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Abstract. Hidden algebra is a behavioural algebraic specification for-
malism for objects. It captures their constructional aspect (concerned
with the initialisation and evolution of their states), their observational
aspect (concerned with the observable behaviour of such states), and the
relationship between these two aspects. When attention is restricted to
the observational aspect, final/cofree algebras provide suitable denota-
tions for the specification techniques employed by hidden algebra. How-
ever, when the constructional aspect is integrated with the observational
one, the possibility of underspecification prevents the existence of such
algebras. It is shown here that final/cofree families of algebras exist in
this case, with each algebra in such a family resolving the nondetermin-
ism arising from underspecification in a particular way. The existence of
final/cofree families also yields a canonical way of constructing algebras
of structured specifications from algebras of their component specifica-
tions.

1 Introduction

The use of algebra in the semantics of computation goes back to the 1970s and
the use of initial algebras as denotational semantics for data types [GTW78]. The
constructional nature of data types makes algebra particularly suitable for their
specification — the emphasis is on generating the elements of data types by means
of constructor operations, with minimal structures such as initial or free algebras
providing suitable denotations for data type specifications. Recently, the theory
of coalgebras (the formal duals of algebras) has been used for the specification of
state-based systems in general [Rut96], and of objects in particular [Jac96]; here,
the emphasis is on observing system states by means of destructor operations,
with maximal structures such as final or cofree coalgebras, incorporating all
possible behaviours, being used as denotations.

Objects are characterised by a state together with an interface providing lim-
ited access to this (otherwise hidden) state. Specifically, the object interface can
be used to initialise the object state, to perform certain changes on the current
state, or to observe certain properties of this state. One can identify a construc-
tional aspect of objects, concerned with the initialisation and evolution of their
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states, and an observational aspect of objects, concerned with the observable
behaviour of such states.

The hidden algebra formalism ([Gog91], [GD94], [MG94], [GM97]) combines
concepts from algebra and coalgebra in order to capture these two aspects and
the relationship between them. One can argue that hidden algebra lies at the
intersection of algebra and coalgebra, as its syntax is (a restricted version of) the
syntax of many-sorted algebra, while its semantics is observational (coalgebraic).
(Consequently, the behaviours specifiable in hidden algebra are, in a sense, both
algebraic and coalgebraic.)

The coalgebraic nature of hidden algebra, already observed in [GM97], has
been further investigated in [Cir98], where the relevance of final/cofree con-
structions to destructor hidden specifications and their reuse along specification
maps has been emphasised. Final hidden algebras have been shown to provide
a characterisation of the abstract behaviours associated to a destructor hidden
specification, while cofree hidden algebras have been used as formal denotations
for the reuse of such specifications.

When arbitrary hidden specifications are considered, the nondeterminism
arising from underspecifying the behaviour of the constructor operations pre-
vents the existence of final/cofree hidden algebras. It has been suggested in
[Cir98] that, in this case, final/cofree families of hidden algebras should be used
as denotations, since these constructions are able to characterise all possible
ways of resolving the nondeterminism involved. Final/cofree families generalise
final/cofree objects in a category, while still retaining their universal properties.
This paper gives a detailed account of the existence of such families in hidden
algebra, illustrating their suitability as semantic constructions for the specifi-
cation of objects. The existence of final/cofree families of hidden algebras also
yields a canonical way of constructing algebras of structured specifications from
algebras of their component specifications.

The paper is structured as follows. After recalling some category-theoretic
concepts to be used later in the paper, Section 2 introduces the hidden algebra
formalism and briefly summarises the results in [Cir98] regarding the existence of
final/cofree constructions in a restricted version of hidden algebra. Section 3 then
focuses on final/cofree families of hidden algebras, proving their existence and
emphasising their suitability as denotations for hidden specifications and their
reuse along specification maps. Section 4 uses a generalisation of the category-
theoretic notion of limit [Die79] to define a canonical way of combining algebras
of component specifications into algebras of structured specifications. This also
yields a compositional semantics for structured hidden specifications. Section 5
discusses the relation between hidden algebra and other existing approaches to
system specification, based either exclusively on coalgebra or on a combination
of algebra and coalgebra. Finally, Section 6 summarises the results presented
and briefly outlines future work.



2 Preliminaries

The first part of this section introduces some categorical concepts that will be
used later in the paper, including a generalisation of the notions of final/cofree
object (Section 2.1) and the concept of fibration (Section 2.2), while the second
part (Section 2.3) gives an outline of the hidden algebraic approach to object
specification and of some existing results regarding the existence of final/cofree
constructions in a restricted version of hidden algebra.

2.1 Final and Cofree Families of Objects

A final object in a category is an object into which any other object of the cat-
egory has a unique arrow. Final objects do not exist in any category. Practical
examples have, however, suggested a generalisation of the notion of final object
which exists in situations where a final object does not. This generalisation in-
volves partitioning the category into subcategories with final objects. The notion
of cofree object has also been generalised in a similar way. The generalisations are
due to Diers [Die79] and will be briefly recalled in the following. In addition, we
show how these generalisations can be subsumed under the standard concepts.

The notion of final family of objects generalises the notion of final object by
requiring the existence of a unique arrow from any object of the category into
an object in the final family.

Definition 1. Given a category C, a family (F;);jcy of C-objects is a final fam-
ily of C-objects if and only if, for any C-object C, there exist unique j € J and
C-arrow f: C' = Fj in C.

Remark 2. A final family (F});ecs of C-objects determines a partition (C;);jes of
C into subcategories, each of them having a final object (given by an object in
the final family). For j € J, C; is isomorphic to the slice category C/F;. (The fact
that the slices over the final family determine a partition of C is a consequence
of the universal property of the final family.)

[Die79] presents a generalisation of the category-theoretic notion of limit,
called a multi-limit.

Definition 3. Given a diagram d : D — C in a category C, a multi-limit for
d consists of a family (L, (I}, : Lt — d(D))pep|)ier of cones for d, having the
property that given any other cone (C, (cp)pep|) for d, there exist unique i € I
and C-arrow ¢ : C' — L* such that [}, o c = cp for each D-object D.

Final families of objects now appear as a particular case of multi-limits, namely
as multi-limits of empty diagrams.

It is shown in [Die79] that the standard results regarding the existence of
finite limits (see e.g. [Bor94]) generalise to multi-limits. In particular, the ex-
istence of finite multi-limits in a category is a consequence of the existence of
multi-products and of multi-equalisers. The following result can be proved in a
similar way.



Theorem 4. If a category C has a final family of objects and multi-pullbacks,
then C is finitely multi-complete.

Remark 5. The concept of multi-limit can be subsumed under the ordinary con-
cept of limit by considering categories of families. Given a category C, one can
define a category Fam(C) whose objects are indexed families (C;);cr of C-objects
and whose arrows from (C;)ier to (Dj)jes are given by a (reindexing) func-
tion h : I — J together with an I-indexed family (f;);er of C-arrows, with
fi : Ci = Dy for i € I. There exists a canonical embedding of C into Fam(C)
which regards C-objects/arrows as families of C-objects/arrows indexed by a one-
element set. Then, multi-limits of C-diagrams correspond to limits in Fam(C) of
the translations of these diagrams along the embedding of C into Fam(C). In
particular, C has a final family of objects if and only if Fam(C) has a final ob-
ject.

[Die79] also gives a generalisation of the notion of couniversal arrow. A couni-
versal arrow from a functor U : D — C to a C-object C is a C-arrow of form
ec : UC — C for some D-object C, having the property that given any D-object
D and C-arrow f : UD — C, there exists a unique factorisation of f through ec
of form f = Uf;ec with f: D — C. The notion of couniversal family of arrows
[Die79] generalises that of couniversal arrow as follows.

Definition 6. Given a functor U : D — C and a C-object C, a family of C-
arrows (ec j : UC; — C)jey with C; a D-object for each j € J is a couniversal
family of arrows from U to C if and only if, for any D-object D and C-arrow
f : UD — C, there erist unique j € J and D-arrow f : D — C; such that
Uf; ec,j = f. The family (C;);e is called a cofree family of D-objects over
C w.r.t. U. If, for any C-object C, there exists a couniversal family of arrows
from U to C, then U is said to have a right multi-adjoint.

It should be noted that a right multi-adjoint does not define a functor from C
to D, since it maps C-objects to families of D-objects.

Remark 7. Again, by using categories of families, the concept of couniversal
family of arrows can be subsumed under the concept of couniversal arrow. Given
categories C and D, a functor U : D — C induces a functor Fam(U) : Fam(D) —
Fam(C), mapping (D;)ier to (U(D;))ier and (h, (fi)ier) : (Di)ier — (D})jes to
(h, (U(fi)ier)- Then, a couniversal family of arrows from U to C' corresponds to
a couniversal arrow from Fam(U) to the one-element family C. Furthermore, the
existence of a right multi-adjoint to U yields the existence of a right adjoint R to
Fam(U), and conversely. Given a family (C;);er of C-objects, for each i € T let
(€ij : UC;j — C;)jes; denote a couniversal family of arrows from U to C;. Also,
let K = |J J; and define b : K — I by h(j) = iif j € J;. Then, (h, (€i,j)jet; icr) :
il

Fam(U)((Ci,j)jes: icr) = (Ci)ier defines a couniversal morphism from Fam(U)
to (C})ier. Conversely, a right adjoint R to Fam(U) yields a right multi-adjoint
to U: a couniversal family of arrows from U to a C-object C is obtained as a
couniversal arrow from Fam(U) to the one-element family C.



2.2 Fibrations

A fibration defines an indexing of the objects of a category by objects of another,
less structured category, additionally equipped with a way of reindexing objects
of the former category along arrows of the latter.

Let p : E — B be a functor indexing objects of a category E by objects
of a category B. B will be called the base category, while E will be called the
structure category. Then, p is said to be a fibration if, for each E-object Y, B-
arrows « : B — p(Y) can be lifted to universal E-arrows f : X — Y, with
p(f) = . This is formalised in the following.

Definition 8. Let p : E — B be a functor. A cartesian map for p is an E-
arrow f : X — Y having the property that given any E-arrow g : X' — Y such

that p(g) factors through p(f) (i-e. p(g) = p(f) o~y for some v : p(X') — p(X)),
there ezists a unique E-arrow h : X' — X with p(h) = v such that g = f o h.

XI
\\ g
Ry
E X 7 Y
l"
B p(X7)
~ p(g)
N
R
p(X) —p(Y)

f is alternatively called a cartesian lifting of p(f).

p is a fibration if and only if given any E-object Y and B-arrow a : B —
p(Y), there exists a cartesian map f: X — 'Y with p(f) = a.

A cleavage for a fibration p is a choice of a cartesian map for each Y and
a. A fibration equipped with a cleavage is called a cloven fibration.

Given a B-object B, the subcategory of E whose objects are indexed by B and
whose arrows are indexed by 1p is called the fibre over B and is denoted Ep.
The arrows of E which are taken by p to identities in B are called vertical.

Ezample 9. For any category C, the functor p : Fam(C) — Set mapping (X;)icrs
to I and (h, (fi)icr) : (Xi)ier = (Yj)jes to h : I — J is a fibration. Given
h: I — J, any cartesian lifting of & is of the form (h, (14(;))icr) : (Ya(i))ier —
(Yj)jes for some J-indexed family Y.

A cloven fibration induces, for each arrow a : B — B’ in the base category, a
functor a* : Egr — Ep, called reindexing functor, which takes an object X of Ep:
to the domain a*(X) of the cartesian map @(X) : a*(X) — X over a (uniquely
determined by the cleavage), and an arrow m : X — Y of Eg/ to the unique
(vertical) arrow a*(m) : a*(X) — o*(Y) satisfying a(Y) o a*(m) = m o a(X).

Definition 10. Given a fibration p : E — B and a shape category |, cartesian
liftings in p are said to preserve |-limits if, for each o : B — B’ in B, whenever



an l-shaped diagram d : | — Ep: has a limit, any reindexing of this limit along «
is a limit for any reindexing of d along a.

p has fibred I-limits if and only if every fibre of p has |-limits, and cartesian
liftings preserve |-limits.

Since limits provide a canonical way of combining objects in a category, complete-
ness is a desirable property of categories in general, and of structure categories
of fibrations in particular. A consequence of a result in [Her93] is that complete-
ness of the structure category of a fibration follows from the completeness of the
base category and of each of the fibre categories, together with the preservation
of limits by cartesian liftings.

Theorem 11 ([Her93]). Let | be a shape category and let p : E — B be a
fibration such that B has |-limits. The following are equivalent:

(i) p has fibred |-limits
(ii) E has, and p preserves |-limits.

Here we only recall the way limits in the structure category of a fibration are
computed. We let p : E — B denote a cloven fibration and let d : | — E denote
an I-shaped diagram in E. A limit for d in E is obtained as follows:

1. First, a limit (B, (b;);c)) for pod: 1 — B is computed.
2. Next, the diagram d is reindexed to a diagram d' : | — Epg, defined as follows.
(a) For i in |l, d'(i) is the domain of the cartesian map b;(d(i)) : d'(i) — d(i)
over b; : B — p(d(7)).
(b) Forl:i—s1i"in||l||,d'(l) is the unique E-arrow satisfying: d(1)ob;(d(i)) =
by (d(i")) o d'(I) (given by the universal property of by (d(i'))).
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3. Finally, a limit for d’ in Ep is computed.

2.3 Hidden Algebra

This section recalls the underlying definitions of the hidden algebra formalism,
together with some earlier results on the existence of semantic constructions
based on finality in a restricted version of hidden algebra used to specify coal-
gebraic behaviours.



Hidden algebra was first introduced in [Gog91] and then further developed
in [GD94], [MG94], [GM97] as a behavioural algebraic specification formalism
for objects. Its syntax reflects the fundamental distinction between (immutable)
data values and (mutable) object states through the use of visible sorts and
operation symbols for the data, and of hidden sorts and operation symbols for the
states of objects. Furthermore, object specifications and their implementations
use a fixed specification, respectively implementation for the data, given by a
many-sorted signature (V,¥) (the data signature) and respectively a many-
sorted (V,¥)-algebra D (the data algebra), with the additional constraint that
each element of D is named by some constant symbol in ¥. For convenience, we
assume D, C ¥y , for each v € V.

The operations available for creating and accessing the states of objects are
specified using hidden signatures.

Definition 12. A (hidden) signature (over (V,¥)) is a pair (H,X) with H
a set of hidden sorts and X' a V U H-sorted signature satisfying:

1. Ypo=Wyy forweV* andv eV
2. for o € Xy s, at most one sort appearing in w (by convention, the first one)
is hidden.

In the following, hidden signatures (H, Y') will be abbreviated X whenever the
set of hidden sorts is clear from the context.

Apart from the operation symbols of ¥, hidden signatures contain operation
symbols whose result type is a hidden type (used to construct new states), and
operation symbols whose argument types include a hidden type (used to observe
the current states of objects). Some of the X' \ W-operation symbols, namely
those having both a hidden argument and a hidden result, can be viewed both
as a means of constructing a new state and as a means of observing an existing
state. However, since we are mainly interested in the observational aspect of
objects, we will refer to X' \ @-operation symbols having exactly one hidden
argument as destructor symbols, and to X \ W-operation symbols having only
visible arguments as constructor symbols. Then, condition 2 of Definition 12
expresses the fact that destructors act on the states of single objects.

An algebra of a hidden signature agrees with the data algebra on the inter-
pretation of the visible sorts and operation symbols and, in addition, provides
interpretations for the hidden sorts and operation symbols.

Definition 13. Let X' denote a hidden signature. A (hidden) ¥-algebra (over
D) is a many-sorted (V U H, X')-algebra A such that Alg= D.

A (hidden) Y-homomorphism between Y'-algebras A and B is a many-
sorted X'-homomorphism f: A — B such that f, = 1p, forv e V.

XY-algebras over D and X-homomorphisms form a category, which will be
denoted Alg,(X).

Remark 14. The fact that hidden algebras use the same data algebra for their
visible part and that the visible components of hidden homomorphisms are iden-



tities will prove crucial for the forthcoming results. In particular, these restric-
tions will allow hidden algebraic structures to be regarded as coalgebraic struc-
tures, with hidden homomorphisms corresponding to coalgebra homomorphisms.

Hidden algebra takes a behavioural approach to specifying objects — their
states are only specified up to observability. State observations are formalised
by contexts, while indistinguishability of states by observations is captured by
behavioural equivalence.

Definition 15. Let X denote a hidden signature. A YX-context for sort s €
VUH is an element of T:({z}), with z an s-sorted variable, Tx;({z}) denoting
the VU H-sorted set of X-terms over {z} and v € V. Given t € Tx(V)s, we
write c[t] for the X-term obtained by substituting t for z in c.

Given a X-algebra A, behavioural equivalence on A (denoted ~4) is
given by: a ~4 s o' if and only if ca(a) = ca(a') for all contexts c for sort s,
with s € VUH and a,a’ € As.

Remark 16. The fact that terms containing visible-sorted variables (other than
z) need not be considered when defining contexts is a consequence of each data
value in D being named by a constant symbol in ¥.

Many-sorted equations are used in hidden algebra to constrain the behaviour
of system states. The associated notion of satisfaction captures the indistin-
guishability of the lhs and rhs of equations by observations.

Definition 17. Let X denote a hidden signature. A Y-equation is a many-
sorted (conditional) (VUH, X)-equation of form: VX))l =rif Iy =r,... 01, =
Tn.

A XY-algebra A behaviourally satisfies a X -equation e of the above form
(written A Ex e) if and only if, for any assignment 8 : X — A of values in A to
the variables in X, 0(1) ~4 0(r) whenever 8(1;) ~4 0(r;) fori=1,...,n (with
0 : Tx(X) — A denoting the unique extension of the S-sorted function 6 to a
many-sorted X -homomorphism on the algebra of X-terms with variables in X ).

Definition 18. A (hidden) specification is a pair (¥, E) with X a hidden
signature and E a set of X -equations.

A XY -algebra A behaviourally satisfies a hidden specification (X, E) (writ-
ten A Ex E) if and only if A Ex e for each e € E.

Given a set E of X -equations and a X' -equation e, E is said to semantically
entail e (written E Eyx e) if and only if A Ex E implies A Ex e for any X-
algebra A.

The following properties of behavioural satisfaction will be used later on.

Proposition 19. Let A and B denote X-algebras and f : A — B denote a
Y -homomorphism. Then:

1. B Eyx e implies A Ey e for each X-equation e.
2. A Ex e implies B Ex e for each Y-equation e in visible-sorted variables.



Proof (sketch,).

1. If X denotes the S-sorted set of variables quantifying e, then any assignment
f: X — A translates along f to an assignment fof: X — B.

2. If X contains visible-sorted variables only, then any assignment 6 : X — B
is of form f o6 with 8’ : X — A. (The fact that f is the identity on visible
sorts is used here.)

We let Algp (X, E) denote the full subcategory of Alg,(X) whose objects are
XY -algebras that behaviourally satisfy E.

Proposition 20. The category Alg, (X, E) has pullbacks.

Proof (sketch). Pullbacks in Alg, (X, E) are constructed as pullbacks in the cat-
egory of many-sorted X-algebras and Y-homomorphisms.

We restrict our attention to specifications whose equations have visible-sorted
conditions, if any. Given an equation e of form (VX) Il =rifl; =r,...,l, =1,
such that l{,rq,...,l,,r, are all visible-sorted, the visible consequences of
e are of form: (VX) ¢[l] = ¢[r] if Iy = r,...,l, = r, (c[e] for short), with
¢ € Tx({z}) appropriate for [,r. Then, A Ex e if and only if A |=x c[e] for
each ¢ € Tx;({#}) appropriate for e (where |= denotes the standard satisfaction
relation of many-sorted equational logic).

Translations from one signature to another are specified using hidden signa-
ture maps.

Definition 21. Let X' and X' denote hidden signatures. A (hidden) signature
map ¢ : X — X' is a many-sorted signature morphism ¢ : (V U H,X) —
(VUH' X" such that plo= 1y and ¢(H) C H'.

Hidden signature maps ¢ : ¥ — X' induce reduct functors Uy : Algp(X') —
Algp(X). For a X'-algebra A" (X'-homomorphism f'), we write A'[5 (respec-
tively f'[x) for Uy(A") (respectively Uy (f')) whenever ¢ is clear from the con-
text.

Definition 22. Let X and X' denote hidden signatures and let ¢ : X — X'
denote a hidden signature map. A X'-algebra A’ is said to be a coextension

of a X-algebra A along ¢ if and only if there exists a X-homomorphism f :
Ug(A) = A.

Hidden algebra provides support for the reuse of specifications through the
notion of hidden specification map.

Definition 23. A hidden signature map ¢ : ¥ — X' defines a (hidden) spec-
ification map ¢ : (X, E) — (X', E") if and only if E' Es ¢(cle]) for each
e € E and each X-context ¢ appropriate for e.

If ¢ : (¥,E) » (X',E') is a specification map, the reduct functor Uy :

Alg(X") — Algp(X) induced by the signature map ¢ : X' — X' takes hidden
(X', E")-algebras to hidden (X, E)-algebras.



Definition 23 exploits the fact that the equations in E have visible-sorted
conditions, if any. A more general definition of specification maps which does
not use such an assumption can be given by requiring that A’ Ex+ E' implies
Us(A') Ex E for any X'-algebra A'.

We let Spec denote the category of hidden specifications and specification
maps. The following result allows a finite number of specifications related by
specification maps to be combined in a canonical way.

Proposition 24. Spec is finitely cocomplete.

Proof (sketch). The existence of finite colimits is a consequence of the existence
of an initial object and of pushouts. An initial object in Spec is given by the
specification with no hidden sorts and no equations, while pushouts in Spec are
computed as pushouts in the category of many-sorted specifications of the speci-
fications obtained by replacing each hidden equation by its visible consequences.

Remark 25. Tt should be noted that colimits of specifications with finite presen-
tations do not, in general, have finite presentations. However, if the signature
maps underlying the specification maps are such that any operation symbol in
the target signature which has a hidden sort from the source signature as ar-
gument sort is itself from the source signature, then finite presentations exist;
in this case, the hidden equation itself can be considered instead of its visible
consequences.

It has been shown in [GM97] that final algebras exist for hidden signatures
containing no constructor symbols. This observation has constituted the starting
point of [Cir98], where the relationship between hidden algebra and coalgebra has
been further investigated. The rest of this section recalls the results in [Cir98§]
regarding the existence of semantic constructions based on finality in hidden
algebra.

The results in [Cir98] concern hidden specifications whose underlying signa-
tures consist only of destructor symbols, and whose equations relate different
observations of the same hidden state. These conditions are formalised in the
following definition.

Definition 26. A hidden signature X is a destructor signature if and only
if (E\¥)wn =0 for anyw € V* and any h € H.

A hidden specification (X, E) is a destructor specification if and only
if X is a destructor signature, and each equation in E is quantified over one
hidden-sorted variable (and possibly some visible-sorted variables).

A first result in [Cir98] shows the existence of a one-to-one correspondence
between hidden algebras of destructor signatures and coalgebras of endofunctors
induced by such signatures. This correspondence automatically yields a final
algebra for each destructor signature, as well as a coalgebraic formulation of
behavioural equivalence on a hidden algebra as greatest bisimulation on the
associated coalgebra.



Theorem 27. For any destructor signature A, there exists a final A-algebra,
having hidden carriers:

Fan= HV[LA({Z})u -+ D,), heH

(with La({z}) C Ta({z}) consisting of those A-contexts in which the variable
z : h occurs exactly once) and hidden operations:

- 6FA((sv)vev,d:) = s, (6(2,d)), for 6 € Apw andﬂe Dy

— 0ra((sv)vev,d) = (s,)vev with s,(c) = su(c[d(z,d)]), ¢ € La({z'})v, for
0 € Apy,p and d € Dy,

Furthermore, behavioural equivalence on a A-algebra A is given by the kernel of
the unique A-homomorphism of A into Fa.

The fact that destructor specifications induce predicates on the carriers of
algebras of the underlying signatures can be used to lift the existence of final
algebras from signatures to specifications. The elements of the final algebra of a
destructor specification provide abstract descriptions of all the behaviours over
the specified destructors which satisfy the constraints imposed by the equations.

Theorem 28. Let (A, E) denote a destructor specification and let F denote a
final A-algebra. There exists a final (A, E)-algebra, having hidden carriers:

Fpn={f€Fu|lp(te(f),d)=rp(tr(f),d) for anyt € La({z})n,
(VH"YYWV1)...(VV) l=7) € E andd € Dy, x...xD,, }, he H

Corollary 29. Let (A, E) denote a destructor specification. Then, Algp (A, E)
has finite limits.

Proof. The existence of finite limits in Alg, (A, E) is a consequence of the exis-
tence of a final object (Theorem 28) and of pullbacks (Proposition 20).

The main result in [Cir98] shows the existence of cofree constructions w.r.t.
reduct functors induced by destructor specification maps. Such constructions are
then shown to provide suitable denotations for the reuse of specifications along
destructor specification maps, as well as a canonical way of reusing implemen-
tations along the underlying reuse of specifications.

Theorem 30. Let (A, E) and (A, E') denote destructor specifications and let
¢ : (A E) —» (A',E") denote a specification map. Then, the reduct functor
Uy : Algp (A", E") = Algp (A, E) has a right adjoint Cy.

The counit of the adjunction yields, for each (A, E)-algebra A, a couniversal
arrow €4 : Up(Cy(A)) = A from Uy to A. That is, C4(A) coextends A along ¢.
Furthermore, the universal property of e4 makes C4(A) final among all (A', E')-
coextensions of A along ¢. C4(A) will be called a cofree coextension of A
along ¢.



3 Semantics with Final/Cofree Families

Due to the possibility of underspecifying constructor operations, existence of fi-
nal/cofree hidden algebras does not generalise to arbitrary hidden specifications
and specification maps. However, as already suggested in [Cir98], final/cofree
families of hidden algebras can be used to characterise all possible ways of re-
solving the nondeterminism arising from underspecification. Here we prove the
existence of such constructions in hidden algebra and emphasise their suitability
as denotations for hidden specifications/specification maps.

Theorem 31. Let (¥, E) denote a hidden specification. If each equation in E
contains at most one hidden-sorted variable, then there exists a final family of
hidden (X, E)-algebras.

Proof. We define a relation ~ on hidden (X, E)-algebras and use it to partition
the category Alg, (X, E) into subcategories. Next we show that each of these
subcategories has a final object. It then follows that Alg, (X, E) has a final
family of objects.

Given (X, E)-algebras A and B, we let A ~ B if and only if there exist a
(X, E)-algebra C and X-homomorphisms f : C — A and g : C — B. Since
Algp (X, E) has pullbacks (see Proposition 20), it follows that A ~ B holds if
and only if A and B are connected in Alg, (X, E), i.e. there exists a zigzag mor-
phism from A to B in Algp (X, E) (see [Bor94], page 58). Hence, ~ determines
a partition C of Alg, (X, E) into subcategories.

We now show that each category in C has a final object. For this, we fix such
a category C. Also, we let A denote the destructor subsignature of X' (consisting
of all the sorts and all the destructor symbols of X), and let Fa denote a final
A-algebra. We define a many-sorted subset Fc of Fia as follows:

— Fcpn={f€Fan|f=fala) for some A€ |C|landa€ Ay}, heH
*FCJ,ZDU, vevV

where, for a X-algebra A, f4 : Ala— Fa denotes the unique A-homomorphism
of its A-reduct into Fa. Then, F¢ defines a A-subalgebra of Fa: given f € F¢
with f = fa(a) for some A € |C| and a € Ap, and given 6 € Apy,p with
h,h' € H and w € V*, we have: 6z, (f,d) = fa(d4(a,d)), and hence oz, (f,d) €
F¢c p for each d € D,,. Moreover, Fc can be given the structure of a Y-algebra
by arbitrarily choosing A € |C| and then letting vr (d) = fa(va(d)) for each
v € Yy withw € V*and h € H, and each d € D,,. The definition of ~ together
with uniqueness of a A-homomorphism into a final A-algebra ensure that the
definition of g, does not depend on the choice of A. Then, Fc Ex E follows
from each e € E containing at most one hidden-sorted variable: in this case, any
assignment of values in F¢ to the variables in e is obtained by post-composing
a similar assignment into some A € |C| with f4; behavioural satisfaction of e in
(a state f of) Fc then follows from its behavioural satisfaction in (a state a of)
A, with A € |C|.

Hence, Fc € |C|; furthermore, F¢ is final in C: given A € |C|, A[a has a
unique A-homomorphism f4 into Fa which, by the definition of F¢, defines a



Y-homomorphism f4 : A — F¢. Uniqueness of such a X-homomorphism follows
from uniqueness of a A-homomorphism into Fa.

It then follows that (Fc)cec is a final family of hidden (X, E)-algebras: given
any (X, E)-algebra A, say A € |C| for some C € C, there exists a unique X-
homomorphism fa : A — Fc; also, for C' # C, there exists no Y-homomorphism
of A into F¢r, as C and C' are disjoint. This concludes the proof.

Remark 32. The existence of a final family of (X, E)-algebras results in the
existence of a final object in the category Fam(Algp(X, E)) (see Remark 5),

given by (Fc)cec-
The next result states an important property of the final family.

Theorem 33. Let (¥, E) denote a hidden specification, (F;)ic; denote a final
family of hidden (X, E)-algebras and e denote an arbitrary X-equation. Then, e
is behaviourally satisfied by any (X, E)-algebra if and only if e is behaviourally
satisfied by each F;, with i € I.

Proof. The only if direction follows by each F; being a (X, E)-algebra. For the if
direction, given an arbitrary (X, E)-algebra A, existence of a X-homomorphism
from A to one of the F;s together with Proposition 19 and F; Ex e yield A Ex e.

The above result justifies the use of final families as denotations for hidden
specifications satisfying the hypothesis of Theorem 31.

The proof of Theorem 31 also provides some information about how the
algebras in the final family look like: for a hidden specification (X, E), the A-
reduct of each algebra in the final family is a A-subalgebra of a final A-algebra
(with A denoting the destructor subsignature of X'). However, in most cases, the
final family has a more concrete representation than the one above. Such cases
correspond to split specifications.

Definition 34. Given a hidden signature X with destructor subsignature A, a
hidden specification (X, E) is called split if and only if E = Ex U Ex, with
EA consisting of A-equations in one hidden-sorted variable and Ex consisting
of X -equations in no hidden-sorted variables.

The intuition behind the above definition is that F o constrains the state space
of Y-algebras (by means of equations that use A-symbols only), whereas Ex
constrains the interpretation of the constructor symbols in the state space defined
by Ea, without imposing further constraints to this state space.

Proposition 35. Let (X, E) denote a split hidden specification (E = EAUESs;),
let Fa g, denote a final (A, EA)-algebra, and let F = {F € Algp(X) | Fla=
Fagp,, F=s Es}. Then, F defines a final family of hidden (X, E)-algebras.

Proof. We must show that an arbitrary (Y, E)-algebra A has exactly one Y-
homomorphism into an F' € F. Any such homomorphism must extend the unique
A-homomorphism fa : Afa— Fa g, resulting from A[aoEa Ea on one hand,
and must preserve the X \ A-structure on the other. Hence, the only F € F



that A can have a X-homomorphism into has its ¥ \ A-structure induced by
the X'\ A-structure of A: given v € (X' \ A)yp with w € V* and h € H,
vr(d) = fa(ya(d)) for each d € D,,. Since all the equations in Ex are quantified
over data only and since A Ey FEy, it follows by Proposition 19 that F' Eyx Ey.
This concludes the proof.

Therefore, the carriers of all the algebras in the final family of a split hidden
specification coincide with the carrier of the final algebra of its destructor sub-
specification.

Finally, it is worth noting that for a hidden specification (X, E), the final
family of (X, E')-algebras may be empty — this happens precisely when the spec-
ification (X, E) is inconsistent, i.e. when there are no (X, E)-algebras.

Ezxample 36. We use a specification of one-place buffers to exemplify the con-
struction of the final family of algebras of a specification satisfying the hypothesis
of Theorem 31.

The data universe underlying this specification includes the visible sorts Bool
for the booleans (interpreted by D as {true,false}) and Val for the values to
be stored by buffers. Then, one-place buffers are specified using a hidden sort
Buffer, operation symbols:

empty : — Buffer

empty? : Buffer — Bool
val : Buffer — Val

put : Buffer Val — Buffer
get : Buffer — Buffer

and equations:
empty? (empty) = true
empty? (put(B,V)) = false
val(put(B,V)) = V if empty?(B) = true
put(B,V) = B if empty?(B) = false
get(B) = empty

We note that this specification is not split, as the last equation contains both a
hidden-sorted variable and a constructor symbol.

The final algebra of the destructor subsignature of the buffer signature (con-
sisting of all the operation symbols except from empty) has its elements defined
by mappings of form f : ({put(v) | v € Dya1} U {get})* = Dgoo1 X Dya1 (with
A* denoting the set of finite sequences of elements of A). Then, the image of
any algebra satisfying the buffer specification under the unique homomorphism
into the final algebra of the destructor subsignature of the buffer signature will
consist of mappings f of the above form, additionally satisfying the following:

1. the value of f on any sequence ending with get is (true,vo), with vo € Dya
being given by the interpretation of val(empty) in the algebra (as get(B) =
empty and empty?(empty) = true hold)

2. the value of f on a sequence containing successive puts coincides with the
value of f on the sequence obtained by eliminating all puts preceded by



another put (as put(B,V) = B if empty?(B) = false and empty?(put(B,V))
= false hold)

3. the value of f on any sequence ending with get;put(v) is (false,v) (as
empty? (put(B,V)) = false, val(put(B,V)) = V if empty?(B) = true, get(B)
= empty and empty?(empty) = true hold)

4. the value of f on the sequence put(v) is either the value of f on the empty
sequence, if this value is of form (false,v’) (as put(B,V) = B if empty?(B) =
false holds), or (false,v), if the value of f on the empty sequence is of form
(true,v’) (as val(put(B,V)) = V if empty?(B) = true and empty?(put(B,V))
= false hOld).

Hence, f is completely determined by its value on the empty sequence. Moreover,
all the values in Dg,01 X Dya1 are reached by some homomorphism, independently
of the value vo. Hence, all the algebras in the final family have their carrier given
by Dgoo1 X Dya1. The only thing that distinguishes these algebras is the value vo
defining val (empty).

A different final family of algebras would be obtained if the equation:

B=empty if empty?(B) = true

(identifying all the empty buffers up to behavioural equivalence) was added to
the specification. In this case, the carriers of the algebras in the final family
would not coincide anymore — each such carrier would be of form: {(false,v) | v
€ Dya1} U {{true,vo)}, for some (fixed) vo € Dya1, while the corresponding algebra
would interpret empty as (true,vo).

We have seen that cofree algebras provide suitable denotations for the reuse
of specifications along destructor specification maps. When specifications com-
prising both algebraic and coalgebraic structure are considered, the semantics
involves cofree families of algebras.

Theorem 37. Let ¢ : (X, E) — (X', E') denote a hidden specification map. If
each equation in E' contains at most one hidden-sorted variable, then the reduct
functor Uy : Algp (X', E") — Algp (X, E) has a right multi-adjoint.

Proof. We let A and A’ denote the destructor subsignatures of X' and X' re-
spectively, and let ¢o : A — A’ denote the restriction of the signature map
¢ : X — X' to destructor subsignatures. We fix a (X, E)-algebra A and con-
struct a cofree family of (X', E')-algebras over A. We let A denote the cofree
coextension of AJ o along ¢, with €4 : A]o— Al A as the associated couniversal
arrow.

The proof now follows the same line as the proof of Theorem 31. We consider
a category Alg, (X', E', A) whose objects correspond to (X', E')-coextensions of
A, and use a relation ~ on its objects to partition it into subcategories with final
objects. These final objects then yield a final family for Alg, (X', E', A), which
at the same time defines a cofree family of (X', E')-algebras over A.

Algp (X', E', A) is the category whose objects are pairs (A', f) with A" a
(X', E')-algebra and f: A'|x— A a Y-homomorphism, and whose arrows from



(A}, f1) to (Al f2) are X'-homomorphisms g : A} — A} such that fi = faogla
(where f; : AjJa-— Aand fy : Ay a— A denote the unique A’-homomorphisms
satisfying €4 o fi [a= fi A, respectively €4 o fo [a= fo[a). Given (4}, f1)
and (4}, f2) in Alg, (X', E' A), (A], f1) ~ (4}, f2) if and only if there ex-
ist (A, ) together with g1 : (A',f) — (A, f1), g2 i (A", f) — (A3, f) in
Alg, (X', E', A). One can easily show that Alg,(X’, E', A) has pullbacks, and
therefore (A}, fi) ~ (A4}, f2) holds if and only if (A}, fi) and (A, f2) are con-
nected in Alg, (X', E', A). Hence, ~ determines a partition C of Alg, (X', E', A)
into subcategories. Furthermore, each such subcategory C has a final object
(Ac,ea,c)- )
The hidden carriers of Ac¢ are given by:

Acp ={a€ Ay | a= f(a') for some (A', f) €|C| and o’ € A}}, he€e H

where f : Al o»— A denotes the unique A’-homomorphism satisfying €4 o fla=
fla- Then, (Ac n)rer defines a A’-subcoalgebra of A. The A'-structure of Ac
is therefore induced by the A’-structure of A. Also, the X'\ A’-structure of
Ac is induced by the X'\ A’-structure of (any of) the (X', E')-algebras in C:
vkc(ci) = f(v4/(d)) for some (A, f) € |C|, for each o' € Y with w € V*
and ' € H'. (The definition of Alg, (X', E', A) ensures that the definition of
72& does not depend on the choice of (A, f).) Also, Ac behaviourally satisfies
E', since each algebra in C does and since each equation in E’ contains at most
one hidden-sorted variable. Finally, the A-homomorphism €4 : Al po— A defines
a X-homomorphism €4 c : Ac[x— A. (The way X'\ A’-operation symbols are
interpreted in Ac is used to prove this.) Hence, (Ac,ea.c) € |C|.

We now show that (Ac,ea,c)cec defines a final Alg, (X', E', A)-family. Given
any (A’ f) € |Algp (X', E', A)|, say (A, f) € |C|with C e C, f: A ja— A
defines a X'-homomorphism ¢ : A’ — Ac, and this is the only X’-homomorphism
from A’ to Ac. From f = gla=1509/a=Ea0glar, it follows that g defines an
arrow from (A’, f) to (Ac,ea,c) in Alg, (X', E', A). Also, for C' # C, (A', f) has
no arrow into (Acr,€4,c/), as C and C' are disjoint. Hence, g : (4, f) = (Ac,€a.c)
is the only Alg,, (X', E', A)-arrow from (A4’', f) into an object of (Ac,e€a,c)cec-

The universal property of (Ac,€a c)cec as a final family together with €4 ¢ o
gls= f (following from €4 o fa= f[a) for any (A, f) € |C| then result in
(€ac : Acls— A)cec being a couniversal family of arrows from Us to A, and
therefore in (Ac)cec being a cofree family of (X7, E')-algebras over A.

Right multi-adjoints to the reduct functors induced by hidden specification
maps satisfying the hypothesis of Theorem 37 provide suitable denotations for
specification steps given by such specification maps: given an algebra A of the
source specification, the right multi-adjoint yields a family of algebras of the
target specification each of whose elements is maximal in the class of algebras
that coextend A.

For a hidden specification map ¢ : (¥, E) — (X', E'), the right multi-adjoint
to Uy yields a right adjoint to the functor Fam(Uy) : Fam(Alg, (X', E')) —
Fam(Algp (X, E)) (see Remark 7). This right adjoint can alternatively be used
as denotation for the hidden specification map ¢.



A result similar to Proposition 35 can be stated for hidden specification maps
whose codomain is a split hidden specification.

Proposition 38. Let ¢ : (X, E) — (X', E') denote a hidden specification map
such that (X',E') is a split hidden specification (i.e. E' = E'\, U E%, with
E'\, consisting of A'-equations in one hidden-sorted variable and EY%.,, consist-
ing of X'-equations in no hidden-sorted variables). Also, let ¢ : (A,0) —
(A", E'y,) denote the hidden specification map induced by the signature map
¢la: A — A'. Then, for any (¥, E)-algebra A, with €4 : Ug,(A) = Ala
as a couniversal arrow from Uy, to Ala (given by Theorem 30), the family
A={A" € Alg, (X" E") | A'la= A, ea defines a X-homomorphism from A'|s
to A, A' Esx EY%.} defines a cofree family of (X', E')-algebras over A w.r.t.
Us.

Proof. Similar to the proof of Proposition 35.

That is, if (X', E") is split, then the carriers of all the algebras in the cofree
family of (X', E')-algebras over A w.r.t. Uy coincide with the carrier of the cofree
(4A', E'y,)-algebra over A[a w.r.t. Uy, , where (A’, E!y,) denotes the destructor
subspecification of (X', E').

We conclude this section by noting that initial and respectively free families of
hidden algebras also exist (no restriction on the specifications involved is needed
in this case). Although initial families do not satisfy properties similar to the
ones stated in Theorem 33, they are relevant for characterising behaviours which
are reachable through ground X-terms. A consequence of the existence of both
initial and final families of hidden specifications is the existence of a partition of
the category of hidden algebras of such a specification into subcategories, with
each subcategory corresponding to a particular behaviour for the constructor
operations, and having an initial as well as a final representative.

4 Semantics with Multi-limits

In algebraic approaches to the specification of data types, colimit constructions
provide canonical ways of combining specifications, while free extensions of al-
gebras together with colimit (pushout) constructions yield a compositional se-
mantics for such combined specifications [EM85], [EBO93]. In hidden algebra,
colimits are used in a similar way at the specification level. However, at the
model level the interest is in coeztending (restricting) collections of behaviours,
rather than in extending collections of values, and consequently dual construc-
tions should be considered. Since categories of hidden algebras do not, in general,
have finite limits, multi-limits are the obvious candidate for such constructions —
like standard limits, they define final solutions to categorically-formulated con-
straints. Here we prove the existence of multi-limits in a general category of
hidden algebras. This then yields a canonical construction for algebras of struc-
tured specifications from algebras of their component specifications, as well as a
compositional semantics for structured hidden specifications.



Theorem 39. Let (X, E) denote a hidden specification such that each equation
in E contains at most one hidden-sorted variable. Then, the category Algp (X, E)
has finite multi-limits. Furthermore, if (X, E) is a destructor specification, then
finite multi-limits coincide with finite limits.

Proof. By Theorem 31, Alg,, (X, E) has a final family. Also, by Proposition 20,
Alg, (X, E) has pullbacks, and hence multi-pullbacks. It then follows by The-
orem 4 that Algy (X, E) has finite multi-limits. Furthermore, if (¥, E) is a de-
structor specification, the final (¥, E)-family is given by a final (X, E)-algebra
(see Theorem 27). The existence of finite limits in Alg (X, E) then follows from
the existence of a final object and of pullbacks.

Theorem 39 will now be used to prove a similar result for a general cate-
gory Alg, whose objects are hidden algebras and whose arrows correspond to
coextension relations between their source and target. One can also consider a
subcategory CoAlgp of Algp, whose objects are hidden algebras of destructor
specifications. CoAlg, will be shown to have finite limits, while Alg, will be
shown to have finite multi-limits.

Theorem 40. Let Alg, denote the category having:

— objects: pairs (P, A), with P a hidden specification whose equations contain
at most one hidden-sorted variable, and A a P-algebra;

— arrows from (P';A'Y to (P, A): pairs (¢, f), with ¢ : P — P’ a hidden
specification map, and f : A'|p— A a Xp-homomorphism.

Also, let CoAlgp denote the full subcategory of Algp whose objects are such that
their first component is a destructor specification. Then, the following hold:

1. CoAlgp has finite limits.
2. Algp has finite multi-limits.

Proof. We start by noting that an arrow (¢, f) : (P', A"y — (P, A) in Algp
corresponds to A’ coextending A along ¢ via f.

We prove 1 by viewing the category CoAlg, as the structure category of a
fibration satisfying the hypotheses of Theorem 11. We let CoSp : CoAlg, —
Spec® be given by:

— CoSp((P, A)) = P for each (P, A) € |CoAlgp| B
— CoSp({¢, f)) = ¢ for each (¢, f) €] CoAlgp, ||, with ¢ denoting the Spec®®
arrow induced by the Spec-arrow ¢.

The existence of cofree coextensions along specification maps ¢ between de-
structor specifications (see Theorem 30) makes CoSp a fibration whose cartesian
liftings along arrows ¢ € || Spec®® || are the couniversal arrows induced by the
adjunction U, - Cp, and whose reindexing functors along arrows ¢ € || Spec® ||
are the right adjoints Cy to the reduct functors Ug.

We now verify that all the hypotheses of Theorem 11 hold for CoSp. The fact
that Spec®® has finite limits is guaranteed by Proposition 24. Also, the fact that



every fibre of CoSp has finite limits follows from Theorem 29 together with the
fact that the fibres over specifications other than destructor ones are all empty.
Finally, preservation of finite limits by the reindexing functors follows from the
limit-preservation property of right adjoints.

It then follows by Theorem 11 ((i) = (ii)) that CoAlgp has finite limits.

The existence of finite limits in CoAlg, does not generalise to Alg,. For, given
an arbitrary specification (X, E), Algp (X, E) does not, in general, have all finite
limits. Also, the functor Sp : Alg;, — Spec® which extends CoSp in a natural
way is not a fibration, as cofree constructions along arbitrary specification maps
do not exist in general. Still, one can use a strategy similar to the one in the
proof of Theorem 11 to construct multi-limits in Algy,. Specifically, given a finite
diagram d : | = Algp, its multi-limit is obtained by:

1. constructing the limit of Sp od in Spec®?; this limit corresponds to a colimit
(P,(¢i : P; — P)icpy)) in Spec, where, for i € [I|, P; = Sp(d(i));

2. for each ¢ € ||, cofreely coextending A; = d(7) along ¢; to a family (A; »)nen;
of P-algebras, with (€4, n : Ainlp,— Ai)nen, as the associated couniversal
family;

3. computing the multi-limit of each diagram d’' : | — Alg,(P) additionally

satisfying:
(a) for i in |l|, d'(i) = A; n, for some n; € N;;
(b) forl:i— jin||l|], n; is determined (uniquely) by the Pj-homomorphism

fi =d(l) o€, n;Ip;, while d'(l) = fi: Ajng = Ajnyt

€A;.n;lP;
i Ailp; 4 Ai i T A
| |
l d(l) ! d'(Ore; ! d'(1)
hi ! '
v v
j Aj Ajn; [, Ajon;
€A;,n;lP;
I Algp (Pj) Algp(P)

each such multi-limit yields a family ((P, L*), ((¢s,1f))ic))kek, of cones for
d;
4. taking the union ((P, L*), ({¢;, lf»ie\ll)keu i, of all these families.

Then, the family ((P,L*), ((¢:,1¥))iei))key K, defines a multi-limit for d. Its
universal property follows from the universal properties of limits in Spec®?, cofree
families and respectively multi-limits in Alg,(P). This concludes the proof.

Remark 41. Multi-limits of diagrams in Algp can alternatively be obtained as
limits in Fam(Alg,,)) of the translations of these diagrams along the embedding
of Algp, into Fam(Algp) (see Remark 5).

Limits in CoAlgy and respectively multi-limits in Alg, provide canonical
ways of combining algebras of component specifications into algebras of struc-
tured specifications: given algebras of the component specifications, with two



such algebras being related by a coextension relation whenever their underlying
specifications are related by a specification map, the (multi-)limit construction
yields a family of algebras of the combined specification each of whose elements
is maximal in the class of algebras that consistently coextend the algebras of the
component specifications.

We now show that any algebra of a structured specification can be obtained as
the limit object of a diagram in Alg, whose objects are algebras of the component
specifications. This then yields a compositional semantics for structured hidden
specifications.

Theorem 42. Let p : 1°° — Spec denote a finite diagram having (P, (¢:)ic)) as
colimit, and let A € Algp(P). Then, ((P, A), ({¢i, La,;)))ien)) s a limit for the
diagram d : | — Algp, defined by:

= d(i) = (p(2), Alp(s)) fori € |l

= d(l) = (p(),1ay,,,) for (I : i — j) €[] (with [ :j — i denoting the 1°°
arrow induced by the l-arrow 1)

Proof (sketch). To show that ((P, A), ({¢i,1ay,;,))icn) satisties the universal
property of a limit, let ((P', A"), ((#}, fi))ic;) denote an arbitrary cone for d.
It follows immediately that (P, (¢});c)) defines a cocone for p. The universal
property of P then yields a unique specification map ¢’ : P — P’ satisfying
¢; = ¢' o ¢; for any i € |l|. Also, the homomorphisms f; : A" [,;— Ay
(with ¢ € |l]) uniquely determine a Xp-homomorphism f : A' [p— A such
that f [,;= fi for each i € |l|. Then, (¢', f) : (P',A") — (P, A) satisfies
(Bir Lay,y) 0 (8, ) = (¢}, fi) for each i € || and furthermore, this is the only ar-
row in Alg , ((P', A'), (P, A)) with this property. Hence, ((P, A), ({¢:, Lay,,))ie)))
is a limit for d in Algp.

That is, if P is a structured specification, any P-algebra is obtained as the
canonical coextension of its reducts to the components of P. It can also be proved
that any X'p-homomorphism is obtained from its reducts to the components of
P in a similar way. The following compositionality result for structured hidden
specifications can then be derived.

Theorem 43. Letp : I°° — Spec denote a finite diagram having (P, (¢; : p(i) —
P)iepy) as a colimit. Then, (Algp(P),(Uy, : Algp(P) — Algp(p(4)))ien) is a
limit for the diagram d : | — Cat given by:

— d(i) = Algp(p(2)) fori € |l
—d(l) = Uy for (1:i—j) €.

That is, the semantics of a structured hidden specification can be expressed
exclusively in terms of the semantics of its component specifications.

Finally, we note that a version of the above result in which the categories
Algp(P) and Algp(p(i)) with 4 € |I| are replaced by Fam(Alg,(P)) and respec-
tively Fam(Alg,,(p(7))) can also be formulated.



5 Relation to Other Approaches

This section discusses the relation between hidden algebra and other existing
approaches to system specification, based either exclusively on coalgebra or on
a combination of algebra and coalgebra, focusing on their expressiveness as well
as on their strengths/limitations.

Hidden algebra employs an algebraic syntax to specify system behaviour.
However, its semantics is intrinsically coalgebraic: hidden algebraic structures
can be regarded as coalgebraic structures, and taking this view yields a canoni-
cal characterisation of behavioural equivalence as coalgebraic bisimilarity, as well
as the existence of final algebras for hidden signatures of destructors. Further-
more, it is precisely the absence of any purely algebraic features that ensures
the existence of final/cofree algebras in the restricted version of hidden algebra
considered in [Cir98]: by ruling out operations with more than one hidden argu-
ment, hidden signatures can be regarded as coalgebraic signatures of observers;
and by ruling out equations with more than one hidden-sorted variable, the only
use of equations is to relate different observations of the same state.

The extension of the results regarding the existence of final/cofree algebras to
arbitrary specifications crucially depends on the triviality of the purely algebraic
aspects of hidden specifications (such as the use of structured domains for op-
erations, or the use of equations with arbitrarily many hidden-sorted variables).
The triviality of the constructor operations is crucial for the existence of final
families of algebras, ensuring uniqueness of homomorphisms into (an algebra of)
the final family. Also, the restriction to equations with at most one hidden-sorted
variable is necessary to guarantee the existence of filtered colimits, and hence
of a final family, in the category of hidden algebras of a specification containing
constructors. Results similar to the ones presented in Section 3 could not, for
instance, be formulated for recent extensions of hidden algebra [Dia98], [RG]
that accommodate arbitrary constructors, or for approaches that combine al-
gebraic and coalgebraic concepts without substantially restricting the algebraic
ones (such as for instance the approach in [Rei98] based on dialgebras).

As far as the observational aspect of state-based systems is concerned, purely
coalgebraic approaches to system specification benefit from greater generality
than hidden algebra (where the use of an algebraic syntax prevents operations
from having structured results). Particularly worth mentioning in this respect are
coalgebraic approaches involving the use of power sets or coproducts in the end-
ofunctors considered, approaches which allow the specification of nondetermin-
istic systems and respectively of systems whose structure is variable. Moreover,
exceptions can be naturally handled by approaches involving coproducts: the de-
structors empty? : Buffer — Bool and val : Buffer — Val used in Example 36
could, for instance, be replaced in such an approach by a single destructor val :
Buffer — 1 + Val, thus avoiding any redundancy in the information contained
in states.

On the other hand, apart from state observers, hidden algebra is also able to
accommodate basic state constructors, and to capture the relationship between
constructing and observing system states. Moreover, [Dia98], [RG] further in-



crease the generality of (the algebraic aspect of) hidden algebra, by accommo-
dating arbitrary constructors. Finally (and most importantly), hidden algebra
benefits from great simplicity and efficiency of proofs, as a result of using a
(finitary) algebraic syntax.

A possible limitation of hidden algebra is related to the expressive power
of equational approaches to system specification. Such approaches have been
shown in [Cor98] to be insufficiently expressive to yield a Birkhoff-style char-
acterisability result for (classes of) coalgebras. This makes them less expressive
than, for instance, coalgebraic approaches generalising modal logics (see [Mos]),
approaches which, at the expense of using infinitary sentences, are able to pro-
vide characterising formulae for states. However, equational sentences appear
to be better suited for concisely specifying properties quantified over the en-
tire state space of the system being considered, whereas coalgebraic modal logic
seems more suitable for characterising individual system states.

Finally, we briefly comment on the difference in handling nondeterminism
between hidden algebra and coalgebraic approaches involving power sets. The
form of nondeterminism captured by hidden specifications corresponds to un-
derspecification (with the behaviour of some of the constructors not being fully
determined by specifications, and with algebras resolving the nondeterminism in
specifications in particular ways), as opposed to the true nondeterminism cap-
tured by coalgebraic approaches involving power sets. However, this difference
merely reflects a difference in the kinds of systems these approaches aim to spec-
ify, namely active in the case of coalgebraic approaches involving power sets,
and respectively reactive in the case of hidden algebra.

6 Conclusions and Future Work

Hidden specifications comprising both algebraic and coalgebraic structure and
maps between such specifications have been considered, and final, respectively
cofree families of hidden algebras have been shown to provide appropriate deno-
tations for them. A canonical way of constructing algebras for structured speci-
fications from algebras of their component specifications has also been derived.
Finally, a compositionality result for structured hidden specifications has been
formulated.

The use of an algebraic syntax in conjunction with a coalgebraic semantics
restricts the form of constructors and destructors that one can specify in hidden
algebra. Other ways of combining algebra and coalgebra for objects should also
be investigated, possibly by making the separation between their algebraic and
coalgebraic aspects more explicit, in order to allow the specification of more
general behaviours.
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