
tlB
Eindhoven University
of Technology

Department of Mathematics
and Computing Sciences

Memorandum COSOR 98-06

On-line single server dial-a-ride
problems

E. Feuerstein, L. Stougie

Eindhoven, March 1998
The Netherlands

On-line single server dial-a-ride problems

Esteban Feuerstein * Leen Stougiet

March 17, 1998

Abstract

In this paper results on the dial-a-ride problem with a single server
are presented. Requests for rides consist of two points in a metric space,
a source and a destination. A ride has to be made by the server from the
source to the destination. The server travels at unit speed in the metric
space and the objective is to minimize some function of the delivery times
at the destinations.

We study this problem in the natural on-line setting. Calls for rides
come in while the server is travelling. This models e.g. the taxi problem,
or, if the server has capacity more than 1 a minibus or courier service
problem. For two versions of this problem, one in which the server has
infinite capacity and the other in which the server has capacity I, both
having as objective minimization of the time the last destination is served,
we will design algorithms that have competitive ratio's of 2. We also show
that these are best possible, since no algorithm can have competitive ratio
better than 2 for these problems.

Then we study the on-line problem with objective minimization of
the sum of completion times of the rides. We prove a lower bound on the
competitive ratio of any algorithm of 1 +V2 for a server with any capacity
and of 3 for servers with capacity 1.

Keywords: Dial-a-ride, on-line optimization, competitive analysis.

-Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires, and Instituto de Ciencias, Universidad de General Sarmiento, Argentina.
Partly supported by the KIT program of the European Community under contract n. 131
(DYNDATA), by UBA project EX070/J "Algoritmos eficientes para problemas on-line con
aplicaciones" and UBA project EX209 "Modelos y tecnicas de optimizacion combinatoria" .
e-mail: efeuerst@dc.uba.ar

t Combinatorial Optimization Group, Faculty of Mathematics, Technical University Eind­
hoven, P.O. Box 513, 5600MB Eindhoven, The Netherlands. Supported by the Human Capital
Mobility Network DONET of the European Community. e-mail: leen@win.tue.nl

1

1 Prologue

Dial-a-ride is a name that covers a rich variety of problems. The common
characteristics of dial-a-ride problems is that there are servers that travel in
some metric space to serve requests for rides. Each ride is given by two points in
the metric space, a source, which is the start point of the ride, and a destination,
which is the endpoint of the ride. The problem is to assign rides to servers and
to route the servers through the metric space such as to meet some optimality
criterion.

The variety in dial-a-ride problems comes from characteristics like the num­
ber and the capacity of servers, existence or not of time-windows on the requests,
the type of metric space and the particular objective function. In another pa­
per [3] we have proposed a classification for dial-a-ride problems similar to that
developed for scheduling problems in [7].

In this paper we study on-line dial-a-ride problems. It is almost in the name
that the on-line setting is a very natural one for these problems. Requests for
rides come in over time, while the server(s) are en route serving other rides.
This model accommodates practical situations that occur for taxi services in
which the capacity of each server is 1, but also for courier services in which the
capacity of each server may be regarded as infinite, or in between the situation
of minibus services in which the servers have some finite capacity.

Some studies on dial-a-ride problems have appeared in the literature [4], [2],
[5], [6], be it under various names, like stacker crane problems, and ensemble
motion planning problems. They all concern the off-line problem. In these
papers it is proved that the general problem with one server having capacity 1
and minimizing the time to serve all rides is NP-hard. On the line as underlying
metric space the problem is solvable in polynomial time. On a tree the problem
is already NP-hard.

As far as we know no results on the on-line dial-a-ride problem have appeared
in the literature. Closely related to the problems considered here is the work
on the on-line Travelling Salesman Problem [1]. The TSP can be seen as a
special version of the dial-a-ride problem in which for each request source and
destination coincide.

We will design algorithms for the problems with a single server on a metric
space that satisfies some conditions exposed at the end of this section. The
objective is to minimize the time it takes to serve all the rides and return in the
origin. We call this the makespan of the service, in analogy to the makespan in
scheduling problems. Two cases are considered. In the first case the server has
capacity L In the second case it has infinite capacity.

The algorithms will be analysed on their competitive ratio, Le., the worst-case
ratio between the objective value produced by the algorithm and the optimal off­
line value. We show in Section 2 that our algorithms have competitive ratio 2,
and that this is best possible by providing a lower bound of 2 on the competitive
ratio of any algorithm for the on-line problems.

2

After that in Section 3 we make a start with the study of the dial-a-ride
problem with the objective of minimizing the average completion time of the
requests, also called the latency. Even the complexity of the off-line version of
this problem is unknown. The only result here is on a highly restricted version
with one server having capacity 1, moving on the line and there exists a point
such that all sources are lying left of this point and all destinations right of it.
This version is polynomially solvable [3]. We conjecture that the single server
capacity 1 problem is already NP-hard.

We will prove a lower bound of 1 + V2 on the competitive ratio of any
algorithm for the on-line problem with a single server having any capacity and
a lower bound of 3 for the same problem with a server having capacity 1. So far
no constant competitive algorithms are known.

In the epilogue we give some conclusions and proposals for a host of interest­
ing problems for future research in the field of dial-a-ride.

We finish this section by defining a class M of metric spaces that will be
considered in the rest of the paper. Every metric space in M must be symmetric,
which is usually part of the definition of metric space, i.e., for every pair of points
x, yin M, d(x, y) == dey, x), where d(x, y) denotes the distance from x to y. M
contains all continuous metric spaces, i.e., every metric space M having the
property that the shortest path from x E M to y E M is continuous, formed by
points in M, and has length d(x, y). For continuous metric spaces the times at
which a request can be made can be any non-negative real number.

Next M contains discrete metric spaces representable by an underlying graph
with all edges having unit length. The vertices are the points of the metric
space. Working on such spaces time needs to be discretized, i.e., the times ti at
which requests are made are non-negative integers, and the server determines its
strategy at integer points in time being at a point in the metric space (vertex of
the graph) and either remain there or move in one time step to a neighbouring
point in the metric space.

Thus, an example of a model that we do not consider here is one in whicb
the server moves on a road network of freeways and a request can arrive while
he is moving between two exits and he has to proceed to the next exit before
being able to change his strategy.

2 Competitiveness of the makespan problem

We will first study the problem in which there is a single server starting at the
origin at time 0 that is to serve requests for rides. Each request j is characterized
by a pair of points < 8j, dj >, with 8j the source and dj the destination being
points in some underlying metric space belonging to the class M defined at the
end of the previous section. Moreover, a ride j has a release date rj. A ride is
then to be made from 8j to dj, in that order, and the ride cannot be started in
8j before time rj. We will consider two variations. In the first one the capacity

3

of the server is infinite, which means that he can collect any number of sources
before getting to their destinations. In the second one the server has capacity 1,
which means that as soon as he has started a ride he must finish this ride before
being able to start any other ride. In both cases the server travels at a speed
of at most 1 per time unit. He may also wait. The objective is to find a route
in which all requested rides are served and that ends in the origin such that
a minimum amount of time is required. We call the time at which the server
finishes its route the makespan.

The requests for rides are communicated to the server over time while he may
already be serving rides that have been communicated to him before. At the
start of the problem nothing about the rides is known, not even their number.
The release date of a ride coincides with the time the request for that ride is
presented. At that time the source and the destination of that ride become
known.

Before presenting algorithms we first state a lower bound on the compet­
itive ratio of any algorithm for the single server problem independent of his
capacity.

Theorem 2.1 For the single server on-line dial-a-ride problem on any met­
ric space belonging to M, minimizing makespan, any algorithm must have a
competitive ratio of at least 2, independently of the capacity of the server.

PROOF. The proof is direct from the lower bound of 2 on the competitive ratio
of any algorithm for the on-line Travelling Salesman Problem, [1, Theorem 3.2].
The on-line TSP is a specific dial-a-ride problem with the property that source
and destination of each ride coincide. Therefore, every ride is completed at the
moment it is started and the capacity of the server becomes irrelevant. 0

For the two on-line problems we propose the following algorithms that deter­
mine at each time t the behaviour of the server. They are based on the algorithm
that was proposed for the on-line TSP in [1], which has been called PAH there,
and in fact have the same competitive ratio. We call the algorithms TIRco (for
Temporarily Ignore Requests) and TIR1, for the infinite capacity and the unit
capacity problem, respectively.

We denote the position of the TIRoo and the TIRI algorithm at time t by p.
First follows a description of the algorithm TIRoo.

1. Whenever the server is at the origin, it starts to follow an optimal route
that serves all the requests for rides yet to be served and goes back to the
origin.

2. If at time t a new request is presented with source s and destination d,
then it takes one of two actions depending on its current position p:

4

2a. If d(s,o) > d(p, 0) or d(d, 0) > d(p, 0), then the server goes back to
the origin (following the shortest path from p) where it appears in a
Case 1 situation.

2b. If both d(s, 0) :::; d(p,o) and d(d,o) :::; d(p, 0) then the server ignores
it until it arrives at the origin, where again it reenters Case 1.

Theorem 2.2 TIRoo is has competitive ratio 2 for the on-line dial-a-ride prob­
lem with a single server having infinite capacity and minimizing total time used
for serving all rides and returning in the origin. Therefore this algorithm is best
possible.

PROOF. Let t be the time the last request is presented and that request is the
ride < s, d >. Let p be the position of TIRoo at time t. Moreover, let T be an
optimal route that makes all rides requested, and let ITI denote its length. We
consider each of the three cases described.

• Case 1. The server will follow from time t the optimal route making all
rides not yet completed. This route is certainly not longer than ITI, and
therefore zTlRoo :::; t + ITI. Obviously, ITI is a lower bound on the opti­
mal off-line solution value: ZOPT ~ ITI. Another trivial lower bound is
ZOPT ~ t. Thus, ZTlRoo :::; 2Z0PT.

• Case 2a. The server will return ro the origin and starts from there an
optimal route making all yet uncompleted rides. Thus, ZTlRco :::; t +
d(p, 0) + ITI. In this case we have for the optimal off-line route a new
lower bound, since the ride < s, d > cannot be served before time t.
Therefore, ZOPT ~ t + des, d) + d(d,o). Since either d(s,o) or d(d, 0)
is greater than d(p,o) the triangle inequality gives ZOPT ~ t + d(p.o).
Hence, ZTIRco :::; 2Z0PT.

• Case 2b. Consider the set Q of rides that has been postponed by TIRoo.
Let < Sl, d1 > be the ride in Q that is served first in the optimal off­
line route, and let tl be the time at which this ride was started at Sl in
the optimal off-line solution. Moreover, let TQ be an optimal route for the
rides in Q. Then certainly ZOPT ~ it+ITQI-d(o, S1). At tl TIRoofollows
an optimal route to serve all yet unserved rides not in Q. It must have
travelled already more than d(o, st) on that route, since at the moment
the ride < sl,dl > was presented it was in a position more remote from
o. After finishing this route TIRoo makes an optimal route for serving the
rides in Q. Therefore, ZTIRco :::; t1 + ITI- des!, 0) + ITQI :::; 2Z0PT .

o

For the problem in which the capacity of the server is 1 the above algorithm
has to be adapted to deal with the situation that the server is serving a ride

5

when the new request is presented. In that case it should finish its current ride
first before doing anything else. This leads to algorithm TIR1.

1. If the server is in the origin 0 and is empty, i.e., is not serving a ride,
then the optimal tour through all yet unserved requests is computed and
followed.

2. If at time t a new request is presented with source s and destination d,
then

2a. If d(s, 0) > d(p, 0) or d(d, 0) > d(p, 0), and the server is not serving
any ride at time t, then the server goes back to the origin (following
the shortest path from p), where it appears in a Case 1 situation.

2b. If des, 0) > d(p, 0) or d(d, 0) > d(p,o), and the server is serving the
ride < x, y > at time t, then the server proceeds to y and computes
in y an optimal path from y through all unserved requests to o.

2c. If both d(s, 0) :::; d(p, 0) and d(d, 0) :::; d(p, 0) then the server ignores
it until a new tour through unserved rides is computed, either after
a Case 1 occurrence or the arrival at a destination of a ride after a
Case 2b occurrence.

Theorem 2.3 TIRl has competitive ratio 2 for the on-line dial-a-ride problem
with a single server having capacity 1 and minimizing the total time used to
serve all rides and returning in the origin. Therefore it is best possible.

PROOF. The proof is similar to that of the previous theorem. Again we assume
that t is the time the last request for a ride is presented and the ride is < s, d >.
The proof of Case 1 is equivalent to that in the previous theorem. The same
holds for the proof of Case 2a.

In Case 2b the length of the path from y to ° is bounded by ITI- d(x, y) +
d(x, 0), with T again the shortest tour for all requests starting and finishing in
0. Therefore,

ZTIRl < t+d(p,y)+ITI-d(x,y)+d(x,o)

:::; t + ITI + d(p, y) - d(x, y) + d(x,p) + d(p, 0)
t + ITI + d(p, 0).

For the optimal solution we have ZOPT 2: ITI and ZOPT 2: t+d(s, d)+d(d, 0) 2:
t+d(p,o). Thus, indeed ZTIRl /ZOPT :::; 2.

If in Case 2c the set Q of temporarily ignored requests is emptied at the
moment the server arrives at 0, the proof of Case 2b in the previous theorem
still holds.

Suppose now that Q is emptied upon arrival at a destination y of a ride
< x, y >. The final request < 5, d > has not caused this Case 2b situation.

6

Thus, at time t the server was already finishing the ride < x, y > after a Case 2b
occurrence during this ride at an earlier time, t'. Since, the request has arrived
before arrival of the server at y, the new request < 8, d > will just be included in
the optimal path from y to 0 serving all yet unserved requests. 2-competitiveness
follows directly from the above Case 2b analysis with t' replacing t.

o

As we noticed in the two theorems the competitive ratio's of TIRoo and
TIR1 are tight, since they match the lower bound from Theorem 2.1. Still,
we give one example that shows asymptotic tightness of both algorithms. We
learn from it that tightness of the algorithms occurs already on the real line as
metric space and moreover that the worst-case occurs in a situation of coinciding
source and destination for each ride, i.e., in an instance of the on-line TSP. The
latter observation is not too surprising since a ride of length 0 gives much more
flexibility to the adversary player. However, we have not been able so far to
prove a general statement of this form.

The worst-case example is defined on the line with 0 as the origin. At time
o there is a request < 1,1 >. Both TIRoo and TIRI would serve it immediately
and therefore arriving in 1 at time 1. From there they proceed back to O. At
time 1 + € a new request is presented in < 1,1 >. Both algorithms will find
themselves in Case 2a, and thus, return to the origin 0, from where at time 2
they start to serve the new ride, and therefore finishing at time 4. Obviously, an
optimal service schedule would have finished at time 2+€. Thus, the competitive
ratio can be arbitrarily close to 2.

We notice that the lower bound in Theorem 2.1 does not necessarily hold for
the real line and therefore a better algorithm for that particular metric space
might exist.

It might be interesting to study the problem in which preemption of rides
is allowed, i.e., a ride may be interrupted at any point and resumed at that
point later again at no extra cost. The off-line version of this problem has been
studied in [5].

3 Lower bounds for the latency problem

Instead of minimizing the makespan as in the previous section, we consider here
the problem of minimizing latency, i.e., the average completion time or the sum
of the completion times of the rides. The single server has capacity c, which
may also be infinite.

A lower bound on the competitive ratio of any algorithm for this problem for
any c will be derived using an adversary that gives a sequence of ride requests
playing against an algorithm for the on-line problem.

7

Theorem 3.1 For any c, no algorithm for the single server on-line dial-a-ride
problem on any metric space minimizing the latency can have a competitive
ratio less than 1 + Vi.

PROOF. The lower bound will be proved by considering the problem defined
on the real line as the underlying metric space with 0 as the origin. Think of
an adversary that at time t ::;: 0 presents a request for the ride < -1, -1 >.
Any algorithm should at some time, x say, serve that request. If x > 1 + Vi
the adversary will not present any further requests and the algorithm is more
than 1 + Vi-competitive, since the adversary will complete this single ride at
time L

If x ::; 1 + Vi then at time t ::;: x the adversary presents n equal rides
< x, x >. In that case the adversary will first complete the n rides before
serving the ride in < -1 >. Its sum of completion times is then nx + x + L
The algorithm is at time x in serves the ride there, and proceeds to x to
complete the n rides. Thus, its sum of completion times is x + n(2x + 1). Hence
the competitive ratio of the algorithm is n~2::;Lix Taking n arbitrarily large,
this ratio gets arbitrarily close to 2X/l, which is a monotonically decreasing
function of x on [0,00], and therefore the best algorithm that does not arrive in
-1 after time I+Vi will arrive there exactly at that time, yielding a competitive
ratio of

2 + 2Vi + 1 _ 1 Jn2
1 + Vi - + v..:.

We notice that since the source and destination of each ride in the adversarial
sequence coincide, the capacity of the server does not play any role. Therefore
the above lower bound holds for any c. D

In case the capacity of the server is 1, we can obtain a higher lower bound of
3.

Theorem 3.2 Any algorithm for the single server dial-a-ride problem with unit
capacity on any metric space minimizing latency has a competitive ratio of at
least 3.

PROOF. At time t ::;: 0 the adversary presents a request for the ride < 0, -1 >. If
an algorithm starts this ride not before time 2, there will be no further requests
and the algorithm has competitive ratio at least 3.

If an algorithm starts the ride at a time 0 < x < 2, then at time x the
adversary presents n requests for the ride < x, x >. The algorithm will first
finish the first ride at time x + 1, after which the n rides are completed at time
x + 2 + x ~ 3x. The adversary first completes the n rides presented at time x.
Thus, the competitive ratio is at least n3x/(nx + 2x + 1), which can be made
arbitrarily close to 3, by choosing n large enough.

8

Finally, if an algorithm starts the ride at time x = 0, n requests for the ride
< 1,1 > are presented. The algorithm will not complete the n rides before time
1 + 2 = 3, whereas the adversary will complete the n rides at time 1. This yields
a competitive ratio of (3n + 1)/(n + 3), which is again arbitrarily close to 3 by
choosing n large enough.

o

So far any attempt to devise an algorithm with a constant competitive ratio
for this problem failed.

From the adversarial sequence in the above proof we deduce that any al­
gorithm that starts a ride as soon as possible after a fraction x has passed of
the earliest possible completion time minus the release time of the ride, will be
at least p(x)-competitive with p(x) = max{x + 1, (2x + 2)/x}. Thus, e.g. any
algorithm that takes as this fraction any x :f: 2 has competitive ratio strictly
greater than 3.

The situation is even more dramatic in case x = 0, I.e., the server moves
immediately if any ride is unserved.

Lemma 3.1 Any algorithm for the single server problem with capacity 1 that
moves immediately whenever there is any unserved ride will be O(n) competi­
tive.

PROOF. The proof is a simple adaption of the adversarial sequence in the proof
of the previous theorem. At time 0 the request < 0, -1> is given, and at time
f follow n requests < 0,0 >. The adversary will wait f and hence will reach a
latency of (n + 1)f + 1. An algorithm that does not wait will have to finish the
first ride before returning to 0 to serve the n later rides hence yielding a latency
of 1 + 2n. Letting f tend to 0 gives the desired lower bound. 0

For the single server problem with infinite capacity similar conclusions can
be drawn based on the adversarial sequence in the proof of Theorem 3.1. In
particular any algorithm that does not allow to wait will have a competitive
ratio of at least 3.

4 Epilogue

We emphasize that the the present paper contains only first results in a field of
natural on-line problems that has so far been virtually unexplored. On-line dial­
a-ride problems are occurring in a wide variety of practical settings, and cover
not only physical rides by transportation means. As an abstraction almost all
(machine) scheduling and routing problems can be translated as special versions
of dial-a-ride.

9

That the field gives challenges is well exemplified by the problems with a
criterion of minimizing latency. The first constant competitive algorithm is
still to be found. An example shows that the obvious and intuitively not so bad
greedy algorithm has an infinite competitive ratio. Copying of the results for the
related on-line single machine scheduling problem [8I, [9] is not straightforward,
since there are no easy lower bounds on completion times of rides, e.g., given
by the preemptive version of the problem. Even the complexity of the off-line
problem with or without preemption ofrides is open yet.

For both the makespan and the latency problem it would be interesting to
introduce more realistic aspects, like restrictions on the minimum and maximum
length of rides (relative to the speed of the server). Moreover, introduction of
multiple servers gives a very practical extension.

Acknowledgements

We are indebted to Marcelo Mydlarz for the lower bound of Theorem 3.2.

References

[1] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M. Talamo. On line
routing problems. To appear in Algorithmica.

[2] M.J. Atallah, S.R. Kosaraju. Efficient solutions to some transportation
problems with application to minimizing robot arm travel. SIAM J. Com­
puting, 17, 1988. 849-869.

[3] E. Feuerstein, L. Stougie. A classification and complexity of dial-a-ride
problems. Manuscript.

[4] G.N. Frederickson, M.S. Hecht, C.E. Kim. Approximation algorithms for
some routing problems. SIAM J. Computing, 7, 1978.178-193.

[5] G.N. Frederickson, D.J. Guan. Preemptive ensemble motion planning on
a tree. SIAM J. Computing, 21, 1992. 1130-1152.

[6] G.N. Frederickson, D.J. Guan. Nonpreemptive ensemble motion planning.
Journal of Algorithms, 15, 1993. 29-60.

[7] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. Sequenc­
ing and scheduling: algorithms and complexity. In Handbooks in Opera­
tions Research and Management Science, 4, Chapter 9. Elsevier Science
Publishers, Amsterdam. 1993.

[8] C.A. Phillips, C. Stein, J. Wein. Scheduling jobs that arrive over time.
In S.G. Akl, F. Dehne, J.-R. Sack, N. Santoro (eds). WADS: Workshop

10

on Algorithms and Data Structures: Proceedings: 4th, Kingston, Canada,
August 16-18, 1995. Lecture Notes in Computer Science 955, Spinger,
Berlin, 1995. 86-97.

[9J A. Vestjens. On-line machine scheduling. PhD-thesis, Department of
Mathematics and Computing Science, Eindhoven University of Technol­
ogy, Eindhoven, 1997.

11

