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One of the most general extensions of Buchberger's theory of Gr�obner bases is
the concept of graded structures due to Robbiano and Mora. But in order to
obtain algorithmic solutions for the computation of Gr�obner bases it needs ad-
ditional computability assumptions. In this paper we introduce natural graded
structures of �nitely generated extension rings and present subclasses of such
structures which allow uniform algorithmic solutions of the basic problems in
the associated graded ring and, hence, of the computation of Gr�obner bases with
respect to the graded structure. Among the considered rings there are many
of the known generalizations. But, in addition, a wide class of rings appears
�rst time in the context of algorithmic Gr�obner basis computations. Finally,
we discuss which conditions could be changed in order to �nd further e�ective
Gr�obner structures and it will turn out that the most interesting constructive
instances of graded structures are covered by our results.

Key words: ideal membership problem, e�ective graded structure, Gr�obner ba-
sis, Buchberger's algorithm

1 Introduction

In various types of rings such fundamental ideal theoretical problems as the
decision of ideal membership and the computation of syzygy modules could be
solved in an algorithmic way using the so-called Gr�obner bases. Among the
more complex applications there are the computation of ideal operations, e.g.
intersection or quotient, and the computation of related objects, e.g. Hilbert
functions. So, the algorithmic computation of and division modulo Gr�obner
bases can be considered as the fundamental problems of computational ideal
theory. During the last more than three decades Buchberger's algorithm became
a central tool in constructive commutative algebra and algebraic geometry (cf.
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[1, 8, 9, 11]) and motivated by the achievements in polynomial rings many e�orts
have been spent in generalizations to other types of rings.

The concept of graded structures due to Robbiano [26] and Mora [22] pro-
vides an excellent frame for investigating Gr�obner bases in very general sit-
uations. What remains to do in a concrete application is to verify a series
of computability conditions which have to be ful�lled in order to obtain not
only existential statements on Gr�obner bases but also constructive results such
as decidability of the ideal membership problem or the computability of �nite
generating sets of syzygy modules. The bottleneck of this approach is the ver-
i�cation and algorithmic solution of properties and problems in the associated
graded ring (conditions iii)-v) in De�nitions 2 and 3). A �rst approach to il-
lustrate the boundaries of constructivity in the frame of graded structures was
presented in [4]. Starting from a graded structure R = (R;�; ';G; in) su�cient
conditions ensuring that R is an e�ective Gr�obner structure, i.e. that R allows
the algorithmic computation of Gr�obner bases, were derived. The motivation to
start from R was to maintain as much as possible generality. But it proved to
be a disadvantage that the class of rings covered by the results remains widely
hidden. Therefore, in this paper we use an opposite approach. We start with
a well-ordered monoid � and a ring R obtained by adjunction of �nitely many
elements X = fX1; : : : ; Xng to a ground ring Q. Then we associate a natural
graded structure R to these objects and investigate the constructivity in de-
pendence on Q, �, and the de�ning relations of R. More precisely, our aim is
to �nd classes of rings whose natural graded structures allow the reduction of
large subproblems to the valuation monoid � and the ground ring Q in order to
obtain uniform algorithmic solutions.

The constructive instances of graded structures corresponding to success-
ful generalizations of Buchberger's method can be divided in two main direc-
tions. The �rst considers polynomial rings R = Q[X ] in �nitely many variables
X = fX1; : : : ; Xng with more general ground rings Q than only �elds. For
instance, there were investigated situations with principal ideal domains Q (cf.
[15, 24]) or, even more general, commutative rings Q in which linear equations
are solvable (cf. [1, 8, 20, 28, 30, 31]). R is a graded ring with respect to the
commutative monoid freely generated by X in all these cases. The second di-
rection of generalizations keeps Q a (skew) �eld but relaxes the property that R
is a graded ring. Examples are enveloping algebras of Lie algebra [7], algebras
of solvable type [16], G-algebras [2, 3], and solvable polynomial rings [17]. The
constructive instances of natural graded structures investigated here include all
the above types of rings but, in addition, also combinations of the two main di-
rections are subsumed. Of course, the extensions which do not �t in the frame
of graded structures, e.g. group rings (cf. [18, 19, 27]) and reduction rings (cf.
[10, 29]), are not covered here.

The paper is organized as follows. In Section 2 we present a short introduc-
tion to the theory of graded structures. Then we de�ne the notion of natural
�-graded structures R of extension rings R of Q generated by a set X in Sec-
tion 3. The fourth section considers necessary conditions for Q and � of an
e�ective left, right, or two-sided Gr�obner structure R. The presentation of R
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by truncated Gr�obner bases in the free extension ring of Q by X is subject of
Section 5. Sections 6 and 7 provide algorithmic solutions for problems in the
associated graded ring G of R which are fundamental for the computation of
Gr�obner bases. Assumptions ensuring ascending chain conditions for one- or
two-sided ideals of G are considered in Section 8. Section 9 shows that the
conditions introduced so far allow the algorithmic computation of left syzygy
modules of homogeneous left ideals of the associated graded ring. In particu-
lar, this �nishes the proof of the �rst main result of the paper which concerns
e�ective left Gr�obner structures and is summarized in Theorem 6. Section 10
deals with the two-sided case. Some e�ective left Gr�obner structures R allow
the application of a generalized Kandri-Rody/Weispfenning closure technique
(see [16]) in order to compute Gr�obner bases of two-sided ideals (see Theorem
7). Theorem 8 generalizes a result of Mora who was the �rst presenting algebras
in which Gr�obner bases of two-sided ideals can be computed in an algorithmic
way while, in general, one-sided ideals are even not �nitely generated in these
algebras (see [23]). The aim of Section 11 is to give an impression when a graded
structure can be an e�ective Gr�obner structure though it does not satisfy the
assumptions of Theorems 6-8. We close the paper by presenting examples of
e�ective Gr�obner structures in Section 12.

Finally, we remark that ring always stands for associative ring with unit
element in this paper. In particular, also ring extensions are considered only in
this class.

2 Graded structures

Let R be a ring with unit element and (�;�) a well-ordered monoid. Let �
denote the unit element of � and note the well-known fact that � is the minimal
element of � with respect to �. Finally, let ' : R n f0g ! � be a �-pseudo
valuation function, i.e. it satis�es

'(u) = �

a+ b 6= 0 =) '(a+ b) � max('(a); '(b))

ab 6= 0 =) '(ab) � '(a) � '(b)

for all invertible elements u 2 R and all non-zero elements a; b 2 R. For each

 2 � the set F
 = fa j '(a) � 
g [ f0g is an additive subgroup of R and it is
easy to prove that the family F = (F
)
2� is a �ltration of R. For each 
 2 � we

de�ne the quotient G
 = F
= bF
 of F
 by its subgroup bF
 = f0g [
S

0�
 F
0 .

For a 2 F
 we introduce the denotation [a] bF
 for the residue class a+ bF
 2 G
 .

The equation

8a; b 2 R n f0g : [a]
bF'(a)

[b]
bF'(b)

= [ab]
bF'(a)�'(b)

determines a multiplication which makes the direct sum G =
L


2�G
 a �-
graded ring with unit element [1]

bF�
. G with this multiplication is called the
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associated graded ring of the �ltered structure (R;F). The elements u 2 G


are homogeneous of degree 
 (denotation deg(u) = 
). R and G are connected
via the function in : R ! G assigning each element a 2 R its initial form
in(a) = [a]

bF'(a)
(by de�nition in(0) = 0). Let Ĝ =

S

2�G
 denote the set of

all homogeneous elements of G and in� : Ĝ! R an arbitrary section of in, i.e.
in(in�(u)) = u for all homogeneous elements u 2 G.

De�nition 1 With the above notation we call R = (R;�; ';G; in) a graded
structure. Furthermore, a set F � R is called a Gr�obner basis of the left

(right,two-sided) ideal I generated by F if in(F ) and in(I) generate the same

left (right,two-sided) ideal of G.

De�nition 2 A graded structure R = (R;�; ';G; in) is called an e�ective left
(right) Gr�obner structure if the following conditions are satis�ed:

i) the rings R and G and the ordered monoid � are e�ective algebraic struc-

tures,

ii) ' and in are computable functions, and there exists a computable section

in� of the initial mapping,

iii) the membership problem of homogeneous left (right) ideals of G given by

an arbitrary �nite homogeneous generating set is decidable,

iv) for any �nite set H � G of homogeneous elements there can be com-

puted a �nite homogeneous generating set of the left (right) syzygy module

LSyz(H) of H, and

v) G is a left (right) noetherian ring.

Before, we consider the two-sided case we will brie
y discuss the syzygy problem
of two-sided ideals. Let E denote the subring of G which is generated by the
unit element [1]

bF�
. G is left and right E-module, so the tensor product G
E G

is a well-de�ned E-bimodule. In the following we consider G 
E G with its
natural G-bimodule structure. Let H = fh1; : : : ; hkg � G be a �nite subset
of G and SH : (G 
E G)k ! G denote the G-bimodule homomorphism

de�ned by SH

�Pm

j=1 ajeij bj

�
=
Pm

j=1 ajhij bj , where 1 � ij � k and ajeij bj

denotes the tensor aj 
 bj belonging to the ij-th copy of G 
E G. For any
H the kernel ker SH forms a G-submodule of (G 
E G)k, the so-called syzygy

module Syz(H) of H . Even for noetherian rings G the G-bimodule (G 
E G)k

needs not to be noetherian, too. Therefore, a straight forward generalization of
condition iv) would be to strong. Mora solved the problem in [22] by asking for
the computability of a �nite non-trivial homogeneous generating set of Syz(H).
A homogeneous syzygy

Pm

j=1 ajeij bj 2 Syz(H) is called trivial if the element

liftF

�Pm

j=1 ajeij bj

�
=
Pm

j=1 in
�(aj)fij in

�(bj) can be reduced to zero modulo

F for any set F = ff1; : : : ; fkg � R such that in(fi) = hi (i = 1; : : : ; k). If B
together with the trivial syzygies of H generate the syzygy module Syz(H) then
B is called a non-trivial generating set of Syz(H).
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De�nition 3 A graded structure R = (R;�; ';G; in) is called an e�ective two-
sided Gr�obner structure if the following conditions hold:

i) the rings R and G and the ordered monoid � are e�ective algebraic struc-

tures,

ii) ' and in are computable functions, and there exists a computable section

in� of the initial mapping,

iii) the membership problem of homogeneous two-sided ideals of G given by an

arbitrary �nite homogeneous generating set is decidable,

iv) for any �nite set H � G of homogeneous elements there can be computed a

�nite non-trivial homogeneous generating set of the syzygy module Syz(H),
and

v) G satis�es the ascending chain condition for two-sided ideals.

Let A � G be an arbitrary subring generated by the initial forms in(a) of
elements a belonging to the center of R. Obviously, A is contained in the
center of G. By SyzA(H) we denote the image of the syzygy module of H
under the natural G-bimodule homomorphism � : (G 
E G)k ! (G 
A G)k.
Since all syzygies belonging to the intersection ker � \ Syz(H) are trivial the
following criterion can be used for the veri�cation of condition iv): if SyzA(H)
is �nitely generated then Syz(H) has a �nite non-trivial generating set and for
any generating set B of SyzA(H) the set fb j �(b) 2 Bg is non-trivial generating
set of Syz(H).

Let R = (R;�; ';G; in) be an e�ective left (right, two-sided) Gr�obner struc-
ture. Then for any �nite subset F � R there can be computed a left (right,
two-sided) Gr�obner basis of the left (right, two-sided) ideal of R generated by
F in an algorithmic way [22]. Given R it remains to check that the conditions
i)-v) are satis�ed. The large generality of the concept of graded structures is its
power but as soon as e�ectiveness is concerned it becomes also its main di�-
culty. At the level of De�nitions 2 and 3 no restrictions apply to the algorithms
solving conditions iii) and particularly iv). This is motivation to look for sub-
classes of e�ective graded structures which have uniform algorithms for deciding
membership problems and computing syzygy modules of homogeneous ideals of
the associated graded ring.

3 Natural graded structures of extension rings

We consider a ring R with a �nite minimal generating set X = fX1; : : : ; Xng

over some ground ring Q. For an arbitrary well-ordered monoid (�;�) with a
minimal generating set Y = fY1; : : : ; Yng the condition

a 2 F
 :() a is a �nite sum of terms r0Xi1r1 � � �Xikrk;

where r0; : : : ; rk 2 Q and Yi1 � � � � � Yik � 
 :

de�nes a �-�ltration F = (F
)
2� of R.
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De�nition 4 For R, (�;�), and F as above, the �-graded structure R =
(R;�; ';G; in) induced by the function

'(a) := minf
 2 � j a 2 F
g; a 2 R n f0g

will be called the natural �-graded structure of R.

There is a natural isomorphism between the subring Q � R and the subring
G� � G formed by all homogeneous elements of degree �, where � denotes the
unit element of �. In the following G� and Q will be identi�ed. Then G is left
and right Q-module.

We will restrict our investigations to such situations where each quotient
G
 = F
= bF
, 
 2 �, contains an element g
 which generates it as left and as
right Q-module. In particular, all G
 are cyclic and for each 
 2 � there exists
a homomorphism �
 : Q! Q satisfying

g
a� �
(a)g
 = 0 for all a 2 Q : (1)

For an arbitrary section in� of the initial mapping the elements in�(gYi), i =
1; : : : ; n, generate R over Q. Hence, without loss of generality we may assume
that the elements of the generating set X allow a section having the property

in�(gYi) = Xi (i = 1; : : : ; n) :

A cyclic left Q-module M is determined by its annihilating left ideal

annLM = fa 2 Q j am = 0 for all m 2Mg

up to isomorphism. We have M ' Q=annLM . An analogous statement holds
for right Q-modulesM and annihilating right ideals annRM . Both left and right
annihilator are even two-sided ideals. For Q-modules M containing an element
g which generates it as left and as right module we have the ring isomorphism

Q=annLM ' Q=annRM (2)

and it holds

a 2 annLM () ag = 0 ; a 2 annRM () ga = 0 :

We remark that the restriction to cyclic modules G
 is typical but not nec-
essary for Gr�obner basis investigations. For instance, the main theorem on
abelian groups can be applied successfully in many situations where the G
 are
of higher dimension. M�oller and Mora investigated such situations in [21]. Also
Hironaka's standard bases in power series rings refer to a grading with non-
cyclic homogeneous summands (see [14])1. Pesch introduced a Gr�obner theory
in iterated Ore extensions (see [25]). Though, there is a natural translation of
Pesch's method in the language of graded structures the result is not one of
the known constructive instances. The direct summands G
 of the associated
graded ring are only cyclic as left Q-modules but higher dimensional as right
Q-modules.

1Note, Hironaka's grading is based on an order � which is not well-founded. This leads to
additional computability problems which were discussed in [5].
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4 Conditions on Q and �

If the natural graded structure R is an e�ective left Gr�obner structure then Q
must be a computable, noetherian ring with decidable left ideal membership
problem. Moreover, for any �nite subset H � Q a �nite generating set of the
left syzygy module LSyz(H) can be computed. To sketch a proof consider the
extension left ideal G � I of the left ideal I � Q. G needs not to be a 
at
extension of Q, for instance, the left syzygy module of G � I is not necessarily
generated by homogeneous left syzygies of degree �. But taking into account
that G is a graded ring the computability conditions carry over from G to Q.
Analogous arguments can be applied in the right and two-sided case.

Assume that the natural graded structure R of the monoid ring R = Q[�] is
an e�ective left, right, and two-sided Gr�obner structure. Then also � has to ful-
�ll rather strong conditions. So, � must be a computable well-ordered monoid.
Furthermore, it has to satisfy a generalization of Dickson's Lemma [12], i.e. for
any in�nite sequence 
1; 
2; : : : of elements of � there exist positive integers i < j
and k < l such that 
i is a left divisor of 
j and 
k is a right divisor of 
l. In this
case we call � a noetherian monoid which re
ects the fact that ascending chains
of left, right, or two-sided monoid ideals, respectively, will always stabilize2.
Further necessary conditions on � are that left, right, and two-sided divisibility
of elements of � is decidable and that minimal common left, right, and two-sided
multiples of �nite subsets of � can be computed algorithmically. We remark,
that the decidability of left or right divisibility is equivalent to the seemingly
much harder condition, that the set of all decompositions into irreducible fac-
tors is �nite and computable in an algorithmic way for all 
 2 �. This is an
easy consequence of the following facts. Any noetherian well-ordered monoid
� satis�es the left and right cancellation law and any element 
 6= � of � has
only a �nite number of decompositions into irreducible factors. It follows that
the minimal generating set X of � is uniquely determined, �nite, and consists
exactly of the irreducible elements of � n f�g.

5 Presentation of R by truncated Gr�obner bases

Let QC � Q denote the subring formed by all elements of Q which commute
with the elements of R, i.e. QC = fa 2 Q j 8b 2 R : ab = bag. Note, that at
least the subring QU of Q generated by 1 is contained in QC .

For an arbitrary intermediate ring QU � Q̂ � QC we introduce the notation
A
Q̂
for the ring hQ;Xi

Q̂
which is freely generated by X in the class of extension

rings of Q whose center contains Q̂. For any such Q̂ the ring R is a homomorphic
image of A

Q̂
. Let K

Q̂
denote the kernel ker �

Q̂
of the natural endomorphism

�
Q̂
: A

Q̂
! R acting identically on X , and identify R = A

Q̂
=K

Q̂
.

2If the graded structure of R = Q[�] is only required to be an e�ective two-sided Gr�obner
structure then a weaker generalization of Dickson's Lemma providing only the ascending
chain condition for two-sided ideals would be su�cient. But for simplicity we consider only
the strongest generalization which is suitable for all three types of ideals.
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We �x an intermediate ring QU � Q̂ � QC for which Q is a computable Q̂-
module and denote A = A

Q̂
, K = K

Q̂
, and � = �

Q̂
. A is a computable ring and,

hence, the ring R is computable i� the membership problem of K is decidable.
Let hY i denote the word monoid freely generated by Y and ordered by a

well-founded order �A satisfying u �A v =) �(u) � �(v) for all u; v 2 hY i,
where � : hY i ! � denotes the natural homomorphism. Following the ideas
from Section 3 we associate to A a graded structure A = (A; hY i ; 'A; GA; inA)
which induces a notion of Gr�obner bases for arbitrary ideals of A with respect
to A. Though, in general, there is no algorithm for computing such Gr�obner
bases at least the existence of possibly in�nite Gr�obner bases with respect to A
is ensured for any one- or two-sided ideal.

For the rest of the paper we assume that �A has the property that for all

 2 � the element g0
 = in(Xi1 : : :Xik ), where Yi1 : : : Yik = minfu 2 hY i j
�(u) = 
g, generates G
 as left and as right Q-module3. Furthermore, without
loss of generality, we assume the choice g
 = g0
 , 
 2 �, for the generators
distinguished in Section 3.

Let us investigate the structure of a (possibly in�nite) Gr�obner basis H of
K = ker � with respect to A.

According to equations (1) the kernel ker � contains elements of the form

Xi�� �Yi(�)Xi + pi;� ; (3)

where � 2 Q and pi;� = 0 or pi;� 2 R with �('A(pi;�)) � �(Yi) = Yi.
Consider an arbitrary t = Yi1 � � �Yik 2 hY i and let Yj1 � � �Yjl = minfu 2

hY i j �(u) = �(t)g. Then K contains an element

Xi1 � � �Xik � �tXj1 � � �Xjl + qt ; (4)

where �t 2 Q and qt = 0 or �('A(qt)) � �(t). Furthermore, in the special case
l = k and j1 = i1; : : : ; jk = ik the ideal K contains elements

�t;qXj1 � � �Xjl + rt;q ; (5)

where �t;q 2 annLG�(t) and rt;q = 0 or �('A(rt;q)) � �(t) (q = 1; 2; : : :).
Since Q \ K = f0g there exists a Gr�obner bases H of K which consists

only of elements of types (3), (4), and (5). Recall, that for e�ective Gr�obner
structures R the kernel K must have decidable membership problem. Instead
we assume the stronger condition that K is given by a �nite truncated Gr�obner
basis with respect to A, where

De�nition 5 Htrunc � H is called a truncation of the Gr�obner basis H of

K with respect to A if it satis�es the following conditions: i) all elements of

H n Htrunc are of type (5), ii) �('A(h)) - �('A(h0)) for all h0 2 Htrunc and

h 2 H n Htrunc, and iii) for all h 2 H n Htrunc there exists a divisor 
 2 � of

�('A(h)) such that �('A(h
0)) - 
 for all h0 2 H nHtrunc and G�('A(h))

�= G
0

for all 
0, where 
 j 
0 j �('A(h)).

3In particular, we assume the existence of such an order.
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6 Computation of annihilating ideals of G


Given a �nite truncated Gr�obner basis Htrunc of K with respect to A it is
possible to compute a �nite generating set of the annihilating left ideal annLG


for any given 
 2 � in an algorithmic way.
Let t = Yi1 � � �Yik 2 hY i be the (w.r.t. �A) minimal word such that �(t) =

Yi1 � � � � � Yik = 
. Then we have

� 2 annLG
 () �Xi1 � � �Xik is reducible modulo H ; (6)

where H is an arbitrary Gr�obner basis of ker � with respect to A. For the rest
of this paragraph we write shortly �Xj1 � � �Xjl for the monomial �Xj1 � � �Xjl +bFA;Yj1 ���Yjl 2 GA of the associated graded ring of A.

Consider h 2 H with initial form inA(h) = �hXij � � �Xim . Then the product
Xi1 � � �Xij�1

inA(h)Xim+1
� � �Xik is congruent to the monomial �h;tXi1 � � �Xik 2

GA, where �h;t = �Yi1 (� � � (�Yij�1
(�h))), modulo the two-sided ideal generated

by the initial forms of the elements of H which belong to type (3). Obviously,
�h;t 2 annLG
 for all so-constructed elements �h;t 2 Q. Furthermore, the right
hand side of condition (6) means that for all � 2 annLG
 the homogeneous
element �Xi1 � � �Xik 2 GA must be a linear combination of homogeneous ele-
ments Xi1 � � �Xij�1

inA(h)Xim+1
� � �Xik , where h 2 H , 'A(h) = Yij � � �Yim , and

1 � j � m � k. Hence, the annihilating left ideal annLG
 is generated by the
above elements �h;t.

If 'A(h) - t for all h 2 H n Htrunc then this provides an algorithm for the
computation of a �nite generating set of annLG
 . Otherwise, we �rst need
to complete Htrunc to a truncation H 0

trunc of a Gr�obner basis H 0 of K such
that 'A(h) - t for all h 2 H 0 n H 0

trunc. From De�nition 5 it follows that the
completion can be done by adding the (�nitely many) elements to Htrunc which
are remainder of a product Xj1 � � �XjmhXp1 � � �Xpl , where h 2 Htrunc and Yj1 �
� � � � Yjm � �('A(h)) � Yp1 � � � � � Ypl = 
, modulo Htrunc.

For constructive G there are also computable homomorphisms c�
 : Q ! Q
satisfying ag
 = g
c�
(a). This allows the transformation of the truncated
Gr�obner basis Htrunc in an equivalent system with all coe�cients right of the
products Xi1 � � �Xik . Therefore, �nite generating sets of the right annihilating
ideals annRG
 can be computed in a similar way.

7 Ideal membership in the associated graded

ring

Let u1; : : : ; uk; and v be non-zero homogeneous elements of the associated graded
ring G of the natural graded structure R. Can we decide v 2 J , where J is the
left, respectively two-sided, ideal generated by the elements u1; : : : ; uk? Our
previous assumptions on Q, �, and K will turn out to be already su�cient to
answer this question positively.
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Let degui = 
i and deg v = 
 denote the degrees of the homogeneous ele-
ments u1; : : : ; uk; and v. Then the elements can be assumed to be presented in
the form ui = �ig
i , and v = �g
 , where �1; : : : ; �k; � 2 Q.

First consider left ideals J . The set M = f(!; i) j 1 � i � k ^ ! � 
i = 
g
is �nite and can be computed in an algorithmic way since divisibility in �
is decidable. By constructivity of G there is an algorithm transforming each
product g!�ig
i , (!; i) 2 M , in the form g!�ig
i = �0!;ig
 , where �

0

!;i 2 Q.
Obviously,

v 2 J () 9�!;i 2 Q : v =
X

(!;i)2M

�!;ig!ui

() � 2 Q � (�0!;i) + annLG
 : (7)

Now, consider the two-sided ideal generated by u1; : : : ; uk. We can compute
the set M = f(!; i; !0) j 1 � i � k ^ ! � 
i � !

0 = 
g, which is �nite according
to our assumptions. Applying similar arguments as in the left ideal case and
taking into account that annLG
 is even two-sided it follows

v 2 J () 9�!;i;!0;j ; �
0

!;i;!0;j : v =
X

(!;i;!0)2M

m
!;i;!0X
j=1

�!;i;!0;jg!uig!0�
0

!;i;!0;j

() � �
X

�!;i;!0;j�
0

!;i;!0�

�
�0!;i;!0;j

�
mod annLG


() � 2 Q � (�0!;i;!0) �Q+ annLG
 ; (8)

where �0!;i;!0g
 = g!uig!0 .
In conclusion we proved that the membership problem of a (left) homoge-

neous ideal of G can be reduced to the membership problem of a (left) ideal of
Q. It is well-known that the decidability of v 2 J? ensures the existence of an
algorithm computing a representation of v in terms of u1; : : : ; uk for any v 2 J .
However, due to its ine�ciency, this general algorithm resulting from the theory
is of no practical importance. Note, our above considerations prove not only
decidability but provide also nice formulae transforming solutions of (7) and
(8), respectively, in representations of v. Let �1; : : : ; �m generate annLG
 as a
left ideal. We have:

� =
X

(!;i)2M

�!;i�
0

!;i +

mX
j=1

�j�j

=) v =

kX
i=1

0
@ X

(!;i)2M

�!;ig!

1
Aui

and

� =
X

(!;i;!0)2M

m
!;i;!0X
j=1

�!;i;!0;j�
0

!;i;!0�
0

!;i;!0;j +

mX
j=1

�j�ij�
0

j
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=) v =
X

(!;i;!0)2M

m
!;i;!0X
j=1

(�!;i;!0;jg!)ui
�
g!0c�


�
�0!;i;!0;j

��

Hence, under some obvious conditions on the e�ciency of calculations in Q, �,
and G we obtain also e�cient algorithms for the computation of representations
of v in terms of u1; : : : ; uk.

8 Noetherianity of G

Until now our conditions on Q, �, and K in
uenced mainly the Q-module
structure but there are still to many freedoms in the ring structure of R and G.
In particular, we have not yet enough control about the zero divisors of G.

Consider, for instance, the following extremal case. Let � be the free com-
mutative monoid generated by Y and assume that the elements of Q commute
with the elements of �. Moreover, let XiXj 2 K for all 1 � j < i � n and
K contain no element of type (5). Then G contains many zero-divisors, is not
noetherian, and the syzygy modules of even many one-sided homogeneous prin-
cipal ideals of G are not �nitely generated. More generally, serious problems
may arise if ker � contains elements of type (4) whose coe�cient �t is not in-
vertible modulo annLG�(t). Such kernel elements can, but need not, cause a
non-noetherian associated graded ring G.

The condition
8
; ! 2 � : G
G! = G
�! : (9)

is equivalent to the property that for any t = Yi1 � � �Yik 2 hY i there exists
Xi1 � � �Xik ��tXj1 � � �Xjl + qt 2 ker � of type (4) such that �t is a unit modulo
annLG�(t). Note, in Section 5 we had to assume the existence of an order �A

such that the initial form in(Xi1 : : :Xik ), where Yi1 : : : Yik = minfu 2 hY i j
�(u) = 
g, generates G
 as left and as right Q-module for all 
 2 �. It is easy
to observe that in case condition (9) holds any �A has this property.

If Q and � are noetherian and G satis�es condition (9) then the associ-
ated graded ring G is left and right noetherian. We show that any in�nite
sequence of non-zero homogeneous elements u1 = g
1�1; u2 = g
2�2; : : : of
G contains ul 2 G � (u1; : : : ; ul�1). Since � is noetherian there exists an
in�nite subsequence ui1 ; ui2 ; : : : such that the degree of uik is a right mul-
tiple of the degree of uij for all j < k. Moreover, by condition (9) for all
j < k it follows the existence of a homogeneous element vj;k such that g
i

k

=
vj;kg
ij . Furthermore, from the noetherianity of Q we deduce the existence

of an index l > 1 such that �il belongs to the left ideal of Q generated
by the elements �i1 ; : : : ; �il�1

. Consequently, there exist �1; : : : ; �l�1 2 Q

such that uil = g
i
l

�il =
Pl�1

r=1 vr;lg
ir�r�ir =
Pl�1

r=1 vr;l�̂
ir (�r)g
ir�ir =Pl�1
r=1(vr;l�̂
ir (�r))uir . Hence, uil belongs to the left ideal of G generated by

u1; : : : ; uil�1
and it follows that G is a left noetherian ring. Starting with repre-

sentations ui = c0ig
i we can prove in the same way that G is right noetherian
and, hence, noetherian.
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Next we change condition (9) in such a way that G still satis�es the ascending
chain condition for two-sided but not longer necessarily for left or right ideals.
Instead of (9) we assume now that the elements of Q commute with the elements
of X and that for all ! 2 � and divisors 
 2 � there exists a decomposition

0 � 
 � 
00 = ! such that

G�0G�G�00 = G�0����00 (10)

for all divisor triples �0 j 
0, � j 
, �00 j 
00. We will show that any in�nite
sequence u1 = g
1�1; u2 = g
2�2; : : : of homogeneous elements of G contains an
element uk 2 G(u1; : : : ; uk�1)G. Since � is noetherian it is su�cient to prove
the assertion for sequences satisfying 
i j 
j for all i < j. Since Q is noetherian
there exists k such that �k 2 Q(�1; : : : ; �k�1)Q. For all i < k there exist

0i; 


00

i 2 � and �i 2 Q such that �ig
0
i

uig
00
i

= g
k�i according to the above
assumptions. Hence, uk 2 G(u1; : : : ; uk�1)G and we are done.

Given a truncated Gr�obner basis of K condition (9) could be veri�ed using
a simple criterion checking whether the coe�cients �t appearing in the ele-
ments of type (4) are invertible modulo annLG�(t). When � is commutative
and GYi1�Yi2�����Yik

= GYi1
GYi2

� � �GYi
k

for all 1 � i1 � � � � � ik � n 4 then
a similar criterion allows the veri�cation of condition (10). For each pair (i; j)
such that 1 � j < i � n the ideal K contains an element XiXj��i;jXjXi+qi;j
of type (4) and it is obvious how to construct these elements from an arbitrary
truncated Gr�obner basis of K with respect to A. Condition (10) holds i� for
each 1 � j � n we have at least one of the following two properties: i) �i;j is
invertible modulo annLGYj�Yi for all j < i � n or ii) �j;i is invertible modulo
annLGYi�Yj for all 1 � i < j. Let 
 j !, an example of a suitable decomposition
! = 
0�
�
00 can be obtained by gathering all variables of the quotient !



whose

index j satis�es condition ii) in 
0 and the rest in 
00. Now, let us consider the
opposit direction, i.e. for some 1 � j � n neither condition i) nor ii) holds.
Then there exist i < j and i0 > j such that �j;i and �i0;j are not invertible
modulo the corresponding annihilating left ideals and for ! = Yi � Yj � Yi0 and

 = Yi � Yi0 no decomposition ful�lls condition (10).

9 E�ective left or right Gr�obner structures

As an immediate consequence of condition (9) we obtain that the product g!g

generates G!�
 as left and as right Q-module for all !; 
 2 �. In particular,
�g!g
 = 0 i� � 2 annLG!�
 and, hence, annLG! � annLG!�
 . Consequently,
the quotient ring Q=annLG!�
 is a homomorphic image of the quotient ring
Q=annLG! . Applying similar arguments to right annihilating ideals it follows
that Q=annRG!�
 is homomorphic image of the quotient ring Q=annRG
 . Iso-
morphisms (2) imply the existence of ring epimorphisms �!;
 : Q=annLG
 !

4Note, the most important case covered by these conditions is when � is the commutative
monoid freely generated by Y and the order t �A s() �(t) � �(s) _ (�(t) = �(s) ^ t <l s),
where <l denotes the lexicographical order extending Y1 <l Y2 <l : : : <l Yn, can be used in
the construction of A (see Section 5).
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Q=annLG!�
 for all !; 
 2 �. If the epimorphism �!;
 is not injective then for
any !0 2 � also the composition �!;
 � �!0;!�
 : Q=annLG
 ! Q=annLG!0�!�


is surjective but not injective. Since Q is noetherian the existence of a non-
injective epimorphims implies that the rings are not isomorphic. In conclusion
we proved that for all 
 2 � the set

�
 = f! 2 � j G
 � G!�
g (11)

is either empty or a left monoid ideal of �. The condition ! =2 �
 is equivalent
to annRG
 = annRG!�
 .

Note, given a �nite truncated Gr�obner basis Htrunc of K there is an obvious
algorithm for the computation of a �nite generating set5 �
 of �
 for an arbi-
trary given 
 2 �. Roughly, the idea behind is to extract a generating set �


from the set of all elements ! 2 � for which ! �
 is a minimal common multiple
of 
 and the elements of some subset of f�('A(h)) j h 2 Htruncg. The existence
of such a generating set follows immediately from De�nition 5.

This can be applied to the algorithmic computation of the left syzygy module
LSyz(U) for an arbitrary �nite set U of homogeneous non-zero elements of G.
We de�ne recursively 
(U)i+1 = f
0 � 
 j 
 2 
(U)i ^ 


0 2 �
g, where the
initial value 
(U)0 � � is the set of all minimal common right multiples of
the degrees of elements of U . Each set 
(U)i is �nite and can be computed
algorithmically. If 
(U)i = ; then 
(U)j = ; for all j > i. By the properties of
Q there cannot exist an in�nite sequence Q=annLG
0 �! Q=annLG
1 �! � � �

of non-injective ring epimorphisms. Hence, there exists a natural number i0
such that 
(U)i0 = ; and, therefore, 
(U) =

S
1

i=1 
(U)i =
Si0�1
i=1 
(U)i is

�nite and can be computed algorithmically. For arbitrary given 
 2 
(U)
there can be computed a �nite generating set of the left syzygy module of
f� + annLG
 j 9u 2 U 9! 2 � : g!u = �g
g � Q=annLG
 according to the
properties of Q. These generating left syzygies can be lifted to homogeneous left
syzygies of degree 
 of U by multiplying each of their components from the right
by the corresponding element g!. Any homogeneous left syzygy of degree 
 of
U is contained in the left G-module generated by the set B
 formed by the lifted
left syzygies. Next, we show that any homogeneous left syzygy s =

P
u2U hueu

of U , whose degree is a common right multiple of the degrees of all elements of
U , belongs to the left G-module generated by the union B(U) =

S

2
(U)B
 .

Let 
 be a maximal right divisor of deg s which is contained in 
(U) and ! 2 �
be such that ! � 
 = deg s. According to condition (9) there exist homogeneous
elements vu such that g!vu = hu and, hence, s can be written in the form
s = g!

P
u2U vueu.

P
u2U vuu is a homogeneous element of G of degree 
 and,

therefore, can be written in the form g
d, where d 2 Q. Furthermore, g!g
d = 0
since s is a left syzygy of U . Consequently, d 2 annR(Gdeg s) � annR(G
). By
de�nition of 
(U) the inclusion is even equality and, therefore, s is a multiple
of a homogeneous left syzygy of U which has a degree contained in 
(U).

In conclusion, the set B(U) [
S
U 0�U LSyz(U 0), where B(U) =

S

2
(U)B
 ,

generates LSyz(U) and induction on the number of elements of U yields that

5Formally, �
 = ; is considered as generating set of �
 = ;.
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a �nite homogeneous generating set of LSyz(U) can be constructed in an algo-
rithmic way.

Theorem 6 Let Q be a computable noetherian ring with decidable ideal mem-

bership and solvable syzygy problem for left, right, and two-sided ideals, and Q̂
a subring of the center of Q such that Q is a computable Q̂-module. Further-

more, let � be a computable well-ordered monoid which is noetherian and allows

algorithmic computation of minimal common multiples and factorial decomposi-

tions. Finally, let R = hQ;Xi
Q̂
=K be given by a �nite truncated Gr�obner basis

Htrunc of the two-sided ideal K and let the associated graded ring G belonging

to the natural graded structure R = (R;�; ';G; in) satisfy condition (9).

Then R is an e�ective left Gr�obner structure.

Conditions i)-v) of De�nition 2 have been veri�ed already. 2

Analogous considerations prove that any graded structure R ful�lling the
assumptions of the above theorem is also an e�ective right Gr�obner structure.
However, the assumptions could be slightly relaxed by assuming only the condi-
tions on Q and � which refer to left (right) ideals. Among these marginal cases
there are graded structures R which are only an e�ective left (right) but not an
e�ective right (left) Gr�obner structure.

10 E�ective two-sided Gr�obner structures

Under some additional assumptions the graded structures considered in The-
orem 6 allow also the computation of Gr�obner bases of two-sided ideals of R
using a generalized Kandri-Rody/Weispfenning closure technique [16].

Theorem 7 Let Q be a computable noetherian ring with decidable ideal mem-

bership and solvable syzygy problem for left, right, and two-sided ideals, and

Q̂ a subring of the center of Q such that Q is a computable Q̂-module. Fur-

thermore, let � be a computable well-ordered commutative monoid which is

noetherian and allows algorithmic computation of minimal common multiples

and factorial decompositions. In addition, let there exist computable functions

� : Q � Q ! Q and �Y : Y � Q ! Q satisfying � � � = �(�; �) � � respec-

tively � � gYi = �Y (Yi; �) � gYi � � for all �; � 2 Q and i = 1; : : : ; n. Finally, let

R = hQ;Xi
Q̂
=K be given by a �nite truncated Gr�obner basis Htrunc of K and

the associated graded ring G of the natural graded structure R = (R;�; ';G; in)
satisfy condition (9).

Then R is an e�ective two-sided Gr�obner structure and each two-sided Gr�ob-

ner basis F of an arbitrary two-sided ideal I � R is also a left and a right

Gr�obner basis of I.

It remains to consider the solution of the syzygy problem. Note, Q̂ is a subring
of the center of R and the initial mapping acts identically on Q̂. Therefore,
according to the criterion presented behind De�nition 3 it su�ces to show that
for an arbitrary �nite set U of non-zero homogeneous elements of G there can
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be computed a �nite homogeneous generating set of Syz
Q̂
(U) in an algorithmic

way.
For arbitrary � 2 Q and u = �g
 2 U , where � 2 Q and 
 2 �, there can be

computed the syzygy s�;u = eu����;ueu 2 Syz
Q̂
(U), where ��;u = �(�; �
(�)).

In a similar way there can be computed a syzygy sYi;u = eugYi � �Yi;ugYieu 2
Syz

Q̂
(U) for given i = 1; : : : ; n and u 2 U . sYi;u is uniquely determined up to

a trivial summand �gYieu, where � 2 annLGYi�
 . Since Htrunc is �nite the set
Z = f� 2 Q j Xi� � �Yi(�)Xi + pi;� 2 Htruncg of all highest coe�cients of the
elements of type (3) contained in the truncated Gr�obner basis Htrunc is �nite,
too. Moreover, Z generates Q as a ring over Q̂. So, we can compute �nite sets
BZ = fs�;u j (�; u) 2 Z � Ug and BY = fsYi;u j (Yi; u) 2 Y � Ug. Next we
will show that BZ [ BY [ LSyz(U)


Q̂
1 generates Syz

Q̂
(U).

We have eu�1 � � � �k = (s�1;u + ��1;ueu) �2 � � � �k and by induction on k it fol-
lows s�1����k;u 2 GBZG for all u 2 U and all products �1 � � � �k, where �1; : : : ; �k 2
Z. Hence, s�;u 2 GBZG for all � 2 Q and u 2 U . Next, we will prove
the existence of a syzygy s
;u = eug
 � �
;ug
eu 2 G(BZ [ BY )G for all

 2 � and u 2 U by induction on the length k of an arbitrary representation

 = Yi1 � � � ��Yik . The initial step k = 1 is obvious. Consider k > 1 and set 
0 =
Yi1 �� � ��Yik�1

. We have eug
0�Yi
k

= eugYi
k

g
0� = sYi
k
;ug
0�+�Yi

k
;ugYi

k

eug
0�
for some � 2 Q and by induction hypothesis there exists s
0;u = eug
0 �
�
0;ug
0eu 2 G(BZ [ BY )G. Hence, eug
0�Yi

k

= sYi
k
;ug
0�+ �Yi

k
;ugYi

k

s
0;u�+
�Yi

k
;ugYi

k

�
0;ug
0eu� = sYi
k
;ug
0� + �Yi

k
;ugYi

k

s
0;u� + �Yi
k
;ugYi

k

�
0;ug
0sa;u +
�Yi

k
;ugYi

k

�
0;ug
0��;ueu. This �nishes the induction proof. As an immediate
consequence we obtain that for any homogeneous syzygy s 2 Syz

Q̂
(U) there ex-

ists a homogeneous left syzygy s0 2 LSyz(U) such that s�s0
1 2 G(BZ[BY )G.
Therefore, BZ[BY [LSyz(U)
Q̂

1 generates Syz
Q̂
(U). Application of Theorem

6 yields that R is an e�ective two-sided Gr�obner structure.
From the above investigations it follows that for any homogeneous elements

u; v 2 G there exists a homogeneous element w 2 G of the same degree as v
such that uv = wu. Hence, any homogeneous left ideal of G is even two-sided.
Therefore, left and two-sided initial ideal coincide for any two-sided ideal I � R.
Moreover, the left and the two-sided ideal generated by the initial parts of a
subset of I are equal. Consequently, any Gr�obner basis of the two-sided ideal
I is also a Gr�obner basis of I considered as left ideal according to De�nition 1.
Analogous arguments apply to I considered as a right ideal. 2

The requirement of the existence of the functions � and �Y might seem
rather technical. It could be replaced by one of the stronger conditions that Q
is a skew �eld or Q = Q̂. In fact these both situations are the most interesting
applications.

At the end of the previous section we mentioned marginal cases of Gr�obner
structures which are e�ective only with respect to one side. An interesting open
question is whether relaxing the conditions on Q there can be obtained graded
structures which are an e�ective Gr�obner structure with respect to two-sided
and left (or right) ideals but not with respect to right (or left) ideals. Outside
the theory of graded structures such a behavior is known from the investigations
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of Madlener and Reinert in group rings (see [19]).
Roughly, the idea behind the Kandri-Rody/Weispfenning closure technique

consists in computing left Gr�obner bases and checking whether the generated
left ideal is closed under multiplication with variables from the right. If this
is not the case then the non-zero remainders are added to the basis and the
cycle of left Gr�obner basis computation and saturation with right multiples is
repeated. In our situation the generating set BZ [ BY [ LSyz(U) 


Q̂
1 of the

syzygy module allows a similar procedure. The syzygies contained in BZ and
BY represent the multiples considered in the saturation step of the left Gr�obner
basis.

Mora considered a class of non-commutative algebras which allow the com-
putation of Gr�obner bases for two-sided but not necessarily for one-sided ideals
(see [23]). The reason is that the associated graded ring satis�es the ascend-
ing chain condition for two-sided but not for one-sided ideals. The following
theorem based on condition (10) generalizes Mora's result.

Let 
0 � 
 � 
00 = ! and 
0; 
00 satisfy the assumptions of condition (10).
In particular, we have G
0G
 = G
0�
 and G
0�
G
00 = G!. Applying similar
arguments as in the previous section to arbitrary !0; !00 2 � we obtain an
epimorphism sequence G
 ! G
0�
 ! G! ! G!0�!�!00 . Hence, for all 
 2 �
the set

b�
 = f! 2 � : 
 j ! ^G
 � G!g (12)

is either empty or a monoid ideal of �. A �nite generating set �
 of b�
 can be
computed using a truncated Gr�obner basis of K.

Theorem 8 Let Q be a computable noetherian commutative ring with decid-

able ideal membership and solvable syzygy problem. Furthermore, let � be a

computable well-ordered commutative monoid which is noetherian and allows

algorithmic computation of minimal common multiples and factorial decompo-

sitions. Finally, let R = hQ;XiQ =K be given by a �nite truncated Gr�obner

basis Htrunc of the two-sided ideal K and let the associated graded ring G of the

natural graded structure R = (R;�; ';G; in) satisfy condition (10).

Then R is an e�ective two-sided Gr�obner structure.

It remains the veri�cation of conditions iv) and v) of De�nition 3.
First, we will show that any in�nite sequence u1 = g
1�1; u2 = g
2�2; : : : of

homogeneous elements of G contains an element uk 2 G(u1; : : : ; uk�1)G. Since
� is noetherian it is su�cient to prove the assertion for sequences satisfying

i j 
j for all i < j. By noetherianity of Q there exists k such that �k 2

(�1; : : : ; �k�1)Q. By condition (10) it follows the existence of 
0i; 

00

i 2 � and
�i 2 Q such that �ig
0

i
g
ig
00i = g
k for all i < k. Hence, uk 2 G(u1; : : : ; uk�1)G

and, consequently, G satis�es the ascending chain condition for two-sided ideals.
For the rather technical and lengthy proof of condition iv) we refer to [5,

Theorem 5.23]. Here, we will sketch only the main ideas. For any Yi 2 Y
and u 2 U there exists a homogeneous syzygy sYi;u = �Yi;ueugYi ��Yi;ugYieu 2
SyzQ(U), where at least one of the elements �Yi;u; �Yi;u 2 Q is a unit. Let BY =

16



fsYi;u j (Yi; u) 2 Y � Ug. For any homogeneous syzygy s =
Pk

i=1 vieuiwi 2
Syz

Q̂
(H) whose degree is a multiple of the degrees of all u 2 U there exists a

homogeneous syzygy s0 = g�

�Pk

i=1 v
0

ieuiw
0

i

�
g�0 such that s� s0 2 GBYG and

deg(v0i) � deg(ui) � deg(w
0

i) is a minimal common multiple of the degrees of the
elements of U . Let 
(U)0 be the set of all minimal common multiples of the
degrees of u 2 U and de�ne recursively 
(U)i+1 =

S

2
(U)i

�
 . Then the set


(U) =
S
1

i=0 
(U)i is �nite and can be constructed algorithmically. Finally,
the set BY [

S

2
(U) C
 [

S
U 0�U SyzQ(U

0), where the C
 are �nite generating
sets of the Q-modules of all homogeneous syzygies of U of degree 
, generates
SyzQ(U). 2

11 Open problems

Before we could prove that a natural graded structure R = (R;�; ';G; in) is
an e�ective Gr�obner structure we had to introduce a series of conditions on the
objects Q, �, and K. In this section we deal with the question which condi-
tions could be relaxed without loosing the e�ective Gr�obner structure property.
For natural graded structures R which are left, right, and two-sided Gr�obner
structure our conditions on Q are necessary and cannot not be relaxed in any
way. If R is required to be an e�ective Gr�obner structure with respect to only
one side, left, right, or two-sided, then the necessity of the conditions follows
only for ideals of Q belonging to the same side. Under the condition that the
natural graded structure of the monoid ring Q h�i has to be an e�ective Gr�obner
structure similar statements apply to the assumptions on �. In marginal cases
with many homogeneous summands of G being the zero module, e.g. if G
 = 0
for all 
 2 � n f�g, the conditions on � could be relaxed. But in such situations
the linkage between the ring R and the monoid � is so weak that often a graded
structure of R with respect to a suitable submonoid of � satisfying our assump-
tions can be used. Open questions are when such a submonoid exists and how
it can be constructed. Moreover, special situations with ground rings Q and
valuation monoids � satisfying only the conditions corresponding to ideals of a
�xed side remain open for future investigations.

In Section 3 we gave examples showing that the restriction to graded struc-
tures whose associated graded ring has cyclic homogeneous summands is serious.
But, in spite the described examples, this condition is very typical for Gr�obner
basis investigations. Even Pesch makes use of it by mainly working with the
left module structure. Nevertheless, there remains an open research direction.

The condition that R has to be given by a �nite truncated Gr�obner basis of
the kernel K of a homomorphism � : hQ;Xi

Q̂
! R and conditions (9) and (10)

are the most interesting restrictions and will be discussed now.
Assume, there exists an in�nite sequence 
1; 
2; : : : 2 � of right multiples

such that G!iG
i ( G
i+1
, where 
i+1 = !i � 
i, for all i = 1; 2; : : :. Then the

left ideal G � (g
1 ; g
2 ; : : :) is not �nitely generated. Hence, such a sequence can
not exist in the associated graded ring of an e�ective left Gr�obner structure.
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Though, an e�ective left Gr�obner structure need not necessarily to satisfy con-
dition (9) the above observation shows that the cases lying outside are rather
marginal.

In the following, we will consider the condition that K can be presented
by a �nite truncated Gr�obner basis. If the ring Q is �nitely generated over Q̂
and there exists a �nite con
uent system of rewriting rules for � then there are
Gr�obner bases of K which contain only �nitely many elements of types (3) and
(4) and it remains to consider the number of elements of type (5). For e�ective
left Gr�obner structures there can be computed a �nite homogeneous generating
set of the left syzygy module of the principal left ideal generated by g
 2 G for
any given 
 2 �. The coe�cients of the left syzygies of degree 
 generate the
annihilating left ideal of the homogeneous summand G
 of the associated graded
ring and, hence, the annihilating left ideals annLG
 are computable for any
e�ective left Gr�obner structure R satisfying the above assumptions. Moreover,
all ! 2 � which are minimal right multiples of 
 with the property that there
exists a non-injective epimorphism from G
 onto G! appear among the degrees
of the left syzygies in an arbitrary homogeneous generating set of LSyz (G � g
).
Hence, if (9) holds then a �nite generating set �
 of the left monoid ideal
(or empty set) �
 de�ned in (11) can be computed in an algorithmic way for
any given 
 2 �. If G


�= G! for some proper divisor ! of 
 2 � then no
elements of type (5) with highest degree 
 need to be contained in a truncated
Gr�obner basis. Hence, we have to compute the set of all 
 2 � such that
G
 � G! for all proper divisors !. Let 
(f1g) be de�ned as in Section 9 before
Theorem 6. 
(f1g) can be computed in an algorithmic way since it requires only
computations of generating sets �
 . Moreover, 
(f1g) is just the set of degrees
where \essentially new" elements of type (5) can appear in a Gr�obner basis of
K. For each of the �nitely many elements 
 2 
(f1g) there can be computed a
�nite generating set of annLG
 . A possible set of highest coe�cients of Gr�obner
basis elements of type (5) with highest term Xi1 � � �Xik , where Yi1 � � �Yik 2 hY i
is the minimal representant of 
, can be found among the generators of annLG
 .
Note, we proved not only the existence of a �nite truncated Gr�obner basis of K
but showed also how its initial forms can be constructed.

Similar considerations can be done in the two-sided case. In fact, the re-
maining gaps are larger than here, but, the most interesting cases are again
covered by our Theorems.

12 Examples

Classical examples such as polynomial rings, enveloping algebras of Lie alge-
bras, or algebras of solvable type satisfy the assumptions of Theorem 7 if we
consider only computable coe�cient �elds. Moreover, Theorem 7 applies also to
polynomial rings over computable Euclidean rings or, more general, computable
commutative rings in which linear equations are solvable. But generalizing both
types of examples we can also consider rings R = hQ;XiQ =K, where Q is a com-
putable commutative ring in which linear equations are solvable and K has a
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Gr�obner basis consisting of an elementXjXi+ei;jXiXj+pi;j , where ei;j is a unit
of Q and pi;j has leading term smaller than XiXj , for each pair 1 � i < j � n.
The natural graded structure of R with respect to the free commutative monoid
� generated by Y is similar to that used in algebras of solvable type but with a
more general coe�cient domain.

Note, the assumption that K can be represented by a Gr�obner basis of the
form fXjXi + ei;jXiXj + pi;j j 1 � i < j � ng is (implicitly) used in almost
all investigations of Gr�obner bases in non-commutative rings to which a Nn -
graded structure can be associated (cf. [7, 13, 16, 17]). Additional Gr�obner
basis elements �rst appeared in [2]. Here, we are faced with new problems in
comparison to [2] which arise from dropping the assumption that the coe�cient
ring has to be a sub�eld of the center of R. The following examples will show
some typical new situations where our results are applicable. Theorems 6-8
assumed that a �nite truncated Gr�obner basis of K with respect to A is given
a priori. However, also if R = A=K is given by an arbitrary �nite generating
set of K there is a good chance to compute a truncated Gr�obner basis of K.
There has to be calculated a (truncated) Gr�obner basis in a free extension
ring A = hQ;Xi

Q̂
. The decision of ideal membership and the computation of

syzygy modules of �nitely generated hXi-homogeneous ideals requires only the
application of simple well-known algorithms for hXi-graded rings. Hence, the
general method for computing Gr�obner bases in graded structures becomes semi-
algorithmic for free extension rings A, i.e. if there exists a �nite Gr�obner basis
of K then it will be computed in �nite time. If K has no �nite Gr�obner basis
with respect to A but a �nite truncation then eventually the Gr�obner method
will have computed such a truncation. However, it is a (probably undecidable)
problem to realize that the algorithm can be stopped. The examples were
calculated using the special computer algebra system FELIX (see [6]).

Example 1: Consider the ring A = Z hx; y; zi = hZ; fx; y; zgiZwhich is freely
generated by fx; y; zg in the class of all extension rings of the integers Z.6

Let hx; y; zi denote the word monoid and � the monoid of commutative terms
in the variables fx; y; zg. We order � by the total degree order � extending
z � y � x and hx; y; zi by the well-founded order �A which compares the
words �rst (forgetting non-commutativity) according to � and second applies
the lexicographical order <l extending x <l y <l z for breaking ties. Let A
denote the natural hx; y; zi-graded structure of A and consider the two-sided
ideal K � A generated by fyx�3xy�3z; zx�2xz+y; zy�yz�xg. During the
computation of a Gr�obner basis of K with respect to A the following elements
are constructed:

yx� 3xy � 3z; zx� 2xz + y; zy � yz � x;

6yz + 3x; 9xz � 3y; 12xy + 9z; 12y2 � 27z2; x2 + 2y2 � 6z2

6Note, the condition that Z is contained in the center of A is trivially satis�ed since only
rings with unit element are considered.
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9z3 � 30xy � 21z; 4y3 + 9yz2 + 3y; 4xy2 + 3yz + 3x; 3xyz � 3y2 + 9z2;

3yz3 � 90xy2 � 3xz2 � 3yz � 36x; 2y3z � 3xy2 + 3yz; xy2z � 3y3 � 3xz;

y3z3 � 2xy4 � 3y3z � 3yz3 + xy2 � 3yz;

xy3z + 3y4 � 6y2z2; xy4z + y5 + y3z2 + 2y3 � 3yz2; xy5z � y6 + 3y4z2; : : :

Reducing (xyj�1z+pj�1)y modulo this intermediate basis we observe by induc-
tion that K contains an element of the form xyjz+ pj , where 'A(pj) �A xyjz,
for any positive integer j > 1. In fact, only such elements are necessary in order
to complete the above intermediate basis to an in�nite Gr�obner basis of K with
respect to A and a �nite Gr�obner basis does not exist. But according to De�ni-
tion 5 the above set is already a truncated Gr�obner basis of K with respect to A
and even the elements of the last row can be removed. The ring R = A=K satis-
�es the assumptions of Theorem 8 and therefore, the natural �-graded structure
of R is an e�ective two-sided Gr�obner structure. The assumptions of Theorem
6 and 7 are violated since the coe�cient of xy in yx� 3xy� 3z is not invertible
modulo the annihilating ideal annLGxy = 12Z.

Example 2: Consider the graded structure A from the previous example and
let K be the two-sided ideal generated by the elements yx�3xy�z; zx�xz+y,
and zy�yz�x. We are interested in the natural �-graded structure of R = A=K.
The generators look similar to the de�ning relations of an algebra of solvable
type. But even if we allow rational coe�cients the behavior of our ring is much
di�erent since the terms xiyjzk (i; j; k = 0; 1; 2; : : :) are linearly dependent. The
elements

yx� 3xy � z; zx� xz + y; zy � yz � x;

8xy + 2z; 4xz � 2y; 4yz + 2x;

2x2 � 2y2; 4y2 � 2z2; 2z3 � 2xy

form a �nite Gr�obner basis of the two-sided ideal K � Z hx; y; zi with respect
to A from example 1.

Since annLGxy = 8Z, we have gxy = gxgy = 3gygx in the associated graded
ring of the natural �-graded structure R of R. Hence, condition (9) holds.
The other assumptions of Theorem 7 are obvious. Consequently, �nite Gr�obner
bases with respect to R can be computed using the algorithms presented in this
paper for arbitrary ideals of R.

Example 3: Let W = hQ; fp; qgiQ =(qp � pq � 1) and consider the ring R =
hW ; fx; ygiQ =K, where K ist the two-sided ideal of hW ; fx; ygiQ given by the
Gr�obner basis

xp� qx; xq + px; yp� qy; yq + py; yx� xy + y2

with respect to the natural graded structure induced by the well-ordered monoid
(hx; yi ;�A), where �A compares words by �rst forgetting non-commutativity
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and applying the lexicographical order � of the free commutative monoid which
extends y � x and second breaking ties by comparing the non-commutative
words with respect to the lexicographical order extending x <l y. Note, not all
coe�cients but only the rational numbers commute with the variables of the
ring R. Functions � and �Y as required in Theorem 7 do not exist but at least
the assumptions of Theorem 6 are ful�lled in this situation. For this reason
�nite Gr�obner bases of left ideals I � R can be computed using the algorithms
presented in this paper. Consider the homogeneous element u = pgx2y of the
associated graded ring G of R. Since up � au = (�pq � ap)gx2y 6= 0 for all
a 2 W the two-sided ideal generated by u is strictly larger than the left ideal
generated by u. Hence, homogeneous left ideals of G need not to be two-sided
and, therefore, two-sided Gr�obner bases need not to be left Gr�obner bases.
However, though neither Theorem 7 nor Theorem 8 is applicable it remains an
open question whether the natural graded structure of R is an e�ective two-sided
Gr�obner structure.

Example 4: Once again, let us consider the graded structure A from example
1 and let K be generated by yx�3xy; zx+y2; zy�yz+z2. Since R = A=K is a
N-graded ring it is easy to observe that annLGxz and annLGxy are zero ideals.
Therefore, the coe�cient 3 of xy in the �rst generator and the coe�cient 0 of
xz in the second generator are both not invertible modulo the corresponding
annihilating left ideal and, hence, neither Theorem 6 nor Theorem 7 can be
applied to R. The elements

yx� 3xy; zx+ y2; zy � yz + z2;

2y3 + y2z � 2yz2 + 2z3;

14yz3 � 28z4; y2z2 � 4yz3 + 6z4; 27xy2z � 54xyz2 + 54xz3 + y4;

14z5; 2yz4 � 6z5; y4z; y5; 2xyz3 � 4xz4; 27xy3z;

2z6; 2xz5

form a Gr�obner basis of K with respect to A. Consider arbitrary monoid ele-
ments ! = xiyjzk and 
 = xi

0

yj
0

zk
0

such that 
 j !. Then condition (10) holds
for the decomposition 
0 � 
 � 
00, where 
0 = xi�i

0

and 
00 = yj�j
0

zk�k
0

. Hence,
the assumptions of Theorem 8 are satis�ed and the natural �-graded structure
R of R is an e�ective two-sided Gr�obner structure. A �nite Gr�obner basis can
be computed for any two-sided ideal of R using the algorithms presented in this
paper.

Note, R does not satisfy the ascending chain condition for left ideals, e.g. the
left ideal R � (xz; xz2; xz3; : : :) has no �nite generating set. Hence, it is proved
that R is not an e�ective left Gr�obner structure.
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