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Abstract

The star graph Sn has been recognized as an attractive alternative to the hypercube. Since
S1; S2, and S3 have trivial structures, we focus our attention on Sn with n¿4 in this paper. Let
Fv denote the set of faulty vertices in Sn. We show that when |Fv|6n− 5; Sn with n¿6 contains
a fault-free path of length n! − 2|Fv| − 2 (n! − 2|Fv| − 1) between arbitrary two vertices of
even (odd) distance. Since Sn is bipartite with two partite sets of equal size, the path is longest
for the worst-case scenario. The situation of n¿4 and |Fv|¿n − 5 is also discussed. c© 2001
Elsevier Science B.V. All rights reserved.

Keywords: Bipartite graph; Cayley graph; Fault-tolerant embedding; Graph–theoretic interconn-
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1. Introduction

The star graph [1], which belongs to the class of Cayley graphs [2], has been recog-
nized as an attractive alternative to the hypercube. It possesses many nice topological
properties such as recursiveness, symmetry, maximal fault tolerance, sublogarithmic
degree and diameter, and strong resilience, which are all desirable when we are de-
signing the interconnection topology for a parallel and distributed system. Besides, the
star graph can embed rings [16], meshes [17], trees [4], and hypercubes [15]. Many
e@cient algorithms [3] have been designed on the star graph.

� An extended version of this paper appeared in [10].
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Since processor and=or link faults may happen when a network is put in use, it
is practically meaningful and important to consider faulty networks. The problems of
diameter [18], routing [7], multicasting [14], broadcasting [21], gossiping [6], em-
bedding [19], and fault-tolerant graphs [5, 12] have been solved on a variety of faulty
networks. This paper is concerned with the problem of fault-tolerant embedding.
Throughout this paper, we use network and graph, processor and vertex, and link
and edge, interchangeably.
Previously, the problem of fault-tolerant embedding on a faulty star graph has been

studied in [8, 13, 20]. Let Fv and Fe denote the sets of faulty vertices and faulty edges,
respectively. In [13], LatiF and Bagherzadeh showed that an n-dimensional star graph
with faulty vertices contains a fault-free ring and a fault-free path of each length n!−m!
if all faulty vertices belong to an m-dimensional star graph and m6n is minimal. In
[20], Tseng et al. showed that an n-dimensional star graph with |Fe|6n− 3 faulty edges
contains a fault-free longest ring of length n!, and an n-dimensional star graph with
|Fv|6n− 3 faulty vertices contains a fault-free ring of length at least n!− 4|Fv|, where
n¿4. In [8], the authors showed that an n-dimensional star graph with |Fe|6n− 4
faulty edges contains a longest fault-free path of length n!− 2 (n!−1) between arbitrary
two vertices of even (odd) distance, where n¿6. The situation of |Fe|= n− 3 was also
discussed in [8].
In this paper, we show that an n-dimensional star graph with |Fv|6n− 5 faulty

vertices contains a fault-free path of length n!− 2|Fv| − 2 (n!− 2|Fv| − 1) between
arbitrary two vertices of even (odd) distance, where n¿6. Since the star graph is
bipartite with two partite sets of equal size [11], the path is longest for the worst-case
scenario. The situation of n¿4 and |Fv|¿n− 5 is also discussed.
The rest of this paper is organized as follows. In the next section, the star graph

is reviewed and some basic operations are deFned. In Section 3, a longest fault-free
path is constructed between arbitrary two vertices of an n-dimensional star graph with
|Fv|6n− 5 vertex faults. The situations of |Fv|= n− 4 and n− 3 are also discussed.
Finally, some concluding remarks are given in Section 4.

2. Preliminaries

In this section, some necessary deFnitions, notations, and prerequisite results are
introduced. First, the n-dimensional star graph, denoted by Sn, is deFned as follows.

De�nition 1. The vertex set of Sn is denoted by {a1a2 : : : an | a1a2 : : : an is a permuta-
tion of {1; 2; : : : ; n}}. Vertex adjacency is deFned as follows: a1a2 : : : an is adjacent to
aia2 : : : ai−1a1ai+1 : : : an for all 26i6n.

The vertices of Sn are n! permutations of {1; 2; : : : ; n}; and there is an edge between
two vertices of Sn if and only if they can be obtained from each other by swap-
ping the leftmost number with one of the other n− 1 numbers. For convenience we
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refer to the position of ai in a1a2 : : : an as the ith dimension, and (a1a2 : : : an; aia2 : : :
ai−1a1ai+1 : : : an) as the ith-dimensional edge. It is easy to see that Sn is regular of
degree n− 1. Since S1 is a vertex, S2 is an edge, and S3 is a cycle of length six, we
focus our attention on Sn with n¿4 in this paper.
There are embedded Sr’s contained in Sn, where 16r6n. An embedded Sr can

be conveniently represented by 〈s1s2 : : : sn〉r , where s1 = ∗; si ∈{∗; 1; 2; : : : ; n} for all
26i6n, and exactly r of s1; s2; : : : ; sn are ∗ (∗ denotes a “don’t care” symbol). For
example, 〈∗∗∗3〉3, which represents an embedded S3 in S4, contains six nodes 1243,
1423, 2143, 2413, 4123, and 4213. In terms of graph, 〈∗∗∗3〉3 is a subgraph of S4 in-
duced by {1243; 1423; 2143; 2413; 4123; 4213}. When r= n; 〈s1s2 : : : sn〉n represents
Sn. Two basic operations on Sn are deFned as follows.

De�nition 2. An i-partition on 〈s1s2 : : : sn〉r partitions 〈s1s2 : : : sn〉r into r embedded
Sr− 1’s, denoted by 〈s1s2 : : : si−1qsi+1 : : : sn〉r− 1, where 26i6n; si= ∗, and q∈{1; 2;
: : : ; n} − {s1; s2; : : : ; sn}.

De�nition 3. An (i1; i2; : : : ; im)-partition on 〈s1s2 : : : sn〉r performs an i1-partition, an
i2-partition; : : : ; an im-partition, sequentially, on 〈s1s2 : : : sn〉r , where 16m6r− 1 and
i1i2 : : : im is a permutation of m numbers from {2; 3; : : : ; n}. After executing an (i1; i2; : : : ;
im)-partition, 〈s1s2 : : : sn〉r is partitioned into r(r− 1) · · · (r − m + 1) embedded
Sr−m’s.

For example, when a (3; 2)-partition is applied to 〈∗∗∗15〉3, a 3-partition is Frst
executed on 〈∗∗∗15〉3 to produce three embedded S2’s, i.e., 〈∗∗215〉2; 〈∗∗315〉2, and
〈∗∗ 415〉2. Then, a 2-partition is executed on each S2 to produce six embedded S1’s,
i.e., 〈∗3215〉1; 〈∗4215〉1; 〈∗2315〉1; 〈∗4315〉1; 〈∗2415〉1, and 〈∗3415〉1.

Two embedded Sr’s 〈s1s2 : : : sn〉r and 〈t1t2 : : : tn〉r are said to be adjacent if sj 
= ∗;
tj 
= ∗, and sj 
= tj for some 26j6n, and si= ti for all 16i6n and i 
= j. The position
j is denoted by dif (〈s1s2 : : : sn〉r ; 〈t1t2 : : : tn〉r). For example, 〈∗ ∗ 23〉2 is adjacent to
〈∗∗13〉2, and dif (〈∗∗23〉2; 〈∗∗13〉2)= 3.

De�nition 4. Let A1; A2; : : : ; An(n− 1)···(r+1) represent those embedded Sr’s that are
obtained by executing an (i1; i2; : : : ; in−r)-partition on Sn, where 16r6n− 1. They
form an r-path, denoted by Pr = [A1; A2; : : : ; An(n− 1)···(r+1)], if Ai is adjacent to Ai+1

for all 16i6n(n− 1) · · · (r + 1)− 1. Each vertex in Pr , i.e., Ai, is called an r-vertex,
and each edge in Pr , i.e., (Ai; Ai+1), is called an r-edge.

For example, there is a P4 = (〈∗∗∗∗1〉4; 〈∗∗∗∗2〉4; 〈∗∗∗∗3〉4; 〈∗∗∗∗4〉4; 〈∗∗∗∗5〉4)
in S5, where 〈∗∗∗∗1〉4; 〈∗∗∗∗2〉4; 〈∗∗∗∗3〉4; 〈∗∗∗∗4〉4, and 〈∗∗∗∗5〉4, are all 4-vertices
and (〈∗∗∗∗1〉4; 〈∗∗∗∗2〉4); (〈∗∗∗∗2〉4; 〈∗∗∗∗3〉4); (〈∗∗∗∗3〉4; 〈∗∗∗∗4〉4), and
(〈∗∗∗∗4〉4; 〈∗∗∗∗5〉4) are all 4-edges. We note that an r-vertex is an embedded Sr
and an r-edge comprises (r− 1)! edges of Sn.
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De�nition 5. An i-partition on a Pr = [A1; A2; : : : ; An(n− 1)···(r+1)] performs an i-parti-
tion on A1; A2; : : : ; An(n− 1)···(r+1), respectively, where 26i6n and 1¡r6n− 1. An
i-partition on a Pr is abbreviated to a partition on a Pr if the position i is “don’t care”.

After executing an i-partition on a Pr = [A1; A2; : : : ; An(n− 1)···(r+1)], each Aj is parti-
tioned into r (r− 1)-vertices, where 16j6n(n− 1) · · · (r+1). Since every two of the
r (r− 1)-vertices are joined with an (r− 1)-edge, each Aj can be viewed as a complete
graph of r (r− 1)-vertices. Throughout this paper, we use Kr−1

r to denote the complete
graph. We note that each vertex in Kr−1

r is an (r− 1)-vertex and each edge in Kr−1
r

is an (r− 1)-edge.
Suppose Aj = 〈s1 : : : si−1sisi+1 : : : sk−1xsk+1 : : : sn〉r and Aj+1 = 〈s1 : : : si−1sisi+1 : : : sk−1

ysk+1 : : : sn〉r are two neighboring r-vertices in a Pr , where 1¡r6n− 1; x 
=y, and
si= ∗ (without loss of generality, we assume i¡k). After executing an i-partition, they
each are partitioned into r (r− 1)-vertices, and the r-edge between them is split into
r− 1 (r− 1)-edges connecting r− 1 pairs of (r− 1)-vertices that belong to them, re-
spectively. The (r− 1)-vertex belonging to Aj (Aj+1) that is not connected to Aj+1 (Aj)
is 〈s1 : : : si−1ysi+1 : : : sk−1xsk+1 : : : sn〉r− 1 (〈s1 : : : si−1xsi+1 : : : sk−1ysk+1 : : : sn〉r− 1). The
following lemma was shown in [8].

Lemma 1 (Hsieh et al. [8]). Suppose E= 〈e1e2 : : : en〉r ; F = 〈f1f2 : : : fn〉r ; and G=
〈g1g2 : : : gn〉r are arbitrary three consecutive r-vertices in a Pr; where 1¡r6n− 1.
If edif (E;F) 
= gdif (F;G); then after executing a partition on the Pr; each (r− 1)-vertex
in F is connected to E or G.

In this paper, we consider Sn with faulty vertices. An r-vertex is faulty if it contains
one or more faulty vertices, and an r-path is faulty if one or more of its r-vertices
are faulty, where 16r6n. A vertex (r-vertex, r-path) is fault-free if it is not faulty.
A path is fault-free if it does not contain any faulty vertex. The following lemma was
shown in [20].

Lemma 2 (Tseng et al. [20]). Suppose |Fv|6n− 3. There exists a sequence b1; b2; : : : ;
bn− 4 of positions so that after executing an (b1; b2; : : : ; bn− 4)-partition on Sn; each
resulting 4-vertex contains at most one faulty vertex.

The positions b1; b2; : : : ; bn− 4 in Lemma 2 can be easily determined as follows.
We let b1 be a position where at least two faulty vertices diMer. For example, if
Fv= {123456; 123654}; b1 may be set to 4 or 6. A b1-partition is then executed on Sn
to produce n (n− 1)-vertices, and Fv is partitioned so that two faulty vertices fall into
the same subset if and only if they belong to the same (n− 1)-vertex. The position
b2 can be determined similarly. We simply let b2 be a position where at least two
faulty vertices in some subset diMer. A b2-partition is then executed on the n (n− 1)-
vertices to produce n(n− 1) (n− 2)-vertices, and every non-empty subset of Fv is
further partitioned accordingly. The process is repeated until every non-empty subset
contains one faulty vertex, when the remaining positions are determined arbitrarily.
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Lemma 3. Suppose u= u1u2 : : : un and v= v1v2 : : : vn are arbitrary two distinct ver-
tices in Sn and |Fv|6n− 5. There exists a sequence a1; a2; : : : ; an− 4 of positions so
that ua1 
= va1 and after executing an (a1; a2; : : : ; an− 4)-partition on Sn; each resulting
4-vertex contains at most one vertex in {u; v}∪Fv.

Proof. We let a1 = j, where uj 
= vj and j 
=1. The other positions a2; a3; : : : ; an−4 can
be determined similar to b2; b3; : : : ; bn−4 in Lemma 2.

In the rest of this paper, we use u and v to denote arbitrary two distinct fault-free
vertices in Sn. Our purpose is to construct a longest path from u to v (u–v path for short)
in Sn. We call u and v the beginning vertex and ending vertex of the path, respectively.
An r-vertex is called the beginning r-vertex (ending r-vertex) if it contains u(v).

De�nition 6. A P5 = [A1; A2; : : : ; An(n−1)···6] in Sn is said to be good if it satisFes the
following three conditions.
(Cond. 1) A1 and An(n−1)···6 are the beginning and ending 5-vertices, respectively.
(Cond. 2) One of A1; A2; : : : ; An(n−1)···6 contains at most two faulty vertices, and the
others each contain at most one faulty vertex.
(Cond. 3) For every three consecutive 5-vertices in the P5, say B= 〈b1b2 : : : bn〉5;
C = 〈c1c2 : : : cn〉5, and D= 〈d1d2 : : : dn〉5; bdif (B;C) 
=ddif (C;D) holds.

De�nition 7. A P4 = [A1; A2; : : : ; An(n−1)···5] in Sn is said to be good if it satisFes the
following Fve conditions.
(Cond. 1) A1 and An(n−1)···5 are the beginning and ending 4-vertices, respectively.
(Cond. 2) A1; A2; An(n−1)···5−1, and An(n−1)···5 are fault-free, and the other 4-vertices
each contain at most one faulty vertex.
(Cond. 3) For every three consecutive 4-vertices in the P4, say E= 〈e1e2 : : : en〉4;
F = 〈f1f2 : : : fn〉4, and G= 〈g1g2 : : : gn〉4; edif (E;F) 
= gdif (F;G) holds.
(Cond. 4) Both every two consecutive 4-vertices in the P4 are not faulty.
(Cond. 5) After executing a k-partition on the P4 for some 26k6n, the beginning
and ending 3-vertices (in A1 and An(n−1)···5, respectively) are not connected to A2 and
An(n−1)···5−1, respectively.

The following lemma was shown in [9].

Lemma 4 (Hsieh et al. [9]). Suppose |Fv|=1. There is a fault-free path of maximal
length 4!−3 between arbitrary two adjacent fault-free vertices of S4.

3. Longest fault-free paths in Sn

In this section, unless particularly speciFed, we assume |Fv|6n−5; n¿6, and a1;
a2; : : : ; an−4 are a sequence of positions satisfying Lemma 3. We aim to construct a
fault-free u–v path of length n!−2|Fv|−2 if dist(u; v) is even, and of length n!−2|Fv|−1
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if dist(u; v) is odd, where dist(u; v) denotes the distance between u and v. Since Sn
is bipartite with two partite sets of equal size, the path is longest for the worst-case
scenario.

Lemma 5. A good P5 can be obtained by executing an (a1; a2; : : : ; an−5)-partition
on Sn.

Proof. Suppose u= u1u2 : : : un and v= v1v2 : : : vn. A good P5 can be obtained by the
following two steps: (S1) generate a P6 from Sn, and (S2) generate a good P5 from
the P6. Step (S1) is explained below.
If n=6, then Sn is itself a P6 with only one 6-vertex. If n¿6, then a P6 can

be obtained by executing an (a1; a2; : : : ; an−6)-partition on Sn as follows. Initially, an
a1-partition is applied to Sn, and so a Kn−1

n can result. Since ua1 
= va1 ; u and v be-
long to two diMerent (n−1)-vertices. A Pn−1 whose Frst and last (n−1)-vertices are
the beginning and ending (n−1)-vertices, respectively, can be easily generated. For
j=2; 3; : : : ; n−6, a Pn−j whose Frst and last (n−j)-vertices are the beginning and
ending (n−j)-vertices, respectively, can be generated from a Pn−j+1 as explained
below.
Suppose Pn−j+1 = [An−j+1;1; An−j+1;2; : : : ; An−j+1; n(n−1)···(n−j+2)], where An−j+1;1 is

the beginning (n−j+1)-vertex and An−j+1; n(n−1)···(n−j+2) is the ending (n−j+1)-vertex.
After an aj-partition on the Pn−j+1, each An−j+1; k forms a Kn−j

n−j+1, where 16k6
n(n−1) · · · (n−j+2). Since each An−j+1; k contains at least seven (n−j)-vertices, there
are two distinct (n−j)-vertices in An−j+1; k , say Xk and Yk , so that X1 is the beginning
(n−j)-vertex, Yn(n−1)···(n−j+2) is the ending (n−j)-vertex, and for 26j6n(n−1) · · ·
(n−j+2)−1; Xj and Yj are adjacent to Yj−1 and Xj+1, respectively. Since there is a
Hamiltonian Xk−Yk path in each Kn−j

n−j+1 formed by An−j+1; k , a desired Pn−j can be gen-
erated if all Hamiltonian paths are interleaved with (n−j)-edges (Y1; X2);
(Y2; X3); : : : ; (Yn(n−1)···(n−j+2)−1; Xn(n−1)···(n−j+2)). When j= n−6, a P6 = [A6;1; A6;2; : : : ;
A6; n(n−1)···7] can be obtained, where A6;1 is the beginning 6-vertex and A6; n(n−1)···7 is
the ending 6-vertex. In the rest of this paper, Xk and Yk thus speciFed are referred to
as the entry (n−j)-vertex and the exit (n−j)-vertex of An−j+1; k , respectively.
Step (S2) is explained as follows. If n=6, then a P5 whose Frst and last 5-vertices

are the beginning and ending 5-vertices, respectively, can be generated in S6 after an
a1-partition. It is not di@cult to check that the P5 is good. If n¿6, then each A6; r forms
a K5

6 after an an−5-partition on the P6, where 16r6n(n−1) · · · 7. Let Xr 
=Yr denote the
entry and exit 5-vertices of each A6; r , respectively. It is easy to establish a Hamiltonian
X1−Y1 path in the K5

6 formed by A6;1 whose last two 5-vertices are connected to A6;2, a
Hamiltonian Xn(n−1)···7−Yn(n−1)···7 path in the K5

6 formed by A6; n(n−1)···7 whose Frst two
5-vertices are connected to A6; n(n−1)···7−1, and for 26j6n(n−1) · · · 7−1 a Hamiltonian
Xj−Yj path in the K5

6 formed by each A6; j whose Frst and last two 5-vertices are
connected to A6; j−1 and A6; j+1, respectively. All Hamiltonian paths interleaved with
5-edges (Y1; X2); (Y2; X3); : : : ; (Yn(n−1)···7−1; Xn(n−1)···7) form a P5. The P5 is good, as
explained below.
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Obviously, (Cond. 1) holds. (Cond. 2) holds as a consequence of Lemma 3.
(Cond. 3) holds as a consequence of the fact that the Frst two 5-vertices and the
last two 5-vertices in each Hamiltonian Xi−Yi path are connected to Ai−1 (if existing)
and Ai+1 (if existing), respectively, where 16i6n(n − 1) · · · 7. The details can be
found in [10], which is an extended version of this paper.

Lemma 6. Each of the beginning and ending 5-vertices of a good P5 that was
obtained according to Lemma 5 contains at most one faulty vertex.

Proof. Since the good P5 results from executing an (a1; a2; : : : ; an−5)-partition on Sn,
it contains at least min{n−4; |Fv| + 2} 5-vertices that each contain at least one vertex
in {u; v}∪Fv. If the beginning 5-vertex (or the ending 5-vertex) contains two faulty
vertices, then Fv should contain n−5 faulty vertices. This means that there are at most
n− 5 5-vertices in the P5 that each contain at least one vertex in {u; v}∪Fv, which is
a contradiction.

The following lemma can be shown similarly.

Lemma 7. At most one of the beginning and ending 5-vertices of a good P5 that was
obtained according to Lemma 5 is faulty.

Lemma 8. A good P4 can be obtained by executing an (a1; a2; : : : ; an−4)-partition
on Sn.

Proof. Suppose u= u1u2 : : : un and v= v1v2 : : : vn. By the aid of Lemma 5, we only need
to show that a good P4 can be obtained after an an−4-partition on a good P5. Suppose
[A1; A2; : : : ; An(n−1)···6] is a good P5 that was obtained by executing an (a1; a2; : : : ; an−5)-
partition on Sn. A good P4 can be constructed according to the following three cases.
Case 1. A1 is faulty. A good P4 can be generated by the following three steps: (S1)

generate a Hamiltonian path in the K4
5 formed by A1, (S2) generate a Hamiltonian

path in the K4
5 formed by An(n−1)···6, and (S3) generate a Hamiltonian path in each K4

5

formed by Aj for all 26j6n(n− 1) · · · 6− 1.
Step (S1) is explained as follows. Three 4-vertices X1 = 〈x1x2 : : : xn〉4; T , and Q

are Frst determined from A1 so that X1 is the beginning 4-vertex, T is not con-
nected to A2, and Q is faulty. By Lemma 6, Q is unique. By Lemma 3, X1 is
fault-free. Also determine W = 〈w1w2 : : : wn〉4 =∈{X1; Q} from A1 with wan−4 = uk for
some k ∈{2; 3; : : : ; n} − {a1; a2; : : : ; an−4}. A Hamiltonian path in the K4

5 formed by
A1 can be established as (X1; W; Q;M1; Y1) if T ∈{X1; Q;W}, and (X1; W; T; Q; Y1) if
T =∈{X1; Q;W}, where M1 and Y1 denote the other 4-vertices in A1. Since there are
four 4-vertices in A1 that are connected to A2; Y1 should be connected to A2.
Step (S2) is explained as follows. A Hamiltonian path in the K4

5 formed by An(n−1)···6
can be established as follows. By Lemma 7, An(n−1)···6 is fault-free. Let Yn(n−1)···6 be the
ending 4-vertex, C be the 4-vertex in An(n−1)···6 that is not connected to An(n−1)···6−1;
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D= 〈d1d2 : : : dn〉4 be the 4-vertex in An(n−1)···6 with dan−4 = vk (here k is identical with
that appearing in wan−4 = uk above), and Xn(n−1)···6 =∈{C;D; Yn(n−1)···6} be a 4-vertex in
An(n−1)···6. If Yn(n−1)···6 =C or (Yn(n−1)···6 
=C and C =D), then a Hamiltonian path in
the K4

5 formed by An(n−1)···6 can be established as P[Xn(n−1)···6; D] + (D; Yn(n−1)···6),
where P[Xn(n−1)···6; D] represents an Xn(n−1)···6 − D path passing all the vertices of
the K4

5 but Yn(n−1)···6 exactly once. If Yn(n−1)···6 
=C and C 
=D, then a Hamiltonian
path in the K4

5 formed by An(n−1)···6 can be established as P[Xn(n−1)···6; C] + (C;D) +
(D; Yn(n−1)···6), where P[Xn(n−1)···6; C] represents an Xn(n−1)···6 −C path passing all the
vertices of the K4

5 but D and Yn(n−1)···6 exactly once.
Step (S3) is explained as follows. We Frst determine the entry and exit 4-vertices of

Aj, denoted by Xj and Yj, respectively, so that both Yj−1 and Xj are not faulty and both
Yn(n−1)···6−1 and Xn(n−1)···6 are not faulty. Since four 4-vertices in Aj are connected to
Aj−1 and four 4-vertices in Aj are connected to Aj+1, there exists a Hamiltonian Xj−Yj
path in the K4

5 formed by Aj whose Frst two and last two 4-vertices are connected to
Aj−1 and Aj+1, respectively. A P4 can be obtained by joining the Hamiltonian paths
that were established in the three steps above.
Case 2. An(n−1)···6 is faulty. A good P4 can be constructed similar to Case 1.
Case 3. Both A1 and An(n−1)···6 are fault-free. We Frst assume that there is a 5-vertex,

say Ar , in the P5 that contains two faulty vertices. By Lemma 6, r 
∈ {1; n(n−1) · · · 6}.
By Lemma 1, each 4-vertex in Ar is connected to Ar−1 or Ar+1. A good P4 can be
obtained by the following two steps: (S1) generate a Hamiltonian path in the K4

5

formed by Ar and (S2) generate a Hamiltonian path in each K4
5 formed by Aj for all

16j6n(n−1) · · · 6 and j 
= r.
Step (S1) is explained as follows. Let B 
=F be the two 4-vertices in Ar that

are not connected to Ar−1 and Ar+1, respectively. Since a1; a2; : : : ; an−4 are a se-
quence of positions satisfying Lemma 3, the two faulty vertices belong to two diMerent
4-vertices in Ar , denoted by S and T . If S is connected to both Ar−1 and Ar+1 and
T is connected to both Ar−1 and Ar+1, then a Hamiltonian path in the K4

5 formed
by Ar can be established as (F; S;M1; T; B), where M1 denotes the other 4-vertex
in Ar .
If S is connected to both Ar−1 and Ar+1 and T is connected to one of Ar−1 and Ar+1,

then a Hamiltonian path in the K4
5 formed by Ar can be established as (M1; T;M2; S; B)

if T is connected to Ar−1, and (F; S;M1; T;M2), if T is connected to Ar+1, where M1

and M2 denote the other two 4-vertices in Ar . If S is connected to one of Ar−1 and
Ar+1 and T is connected to both Ar−1 and Ar+1, then a Hamiltonian path in the K4

5

formed by Ar can be established similarly.
If S is connected to only Ar−1 and T is connected to only Ar+1, then a

Hamiltonian path in the K4
5 formed by Ar can be established as (M1; S;M2; T;M3),

where M1; M2, and M3 denote the other three 4-vertices in Ar . If S is connected to
only Ar+1 and T is connected to only Ar−1, then the Hamiltonian path can be estab-
lished as (M1; T;M2; S;M3). It is impossible that both S and T are connected to only
Ar−1 or only Ar+1.
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We note that the Frst and last 4-vertices in each Hamiltonian path above are the entry
and exit 4-vertices of Ar , respectively. Besides, the Frst two and last two 4-vertices are
connected to Ar−1 and Ar+1, respectively.
Step (S2) is explained as follows. Let X1 and Yn(n−1)···6 be the beginning and ending

4-vertices, respectively, and determine W = 〈w1w2 : : : wn〉4 and D= 〈d1d2 : : : dn〉4 from
A1 and An(n−1)···6, respectively, with wan−4 = ul and dan−4 = vl for some l∈{2; 3; : : : ; n}
−{a1; a2; : : : ; an−4}. A Hamiltonian path in the K4

5 formed by A1 can be established
as (X1; W;M1; M2; M3), where M1, M2, and M3 denote the other three 4-vertices in
A1 and both M2 and M3 are connected to A2. A Hamiltonian path in the K4

5 formed
by An(n−1)···6 can be established as (M1; M2; M3; D; Yn(n−1)···6), where M1; M2, and M3

denote the other three 4-vertices in An(n−1)···6 and both M1 and M2 are connected to
An(n−1)···6−1. Let Xt and Yt denote the entry and exit 4-vertices of At , respectively,
where 26t6n(n−1) · · · 6−1 and t 
= r. A Hamiltonian Xt−Yt path in the K4

5 formed
by At can be established similar to the Hamiltonian Xj−Yj path in Case 1. Clearly a
P4 can be generated by joining the Hamiltonian paths that were established in the two
steps above.
The P4 that was obtained for the three cases above is good, as explained below.

Obviously, (Cond. 1), (Cond. 2), and (Cond. 4) hold. (Cond. 3) holds as a conse-
quence of the fact that the Frst two 4-vertices and the last two 4-vertices in each
Hamiltonian Xi−Yi path are connected to Ai−1 (if existing) and Ai+1 (if existing),
respectively, where 16i6n(n − 1) · · · 6. The details can be found in [10]. (Cond. 5)
holds with the following reason. Suppose W = 〈w1w2 : : : wn〉4 and D= 〈d1d2 : : : dn〉4 are
the neighboring 4-vertices of the beginning and ending 4-vertices in the P4, respec-
tively. We have wan−4 = uz and dan−4 = vz for some z ∈{2; 3; : : : ; n}−{a1; a2; : : : ; an−4}.
Let H = 〈h1h2; : : : ; hn〉3 be the beginning 3-vertex after a z-partition on the P4. Since
hz = uz =wan−4 
= han−4 and ht =wt for t ∈{1; 2; : : : ; n}−{z; an−4}, H is not connected
to W . Similarly, the ending 3-vertex is not connected to D.
On the other hand, if every 5-vertex in the P5 contains at most one faulty vertex,

then a good P4 can be obtained similarly (in fact, more easily).

We note that S3 forms a ring of length six. The following two lemmas were shown
in [20].

Lemma 9 (Tseng et al. [20]). Suppose E and F are two adjacent 3-vertices in Sn; and
let (c0; c1; : : : ; c5) denote the ring formed by E. The vertices in E that are connected
to F are cj and c (j+3)mod 6 for some 06j65.

Lemma 10 (Tseng et al. [20]). Suppose E= 〈e1e2 : : : en〉3; F = 〈f1f2 : : : fn〉3; and G=
〈g1g2 : : : gn〉3 are three 3-vertices in Sn; and F is adjacent to both E and G. If
edif(E;F) 
= gdif(F;G); then the two vertices in F that are connected to E are disjoint
from the two vertices in F that are connected to G.
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Lemma 11. A fault-free u−v path can be generated from a good P4 that was obtained
according to Lemma 8. The path has length n!−2|Fv|−2 if dist(u; v) is even; and
n!−2|Fv|−1 if dist(u; v) is odd.

Proof. Suppose the P4 is [A1; A2; : : : ; An(n−1)···5]. First, a k-partition is executed on the
P4, where k satisFes (Cond. 5) of DeFnition 7. As a consequence, the beginning
and ending 3-vertices are not connected to A2 and An(n−1)···5−1, respectively. In or-
der to generate a fault-free u−v path, we determine two 3-vertices, denoted by /i
and 0i, in Ai for all 16i6n(n−1) · · · 5 that satisfy the following. /1 is the beginning
3-vertex and 0n(n−1)···5 is the ending 3-vertex. For faulty Ai, /i= 0i is connected to
both Ai−1 and Ai+1, and both 0i−1 and /i+1 are adjacent to /i (= 0i). For every two
consecutive fault-free 3-vertices, say Ai and Ai+1, 0i and /i+1 are adjacent. It was
shown in [10] that if /i= 0i, then bdif (0i−1 ; /i) 
= adif (/i ; /i+1), where 0i−1 = 〈b1b2 : : : bn〉3
and /i+1 = 〈a1a2 : : : an〉3.

A fault-free u−v path can be generated by the following three steps: (S1) gener-
ate a fault-free Hamiltonian path in A1, (S2) generate a fault-free path in A2; A3; : : : ;
An(n−1)···5−1, sequentially, and (S3) generate a fault-free path in An(n−1)···5.
A desired u−v path can be obtained if all the paths above are joined
together.
Step (S1) is explained as follows. Assume u= u1u2 : : : un, and let Q1 = 〈q1q2 : : : qn〉3


∈ {/1; 01} be a 3-vertex in A1 with qk 
= u1. Since /1 is the beginning 3-vertex which
is not connected to A2, we have /1 
= 01. A fault-free Hamiltonian /1−01 path in the
K3
4 formed by A1 can be established as (/1; Q1; M1; 01), where M1 is the other 3-vertex

in A1.
Suppose E= 〈e1e2 : : : en〉3, F = 〈f1f2 : : : fn〉3, and G= 〈g1g2 : : : gn〉3 are arbitrary three

consecutive 3-vertices in (/1; Q1; M1; 01; /2). It was shown in [10] that edif(E;F)

= gdif(F;G) holds. We note that u is not connected to Q1 because qk 
= u1 and each edge
between /1 and Q1 is a k-dimensional edge. Since A1 and A2 are fault-free, Lemmas 9
and 10 assure that there are distinct fault-free vertices x1, b∈ /1, c; d∈Q1, e; f∈M1,
and g; y1 ∈ 01 so that every two consecutive vertices in {x1; b; c; d; e; f; g; y1; x2} are
adjacent, where x1 = u and x2 is a fault-free vertex in /2. It is easy to see that there
are fault-free Hamiltonian x1−b, c−d, e−f, and g−y1 paths in /1; Q1; M1, and 01,
respectively. These fault-free Hamiltonian paths interleaved with edges (b; c), (d; e),
and (f; g) constitute a fault-free Hamiltonian x1−y1 path in A1.
Step (S2) is explained as follows. Suppose a fault-free xj−1−yj−1 path in Aj−1 has

been obtained and yj−1 is adjacent to xj which is a fault-free vertex in /j, where
26j6n(n−1) · · · 5−1. A fault-free xj−yj path in Aj can be constructed as follows,
where yj is a fault-free vertex in 0j. If /j = 0j, then bdif(0j−1 ; /j) 
= adif(/j ; /j+1) holds,
where 0j−1 = 〈b1b2 : : : bn〉3 and /j+1 = 〈a1a2 : : : an〉3 are assumed. Since /j = 0j is fault-
free, Lemmas 9 and 10 assure that yj can be determined so that it is adjacent to both
xj and a fault-free vertex in /j+1. If Aj is fault-free, then it is not di@cult to generate
a fault-free Hamiltonian xj−yj path in Aj. If Aj is faulty, by Lemma 4 there is a
fault-free xj−yj path of maximal length 4!− 3 in Aj.
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On the other hand, if /j 
= 0j, then two 3-vertices Qj and Lj in Aj are Frst deter-
mined so that Qj 
= 0j is not connected to Aj+1 and Lj 
= /j is not connected to Aj−1.
Since Aj is fault-free, a fault-free Hamiltonian /j−0j path in the K3

4 formed by Aj
can be established as (/j;M1; M2; 0j) if Qj = /j and Lj = 0j, (/j; Qj;M2; 0j) if Qj 
= /j
and Lj = 0j, (/j;M1; Lj; 0j) if Qj = /j and Lj 
= 0j, and (/j; Qj; Lj; 0j) if Qj 
= /j and
Lj 
= 0j, where M1 and M2 are the other 3-vertices in Aj. Without loss of generality,
we assume that (/j; Qj; Lj; 0j) is established. The discussions for other possibilities are
all similar. Suppose E= 〈e1e2 : : : en〉3, F = 〈f1f2 : : : fn〉3, and G= 〈g1g2 : : : gn〉3 are arbi-
trary three consecutive 3-vertices in (0j−1; /j; Qj; Lj; 0j; /j+1). Then, edif(E;F) 
= gdif(F;G)
holds similar to step (S1). A fault-free Hamiltonian xj−yj path can be generated from
(/j; Qj; Lj; 0j), which is similar to step (S1). After steps (S1) and (S2), there is a
fault-free u−yn(n−1)···5−1 path of length n!−2|Fv|−25.
Step (S3) is explained as follows. Assume v= v1v2 : : : vn, and let D= 〈d1d2 : : : dn〉3


∈ {/n(n−1)···5; 0n(n−1)···5} be a 3-vertex in An(n−1)···5 with dk 
= v1. Since 0n(n−1)···5 is the
ending 3-vertex which is not connected to An(n−1)···5−1, we have /n(n−1)···5 
= 0n(n−1)···5.
A fault-free Hamiltonian /n(n−1)···5 − 0n(n−1)···5 path in the K3

4 formed by An(n−1)···5
can be established as (/n(n−1)···5; M1; D; 0n(n−1)···5), where M1 is the other 3-vertex in
An(n−1)···5.
Suppose E= 〈e1e2 : : : en〉3, F = 〈f1f2 : : : fn〉3, and G= 〈g1g2 : : : gn〉3 are arbitrary three

consecutive 3-vertices in (0n(n−1)···5−1; /n(n−1)···5; M1; D; 0n(n−1)···5). Then, edif(E;F) 
=
gdif(F;G) holds similarly. We note that v is not connected to D because dk 
= v1 and
each edge between D and 0n(n−1)···5 is a k-dimensional edge. Since An(n−1)···5−1 and
An(n−1)···5 are fault-free, Lemmas 9 and 10 assure that there are distinct fault-free
vertices xn(n−1)···5, r ∈ /n(n−1)···5, s; t ∈M1, and w; z ∈D so that every two consecutive
vertices in {xn(n−1)···5; r; s; t; w; z; f} are adjacent, where xn(n−1)···5 is the fault-free vertex
in /n(n−1)···5 that is adjacent to yn(n−1)···5−1 and f is a fault-free vertex in 0n(n−1)···5.

Let (c0; c1; c2; c3; c4; c5) represent the ring formed by 0n(n−1)···5, where c0 = v is
assumed. We let yn(n−1)···5 = v= c0. Since v is not connected to D, we have f 
∈ {c0; c3}
by Lemma 9. If dist(u; v) is even, then every u–v path has even length, because Sn
is bipartite. We have f∈{c2; c4}, for otherwise f∈{c1; c5} will cause a u–v path of
length n!−2|Fv|−1, which is a contradiction. A fault-free xn(n−1)···5 − yn(n−1)···5 path
of length 22 can be generated in An(n−1)···5 accordingly. Similarly, if dist(u; v) is odd,
then f∈{c1; c5} and a fault-free Hamiltonian xn(n−1)···5 − yn(n−1)···5 path of length 23
can be generated in An(n−1)···5.
A fault-free u−v path can result if the fault-free x1−y1; x2−y2; : : : ; xn(n−1)···5

− yn(n−1)···5 paths in A1; A2; : : : ; An(n−1)···5, respectively, interleaved with edges (y1; x2);
(y2; x3); : : : ; (yn(n−1)···5−1; xn(n−1)···5). The path has length n!−2|Fv|−2 if dist(u; v) is
even, and n!− 2|Fv| − 1 if dist(u; v) is odd.

Since Sn is bipartite with two partite sets of equal size, a u–v path in Sn has length
at most n!−2|Fv|−2 if dist(u; v) is even, and at most n!−2|Fv|−1 if dist(u; v) is odd,
for the worst-case scenario. As a consequence of Lemma 11, we have the following
theorem.
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Theorem 1. Suppose u; v are arbitrary two distinct fault-free vertices in an Sn with
|Fv|6n−5 faulty vertices; where n¿6. There is a fault-free u–v path in the Sn whose
length is n!− 2|Fv| − 2 if dist(u; v) is even; and n!− 2|Fv| − 1 if dist(u; v) is odd. The
path is longest for the worst-case scenario.

The authors have also discussed the situation of |Fv|= n− 4 or n− 3, and the result
appeared in [10].

Theorem 2 (Hsieh et al. [10]). Suppose u; v are arbitrary two distinct fault-free ver-
tices in an Sn with |Fv|= n − 4 or n − 3 faulty vertices; where n¿4. There is a
fault-free u–v path of length at least n!− 4|Fv| − 10 if dist(u; v) is even; and at least
n!− 4|Fv| − 9 if dist(u; v) is odd.

4. Concluding remarks

In this paper, we have shown that an n-dimensional star graph with |Fv|6n − 5
faulty vertices contains a fault-free path of length n! − 2|Fv| − 2 (n! − 2|Fv| − 1)
between arbitrary two distinct vertices of even (odd) distance, where n¿6. Since the
star graph is bipartite with two partite sets of equal size, the path is longest for the
worst-case scenario. If the two end vertices are adjacent, then a fault-free ring of length
n!− 2|Fv| can result. This improves Tseng et al.’s work [20] for |Fv|6n− 5. In [20],
a fault-free ring of length n!− 4|Fv| can be determined in an n-dimensional star graph
with |Fv|6n− 3 faulty vertices.
We also discussed the situation of |Fv|= n − 4 or n − 3 in [10], where n¿4. It is

still unknown whether or not the path is longest for the worst-case scenario. Since an
n-dimensional star graph is regular of degree n − 1, |Fv|= n − 3 is maximal in order
to construct a longest fault-free path between arbitrary two distinct vertices.
Incidentally, our result reveals that a star graph without faulty vertices contains a

path of length n! − 1 between arbitrary two distinct vertices of odd distance. That is,
this paper provides an alternative proof that the star graph is Hamiltonian. An earlier
proof appeared in [11].
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