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One of the most general extensions of Buchberger’s theory of Grébner bases is
the concept of graded structures due to Robbiano and Mora. But in order to
obtain algorithmic solutions for the computation of Grébner bases it needs ad-
ditional computability assumptions. In this paper we introduce natural graded
structures of finitely generated extension rings and present subclasses of such
structures which allow uniform algorithmic solutions of the basic problems in
the associated graded ring and, hence, of the computation of Grébner bases with
respect to the graded structure. Among the considered rings there are many
of the known generalizations. But, in addition, a wide class of rings appears
first time in the context of algorithmic Grébner basis computations. Finally,
we discuss which conditions could be changed in order to find further effective
Grobner structures and it will turn out that the most interesting constructive
instances of graded structures are covered by our results.
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1 Introduction

In various types of rings such fundamental ideal theoretical problems as the
decision of ideal membership and the computation of syzygy modules could be
solved in an algorithmic way using the so-called Grobner bases. Among the
more complex applications there are the computation of ideal operations, e.g.
intersection or quotient, and the computation of related objects, e.g. Hilbert
functions. So, the algorithmic computation of and division modulo Grébner
bases can be considered as the fundamental problems of computational ideal
theory. During the last more than three decades Buchberger’s algorithm became
a central tool in constructive commutative algebra and algebraic geometry (cf.



[1, 8,9, 11]) and motivated by the achievements in polynomial rings many efforts
have been spent in generalizations to other types of rings.

The concept of graded structures due to Robbiano [26] and Mora [22] pro-
vides an excellent frame for investigating Grobner bases in very general sit-
uations. What remains to do in a concrete application is to verify a series
of computability conditions which have to be fulfilled in order to obtain not
only existential statements on Grébner bases but also constructive results such
as decidability of the ideal membership problem or the computability of finite
generating sets of syzygy modules. The bottleneck of this approach is the ver-
ification and algorithmic solution of properties and problems in the associated
graded ring (conditions #i7)-v) in Definitions 2 and 3). A first approach to il-
lustrate the boundaries of constructivity in the frame of graded structures was
presented in [4]. Starting from a graded structure R = (R, T, ¢, G,in) sufficient
conditions ensuring that R is an effective Grobner structure, i.e. that $R allows
the algorithmic computation of Grobner bases, were derived. The motivation to
start from R was to maintain as much as possible generality. But it proved to
be a disadvantage that the class of rings covered by the results remains widely
hidden. Therefore, in this paper we use an opposite approach. We start with
a well-ordered monoid I' and a ring R obtained by adjunction of finitely many
elements X = {X1,...,X,,} to a ground ring (). Then we associate a natural
graded structure R to these objects and investigate the constructivity in de-
pendence on @, I', and the defining relations of R. More precisely, our aim is
to find classes of rings whose natural graded structures allow the reduction of
large subproblems to the valuation monoid I' and the ground ring @ in order to
obtain uniform algorithmic solutions.

The constructive instances of graded structures corresponding to success-
ful generalizations of Buchberger’s method can be divided in two main direc-
tions. The first considers polynomial rings R = Q[X] in finitely many variables
X = {Xi,...,X,} with more general ground rings @ than only fields. For
instance, there were investigated situations with principal ideal domains @ (cf.
[15, 24]) or, even more general, commutative rings ) in which linear equations
are solvable (cf. [1, 8, 20, 28, 30, 31]). R is a graded ring with respect to the
commutative monoid freely generated by X in all these cases. The second di-
rection of generalizations keeps @ a (skew) field but relaxes the property that R
is a graded ring. Examples are enveloping algebras of Lie algebra [7], algebras
of solvable type [16], G-algebras [2, 3], and solvable polynomial rings [17]. The
constructive instances of natural graded structures investigated here include all
the above types of rings but, in addition, also combinations of the two main di-
rections are subsumed. Of course, the extensions which do not fit in the frame
of graded structures, e.g. group rings (cf. [18, 19, 27]) and reduction rings (cf.
[10, 29]), are not covered here.

The paper is organized as follows. In Section 2 we present a short introduc-
tion to the theory of graded structures. Then we define the notion of natural
I'-graded structures R of extension rings R of () generated by a set X in Sec-
tion 3. The fourth section considers necessary conditions for ¢ and I' of an
effective left, right, or two-sided Grobner structure R. The presentation of R



by truncated Grobner bases in the free extension ring of () by X is subject of
Section 5. Sections 6 and 7 provide algorithmic solutions for problems in the
associated graded ring G of 8 which are fundamental for the computation of
Grobner bases. Assumptions ensuring ascending chain conditions for one- or
two-sided ideals of GG are considered in Section 8. Section 9 shows that the
conditions introduced so far allow the algorithmic computation of left syzygy
modules of homogeneous left ideals of the associated graded ring. In particu-
lar, this finishes the proof of the first main result of the paper which concerns
effective left Grobner structures and is summarized in Theorem 6. Section 10
deals with the two-sided case. Some effective left Grobner structures R allow
the application of a generalized Kandri-Rody/Weispfenning closure technique
(see [16]) in order to compute Grobner bases of two-sided ideals (see Theorem
7). Theorem 8 generalizes a result of Mora who was the first presenting algebras
in which Grobner bases of two-sided ideals can be computed in an algorithmic
way while, in general, one-sided ideals are even not finitely generated in these
algebras (see [23]). The aim of Section 11 is to give an impression when a graded
structure can be an effective Grobner structure though it does not satisfy the
assumptions of Theorems 6-8. We close the paper by presenting examples of
effective Grébner structures in Section 12.

Finally, we remark that ring always stands for associative ring with unit
element in this paper. In particular, also ring extensions are considered only in
this class.

2 Graded structures

Let R be a ring with unit element and (T, <) a well-ordered monoid. Let €
denote the unit element of I' and note the well-known fact that e is the minimal
element of I' with respect to <. Finally, let ¢ : R\ {0} — T be a I'-pseudo
valuation function, i.e. it satisfies

plu) = €
a+b#0 = ¢(a+b) X max(p(a),p(b))
ab#0 = ¢(ab) < p(a) o p(b)

for all invertible elements © € R and all non-zero elements a,b € R. For each
v € I the set Fy = {a | ¢(a) < v} U{0} is an additive subgroup of R and it is
easy to prove that the family § = (F,)er is a filtration of R. For each v € " we
define the quotient G, = F,/F, of F, by its subgroup 7, = {0} U .., Fy.
For a € F, we introduce the denotation [a]fC7 for the residue class a + .7?7 €eq,.
The equation

Va,b € R\ {0} : [a]z

@(a) - [ab]j}

[b]j} p(a)op(db)

(b)

determines a multiplication which makes the direct sum G = . G, a I
graded ring with unit element [1]z . G with this multiplication is called the



associated graded ring of the filtered structure (R,§). The elements u € G,
are homogeneous of degree v (denotation deg(u) = ). R and G are connected
via the function in : R — G assigning each element a € R its initial form
in(a) = [a]ﬁp(a) (by definition in(0) = 0). Let G = U, er G4 denote the set of

all homogeneous elements of G and in* : G - Ran arbitrary section of in, i.e.
in(in*(u)) = u for all homogeneous elements u € G.

Definition 1 With the above notation we call R = (R,T,¢,G,in) a graded
structure. Furthermore, a set F' C R is called a Grobner basis of the left
(right,two-sided) ideal I generated by F' if in(F') and in(I) generate the same
left (right,two-sided) ideal of G.

Definition 2 A graded structure R = (R,T', ¢, G,in) is called an effective left
(right) Grobner structure if the following conditions are satisfied:

i) the rings R and G and the ordered monoid T are effective algebraic struc-
tures,

ii) ¢ and in are computable functions, and there exists a computable section
in* of the initial mapping,

iii) the membership problem of homogeneous left (right) ideals of G given by
an arbitrary finite homogeneous generating set is decidable,

iv) for any finite set H C G of homogeneous elements there can be com-
puted a finite homogeneous generating set of the left (right) syzygy module
LSyz(H) of H, and

v) G is a left (right) noetherian ring.

Before, we consider the two-sided case we will briefly discuss the syzygy problem
of two-sided ideals. Let E denote the subring of G which is generated by the
unit element [1]z . G is left and right E-module, so the tensor product G ®g G
is a well-defined E-bimodule. In the following we consider G ® g G with its
natural G-bimodule structure. Let H = {hy,...,ht} C G be a finite subset
of G and Sy : (G ®g G)* — G denote the G-bimodule homomorphism
defined by Sg (ZT: . ajeijbj) = 3™ ajhi;bj, where 1 < i; < k and aje;;b;
denotes the tensor a; ® b; belonging to the i;-th copy of G ®g G. For any
H the kernel ker Sy forms a G-submodule of (G ®p G)*, the so-called syzygy
module Syz(H) of H. Even for noetherian rings G the G-bimodule (G ®p G)*
needs not to be noetherian, too. Therefore, a straight forward generalization of
condition ¢v) would be to strong. Mora solved the problem in [22] by asking for
the computability of a finite non-trivial homogeneous generating set of Syz(H).
A homogeneous syzygy Z;nzl ajei;b; € Syz(H) is called trivial if the element

liftp (Z;nzl aje;; bj) = E;n:1 in*(a;) fi;in*(b;) can be reduced to zero modulo
F for any set F = {f1,..., fr} C R such that in(f;) =h; (i =1,...,k). If B

together with the trivial syzygies of H generate the syzygy module Syz(H) then
B is called a non-trivial generating set of Syz(H).



Definition 3 A graded structure R = (R,T, p,G,in) is called an effective two-
sided Grobner structure if the following conditions hold:

i) the rings R and G and the ordered monoid T are effective algebraic struc-
tures,

ii) ¢ and in are computable functions, and there exists a computable section
in* of the initial mapping,

iii) the membership problem of homogeneous two-sided ideals of G given by an
arbitrary finite homogeneous generating set is decidable,

iv) for any finite set H C G of homogeneous elements there can be computed a
finite non-trivial homogeneous generating set of the syzygy module Syz(H),
and

v) G satisfies the ascending chain condition for two-sided ideals.

Let A C G be an arbitrary subring generated by the initial forms in(a) of
elements a belonging to the center of R. Obviously, A is contained in the
center of G. By Syz,(H) we denote the image of the syzygy module of H
under the natural G-bimodule homomorphism 7 : (G ®g G)*¥ — (G ®4 G)*.
Since all syzygies belonging to the intersection ker 7 N Syz(H) are trivial the
following criterion can be used for the verification of condition iv): if Syz 4 (H)
is finitely generated then Syz(H) has a finite non-trivial generating set and for
any generating set B of Syz 4 (H) the set {b | 7(b) € B} is non-trivial generating
set of Syz(H).

Let R = (R, T, p,G,in) be an effective left (right, two-sided) Grébner struc-
ture. Then for any finite subset F' C R there can be computed a left (right,
two-sided) Grébner basis of the left (right, two-sided) ideal of R generated by
F in an algorithmic way [22]. Given fR it remains to check that the conditions
i)-v) are satisfied. The large generality of the concept of graded structures is its
power but as soon as effectiveness is concerned it becomes also its main diffi-
culty. At the level of Definitions 2 and 3 no restrictions apply to the algorithms
solving conditions 4ii) and particularly 7v). This is motivation to look for sub-
classes of effective graded structures which have uniform algorithms for deciding
membership problems and computing syzygy modules of homogeneous ideals of
the associated graded ring.

3 Natural graded structures of extension rings

We consider a ring R with a finite minimal generating set X = {X1,..., X}
over some ground ring ). For an arbitrary well-ordered monoid (T', <) with a
minimal generating set Y = {Y7,...,Y,} the condition
a € F, %= ais a finite sum of terms roX;, 71 -+ Xy, T,
where ro,...,r; € Qand Y;, 0---0Y; <.

defines a [-filtration § = (F5),er of R.



Definition 4 For R, (I',<), and § as above, the T'-graded structure R =
(R,T,¢,G,in) induced by the function

p(a) :==min{y €T |a€ F,}, a€ R\ {0}
will be called the natural I'-graded structure of R.

There is a natural isomorphism between the subring ) C R and the subring
G C @ formed by all homogeneous elements of degree €, where ¢ denotes the
unit element of I'. In the following G, and @ will be identified. Then G is left
and right @-module.

We will restrict our investigations to such situations where each quotient
G, = Fy/Fy, v € T, contains an element g, which generates it as left and as
right ()-module. In particular, all G, are cyclic and for each v € I" there exists
a homomorphism o : Q — @ satisfying

gva —0(a)gy =0foralla e Q. (1)

For an arbitrary section in* of the initial mapping the elements in*(gy,), i =
1,...,n, generate R over Q. Hence, without loss of generality we may assume
that the elements of the generating set X allow a section having the property

in"(gy;) =X; (i=1,...,n).
A cyclic left @Q-module M is determined by its annihilating left ideal
anng M ={a € Q|am =0forall m e M}

up to isomorphism. We have M ~ @)/annyM. An analogous statement holds
for right @-modules M and annihilating right ideals anng M. Both left and right
annihilator are even two-sided ideals. For Q-modules M containing an element
g which generates it as left and as right module we have the ring isomorphism

Q/ann, M ~ Q/anng M (2)
and it holds
a €annp M <= ag=0 , a€anngM <= ga=0.

We remark that the restriction to cyclic modules G, is typical but not nec-
essary for Grébner basis investigations. For instance, the main theorem on
abelian groups can be applied successfully in many situations where the G, are
of higher dimension. Moller and Mora investigated such situations in [21]. Also
Hironaka’s standard bases in power series rings refer to a grading with non-
cyclic homogeneous summands (see [14])!. Pesch introduced a Grébner theory
in iterated Ore extensions (see [25]). Though, there is a natural translation of
Pesch’s method in the language of graded structures the result is not one of
the known constructive instances. The direct summands G, of the associated
graded ring are only cyclic as left (Q-modules but higher dimensional as right
(Q-modules.

INote, Hironaka’s grading is based on an order < which is not well-founded. This leads to
additional computability problems which were discussed in [5].



4 Conditions on Q and I

If the natural graded structure %R is an effective left Grébner structure then @
must be a computable, noetherian ring with decidable left ideal membership
problem. Moreover, for any finite subset H C @ a finite generating set of the
left syzygy module LSyz(H) can be computed. To sketch a proof consider the
extension left ideal G - I of the left ideal I C (). G needs not to be a flat
extension of (), for instance, the left syzygy module of G - I is not necessarily
generated by homogeneous left syzygies of degree e. But taking into account
that G is a graded ring the computability conditions carry over from G to Q.
Analogous arguments can be applied in the right and two-sided case.

Assume that the natural graded structure 2 of the monoid ring R = Q[I'] is
an effective left, right, and two-sided Grobner structure. Then also I' has to ful-
fill rather strong conditions. So, I' must be a computable well-ordered monoid.
Furthermore, it has to satisfy a generalization of Dickson’s Lemma [12], i.e. for
any infinite sequence 7y, 7va, . . . of elements of ' there exist positive integers i < j
and k < [ such that v; is a left divisor of -; and +;, is a right divisor of ;. In this
case we call I a noetherian monoid which reflects the fact that ascending chains
of left, right, or two-sided monoid ideals, respectively, will always stabilize?.
Further necessary conditions on I' are that left, right, and two-sided divisibility
of elements of I is decidable and that minimal common left, right, and two-sided
multiples of finite subsets of I" can be computed algorithmically. We remark,
that the decidability of left or right divisibility is equivalent to the seemingly
much harder condition, that the set of all decompositions into irreducible fac-
tors is finite and computable in an algorithmic way for all v € I'. This is an
easy consequence of the following facts. Any noetherian well-ordered monoid
I satisfies the left and right cancellation law and any element v # € of ' has
only a finite number of decompositions into irreducible factors. It follows that
the minimal generating set X of I is uniquely determined, finite, and consists
exactly of the irreducible elements of ' \ {e}.

5 Presentation of R by truncated Grobner bases

Let Q¢ C @ denote the subring formed by all elements of () which commute
with the elements of R, i.e. Qc = {a € Q|Vbe R : ab=ba}. Note, that at
least the subring Qu of @ generated by 1 is contained in Q¢.

For an arbitrary intermediate ring Qu C Q C Q¢ we introduce the notation
AQ for the ring (@, X) 0 which is freely generated by X in the class of extension

rings of () whose center contains Q For any such Q the ring R is a homomorphic
image of AQ. Let K4 denote the kernel ker ¢ of the natural endomorphism
Ly AQ — R acting identically on X, and identify R = AQ/KQ.

21f the graded structure of R = Q[I'] is only required to be an effective two-sided Grébner
structure then a weaker generalization of Dickson’s Lemma providing only the ascending
chain condition for two-sided ideals would be sufficient. But for simplicity we consider only
the strongest generalization which is suitable for all three types of ideals.



We fix an intermediate ring Qy C Q C Q¢ for which () is a computable Q—
module and denote A = A5, K = K4, and t = 15. A is a computable ring and,
hence, the ring R is computable iff the membership problem of K is decidable.

Let (Y) denote the word monoid freely generated by Y and ordered by a
well-founded order <4 satisfying v <4 v = v(u) < v(v) for all u,v € (Y,
where v : () — T denotes the natural homomorphism. Following the ideas
from Section 3 we associate to A a graded structure A = (A4, (Y),pa,Ga,in4)
which induces a notion of Grébner bases for arbitrary ideals of A with respect
to A. Though, in general, there is no algorithm for computing such Grébner
bases at least the existence of possibly infinite Grébner bases with respect to 2L
is ensured for any one- or two-sided ideal.

For the rest of the paper we assume that <4 has the property that for all
v € T the element g’ = in(X;, ... X;,), where Yj, ...Y;, = min{u € (V) |
v(u) = v}, generates G., as left and as right Q-module®. Furthermore, without
loss of generality, we assume the choice g, = g., v € T, for the generators
distinguished in Section 3.

Let us investigate the structure of a (possibly infinite) Grobner basis H of
K = ker ¢ with respect to 2.

According to equations (1) the kernel ker ¢ contains elements of the form

X, — Oy, (a)X, + Di,a » (3)
where a € Q and p; o =0 or p; o € R with v(pa(pia)) < v(Yi) =Y.

Consider an arbitrary t = Y;, ---Y;, € (V) and let Y}, --- Y}, = min{u €
(V) | v(u) =v(t)}. Then K contains an element

Xiy - Xy =X - Xy + g (4)
where oy € @ and ¢ = 0 or v(pa(g:)) < v(t). Furthermore, in the special case
l=Fkand j; =i1,...,Jr = ix the ideal K contains elements

ﬂtqu].l o 'le tTtq (5)

where 3; , € annp Gy and 1y = 0 or v(pa(rey)) <v(t) (¢=1,2,...).

Since @ N K = {0} there exists a Grobner bases H of K which consists
only of elements of types (3), (4), and (5). Recall, that for effective Grobner
structures R the kernel K must have decidable membership problem. Instead
we assume the stronger condition that K is given by a finite truncated Grébner
basis with respect to 2, where

Definition 5 Hyune € H is called a truncation of the Grébner basis H of
K with respect to 2 if it satisfies the following conditions: i) all elements of
H \ Hirune are of type (5), ii) v(pa(h)) 1 v(pa(h')) for all ' € Hiryne and
h € H \ Hipune, and iii) for all h € H \ Hiune there exists a divisor v € T’ of
v(pa(h)) such that v(pa(h')) t v for all h' € H \ Heune and Gy(p,n)) = Gy
for all ', where v |y | v(pa(h)).

3In particular, we assume the existence of such an order.



6 Computation of annihilating ideals of G,

Given a finite truncated Grobner basis Hyrune of K with respect to 2 it is
possible to compute a finite generating set of the annihilating left ideal annz G,
for any given v € I in an algorithmic way.

Let t =Y;, ---Y;, € (Y) be the (w.r.t. <4) minimal word such that v(t) =
Y;, 0---0Y; =r. Then we have

a € anng G, <= aX;, --- X;, is reducible modulo H , (6)

where H is an arbitrary Grobner basis of ker ¢ with respect to 2. For the rest
of this paragraph we write shortly aXj, --- X}, for the monomial X, --- X, +
}A'A,yjl...yjl € (G 4 of the associated graded ring of 2.

Consider h € H with initial form in4(h) = 8, X;; - -- X;,,. Then the product
Xy - Xy, ina(h) X5, ., -+ - Xy, is congruent to the monomial 3y, ; X, --- Xy, €
Ga, where Bu s = oy, (--- (0y;,_, (Br))), modulo the two-sided ideal generated
by the initial forms of the elements of H which belong to type (3). Obviously,
Bhr,+ € anng G, for all so-constructed elements 3+ € (). Furthermore, the right
hand side of condition (6) means that for all @ € ann; G, the homogeneous
element aX;, --- X;, € G4 must be a linear combination of homogeneous ele-
ments X;, -+~ X;,_,ina(h) Xy, ., -+ X, where h € H, pa(h) =Y;; ---Y;,., and
1 < j <m < k. Hence, the annihilating left ideal anny G, is generated by the
above elements 3y, ;.

If oa(h) tt for all h € H \ Hirune then this provides an algorithm for the
computation of a finite generating set of ann;G,. Otherwise, we first need
to complete Hipyne to a truncation Hy.,. of a Grobner basis H' of K such
that @a(h) 1t for all h € H'\ H{.,,.. From Definition 5 it follows that the
completion can be done by adding the (finitely many) elements to Hyyyne which
are remainder of a product X;, ---X; hX, ---X,,, where h € Hrune and Yy, 0
--0Yj ov(pa(h)) oY, o---0Y, =, modulo Hiunc.

For constructive G there are also computable homomorphisms o5 : Q — @
satisfying ag, = g,04(a). This allows the transformation of the truncated
Grdébner basis Hiune in an equivalent system with all coefficients right of the
products Xj, - -+ X;, . Therefore, finite generating sets of the right annihilating
ideals annr G, can be computed in a similar way.

7 Ideal membership in the associated graded
ring

Let uy,...,uk, and v be non-zero homogeneous elements of the associated graded
ring G of the natural graded structure R. Can we decide v € J, where J is the
left, respectively two-sided, ideal generated by the elements wq,...,u;? Our
previous assumptions on @, I', and K will turn out to be already sufficient to
answer this question positively.



Let degu; = ~; and degv = -y denote the degrees of the homogeneous ele-
ments ug,...,u;, and v. Then the elements can be assumed to be presented in
the form u; = a;g,,, and v = fg., where ay,...,ax, 5 € Q.

First consider left ideals J. The set M = {(w,i) | 1<i<kAwo~y; =7}
is finite and can be computed in an algorithmic way since divisibility in T’
is decidable. By constructivity of G there is an algorithm transforming each
product g,a;g.,;, (w,i) € M, in the form g,a;g,, = a, ;8,, where af, ; € Q.
Obviously,

velJ < FB,,€Q :v= Z B ,ifwti

(w,))eEM
= BeQ-(a,;)+amrG, . (7)
Now, consider the two-sided ideal generated by w1, ..., ur. We can compute

the set M = {(w,4,w') | 1 <i<kAwo~;ow =<}, which is finite according
to our assumptions. Applying similar arguments as in the left ideal case and
taking into account that ann; G is even two-sided it follows

My iw

I
’ e ’
veJ <~ Elﬁw,i,w’;j;/gw,iw’;j ‘U= § ﬂw,i,w’;jgwuigw’/gw,iw’;j
(wyi,w')eM j=1

= fB= Zﬂw7i,w/;ja;7i7w,av (8L, ;) mod ann;G
= BEeQ-(al;u)-Q+amnG, (®)
where af, ; 18y = guUifu
In conclusion we proved that the membership problem of a (left) homoge-
neous ideal of G can be reduced to the membership problem of a (left) ideal of
Q. It is well-known that the decidability of v € J? ensures the existence of an
algorithm computing a representation of v in terms of w1, ..., u; for any v € J.
However, due to its inefficiency, this general algorithm resulting from the theory
is of no practical importance. Note, our above considerations prove not only
decidability but provide also nice formulae transforming solutions of (7) and

(8), respectively, in representations of v. Let d1,...,d,, generate ann;G., as a
left ideal. We have:

B= " Boicl;+ > uid;

(w,i)EM j=1

k

— Uv= Z Z ﬂw,igw Usg

i=1 \(w,i)eM
and

w,i,w

m 1 m
_ o ' 5o
8= ﬂw,z,w’;]au;,i,w’ﬂw,i,w’;j + 5045 Hy
Jj=1

(wii,w)eM  j=1
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w,i,w

= o= Y D (Beiwte)ui (0055 (Bwry)

(wyi,w')eM  j=1

Hence, under some obvious conditions on the efficiency of calculations in @, T,
and G we obtain also efficient algorithms for the computation of representations
of v in terms of wy, ..., ug-

8 Noetherianity of G

Until now our conditions on @, I', and K influenced mainly the @-module
structure but there are still to many freedoms in the ring structure of R and G.
In particular, we have not yet enough control about the zero divisors of G.

Consider, for instance, the following extremal case. Let I' be the free com-
mutative monoid generated by Y and assume that the elements of ) commute
with the elements of I'. Moreover, let X;X; € K forall 1 < j < i < n and
K contain no element of type (5). Then G contains many zero-divisors, is not
noetherian, and the syzygy modules of even many one-sided homogeneous prin-
cipal ideals of G are not finitely generated. More generally, serious problems
may arise if ker + contains elements of type (4) whose coefficient «; is not in-
vertible modulo anny G, ;). Such kernel elements can, but need not, cause a
non-noetherian associated graded ring G.

The condition

Vy,w €Tl : GGy = Groy - 9)

is equivalent to the property that for any ¢t = Y;, ---Y;, € (Y) there exists
Xi, - X, — Xy, - - X, +¢¢ € ker ¢ of type (4) such that o is a unit modulo
annz G ). Note, in Section 5 we had to assume the existence of an order <4
such that the initial form in(Xj;, ...X;, ), where Y;, ...Y;, = min{u € (V) |
v(u) = v}, generates G as left and as right -module for all v € I'. It is easy
to observe that in case condition (9) holds any <4 has this property.

If @ and I' are noetherian and G satisfies condition (9) then the associ-

ated graded ring G is left and right noetherian. We show that any infinite

sequence of non-zero homogeneous elements u; = g, a1,u2 = gy,Q2,... Of
G contains u; € G - (u1,...,u;—1). Since T' is noetherian there exists an
infinite subsequence wu;,,u;,,... such that the degree of w;, is a right mul-

tiple of the degree of w;, for all j < k. Moreover, by condition (9) for all
J < k it follows the existence of a homogeneous element vjx such that g, =
Uj k@, - Furthermore, from the noetherianity of @) we deduce the existence
of an index [ > 1 such that «; belongs to the left ideal of () generated

by the elements «j,,...,a;_,. Consequently, there exist 8i,...,8i—1 € Q

-1 -1 ~
such that wi, = gy, i, = X2 Vri8y, Brou, = 220,25 Va6, (Br)8y, i, =

Zl,;ll (Vr10,, (Br))ui,. Hence, u; belongs to the left ideal of G' generated by
Ui, -..,u; , and it follows that G is a left noetherian ring. Starting with repre-
sentations u; = cjg,, we can prove in the same way that G is right noetherian
and, hence, noetherian.
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Next we change condition (9) in such a way that G still satisfies the ascending
chain condition for two-sided but not longer necessarily for left or right ideals.
Instead of (9) we assume now that the elements of ) commute with the elements
of X and that for all w € T and divisors v € T there exists a decomposition
v oy 04" = w such that

GpGoGpr = Gpopop (10)
for all divisor triples p' | 7', p | 7, p" | 7. We will show that any infinite
sequence u; = g, a1, Uz = gy, 02, ... of homogeneous elements of G' contains an
element u € G(uy,...,ur—1)G. Since I is noetherian it is sufficient to prove

the assertion for sequences satisfying v; | 7; for all ¢ < j. Since @ is noetherian
there exists k such that ar € Q(ay,...,ar_1)Q. For all i < k there exist
7,7 € T and B; € Q such that B;g,/uig,r = g,,@; according to the above
assumptions. Hence, uy € G(u1,...,ur—1)G and we are done.

Given a truncated Grobner basis of K condition (9) could be verified using
a simple criterion checking whether the coefficients «a; appearing in the ele-
ments of type (4) are invertible modulo annyG, ). When T' is commutative
and GYi10Yi2O"'OYik = GYilGYi2 Gsz forall 1 <i; < --- < i, <n*then
a similar criterion allows the verification of condition (10). For each pair (i, j)
such that 1 < j < ¢ < n the ideal K contains an element X; X; —a; ; X; X; +¢q; ;
of type (4) and it is obvious how to construct these elements from an arbitrary
truncated Grobner basis of K with respect to 2. Condition (10) holds iff for
each 1 < j < n we have at least one of the following two properties: i) o ; is
invertible modulo annyGy,.y; for all j < i <n or ii) a;; is invertible modulo
annzGy,oy; for all 1 <4 < j. Let v | w, an example of a suitable decomposition
w = v'oy04" can be obtained by gathering all variables of the quotient £ whose
index j satisfies condition i) in 7' and the rest in v". Now, let us consider the
opposit direction, i.e. for some 1 < j < n neither condition i) nor #) holds.
Then there exist i < j and ¢’ > j such that a;; and a;; are not invertible
modulo the corresponding annihilating left ideals and for w = Y; 0 Y; o Yy and
v =1Y; oY no decomposition fulfills condition (10).

9 Effective left or right Grobner structures

As an immediate consequence of condition (9) we obtain that the product g, g~
generates G0 as left and as right @-module for all w,y € I'. In particular,
ag,9y = 0 iff & € anny G0, and, hence, ann;G,, C annzG,0. Consequently,
the quotient ring ()/ann; Gy oy is a homomorphic image of the quotient ring
Q/annpG,. Applying similar arguments to right annihilating ideals it follows
that @/anngG .~ is homomorphic image of the quotient ring @ /anngG.,. Iso-
morphisms (2) imply the existence of ring epimorphisms p, , : Q/ann; G, —

4Note, the most important case covered by these conditions is when T is the commutative
monoid freely generated by Y and the order t <4 s <= v(t) < v(s) V (v(t) = v(s) Nt < s),
where <; denotes the lexicographical order extending Y1 <; Y2 <; ... <; Yy, can be used in
the construction of 2 (see Section 5).
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Q/ann;Gyo~ for all w,y € T'. If the epimorphism p, - is not injective then for
any w' € I also the composition p,  © pur woy : @/annp Gy — Q/anngGyrowory
is surjective but not injective. Since @) is noetherian the existence of a non-
injective epimorphims implies that the rings are not isomorphic. In conclusion
we proved that for all v € I the set

[y={wel | Gy 2z G} (11)

is either empty or a left monoid ideal of I'. The condition w ¢ I'y is equivalent
to anngpG, = annrGuoy.

Note, given a finite truncated Grébner basis Hypyne of K there is an obvious
algorithm for the computation of a finite generating set® A, of I’y for an arbi-
trary given v € I'. Roughly, the idea behind is to extract a generating set A,
from the set of all elements w € I" for which wo~ is a minimal common multiple
of v and the elements of some subset of {v(p4(h)) | b € Hirune}- The existence
of such a generating set follows immediately from Definition 5.

This can be applied to the algorithmic computation of the left syzygy module
LSyz(U) for an arbitrary finite set U of homogeneous non-zero elements of G.
We define recursively Q(U)ir1 = {7y oy | v € QU); Ay € A}, where the
initial value Q(U)o C T is the set of all minimal common right multiples of
the degrees of elements of U. Each set Q(U); is finite and can be computed
algorithmically. If Q(U); = 0 then Q(U); = 0 for all j > i. By the properties of
@ there cannot exist an infinite sequence @ /ann;G,, — @Q/ann;G,, — ---
of non-injective ring epimorphisms. Hence, there exists a natural number i
such that Q(U);, = 0 and, therefore, Q(U) = U2, QU); = U QU); is
finite and can be computed algorithmically. For arbitrary given v € Q(U)
there can be computed a finite generating set of the left syzygy module of
{§+amn;G,y | Iue U weT : gyu=90dg,} C Q/ann;G, according to the
properties of (). These generating left syzygies can be lifted to homogeneous left
syzygies of degree v of U by multiplying each of their components from the right
by the corresponding element g,. Any homogeneous left syzygy of degree v of
U is contained in the left G-module generated by the set B, formed by the lifted
left syzygies. Next, we show that any homogeneous left syzygy s = >, -, hueu
of U, whose degree is a common right multiple of the degrees of all elements of
U, belongs to the left G-module generated by the union B(U) = UvEQ(U) B,.
Let v be a maximal right divisor of degs which is contained in Q(U) and w € T
be such that w o~y = degs. According to condition (9) there exist homogeneous
elements v, such that g,v, = h, and, hence, s can be written in the form
S = gu ZueU V- ZueU vy is a homogeneous element of G of degree v and,
therefore, can be written in the form g.d, where d € (). Furthermore, g, g,d =0
since s is a left syzygy of U. Consequently, d € anng(Gaegs) 2 anng(G~). By
definition of Q(U) the inclusion is even equality and, therefore, s is a multiple
of a homogeneous left syzygy of U which has a degree contained in Q(U).

In conclusion, the set B(U) U Uy -y LSyz(U’), where B(U) = U, cqq) By
generates LSyz(U) and induction on the number of elements of U yields that

5Formally, A, = 0 is considered as generating set of ['y = 0.
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a finite homogeneous generating set of LSyz(U) can be constructed in an algo-
rithmic way.

Theorem 6 Let ) be a computable noetherian ring with decidable ideal mem-
bership and solvable syzygy problem for left, right, and two-sided ideals, and Q
a subring of the center of QQ such that QQ is a computable Q—module. Further-
more, let T' be a computable well-ordered monoid which is noetherian and allows
algorithmic computation of minimal common multiples and factorial decomposi-
tions. Finally, let R = (Q,X)Q /K be given by a finite truncated Grébner basis
Hirune of the two-sided ideal K and let the associated graded ring G belonging
to the natural graded structure R = (R, T, ¢, G,in) satisfy condition (9).
Then R is an effective left Grobner structure.

Conditions 4)-v) of Definition 2 have been verified already. O

Analogous considerations prove that any graded structure R fulfilling the
assumptions of the above theorem is also an effective right Grobner structure.
However, the assumptions could be slightly relaxed by assuming only the condi-
tions on @ and I' which refer to left (right) ideals. Among these marginal cases
there are graded structures 2R which are only an effective left (right) but not an
effective right (left) Grébner structure.

10 Effective two-sided Grobner structures

Under some additional assumptions the graded structures considered in The-
orem 6 allow also the computation of Grébner bases of two-sided ideals of R
using a generalized Kandri-Rody/Weispfenning closure technique [16].

Theorem 7 Let ) be a computable noetherian ring with decidable ideal mem-
bership and solvable syzygy problem for left, right, and two-sided ideals, and
Q a subring of the center of Q such that ) is a computable Q module. Fur-
thermore, let I' be a computable well-ordered commutative monoid which is
noetherian and allows algorithmic computation of minimal common multiples
and factorial decompositions. In addition, let there exist computable functions
E:QXQ — Q and ky : Y x Q — Q satisfying a - 8 = k(a,f) - a respec-
tively a - gy, = ky (Y, ) - gy, -« for all o, € Q and i = 1,...,n. Finally, let
R = (Q,X)Q /K be given by a finite truncated Grobner basis Hyune of K and
the associated graded ring G of the natural graded structure R = (R,T, p,G,in)
satisfy condition (9).

Then R is an effective two-sided Grobner structure and each two-sided Grob-
ner basis F of an arbitrary two-sided ideal I C R is also a left and a right
Grébner basis of I.

It remains to consider the solution of the syzygy problem. Note, Qisa subring
of the center of R and the initial mapping acts identically on Q. Therefore,
according to the criterion presented behind Definition 3 it suffices to show that
for an arbitrary finite set U of non-zero homogeneous elements of G there can
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be computed a finite homogeneous generating set of SyzQ(U) in an algorithmic
way.

For arbitrary o €  and u = g, € U, where 8 € () and v € I, there can be
computed the syzygy sq,u = €& —dq,u€y € SyzQ(U), where dq,., = k(8,04(a)).
In a similar way there can be computed a syzygy sy;,u = €u0y; — Oy;,ufy;€u €
SyzQ(U) for given i = 1,...,n and u € U. sy, , is uniquely determined up to
a trivial summand Bgy;e,, where 3 € ann;Gy;oy. Since Hyrync is finite the set
Z ={(€eQ|Xi{—o0v;(\)X; +pic € Hirunc} of all highest coefficients of the
elements of type (3) contained in the truncated Grobner basis Hypunc is finite,
too. Moreover, Z generates () as a ring over Q So, we can compute finite sets
Bz ={s¢cu | ((;u) € ZxU} and By = {sy,, | (Yi,u) €Y x U}. Next we
will show that Bz U By ULSyz(U) ® 1 generates Syzg (U).

We have e, (1 -+ Cp = (S¢y,u + ¢y u€u) G2 - - - G and by induction on k it fol-
lows s¢;...¢,,u € GBzG for all w € U and all products (; - - - i, where (1,...,(; €
Z. Hence, squ € GBzG for all a € @ and v € U. Next, we will prove
the existence of a syzygy S,,u = eufy — 0yufyeu € G(Bz U By)G for all
v € T and u € U by induction on the length k of an arbitrary representation
v =1Y; 0---0Y; . The initial step k = 1 is obvious. Consider k¥ > 1 and set 7' =
Y 0---0Y;, . We have eygyoy;, = €ulyi, 87 = Sy, _uly @10y, ulY;, €uly Q
for some a € ) and by induction hypothesis there exists s, ., = eygy —
67’,ugy’€u € G(BZ U By)G Hence, Euly'oY;, = 8Y;, ufy + 5Yik,uGYik Syt +
Ov;, uy;, 0y ,uly €u® = Sy, uly @ + 0y, wly;, Sy ,u@ + 0y uly;, 0y uly Sa,u +
dv;, uBvi, 0+ ,u8y 0a,u€y. This finishes the induction proof. As an immediate
consequence we obtain that for any homogeneous syzygy s € Syz,(U) there ex-
ists a homogeneous left syzygy s’ € LSyz(U) such that s—s'®1 € G(BzUBy)G.
Therefore, Bz UBy ULSyz(U) ® 1 generates Syz, (U). Application of Theorem
6 yields that R is an effective two-sided Grobner structure.

From the above investigations it follows that for any homogeneous elements
u,v € G there exists a homogeneous element w € G of the same degree as v
such that uv = wu. Hence, any homogeneous left ideal of G is even two-sided.
Therefore, left and two-sided initial ideal coincide for any two-sided ideal I C R.
Moreover, the left and the two-sided ideal generated by the initial parts of a
subset of I are equal. Consequently, any Grobner basis of the two-sided ideal
I is also a Grobner basis of I considered as left ideal according to Definition 1.
Analogous arguments apply to I considered as a right ideal. a

The requirement of the existence of the functions k£ and ky might seem
rather technical. It could be replaced by one of the stronger conditions that @
is a skew field or ) = Q In fact these both situations are the most interesting
applications.

At the end of the previous section we mentioned marginal cases of Grébner
structures which are effective only with respect to one side. An interesting open
question is whether relaxing the conditions on @ there can be obtained graded
structures which are an effective Grébner structure with respect to two-sided
and left (or right) ideals but not with respect to right (or left) ideals. Outside
the theory of graded structures such a behavior is known from the investigations
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of Madlener and Reinert in group rings (see [19]).

Roughly, the idea behind the Kandri-Rody/Weispfenning closure technique
consists in computing left Grobner bases and checking whether the generated
left ideal is closed under multiplication with variables from the right. If this
is not the case then the non-zero remainders are added to the basis and the
cycle of left Grobner basis computation and saturation with right multiples is
repeated. In our situation the generating set Bz U By U LSyz(U) ®4 1 of the
syzygy module allows a similar procedure. The syzygies contained in Bz and
By represent the multiples considered in the saturation step of the left Grébner
basis.

Mora considered a class of non-commutative algebras which allow the com-
putation of Grébner bases for two-sided but not necessarily for one-sided ideals
(see [23]). The reason is that the associated graded ring satisfies the ascend-
ing chain condition for two-sided but not for one-sided ideals. The following
theorem based on condition (10) generalizes Mora’s result.

Let v' oy o~" = w and +',v" satisfy the assumptions of condition (10).
In particular, we have GG, = G0, and Go,Gy = G,. Applying similar
arguments as in the previous section to arbitrary w',w” € T' we obtain an
epimorphism sequence G, = G40y = Gy — Gurowow. Hence, for all v € T’
the set R

I={wel : v|wAG, Z2G,} (12)

is either empty or a monoid ideal of I'. A finite generating set A, of fﬂ, can be
computed using a truncated Grébner basis of K.

Theorem 8 Let () be a computable noetherian commutative ring with decid-
able ideal membership and solvable syzygy problem. Furthermore, let T' be a
computable well-ordered commutative monoid which is noetherian and allows
algorithmic computation of minimal common multiples and factorial decompo-
sitions. Finally, let R = (Q,X)q /K be given by a finite truncated Grébner
basis Hyrune of the two-sided ideal K and let the associated graded ring G of the
natural graded structure R = (R, T, ¢, G,in) satisfy condition (10).
Then R is an effective two-sided Grébner structure.

It remains the verification of conditions iv) and v) of Definition 3.

First, we will show that any infinite sequence u; = g, a1, u2 = g, 2,... of
homogeneous elements of G' contains an element uy € G(u1,...,ur—1)G. Since
I" is noetherian it is sufficient to prove the assertion for sequences satisfying
vi | 7; for all i < j. By noetherianity of @) there exists k such that ay €
(aq,...,0,-1)Q. By condition (10) it follows the existence of +},v) € I' and
Bi € Q such that 8,919,087 = g, foralli < k. Hence, uy € G(uy,...,up1)G
and, consequently, G satisfies the ascending chain condition for two-sided ideals.

For the rather technical and lengthy proof of condition iv) we refer to [5,
Theorem 5.23]. Here, we will sketch only the main ideas. For any ¥; € YV
and u € U there exists a homogeneous syzygy sy; » = y; u€u0y; — Bv;,ufy;€u €
Syzg(U), where at least one of the elements avy; v, By;,u € @ is a unit. Let By =
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{sviu | (Yi;u) € Y x U}. For any homogeneous syzygy s = Zle viey, w; €
Syz(H) whose degree is a multiple of the degrees of all u € U there exists a

homogeneous syzygy s’ = gs (Ele vgeuiwg) gs such that s — s’ € GByG and

deg(v}) o deg(u;) o deg(w}) is a minimal common multiple of the degrees of the
elements of U. Let (U)o be the set of all minimal common multiples of the

degrees of u € U and define recursively Q(U)i+1 = U, eq(u), Ay- Then the set

QU) = Ui2, QU); is finite and can be constructed algorithmically. Finally,
the set By U, cqq) Cy YUy cu Syzg(U'), where the O, are finite generating
sets of the (J-modules of all homogeneous syzygies of U of degree v, generates
Syzg(U). m|

11 Open problems

Before we could prove that a natural graded structure B = (R,T, ¢, G,in) is
an effective Grobner structure we had to introduce a series of conditions on the
objects @, I', and K. In this section we deal with the question which condi-
tions could be relaxed without loosing the effective Grébner structure property.
For natural graded structures 8 which are left, right, and two-sided Grébner
structure our conditions on () are necessary and cannot not be relaxed in any
way. If R is required to be an effective Grobner structure with respect to only
one side, left, right, or two-sided, then the necessity of the conditions follows
only for ideals of ) belonging to the same side. Under the condition that the
natural graded structure of the monoid ring @ (T') has to be an effective Grobner
structure similar statements apply to the assumptions on I'. In marginal cases
with many homogeneous summands of G being the zero module, e.g. if G, =0
for all v € '\ {€}, the conditions on I' could be relaxed. But in such situations
the linkage between the ring R and the monoid I' is so weak that often a graded
structure of R with respect to a suitable submonoid of I' satisfying our assump-
tions can be used. Open questions are when such a submonoid exists and how
it can be constructed. Moreover, special situations with ground rings @ and
valuation monoids I' satisfying only the conditions corresponding to ideals of a
fixed side remain open for future investigations.

In Section 3 we gave examples showing that the restriction to graded struc-
tures whose associated graded ring has cyclic homogeneous summands is serious.
But, in spite the described examples, this condition is very typical for Grébner
basis investigations. Even Pesch makes use of it by mainly working with the
left module structure. Nevertheless, there remains an open research direction.

The condition that R has to be given by a finite truncated Grébner basis of
the kernel K of a homomorphism ¢ : (@, X)s — R and conditions (9) and (10)
are the most interesting restrictions and will be discussed now.

Assume, there exists an infinite sequence 7;,72,... € I' of right multiples
such that G,,G~; ¢ G,,,,, where ;41 = w; 0o, for all i = 1,2,.... Then the
left ideal G - (g+, , Gvs, - - -) is not finitely generated. Hence, such a sequence can
not exist in the associated graded ring of an effective left Grébner structure.
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Though, an effective left Grobner structure need not necessarily to satisfy con-
dition (9) the above observation shows that the cases lying outside are rather
marginal.

In the following, we will consider the condition that K can be presented
by a finite truncated Grobner basis. If the ring @ is finitely generated over Q
and there exists a finite confluent system of rewriting rules for I' then there are
Grobner bases of K which contain only finitely many elements of types (3) and
(4) and it remains to consider the number of elements of type (5). For effective
left Grobner structures there can be computed a finite homogeneous generating
set of the left syzygy module of the principal left ideal generated by g, € G for
any given v € I'. The coefficients of the left syzygies of degree v generate the
annihilating left ideal of the homogeneous summand G, of the associated graded
ring and, hence, the annihilating left ideals anny; G, are computable for any
effective left Grobner structure R satisfying the above assumptions. Moreover,
all w € T which are minimal right multiples of vy with the property that there
exists a non-injective epimorphism from G, onto G, appear among the degrees
of the left syzygies in an arbitrary homogeneous generating set of LSyz (G - g ).
Hence, if (9) holds then a finite generating set A, of the left monoid ideal
(or empty set) I'y defined in (11) can be computed in an algorithmic way for
any given v € I'. If G, =2 G, for some proper divisor w of v € ' then no
elements of type (5) with highest degree v need to be contained in a truncated
Grébner basis. Hence, we have to compute the set of all v € T such that
G, 2 G, for all proper divisors w. Let Q({1}) be defined as in Section 9 before
Theorem 6. Q({1}) can be computed in an algorithmic way since it requires only
computations of generating sets A.. Moreover, Q({1}) is just the set of degrees
where “essentially new” elements of type (5) can appear in a Grobner basis of
K. For each of the finitely many elements v € Q({1}) there can be computed a
finite generating set of annyG,. A possible set of highest coefficients of Grébner
basis elements of type (5) with highest term X, --- X, , where Y3, ---Y;, € (V)
is the minimal representant of v, can be found among the generators of ann;G,.
Note, we proved not only the existence of a finite truncated Grébner basis of K
but showed also how its initial forms can be constructed.

Similar considerations can be done in the two-sided case. In fact, the re-
maining gaps are larger than here, but, the most interesting cases are again
covered by our Theorems.

12 Examples

Classical examples such as polynomial rings, enveloping algebras of Lie alge-
bras, or algebras of solvable type satisfy the assumptions of Theorem 7 if we
consider only computable coefficient fields. Moreover, Theorem 7 applies also to
polynomial rings over computable Euclidean rings or, more general, computable
commutative rings in which linear equations are solvable. But generalizing both
types of examples we can also consider rings R = (@), X), /K, where @ is a com-
putable commutative ring in which linear equations are solvable and K has a
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Grobner basis consisting of an element X; X;+e; ;. X; X;+p; j, where e; ; is a unit
of @ and p; ; has leading term smaller than X;X;, for each pair 1 <¢ < j <n.
The natural graded structure of R with respect to the free commutative monoid
I’ generated by Y is similar to that used in algebras of solvable type but with a
more general coefficient domain.

Note, the assumption that K can be represented by a Grobner basis of the
form {X;X; +e;; X;X; +pij | 1 <i<j<n}is (implicitly) used in almost
all investigations of Grobner bases in non-commutative rings to which a N"-
graded structure can be associated (cf. [7, 13, 16, 17]). Additional Grébner
basis elements first appeared in [2]. Here, we are faced with new problems in
comparison to [2] which arise from dropping the assumption that the coefficient
ring has to be a subfield of the center of R. The following examples will show
some typical new situations where our results are applicable. Theorems 6-8
assumed that a finite truncated Grobner basis of K with respect to 2 is given
a priori. However, also if R = A/K is given by an arbitrary finite generating
set of K there is a good chance to compute a truncated Grobner basis of K.
There has to be calculated a (truncated) Grobner basis in a free extension
ring A = (@, X)y- The decision of ideal membership and the computation of
syzygy modules of finitely generated (X )-homogeneous ideals requires only the
application of simple well-known algorithms for (X)-graded rings. Hence, the
general method for computing Grébner bases in graded structures becomes semi-
algorithmic for free extension rings A, i.e. if there exists a finite Grobner basis
of K then it will be computed in finite time. If K has no finite Grébner basis
with respect to & but a finite truncation then eventually the Grobner method
will have computed such a truncation. However, it is a (probably undecidable)
problem to realize that the algorithm can be stopped. The examples were
calculated using the special computer algebra system FELIX (see [6]).

Example 1: Consider the ring A = Z (z,y, 2) = (Z,{z,y, 2}); which is freely
generated by {z,y,z} in the class of all extension rings of the integers 7.6
Let (x,y,z) denote the word monoid and I' the monoid of commutative terms
in the variables {z,y,z}. We order T" by the total degree order < extending
z <y < z and (x,y,z) by the well-founded order <4 which compares the
words first (forgetting non-commutativity) according to < and second applies
the lexicographical order <; extending x <; y <; z for breaking ties. Let A
denote the natural (z,y, z)-graded structure of A and consider the two-sided
ideal K C A generated by {yz — 3zy — 3z, za —2x2+y, zy —yz — x}. During the
computation of a Grébner basis of K with respect to 2 the following elements
are constructed:

yr —3zy — 3z,2x — 2xz + Y, 2y — Yz — T,

6yz + 3z,9x2 — 3y, 12xy + 92,12y — 2722, 2% + 2y° — 62°

6Note, the condition that Z is contained in the center of A is trivially satisfied since only
rings with unit element are considered.
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923 — 30y — 21z,4y> + 9y2> + 3y, 4xy® + 3yz + 3z, 3zyz — 3y> + 922,
3yz® — 90xy? — 3x22 — 3yz — 362, 2y 2 — 3xy® + 3yz, 2y’z — 3y® — 3xz,
y323 — 2zyt — 3y32 — 3y2® + xy® — 3yz,
23z + 3yt — 6222wyt + o8 + u32% + 2% — 3y22, eyt — b + 3yts?,
Reducing (zy’~'z+pj_1)y modulo this intermediate basis we observe by induc-
tion that K contains an element of the form xy’z + p;, where v a(p;) <4 zy’ 2,
for any positive integer j > 1. In fact, only such elements are necessary in order
to complete the above intermediate basis to an infinite Grobner basis of K with
respect to 2 and a finite Grébner basis does not exist. But according to Defini-
tion 5 the above set is already a truncated Grébner basis of K with respect to 2
and even the elements of the last row can be removed. The ring R = A/ K satis-
fies the assumptions of Theorem 8 and therefore, the natural I'-graded structure
of R is an effective two-sided Grébner structure. The assumptions of Theorem

6 and 7 are violated since the coefficient of zy in yxr — 3zy — 3z is not invertible
modulo the annihilating ideal ann; G, = 12Z.

Example 2: Consider the graded structure 2 from the previous example and
let K be the two-sided ideal generated by the elements yx —3zy — 2,z —xz+y,
and zy—yz—xz. We are interested in the natural I'-graded structure of R = A/ K.
The generators look similar to the defining relations of an algebra of solvable
type. But even if we allow rational coefficients the behavior of our ring is much
different since the terms z'y72* (i,7,k = 0,1,2,...) are linearly dependent. The
elements
yr —3xy — 2,2 —xZ + Y, 2y — Yz — T,

8zy + 2z,4xz — 2y, dyz + 2z,
227 — 2y%, 4y? — 22%,22% — 2y

form a finite Grobner basis of the two-sided ideal K C Z (z,y, z) with respect
to 2 from example 1.

Since ann; G,y = 8Z, we have g,y = g0y = 39,0, in the associated graded
ring of the natural I-graded structure SR of R. Hence, condition (9) holds.
The other assumptions of Theorem 7 are obvious. Consequently, finite Grobner
bases with respect to SR can be computed using the algorithms presented in this
paper for arbitrary ideals of R.

Example 3: Let W = (Q {p,q})o/(qp — pg — 1) and consider the ring R =
W, {z,y})o /K, where K ist the two-sided ideal of (W, {z,y}), given by the
Grobner basis

&p — qx, xq + pr,yp — qY,yq + Py, yxr — 2y +y°

with respect to the natural graded structure induced by the well-ordered monoid
({(x,y),=<4a), where <4 compares words by first forgetting non-commutativity
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and applying the lexicographical order < of the free commutative monoid which
extends y < x and second breaking ties by comparing the non-commutative
words with respect to the lexicographical order extending =z <; y. Note, not all
coefficients but only the rational numbers commute with the variables of the
ring R. Functions ¥ and ky as required in Theorem 7 do not exist but at least
the assumptions of Theorem 6 are fulfilled in this situation. For this reason
finite Grobner bases of left ideals I C R can be computed using the algorithms
presented in this paper. Consider the homogeneous element u = pg,2, of the
associated graded ring G of R. Since up — au = (—pg — ap)g,2, # 0 for all
a € W the two-sided ideal generated by w is strictly larger than the left ideal
generated by u. Hence, homogeneous left ideals of G need not to be two-sided
and, therefore, two-sided Grébner bases need not to be left Grobner bases.
However, though neither Theorem 7 nor Theorem 8 is applicable it remains an
open question whether the natural graded structure of R is an effective two-sided
Grobner structure.

Example 4: Once again, let us consider the graded structure 2 from example
1 and let K be generated by yz — 3zy, zz +y?%, 2y —yz+22. Since R = A/K is a
N-graded ring it is easy to observe that ann;G,. and anny G,y are zero ideals.
Therefore, the coefficient 3 of xy in the first generator and the coefficient 0 of
zz in the second generator are both not invertible modulo the corresponding
annihilating left ideal and, hence, neither Theorem 6 nor Theorem 7 can be
applied to R. The elements
yr — 3zy, 2z + y*, 2y — yz + 27,
2y + y?z — 2yz? + 223,
14y2® — 2824 y?2% — 4y2® + 624, 272y’ 2 — Sdayz® + 54z + yt,
142°,2yzt — 62°,y' 2, y°, 2zy2> — daz?, 2Ty,
225, 2220

form a Grébner basis of K with respect to 2. Consider arbitrary monoid ele-
ments w = xy/2¥ and y = z¥ y/ 2* such that v | w. Then condition (10) holds
for the decomposition 7' o yo~", where v/ = 2'~% and 7" = y/ =7 2z*=* . Hence,
the assumptions of Theorem 8 are satisfied and the natural I'-graded structure
R of R is an effective two-sided Grobner structure. A finite Grébner basis can
be computed for any two-sided ideal of R using the algorithms presented in this
paper.

Note, R does not satisfy the ascending chain condition for left ideals, e.g. the
left ideal R - (zz,72%,723,...) has no finite generating set. Hence, it is proved
that R is not an effective left Grébner structure.
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