adversarial domains. 6  The goal-driven approach and use 
of abstract plans is motivated by work on hierarchical task network (HTN) 
planning. HTN systems were first used in NOAH [34] and INTERPLAN (42] and 
have since been extensively studied in the Al planning field. Erol et. al. [15] 
give a complete definition for an HTN scheme and present UcMP, which is a 
provably sound and complete HTN planner and provides a good template for 
this type of system. 

2.1 Principles of HTN Planning 

HTN planning is based on three types of object: Goals, Operators and Plan 

Schemas. Operators are actions which can be performed in the world (such 
as flicking a switch, taking a step). Goals are more abstract and express aims 
in the world such as "Go to the Moon", "Become Prime Minister". Schemas 
(also called Task Networks or Methods), specify the subgoals which must 
be achieved in order to satisfy the goal. For example, the following schema 
expresses the fact that G can be achieved by satisfying the conjunction of 
subgoals G 1 , G2  and G3 : 

The G, should be at a lower level of abstraction than G, and can generally be 
satisfied in any order. Operators are at the lowest level of abstraction. 

Given these three types of object, HTN planning starts with an initial world 
state and a set of goals which form the initial abstract plan. The plan is then 
refined step by step by expanding the goals within it. Goals are expanded 
by selecting a schema whose antecedent (the G above) matches the chosen 
goal, and replacing the instance of G in the current plan by the subgoals (the 

G2  above) listed in the consequent of the schema. I As the planning process 
continues, interactions, incompatibilities and conflicts may arise between com-
binations of goals. These "interactions" in the plan must be resolved, which 
can result in backtracking and (in partial order planners) ordering constraints 
between goals. 

6 More details can be found in [45]. 
Some planners may also instantiate variables as part of this expansion process 

which adds extra complexity [14]. 
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The process is complete when all goals have been expanded into sets of opera-
tors and all arising interactions have been resolved. The sequence of operators 
thereby generated should, upon execution in the initial world state, lead to 
the achievement of the planner's goals in the world. 

The characteristics of an HTN planner are principally determined by its goal 
expansion strategy. At any stage a plan can be totally ordered, which means 
that every step is time ordered with respect to every other step or partially 
ordered, in which case some steps do not have ordering constraints between 
them. A partial order planner allows goals to remain unordered until ordering 
becomes necessary whereas a total order planner chooses a linearisation over 
the plan steps to ensure that the steps are always totally ordered. Planners 
may also use two different inference mechanisms: backward chaining and for-
ward chaining. Backward chaining planners begin with the goal state and use 
their knowledge to work backwards towards the start state, forward chaining 
planners do the opposite - starting with the initial state and applying se-
quences of operators to reach the goal. 8  Most standard HTN planners in use 
are backward chaining partial order planners. 

The extension of this idea into adversarial domains is non-trivial since plans 
are no longer sequences of actions but trees of contingencies which take into 
account the actions of opponents. The interactions in the plan are considerably 
more complex and serious since the goals of opponents in the world are often 
conflicting and the planning agents are non cooperative. HTN planning for 
adversarial domains is therefore computationally considerably more complex 
than HTN planning in standard domains. 

2.2 Adversarial Planning Framework 

The adversarial planner presented in this paper models two agents (named 
Alpha and Beta) which represent two players (adversaries) in a game. 10  Each 
agent keeps an open agenda of goals which represents its current plan of action. 
To solve a problem in a domain, each agent is given an abstract goal (or set of 
goals) to achieve. The agents then attempt to find sequences of moves which 
satisfy their goals. Since the goals of the agents are usually contradictory and 
the agents must take turns in performing actions, their interaction in trying 

8  Note that there is a distinction between forward and backward chaining and data 
and goal driven: forward and backward chaining describe ways of traversing the 
search space, whereas data and goal driven relate to the motivations behind move 
choice. 

In terminology we follow [25]. 
10  The framework can be generalised to more than two players. 



to satisfy their goals can be used to find a plan for the problem." 

ALPHA I BETA 
(Player) (Opponent) 

Action 

Key: 

Acdo,i Abstract Goal 

0- 
- — Plan Flow 

Fig. 1. Planning steps alternating between two agents. 

The system allows the two agents to take control of the reasoning apparatus in 
turns. Once an agent has control it expands some of its abstract goals until it 
is able to decide upon a concrete action. The chosen action is then performed 
in a world model 12  before control is passed to the other agent. Figure 1 shows 
the flow of control during the reasoning process. An agent may need to expand 
several abstract goals before being able to decide upon an action in the world. 
During this "active" period it uses its own agenda of goals and has control 
of the shared reasoning apparatus. Once an action is chosen, control passes 
to the other agent. Agent Alpha models the player who is next to move in 
the game and agent Beta the opponent. The planner is thus trying to plan for 
Alpha's move (Alpha takes control first). 

At any one time an agent has a plan which consists of actions already taken 
(square boxes in figure 2) and goals at various levels of abstraction (circles 
in figure 2). The actions (squares) are represented in the world model, the 
abstract goals (circles) are held in the agenda. 

A planning step involves selecting an abstract goal (such as X in figure 2) and 
expanding it. A plan schema is selected for X which expresses how X could be 
achieved using a conjunction of subgoals at a lower level of abstraction. For 
example, in figure 2, X is replaced in the plan by the two subgoals Xl and 
X2. Once expansion has reached the lowest level of abstract goals these lowest 

11  See below for how this process helps choose moves. 
12  A world model is not a standard feature of HTN planners - see §2.3.2 and §5.3 
for more explanation of its use. 



level goals need to be shown to be already true or replaced by actions which 
make them true. 

j n 1 .hQT1 ,, ,± 
Fig. 2. Plan refinement: abstract goals are expanded to and replaced by sets of 
subgoals at lower levels of abstraction. 

Once one of the agents (Alpha say) has achieved all of its goals (been able 
to perform actions in the world model which make them true) it knows that 
it must have satisfied its top level goals (since all its subgoals are strictly de-
scended from these). The opposing agent is made aware of this fact and, since 
in general a good outcome for one agent is a bad outcome for the other, both 
agents are allowed to force backtracking. Agents are allowed to backtrack to 
any of their previous goal or expansion choices but only to their own decisions. 
Neither agent may force the other to change plans directly. 

Fig. 3. The plan tree on the left is reduced to the contingency tree on the right by 
dropping the abstract reasoning nodes. 

The backtracking activity explores the various interacting plans Alpha and 
Beta have for the situation and creates a plan tree as shown on the left of 
figure 3. Each choice made by an agent creates a new branch. Underlying the 
plan tree is the contingency tree which is found by removing all the abstract 
goal decomposition steps in the plan tree to leave only the operators/actions 
(shown on the right in figure 3). Moves in the contingency tree are directly 
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descended from the goals of the two agents, and the tree structure naturally 
reflects the interactions between the two adversaries. Taking any branch, the 
moves chosen near the leaf (at the end of a move sequence) descend from the 
same goal as those near the root of the tree, and therefore serve the same 
purpose. 

The final contingency tree acts as a form of proof that the first move is a 
good step towards achieving Alpha's goals. Hence it supports the choice of 
the first move in the tree. 13  In general, the final contingency tree contains 
only a small subset of the move tree which would be generated by considering 
all the available options at each turn as in a data-driven approach. (See §4.1 
below.) 

2.3 Goal Decomposition Schemes and a World Model 

To better describe how the planner works, this section concentrates on its 
goal decomposition scheme. The method of goal decomposition defines how 
the planner applies its knowledge to problems and defines the fundamental 
characteristics of the planner. 

2.3.1 Standard HTN Goal Decomposition 

The standard scheme for HTN decomposition (widely used to good effect in 
non-adversarial domains) is as shown in Algorithm 1. 14  

At each refinement step a goal is chosen and decomposed to reduce the overall 
level of abstraction in the plan. In general all goals are kept at roughly equal 
levels of abstraction. The average abstraction level of the goals in the plan 
then gradually decreases as the goals are decomposed, eventually reaching the 
stage where all goals are concrete actions in the world (primitives) and the 
plan can be executed. This approach is a purely backward chaining strategy 
in the space of plans. The systems starts with the top level goal state and 
systematically fleshes the plan out using plan knowledge. The algorithm also 
says nothing about ordering and fits a total or partial order strategy. A total 
order planner would additionally make execution order choices in step 1. 

13  The tree itself can also be used to respond to any of the opponent's moves which 
are represented in it, but replanning may be required if other moves are made. 
The question of how long (for how many moves) such a plan remains valid is not 
addressed here. 
14  The algorithm given here is a simplified version; more detailed coverage can be 
found in (15). 
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procedure Refine-Plan 
while Not Empty(Agenda) do 

1. choose a goal NextGoal from Agenda to decompose 
for goal NextGoal do 

2. select a decomposition schema S 
3. remove goal NextGoal from Agenda 

L 4. insert schema S into Agenda 

Algorithm 1: At each step one goal is chosen and decomposed. (Agenda is the 
list of open goals held by each agent.) 

At each level of abstraction (in fact after each decomposition) the relationships 
and interactions between goals can be used to guide the choice of schemas. In 
a partial order scheme, interactions between goals would lead the planner to 
constrain available orderings. 

B,Ipha B. 

	

II 
Time Ordering 	- 

----------J 

Fig. 4. Goal decomposition in "standard" HTN planning. The dashed arrows rep-
resent the decomposition of goals (eventually) into concrete actions. 

The dashed box in Figure 4 represents the items the planner can reason about 
when decomposing the goal marked X. In this standard HTN model the plan-
ner can reason about all the goals (and hence their interactions) at their cur-
rent level of abstraction and about the world in its initial state. The effects of 
actions subsequent to the initial state and how goals might interact must be 
modelled explicitly by the plan knowledge. 

2.3.2 Modified HTN Goal Decomposition 

In the adversarial planning architecture presented here, goals are expanded 
in time order using a linearisation. The linearisation is used to make goals 
concrete as soon as possible and model the effect of the resulting actions in a 
"world model". This linearisation behaviour contributes to the planner's abil-
ity to reason simultaneously and consistently about both abstract (strategic) 
and concrete (tactical) aspects of the game. As noted above, a world model is 
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not a standard feature of HTN planning systems and goal expansion is quite 
different from the standard version described above. Goal expansion in the 
modified approach is shown in Algorithm 2. 

procedure Refine-Plan- (Modified) 
while Not Empty(Agenda) do 

1. choose a goal NextGoal from Agenda to decompose 
while NextGoal has not resulted in a primitive action do 

2. select a decomposition schema S for NextGoal (taking into 
account the world model) 
3. remove goal NextGoal from Agenda 
if S describes a primitive action then 

L 4. perform the action in the WorldModel 

else 

I choose a goal DescendentGoal from schema S 
5. let NextGoal = DecendentGoal 

L 6. insert schema (S - DecendentGoal) into Agenda 

Algorithm 2: This expansion algorithm is similar to to the standaçd expansion 
algorithm (1) but additionally ensures that one of the subgoals descended from 
NextGoal produces an action in the world before another NextGoal can be 
chosen. 

There are three key differences between the two decomposition strategies: 

• In the modified algorithm, steps 1, 4 and 5 contribute to the linearisation 
of the plan by forcing the planner to choose a time order for goal expansion 
(and execution). Once a goal has been chosen for expansion the planner 
works on its descendent subgoals until at least one of these can be used to 
choose an action in the world. 

• When actions are chosen, their effect is played out in a world model. The 
information in the world model can subsequently be applied to the choice 
of plan schema (step 2). 

• The planner is performing backwards chaining in the space of plans (starting 
with the top level goals and decomposing) but with an element of forward 
chaining in the space of moves. That is, the initial state and subsequent 
modelled states clearly show which options are available for the achievement 
of low level goals. Plans and world state come together to choose the move. 

This approach necessarily leads to a total-order planner. At each stage there 
can be goals of all abstraction levels in the plan but there must also be a 
linearisation and goals are decomposed in time order. Once the action has been 
performed, other subgoals at varying levels of abstraction remaining from the 
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decomposition of the initially chosen goal remain in the agenda to be expanded 
at some time in the future. 

-I  

	

(WT) 	
A'pha  
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I 	\ 	I 	I 	 I 

Fig. 5. Goal decomposition in modified HTN planning. The dashed arrows represent 
the decomposition of goals (eventually) into concrete actions. 

Figure 5 illustrates goal decomposition for the modified RTN model. Again, 
the dashed box represents the items the planner can reason about when de-
composing the goal marked X. The decomposition progresses left to right in 
time order; here the planner can reason about the outstanding abstract goals 
and about the current state of the world. 15  The first two primitive actions 
(one chosen by Alpha and one by Beta) are now represented in the world 
model and their effect on the state of play clearly seen. 

The planning process can now be seen as guiding search using goals, similar 
to the way PARADISE applied chess knowledge (see §5.1). This process helps 
choose the moves but the complex interactions between goals are partly mod-
elled in the world model. As the planner traverses the space of plans (explores 
the different options for attack/defence that might apply), it also traverses 
the space of moves. For comparisons with other planning systems see §5. 

3 An Adversarial Go Planner 

The planning architecture was instantiated as a Go reasoning system called 
corn both to test the architecture in a challenging domain and to investigate 
the usefulness of the goal-driven approach for Go. GoB! consists of a set of 
knowledge modules which plug into the planning architecture. The knowledge 
modules provide the Go domain knowledge, plan schemas and goal types which 
the reasoner can use to solve problems. 

15  Note: the dashed box can be enlarged again upon backtracking. 
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3.1 An Example Go Plan 

1 

Fig. 6. Example A: Black to play and kill the white group. 

Figure 6 shows a problem from Volume I of "Graded Go Problems for Be-
ginners" [49]. The aim is for black to move first and kill the white group of 
stones. The task is specified to GOBi as two abstract goals: the goal kill-group 

for agent Alpha (playing black) and the goal save-group for agent Beta (play-

ing white). 16  Agent Alpha takes control first, decomposing the kill-group goal 
using one of the available plan schemas. An abstract plan for killing this group 
might be a conjunction of the following subgoals: 17 

• surround-group - stop the group from running and connecting. 
• squeeze-space - reduce the space the group has to live. 
• prevent-eye-formation - block any attempt by the group to make eyes. 18 

One of these subgoals is then expanded further to the next level and so on 
until at the lowest level in the hierarchy a move such as play at A is chosen to 

satisfy a simple goal such as prevent-escape-at-i (figure 6). 

Alpha plays the move onto the board in the world model which gives the new 
world state for Beta to work with. Alpha still has a set of goals at various 
levels of abstraction remaining in its agenda. These remaining goals represent 
the plan on how to follow the first move, i.e which other subgoals/actions 
need to be achieved to make the plan complete. To validate that this first 
move is good (in this case playing at A would not be), Alpha must eventually 
show that all these goals can be achieved no matter what Beta does. These 
remaining goals are kept by Alpha until after Beta's turn. 

16 Note that the goals need not be directly opposing. 
17 This abstract plan is quite intuitive. It is not obvious how a data-driven system 
would represent the equivalent of such a plan. 

eye in Go is an enclosed space where the opponent may not play - a group 
with two eyes is unconditionally alive. 



Beta now begins by expanding its single goal save-group in the context of the 
new board position (after Alpha playing at A in Figure 6). A possible plan 
schema for this goal is: 

• make-eye-space. 
• make-eyes (try to form two eyes). 

After Beta's move (whatever it is) is played into the world model, control 
is returned to Alpha which then tries to satisfy the rest of its goals. The 
interleaving of goal expansions by the two agents continues until one is able to 
satisfy all of its aims (and thus implicitly its main aim). The opposing agent is 
informed of this fact and then backtracks to explore any alternative options it 
has which might produce a better outcome for itself. In this way a contingency 
tree is generated which either proves or refutes the validity of the first move 
(Alpha's). 

Fig. 7. Example A: GoB' plays at B and this kills the group. 

For this example (figure 6) G0BI returns the move at B in figure 7, which kills 
the group. Among the defences tried by Beta are trying to run out at 1 and 
counter-attacking by playing at 2 (which puts the single black stone in the 
bottom right hand corner under threat). Since all the moves tried by both 
agents must be part of plan of action, the number of possible moves searched 
is very small compared to the number of available moves (which is quite large 
even in this small problem). 

3.2 Representing Go Knowledge 

The planning architecture and Go knowledge modules which make up G0BI 

are all written in Common Lisp. Around 1400 lines of code make up the plan 
knowledge (i.e., schemas and goal types) G0BI has. Writing a full-board Go-
playing program is a significant exercise in knowledge engineering, so to enable 
us to add enough depth in knowledge to do useful testing in a short time, 
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GOBI'S knowledge is focused on the area of killing and saving groups. 19  The 
knowledge base is made up of 45 goals at five different levels of abstraction. 
The average number of applicable plan schemas per goal is approximately two 
(thus the knowledge has a relatively low branching factor). The two highest 
level goals available in GOBi are kill-group and save-group, which emphasises 
the focus on life and death problems. 

The following example plan schemas taken from GOBI's knowledge base illus-
trate the structure of the knowledge the program holds (the save-group goal 
was also mentioned in the previous example). Note that the plan knowledge 
is not complete (for example making eyes is not the only way of following up 
a counter attack); more work is needed to extend the knowledge base. 

GOAL: save-group, 
LEVEL = 5, 

Schema 1 - Find Eyes: 
*make-eye-space, 
*make-eyes. 

Schema 2 - Escape Group: 
*running-sequence, 
* secure-escape. 

Schema 3 - Counter Attack String: 
*locate-vulnerable-string, 
*kill-string, 
*make-eyes. 

In turn, the make-eye-space goal from Schema 1 has two alternative schemas: 

GOAL: make-eye-space, 
LEVEL = 4, 

Schema 1 - Ambitious Extend: 
*large-extending move, 
*consolidate-space. 

Schema 2 - Creep extension: 
*creeping-extending-move, 	I/A single 
*consolidate-space. 	I/step extension. 

The structure of the knowledge shown here is intuitive for Go and is very 
different from the kind of heuristic information used in data-driven approaches. 

19 This does not mean G0BI is limited to enclosed problems (see 3.5). 
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The knowledge represented can be seen as an AND-OR tree with the AND 
component represented in the conjunction within the plan schema and the 
OR component represented in the choice between alternative schemas. Goals 
within plans are not evaluated at every step. Simple goals are established by 
finding a satisfying move or using a test. For higher level goals, truth is inferred 
from the fact that all the goals descended from them were achieved. 

3.3 The Planning Process 

This section provides some more details of how the Go instantiation of the 
planning architecture works. 

3.3.1 Choosing Top Level Goals 

To be able to plan the planner needs to have goals to achieve. In G0BI these 
goals are given by hand. In order to extend GoB! to whole-board play, one of the 
most important tasks is to define goals and abstract plans above the current 
highest level. The planner may keep these goals open (and still unexpanded) 
from one turn to another and indeed for long periods of the game. Since shorter 
term tactical goals for choosing individual moves are also expressed in terms of 
goals (these are the goals GoB! already has) this should provide for a smooth 
transition between the tactical and strategic levels of Co. 

The current top level goals in GOB! are save-group and kill-group which is 
quite limiting. Potential additional higher level goals include, for example: 
rnake-moyo, prevent-invasion, extend-influence, extend-territory, hold-corner, 
right up to win-game. 

3.3.2 Planning Steps 

As described in §2 during the reasoning process a planning step is made up of 
two parts: 

(1) Choosing a current goal to replace in the plan and 
(2) Choosing an appropriate plan schema to apply to the goal. 

In GoB!, the choice of which goal to expand next is unordered, but after choos-
ing a goal from the agenda, GOB! uses a linearisation and continues working 
on the same goal down through several levels of expansion. Goal expansion 
follows the algorithm presented in 2.3.2. Once a goal has been chosen in step 
2 of the algorithm, one of its associated set of plan schemas must be selected 
for use. The plan schemas in GoB! are tried in a fixed order designed to try the 



most promising goal decompositions first. Plan preconditions can also be used 
to screen out schemas not thought to be suitable for the current situation. If 
one schema leads to a dead-end, backtracking allows 0081 to try the others 
available for the situation. 

The expansion of goals into plan schemas eventually leads to goals at the 
lowest level of abstraction. These goals need to be checked for satisfaction and 
used to choose moves. Some example lowest level goals are: 

• fill-a-liberty, 
• play-a-hane-move (near here), 
• play-a-connecting-move (between stringi and string2), 
• play-a-placement-move, 
• play-a-blocking-move (near here), 
• play-an- extending-move (near here). 

The plans stored in the Go modules are not preprogrammed solutions and 
are expanded in the context of the current game state. The development of a 
plan is influenced by schema preconditions and by the choices in the world for 
making the lower level goals true. The failure of goals early in the plan forces 
choice of alternative sub plans for making these goals true. 

3.3.3 The Cost of Move Choice 

The cost of move choice can be divided into three components: 

(1) Abstract Planning Cycles are very cheap since they consist purely of two 
cycles of matching items in a list (choose a goal, choose one of its plans). 
The process can be more expensive if complex preconditions are used to 
select between plans. 

(2) Checking the satisfaction of low level goals is also inexpensive, since the 
goals are very focused (are these two strings connected? could black run 
out here?). 20  Checking is made easier by the fact that it can be supported 
by various representations of the game state - strings, groups, influence 
etc. 

(3) Using low level goals to generate moves is the most expensive part of the 
process, although the cost is kept down by the fact that the goals by 
this stage are focused and limited to a small area (the here in the section 
above). In G0BI, selection is done using simple rules which define the type 
of move which could satisfy a goal. 2 ' An example set of rules is that a 

20 Again, some checks can be more costly such as checking for simple eyes (Goal 
currently has a very simple eye recognition module). 
21 Move selection could just as well have been done with local pattern matching. The 
planning framework poses no restriction on how this relationship between abstract 
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connecting-move must: 
(a) be a liberty of (next to) stringi and 
(b) be a liberty of (next to) string2. 

Although the workload is divided between these three parts, it is clear that 
this move choice method is considerably more expensive for choosing a single 
move to try in the move tree than most data-driven methods. The potential 
gain of using this method is in reducing the number of candidate moves in the 
move tree which need to be tried, and simplifying the application of evaluation 
functions by restricting both the parts of the board on which they operate, 
and allowing them to consider only how well a position satisfies a given goal 
instead of trying to somehow produce an estimate of the absolute value of this 
position. 

For the examples in test set I (see §3.4) there were on average 5.9 planning 
cycles per move chosen (including the cycles which choose moves). This av-
erage was relatively constant over the whole range of problems. To analyse 
the cost of using planning knowledge in GOB! we converted the planner to run 
without its plan knowledge and perform depth first search with a—/I cutoffs. 
The a—/I search running in the planning framework used the same board data 
structures, checks for move legality, backtracking mechanism and evaluation 
functions as GoB!. That is the search used available goals to test for termi-
nation of search and for leaf nodes. The analysis showed that given GOBI's 

current knowledge, each move tried in the game tree involves an average over-
head of 2.5p, where p is the average cost of a move taken by a—/I in this 
setup. Consequently, the cost of choosing a move in GOBI is about 3.5 times as 
much as a move made by the search algorithm. We note that although keeping 
the other features apart from the knowledge constant makes for good compar-
ison (since modules such as the board manager could be implemented much 
more efficiently) general comparison with a - /I search is dependent upon the 
efficiency of using GoBI's goals as an evaluation function. 

Regarding the cost of move choice there are two important tradeoffs in the 
planning process: 

• If goal selection and expansion mechanisms get more complex (i.e., through 
the extensive use of complex preconditions) their time cost will increase, 
but their applicability will be restricted, reducing search during planning. 

• The simpler and more specific the lowest level goals are, the easier it is to 
establish their truth and choose actions with them but the more planning 
is needed to decide upon them. 

goals and concrete actions is established (in general this is domain dependent). 
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3.3.4 Ntrnber of Nodes Visited 

Many data-driven game playing systems are based on some form of a—fl 
search which makes it a good scheme for comparison with GOB!. The aim of 
this section is to discuss the number of nodes in the search tree GOB! visits 
compared to the number a standard a—fl search might visit. Unfortunately, 
the search spaces for the test problems quickly become very large so empirical 
testing of an a—fl  algorithm is inaccurate and time consuming. We therefore 
rely on a theoretical estimate which is derived in Appendix A. 

Figure 8 compares estimates of the size of the search spaces for each of the 
63 examples from test set I which GoB! answered correctly (see §3.4.1 below). 
The results have been grouped together into sets of five to make the graph 
more readable. 
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Fig. 8. This graph shows the number of moves and planning cycles taken by GOB!, 
plus the estimated a—fl search space size for the 63 correctly answered problems 
from test set I. 

For each group the graph shows: the average number of moves taken by GOBI 
(moves), the average number of planning cycles required (cycles) and the size 
of the estimated a—fl search space (alpha-beta). To group the results, the 63 
cases were ordered in ascending order of estimated a - fi search space (primary 
criterion) followed by ascending order of number of moves taken by GoB! 

(secondary criterion). The values were then grouped together in fives according 
to this order (the first five, the next five etc.). The full table of these results 
is available in Appendix B. 

Since the graph's vertical axis is on a loglo scale, the graph clearly shows 
the cost of a—fl increases rapidly as the problems become more open (larger 
search spaces). GOB! on the other hand is able to dramatically reduce this rate 
of increasing cost both in the number of nodes visited and in the number of 
knowledge cycles. For small search spaces, GoB! requires more planning cycles 
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than a—fl visits nodes in the search tree. This result is to be expected since 
even for simple problems G0BI needs to go through its reasoning process. Since 
the planning cycles are much cheaper than making moves in the world this 
extra cost is not a significant problem. More important is the gain in using 
the plan knowledge as the problems become larger. As a commentary to the 
results in the graph: 

• Already for problems in Group 5 GoB! requires less planning cycles and less 
moves in the move tree. The problems in this group have search spaces in 
the order of 90 nodes 22  and GoB! solves them in 3 - 10 moves. 

• Typical results from group 7 include trying 10 moves, with 46 planning 
cycles for estimated search space 630. 

• Typical for group 10 is 28 moves tried with 125 planning cycles (the esti-
mated a - fi search space has 2520 moves). 

• By groups 12 and 13, the difference is already several orders of magnitude. 
GOB! typically takes around 33 moves to solve problems with 10 or 11 points 
to play on (and hence estimated a—fl search spaces of size greater than a 
hundred thousand and a million nodes). 

The average number of moves tried by GOB! averaged over all 85 problems in 
the test set is 31 moves (for an average of 174 planning cycles per problem). 
Averaging over only the 63 correctly answered problems (those shown in Fig-
ure 8) this becomes 24 (with average 144 planning cycles per problem). Giving 
the a—fl  average is not very useful since it is dominated by the largest terms. 

For the problems that GoB! failed on, 9 used an average number of moves 
before giving up, 8 resulted in no moves at all (or very few) and the remaining 
5 timed out after 30 seconds without having found a solution and having tried 
between 72 and 410 moves. (A full listing of results is given in Appendix B.) 

8.3.5 Using a World Model to take Opportunities 

Although the work here focuses on goal-driven approaches to Go, it is clear 
that human players mix both types of reasoning. Patterns are thought to play 
a large part in human Go play. Thus, there is a need to consider how the two 
approaches can be mixed successfully. 

One of the advantages of using a world model in the planner is that the 
changing situation of the state during planning is reflected in the world model. 
The changing world state may highlight interesting opportunities (or obvious 
problems) which arise as a result of the plan actions but were not expected 
effects. The architecture described above was extended to include plan critics 
which have access to the world model and watch for important situations. The 

22  See Appendix A for explanation of these estimates. 
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critics are able to insert goals into the agendas of the agents for the planner 
to consider in parallel with the current track of reasoning. Thus, the planner 
is made aware of opportunities or obvious problems during planning and can 
react to them. 23  

Two critics were added to G0BI which detect groups under immediate threat 
of capture and insert (optional 24 ) group-saving/group-attacking goals into 
the agents' agendas. The planner may have a good plan of attack but have 
plan knowledge falling short of suggesting the final killing move and hence 
the system would normally decide that the plan had failed and try another 
approach. 25  With the critic switched on, the strong positions from the good 
attack can be checked to see if there are opportunities for killing a group and 
the planner told about them. The application of critics increases the size of 
the search space, but makes the system more robust in situations where the a 
priori plan knowledge is insufficient. 

3.4 Testing and Evaluating GoBI 

Yoshinori's four-volume series [49] provides an excellent source of problems for 
testing Go programs. The books provide problems designed to teach human 
players how to play Go. Each Go problem gives a board configuration and asks 
the player to choose the move or moves to achieve a particular aim (such as 
defending a group). The configurations of stones are usually situations which 
could arise during normal play but taken out of a full game context. Most 
problems have a unique solution which is useful for evaluation. 

Since setting up each test problem was time-consuming, we chose (test set I) 
a representative sample (85 problems, approximately one third) of the prob-
lems from volume I of [49]. Problems were chosen for the test set essentially 
randomly, with a bias towards harder problems and excluding the simple cap-
turing problems at the beginning of the book (which were considered too easy). 
A second set of tests using problems from volume II [49] and from "Life and 
Death" [11] was also conducted. All the tests were limited to 30 seconds of 
runtime on a SUN UltraSparc. 

23 As noted in §2.3.2 the use of a world model also provides for forward chaining 
in the space of moves. The forward chaining however is only to model which moves 
are available for goal satisfaction. The critics here represents situations where the 
game state prompts explicit motivation for a move or new goal. 
24  Optional in this context means precisely that satisfaction of the top level goals is 
not contingent on also achieving the additional optional goal. 
25 All moves have to be part of a subgoal to be suggested. 

- 
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3.4.1 Test Results 

The system successfully solved 74% 26  of the examples in test set I, which is 
a significant achievement given its limited knowledge and the complexity of 
some of the problems. GoBI has also solved considerably harder problems from 
volume II [49] and [11]. These further tests were not comprehensive however, 
and used a range of hand picked examples, so the most useful indicator of 
performance remains the performance on problems from volume I [49]. 

In 98% of the correct solutions, GoBI considered the most significant defences 
or opponent responses in its plan (and refuted them). This statistic is encour-
aging since not only were the answers correct - so was the reasoning behind 
them. Most of the failures were due to incomplete plan knowledge. Several 
problems relied on groups connecting and escaping to live, for example, for 
which GoB! currently has no plans. Another weak area was in problems which 
required a lot of forcing moves (e.g. ladders). GOB! has no special way of han-
dling these and so is not able to take advantage of the problem simplification 
they provide (they are planned for in the normal way). 

Strengthening 0081's defensive knowledge led to an improvement in attacking 
plans and vice versa, reflecting the fact that the better opponent model is more 
likely to find refutations for poor attacking plans. For some of the more difficult 
problems in [49] and [11] reasoning was less complete (fewer of the possible 
counter strategies were explored). On these harder problems, as GoBI's plan 
knowledge ran out there was a trend of increasing reliance on the critics (data-
driven aspect) for finding solutions. This trend is encouraging since it shows 
that data-driven and goal-driven approaches can be successfully combined in 
this way (but less encouraging for our knowledge engineering!). 

3.4.2 Examples from the Test Sets 

To provide a better idea of the kind of problem GoB! was tested on this section 
gives six commented examples from the test sets. In each case the * symbols 

26  67% when critics were disabled. 
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in the figure mark the correct first move (black plays first in each case). 

Figure 9: Example B, black to play 
and save the group (number 30, test 
set I). 

Figure 10: Example C, black to play 
and kill the partly enclosed white 
string (hand-picked example). 

The problem in figure 9 was solved in 22 moves and 107 cycles (estimated 
a—fl search space 22680). The move at * ensures that there is enough room 
for black to subsequently make a second eye. A determined attack from white 
can still make saving the group difficult and can go up to 7 moves deep. 

Example C (figure 10) is harder than it appears. A standard attack on the 
white string would be to play one point to the left of the * (this attack is called 
a net move). For this problem when corn tries the net move, the opponent 
counter-attacks and kills the black string closest to the edge of the board. The 
successful counterattack forces GoB! to consider another plan. By playing at 

, GoB! forces the white string to the left, trapping it against the black stone 
on the far left. G0B1's move also strengthens the vulnerable black string at 
the same time (though this is not the primary objective). The plan takes 67 
moves and 244 cycles to construct (estimated a—fl search space 113400). 

Figure 11: Example D, black to play 
and save the group (number 26, test 
set I). 

Figure 12: Example E, black to play 
and kill the white group (number 48, 
test set I). 

GOBI successfully solves the problem in figure 11 using 21 moves and 146 
planning cycles (estimated a—fl  search space 630). The move at * is correct 
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in this case since it is the only way to ensure that black can make two eyes 
for its group. 

Figure 12 shows a harder problem with several interacting groupings of stones. 
GOB! takes 60 moves and 294 planning cycles to solve this problem (estimated 
a — fl search space 1 247 400 since there may well be captures during search). 
The move at * breaks the linkage between two parts and must be followed up 
by at least one more telling move to ensure that the white group eventually 
dies. 

Figure 13: Example F, black to play 
and save the group (number 73, test 
set I). 

Figure 14: Example G, black to play 
and kill (from volume II [49]). 

GoB! fails for both examples F and G. In example F (figure 13) it takes 15 
moves and 68 planning cycles before giving up (the size of the a—fl search 
space is hard to estimate since the problems involves a possible breakout 
through the diagonal line of white stones on the top left). This problem is 
difficult since it relies on a Ko threat being applied. 

Failure for example C (figure 14) is due to lack of knowledge. GOBI sees all the 
white stones as a single group and tries a plan to encircle them but gives up 
without trying any moves. GoB! has no plans for breaking up groups before 
attacking them. This problem also raises the point that the top-level goal here 
needs to be redefined to allow GOB! to settle for taking just the larger part of 
the group. (For completeness GOB! takes 0 moves and 5 planning cycles, again 
search space estimation is difficult). 

To give an idea of how representative these problems are compared to the rest 
of the test sets: Problems B and D are about average, problems C and E and 
F are quite hard (C in particular), problem G is easy (although GOBI still fails 
on it). 

26 



8.5 Open Examples 

Although currently limited by its knowledge base, GOBI is more general than 
specialist life-and-death programs. Knowledge for other parts of the game can 
be freely added and GoB! is also able to handle more open positions, such 
as example H in figure 15 (which for example GoTooLs would have trouble 

with [481). One would expect GoB! to compare well against existing systems 
in open (though still tactical) positions where the number of possible move 
sequences increases rapidly. The plan knowledge in the system acts to focus 
on only the relevant parts of the move tree. This effect can be clearly seen in 
figure 8 (3.3.4) where the cost in moves increases much more slowly than for 
a — fl. 

Fig. 15. Example H: G0BI solves this more open position, killing the white string 
marked A by playing a net move at 1. Adding white stones at X or Y for example 
(or various other places) would cause GoB! to realise that the string can no longer 
be killed directly. 

4 Evaluation of the Goal-Driven Approach to Go 

As with any method for applying knowledge to searching large spaces, the 
success of the goal-driven approach depends upon features of the domain of 
application. This section examines the advantages and disadvantages of ap-
plying this approach to Go play. 

4.1 Advantages of the Goal-Driven Approach 

The goal-driven approach which is presented here has some clear advantages 
for Go and other similar games. Together with some of the previous work 
on the usefulness of planning at the strategic level of Go, GOB! shows that 
this approach can be used for reasoning at all levels. The hope is that it will 
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eventually be possible to move transparently between tactical and strategic 
levels of play and providing a unifying framework for Go. 

4.1.1 Representation and Communication of Domain Knowledge 

Go knowledge in books and folklore is often expressed in a form appropriate for 
encoding as decompositions of abstract goals into other goals at different levels 
of abstraction. As reported in [35}, there is a rich vocabulary which Go players 
can use to express their reasons for making a move. There are many popular 
proverbs, which convey strategies at various levels of abstraction, for example 
"death lies in the hane" is more tactical, whereas "don't push along the fifth 
line" is quite strategic. It may be easier to add this kind of knowledge to a 
goal-driven system than to a data-driven system which requires the delicate 
balancing of heuristics. 

Adding knowledge in the form of plans is made very much easier by the exis-
tence of natural levels of abstraction when describing the game state. Game 
positions are often considered not only in terms of stones but in terms of macro 
structures such as strings groups and areas of influence. 

By following the trace of the goal decompositions one can see why the Go 
player is trying to do something - its aims and plans. Access to aims and 
plans is not only helpful for adding knowledge and debugging, but could be 
useful in the context of a Go tutoring aid. Some of the current commercial Go 
systems (MANY FACES OF Go for example) have teaching mechanisms but 
it is not clear whether these mechanisms are based directly on the reasoning 
process of the computer player, or are instead based on a high-level post-hoc 
analysis (which therefore will not accurately reflect the reasoning which led to 
this choice of move). 

4.1.2 Search Properties 

Using a goal-driven approach leads to a very different search from a data-
driven approach. Some key advantages are: 

• There is less need for global evaluation functions: Full board evaluation re-
duces to checking if lower level goals can be satisfied. Evaluation functions 
may still be used in a limited way to carry out judgements which cannot 
be made on a move-by-move level, for example using an influence function 
to judge whether or not a group can successfully run, or using a fast a — fl 
search to determine the life or death of enclosed groups. When an evalu-
ation function is employed in determining whether or not a goal has been 
satisfied, the goal can be used to provide a focus for the evaluation func-
tion to a limited area of the board. The use of goals to focus evaluation 
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makes sense when thinking about how humans play go - often making in-
stinctive judgements (evaluations) of a local situation but rarely considering 
(evaluating) the whole board. 

• Quiescence (a problem for many game-playing programs) is defined auto-
matically, thus avoiding problems such as the horizon effect in search. Since 
each agent has an agenda of goals, a situation can be defined as "open" 
(unsettled) until all goals are achieved. 

• What seem like heuristically bad moves (e.g. sacrifices) are not discriminated 
against because the only consideration is their value to the plan. 

While these advantages are important, perhaps the overriding advantage often 
associated with goal-driven approaches is their resilience in domains with large 
search spaces and branching factors. As the figures in §3.3.4 show, the planner 
dramatically reduces the number of nodes searched in the move tree. The 
advantage is still significant even if the extra cost of planning is taken into 
account. 

4.2 Disadvantages of Goal-Driven Search 

Obviously the goal-driven approach is not always the best choice and has its 
own difficulties: 

• The goal-driven approach requires significant effort to encode strategies as 
goal decompositions. By contrast, in the data-driven approach, good play 
can be achieved using even relatively simple evaluation functions if the game 
tree can be searched deeply enough. 

• There are some types of knowledge which are hard to express in a goal/plan 
oriented framework, such as knowledge which is not reliant on understanding 
the motivation behind a move (patterns for example). It seems clear that 
good Go play requires both pattern (data-driven) and abstract plan (goal-
driven) knowledge which is what leads us to try and integrate the two 
approaches (see §3.3.5). 

• For games with low branching factors, shallow search trees or where near 
exhaustive search is possible data-driven approaches have a strong advan-
tage: It is only when searching most of the move tree is infeasible and large 
amounts of knowledge are needed to prune the tree that goal-driven ap-
proaches become more useful. 27 

27  This point was illustrated by PARADISE [43) in the early eighties which despite 
being able to solve Chess problems requiring search up to 20 ply  deep (far be-
yond other Chess programs of the time), still saw its knowledge based approach 
outstripped by the ever increasing efficiency of fast search techniques. 
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The main problem with 0081 itself is still lack of knowledge: much more is 
needed before GOBI could be used as a tool to play the complete game of 
Go. Unfortunately adding knowledge takes a long time since it must be hand 
coded; most of the top programs have had knowledge added over periods of 
years. In this respect the goal-driven approach (and many current approaches) 
are at a disadvantage to learning or non-symbolic approaches which can use 
automatic training to improve. 

4.3 Scaling Issues 

As with all knowledge based approaches, the search space is determined by 
the knowledge in the system. The key to making knowledge based approaches 
work is good organisation of that knowledge. The size of the search space is 
determined by the number of goal schemas, and by how much they overlap. 
A small number of goal schemas, which are mutually exclusive, lead to a 
relatively small search space. Conversely, a very large number of goal schemas 
which overlap in many ways lead to a large search space. In practice, the size 
of the search space lies between these two extremes. 

Schemas which do not overlap, for example schemas which address differ-
ent parts of the game, can be added without adversely affecting performance. 
Adding more detailed plans needs to be done carefully, since it can lead to over-
laps and redundant search. The levels of abstraction used in GOB! (and in many 
Al planners) are key in avoiding redundancy since knowledge can be appropri-
ately structured and similar plans can be grouped together and expressed in 
a compact form. Badly structured or overlapping knowledge can cause similar 
problems to occur in data-driven approaches where pattern matching is used 
to suggest moves. 

In Wilkins' PARADISE [43] work, as in our work, there was a worry that 
extending the system by adding new knowledge would have adverse affects 
on system performance. New production rules were added to PARADISE in 
order to allow it to solve problems outside the initial development set [43, 
p.193]. The new problems were correctly solved, and system performance was 
not degraded. In fact, the extended system now found better plans for some 
of its previously solved positions. This result is heartening for our own work. 

5 Comparisons With Other Approaches to Adversarial Planning 

One of the advantages of building a generic planning framework (2.2) and 
then separately instantiating this to play Go (3) is that the characteristics 
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of the planner are clearly laid out. This separation improves understanding of 
the planner's behaviour and facilitates comparison with systems from other 
domains. 

The most useful comparisons can be made using a classification based up on 
the expansion scheme used during planning, since this is the defining feature of 
any HTN planning system. The planning systems can be classified as follows: 

• Total order decomposition: PARADISE, TIGNUM2, G0BI, the battlefield 
management system in [1]. 

• Partial order decomposition: Work in [21], (23], [37] and the INTERIM.2, 

and GOBELIN programs. 

In this classification and leaving aside the application domain, GOBI is most 
similar to PARADISE and TIGNUM2. In fact these planners not only use a 
form of total order expansion but also incorporate aspects of forward chaining 
(2.3.2). 

5.1 PARADISE 

The idea of using goals to guide search originally comes from [29] and was 
then incorporated into PARADISE. Although PARADISE is based on rule-based 
expert systems and in this sense is quite far removed from HTN planning, 
its search approach leads to a type of goal guided search at two levels of 
abstraction. Each goal is expanded by a rule based knowledge source in the 
context of its final place in the plan. This guided search model is conceptually 
very similar to the modified HTN expansion scheme described in §2.3.2. There 
are many differences between PARADISE and the planner used in GOBI, but 
perhaps the most significant at a conceptual level are that: 

• PARADISE only used two levels of abstraction - the ground space (moves) 
and one abstract level (goals or concepts). With its current knowledge GOBI 

uses five levels of abstraction. 
• PARADISE'S starting plans are formed from a static evaluation of the initial 

game state and global static evaluations may be applied at various points 
throughout the search. In G0BI, goals can have associated information about 
what information to apply from the environment for expansion (in the form 
of preconditions). This precondition mechanism gives a full range of flexi-
bility (from very focused detailed evaluations of a local area for low level 
goals to very sketchy high level evaluations of the whole board for high level 
goals). 

• PARADISE can analyse failed plans and use the extracted information in 
constructing a new plan. 
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• PARADISE uses different models for attacking and defending players. While 
the attacker uses the plan suggested by static analysis to focus on only a 
few candidate move choices, the defender tries all "reasonable" moves. In 
0081, attack and defence use the same plan schemas. Indeed, both players 
may be attacking simultaneously. 

Above all, the planning architecture used by G0BI provides a simple generic 
framework which is simpler to understand than the mixture of different ele-
ments which come together to make up PARADISE. 

5.2 TIGNUM2 

TIGNUM2 [40,39] also has a decomposition model very similar to that used 
in GoB! (and is explicitly based upon HTN planning). The propositional logic 
formulas used by T1GNUM2 to represent the state of play directly correspond 
to the use of a world model in GoBI. The most significant difference between 
G0B1's planner and the one used in TIGNUM2 is in the expressiveness of the 
planning language. TIGNuM2's planner is kept total order by restricting plan 
knowledge to being totally ordered, preventing subgoals descended from dif-
ferent higher level goals from being interleaved. 28  In TIGNUM2, given the 
decomposition tree shown in Figure 16, goals descended from 02 could not 
be interleaved with goals descended from goal 01. Furthermore the goals de-
scended from 01 must be fulfilled in the order given in the schema - 011, 
then 012, then 013. 

Fig. 16. Goal decomposition tree: the top level goal G decomposes into two subgoals 
Gi and G2, each of which is again decomposed. 

There is no such restriction in the planning framework presented in this paper: 
subgoals can be interleaved and all linearisations of subgoals are valid 29 . This 
flexibility preserves the expressiveness of standard HTN planning (which is 
semi-decidable, see [14]) while TIGNUM2's planner is strictly less expressive 
(EXPSPACE-hard and in DOUBLE-EXPTIME, [27]). The extra flexibility 

28  This definition of total order planning is slightly different to the one used in [25] 
and that adopted in this paper. 
29  Note that constraints can be placed on orderings but these constraints form part 
of the explicit plan knowledge. 
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in GOBI'S planner is crucial for games such as Go where interleaving goals 
is a natural part of play. In Go, capturing a group for example may involve 
several tasks (surrounding it, preventing eyes etc.) which need to be achieved 
in pseudo-parallel. That is, concentrating on thoroughly surrounding a group 
will result in the opponent making eyes and saving the group (and vice versa). 
Steps need to be taken towards achieving both subgoals while stopping the 
opponent countering either (having enough spare moves to do so). 

5.3 Using Total Order Expansion in Adversarial Domains 

For many practical problems the total order decomposition systems identified 
in §5 above have significant advantages over those using partial order decom-
positions. This observation runs contrary to conventional wisdom in the Al 
planning community. The least commitment aspect of partial order decom-
positions was always thought to bring significant advantages. Recent work in 
[27] discusses the assumptions underlying the use of partial order, backwards 
chaining strategies for HTN planners and suggests that they are not always 
valid (and in particular do not apply for Bridge play and process planning). 
In the context of an adversarial planning domain we can elaborate on these 
reasons (and include observations noted in [46]). 

As is noted in [14] "handling interactions among non-primitive tasks [goals] 
is the most difficult part of HTN planning". In adversarial domains these 
difficulties are compounded. More precisely: 

• The interactions are significant: Goal expansion is usually heavily depen-
dent on the game state. The simplifying assumption often taken in Al plan-
ning research that expansion choices (how to do something) and ordering 

choices (when to do it) are independent [2] is less valid in adversarial do-
mains. 

• More of the interactions need to be taken into account: In an adversarial 
domain, the adversaries have control over some of the actions, therefore 
not only must there be at least one valid ordering, the opponents must not 
be able to order their actions in such a way as to make the plan fail. The 
planner must explore many more of the options and orderings possible to 
ensure they all lead to a desirable outcome. 

• The interactions are difficult to model: The interactions between moves in 
a game are generally designed to be complex. So complex, in fact, as to fool 
and entertain human players. Effects are often cumulative, subtle and only 
obvious over long sequences of moves. This complexity makes interactions 
inherently hard to model and even harder to model in the abstract where 
much of the detail is stripped away. In his 1979 paper [44] Wilkins observes 
that defining abstract spaces for Chess is very difficult because "small details 
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are very important". 

Games tend to be built around the effects of complex interactions between 
the moves of the players. It becomes increasingly difficult to model all these 
interactions adequately at higher levels of abstraction. If important details 
(interactions) are not somehow modelled in the abstract space and taken into 
account during planning, plans will repeatedly fail at the lowest level and 
cause repeated backtracking. 

The use of a total order scheme which is able to model interactions between 
moves and goals directly in a world model is very important in avoiding some 
of these problems. It also means that an aspect of forward chaining can be 
introduced at the move level to reduce the number of options available (since 
the starting state is always known even though the goal state may not be per-
fectly described). These differences appear to be critical in enabling total order 
planners to outperform standard HTN planners in tight tactical situations. 

6 Conclusions 

In this paper we have presented an adversarial planning architecture capable 
of reasoning about games, and an application of this architecture to Go. The 
planning architecture and Go reasoner reported here represent an advance on 
previous work for goal-driven planning in Go. The system: 

• Has a clear separation of domain knowledge from the abstract planning 
architecture and a clear model of the opponent in the game. 

• Can reason at multiple levels of abstraction simultaneously. 
• Can address complex tactical situations as well as high level strategic prob-

lems. 
• Can provide support for the integration of data-driven and goal-driven am 

proaches. 

We presented the advantages that a goal-driven approach could have for Go. 
GOBI as a prototype is certainly no match for current systems which play 
the full game of Go, but it does represent a step towards understanding how 
goal-driven approaches can be applied to Go, even at a tactical level. 

We believe that 0081 demonstrates that an approach based on adversarial 
planning can be effective for Go. The two main limitations of G0BI as a Go-
playing program are: 

• The lack of top-level goals. We have indicated how G0BI could be extended 
with high-level persistent goals which would enable it reason about the 
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entire game. 
• The small knowledge base. The knowledge base needs to be very significantly 

extended in order to make a realistic Go program. 

Go has several strong domain features which make goal-driven approaches 
applicable: very large search spaces, clear layers of abstraction in domain de-
scriptions (stones, strings, groups etc), and a wealth of knowledge similar in 
structure to abstract plans. GOB! represents a further step towards turning this 
theoretical possibility into a reality. The work described in this paper again 
shows that Go is an excellent test bed for Artificial Intelligence research. There 
has been very little work on adversarial planning in recent years - the chal-
lenge of Go really motivated this work. 

We have outlined why GoB! outperforms previous Go planners at tactical play. 
The total order decomposition scheme and use of a world model were key in 
making progress. Taken together with previous work on Chess and Bridge 
this suggests that the techniques we have described in this paper should be 
strongly considered when applying planning techniques in future game playing 
systems. 
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A Theoretical Estimate of a—/i Search Space 

As stated in §3.3.4 estimating the size of a—fl search spaces for given problems 
empirically is difficult since search spaces and search times rapidly increase. 
The performance of a - /3 is also heavily dependent on the evaluation func-
tion used. This difficulty forces us to rely on theoretical estimates. A number 
of papers published by UCLA in the late 70s and early 80s give theoretical 
analyses of the a—fl  algorithm's performance. Many of these results are sum-
marised in [28]. However, the results generally rely on a constant branching 
factor (which in tight tactical Go problems is not valid) and sampling leaf 
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node values from a continuous distribution. For a theoretical analysis closer 
to the type of problem GoB! solves we need to go a little outside these results. 

The following assumptions allow a simple treatment: 

• Assumption 1: The number of available moves is reduced by one each round 
and both players play moves from the same finite set of moves. These as-
sumptions do not always hold for Go since captures can increase the number 
of moves available, some moves may only be legal for one player and players 
may choose to pass, however they are acceptable for a simple treatment. 

• Assumption 2: There is only one solution (i.e., one correct move to play 
first which leads to a win being possible in all of the subtrees following this 
move). This assumption also does not hold for general Go play but is valid 
in the type of problems in the test sets. 

Considering a search with n options at the top level, assumption 1 gives the 
total number of leaf nodes as n! where leaf nodes are defined as the nodes 
at depth n (or equally n - 1 in the search). We now estimate the number of 
leaf nodes visited, on average, by an ct—fl search algorithm which is able to 
evaluate leaf states as win or lose, does not evaluate intermediate (non-leaf) 
nodes, and stops once it finds the correct first move (as GOB! does). 

Over all orderings of moves and solutions for a given problem one would expect 
the algorithm on average to choose the correct move having tried half the 
possible moves (contingent on assumption 2). Following a move selection, all 
the opponents responses need to be tried to ensure the move leads to a win 
everywhere, thus making the number of leaf nodes visited equal to: 

ii 	 n-2 
—x(n-1)x 

2 
 x(n-3)x... 	 (Ad) 

i 
which gives:() 

n
in! 	 (A.2) 

(The odd it are those multiplied by the factor half.) It is interesting to note 
that the pruning power (21) of a—fl is not simply a linear factor of the search 
space size (See the table in Figure A.1). For an accurate comparison in the 
number of moves tried by the search, we also need to count the number of 
moves tried in reaching the leaf nodes. The number of moves required becomes: 

1 i 	 1 n-2 

) 
2 it! 

(—)

, 	
(in! + + 

2 	(n—(n-2))! 	(n—(n-3))! +.... 
	 (A.3) 

 

Note again that this figure is valid in the limit, but generally the power of the 
pruning factor is rounded down to the nearest integer, reflecting the fact it al- 
ternates on the levels with odd n. In the limit the new value in Equation A.3 is 
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around double the value given in Equation A.2. Thus the number of nodes vis-
ited is dominated over n by the number of leaf nodes visited, ()tn! (although 

it may be around twice as large). 

Options Raw Pruning Factor E[Leaf nodesi 
3 6 2 3 
4 24 4 6 
5 120 4 30 
6 720 8 90 
7 5040 8 630 
8 40320 16 2520 
9 362 880 16 22680 
10 3 628 800 32 113400 
11 39 916 800 32 1 247 400 
12 479 001 600 64 7 484 400 
13 6 227 020 8000 64 97 297 200 

Fig. A.1. Calculating the expected number of leaf nodes searched. The column 
headed Options is the number of moves considered in the initial position, Raw is 
the size of the unpruned search space, Pruning Factor is the factor by which a—fl 
search reduces the number of leaf nodes visited, and E[Leaf nodes] is the expected 
number of leaf nodes visited. 

Analysis of the number of moves tried becomes considerably more complex 
if the algorithm can evaluate intermediate (non-leaf) nodes since the perfor-
mance of a—/I algorithms is generally sensitive to the evaluation function 
used. We have not taken this possibility into account in our analysis. 

The result obtained for the pruning power of a—/i on this type of problem 
(a binary set of state values, one correct move, stopping on finding this move 
and having a steadily decreasing branching factor), seems to concur with the 
UCLA results [28] which also predict low order exponential pruning power for 
their problems. 

Al Estimating the search space for Go Problems 

To estimate the search space that would be required by a—fl  search each prob-
lem has a search area mask defined for it. The mask defines which points on 
the board need to be tried as moves by the search in order to find a satisfactory 
solution (meaning one which chooses the correct move but also encompasses 
checking all significant defences). Figure A.2 shows a mask defined for one of 
the problems from test set 1. The * characters mark the points which define 
the limited search space. 

In general defining which points are necessary for the solution of a particular 
problem requires suitable knowledge of Go and is very difficult to do automat- 
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Fig. A.2. A mask for a Go problem from test set I. The * symbols indicate the area 
that needs to be considered for search. 

ically. For our estimates all the masks were defined by hand. Once the mask 
has been defined for a problem, the number of points defined in it gives the 
number of moves available in the search space. Some masks also included occu-
pied points where stones were captured as part of attack or defence. Together 
with the formula in Equation A.2 (or Figure A.1), this gives the estimate of 
the expected search space for that problem. We use Equation A.2 rather than 
Equation A.3 since the number of leaf nodes is the dominating term. 

B Test Results 

For completeness we include a listing of the results for the 85 problems tested 
in test set I (results are from tests using critics). In the following table, the 
column headings are: the problem number (N), the number of planning cycles 
GOB! takes to plan the problem (P), the number of moves GOB! tried (Al), 

whether G0BI succeeded in finding a correct problem solution (Result), and 
the estimated number of moves in the a—/I search tree for this problem (E). 

W I 	P M Result E -w P M Result 
T 42 8 correct 6 44 814 147 correct 1 247 400 
2 20 3 correct 30 45 49 7 correct 30 
3 17 2 correct 6 46 1002 410 fail 30 
4 49 7 correct 6 47 285 44 correct 113400 
5 30 4 correct 6 48 294 60 correct 1 247 400 

184 35 correct 2520 49 20 3 correct 30 
7 74 13 correct 90 50 22 3 fail 30 
8 75 19 correct 90 51 47 7 fail 90 
9 70 14 correct 30 52 9 1 fail 90 
10 176 39 correct 113400 53 20 3 correct 90 
iT 25 4 correct 2520 Ir 61 12 correct 2520 
12 136 22 fail 90 55 120 20 correct 1 247 400 
13 41 4 correct 3 56 33 5 correct 2520 
14 38 10 correct 6 57 62 22 correct 2520 
15 132 18 correct 2520 58 1002 155 fail 2520 



[1C P M Result E FN1P M Result E 
iT 46 10 correct 630 39 32 7 fail 1 247 400 
17 1002 164 fail 2520 60 1002 151 fail 113400 
18 724 138 correct 2520 61 122 18 correct 2520 
19 104 14 fail 630 62 23 2 fail 3 
20 17 2 correct 3 63 434 54 correct 2520 
21 42 7 correct 30 64 609 110 correct 2520 
22 106 12 correct 30 65 125 28 correct 2520 
23 29 4 correct 90 66 21 2 correct 6 
24 116 20 correct 2520 67 31 3 correct 6 
25 54 6 correct 30 68 20 2 correct 3 
26 -  146 21 correct 630 139 17 6 fail 3 
27 93 16 correct 90 70 11 1 fail 6 
28 279 59 correct 630 71 4 1 fail 3 
29 77 13 correct 90 72 23 5 fail 1 247 400 
30 107 22 correct 22680 73 68 15 fail 113400 
31 20 2 correct 30 7 90 19 fail 630 
32 129 20 correct 90 75 12 2 fail 90 
33 55 8 correct 90 76 118 23 correct 22680 
34 36 5 correct 630 77 20 2 fail 6 
35 90 13 correct 630 78 59 12 correct 22680 
36 18 5 correct 6 79 767 118 correct 630 
37 54 6 correct 630 80 518 53 correct 22680 
38 65 18 correct 113400 81 103 17 fail 90 
39 93 9 correct 630 82 56 10 correct 90 
40 50 6 correct 630 83 12 1 fail 30 
41 113 14 correct 30 ir 35 5 correct 6 
42 87 10 correct 22680 85 1002 72 fail 2520 
43 814 147 correct 2520 
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