On the Expressive Power of First-Order Boolean Functions in
PCF

Riccardo Pucella Prakash Panangaden
Department of Computer Science  School of Computer Science
Cornell University McGill University

Ithaca, NY, 14853, USA Montreal H3A 2K7, Canada

Abstract

Recent results of Bucciarelli show that the semilattice efrées of parallelism of first-
order boolean functions in PCF has both infinite chains afidii@ antichains. By considering
a simple subclass of Sieber’s sequentiality relations,deatify levels in the semilattice and
derive inexpressibility results concerning functions dfedent levels. This allows us to further
explore the structure of the semilattice of degrees of fish: we identify semilattices char-
acterized by simple level properties, and show the existefimew infinite hierarchies which
are in a certain sense natural with respect to the levels.

1 Introduction

In this paper we study the relative definability of first-ardmolean functions with respect to
Plotkin’s language PCF [9], a simply-typedcalculus with recursion over the ground types of in-
tegers and booleans. Relative definability defines a preareontinuous boolean functions, and
this ordering induces a natural equivalence relation. Tjeab of our study will be the structure of
the resulting partially ordered set of equivalence clast@mctions (called degrees of parallelism).
Work by Trakhtenbrot [16, 17], Sazonov [13], Lichtenthdl& and Bucciarelli and Malacaria [2, 5]
show that the structure of degrees of parallelism is higbly-trivial: even when restricted to first-
order functions, the poset forms a sup-semilattice andagmta "two-dimensional” hierarchy of
functions, both infinite chains and infinite antichains aidtions.

It is known that the definability ordering is completely cheterized by the sequentiality re-
lations of Sieber. The result is a duality of sorts.can be defined using if the sequentiality
relations under whicly is invariant is a subset of the sequentiality relations umdech f is invari-
ant. Therefore, it seems worthwhile to try to derive the $eeguentiality relations under which a
given function is invariant. As a first step towards this gwoalfocus our attention in this paper on
a simple class of sequentiality relations we call presetpléy relations. Invariance under prese-
guentiality relations induces a coarser ordering on famstithan full sequentiality relations, from
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which we cannot infer definability results but can infer sganexpressibility results. In effect, this
coarser ordering is a “skeleton” of the definability prearde

The main advantage of working with presequentiality relagiis that we can completely charac-
terize the set of presequentiality relations under whiclvargfunction is invariant. It turns out that
a pair of integers is sufficient to completely describe tleis Jhis pair of integers, called the pre-
sequentiality level of the function, can straightforwagrde derived from the trace of the function.
Well-known functions in the definability preorder, such asdfel OR, the Berry-Plotkin function,
the Gustave function, the Detector function, can be eabiéyacterized in terms of presequential-
ity levels. We use presequentiality levels to guide our esgilon of the definability preorder: we
present subsemilattices with natural presequentialitgl leharacterizations, namely the stable, un-
stable, stable-dominating and monovalued functions. Viéénatural hierarchies of functions in
these lattices, where natural is taken to mean that evetiumin the hierarchy has a different
presequentiality level, thereby making the hierarchy pétie skeleton of the definability preorder.

This paper is structured as follows. In the next section, ewéew the required mathematical
preliminaries, rigorously defining the notions of relatidefinability, traces, linear coherence, as
well as stating useful existing results. In Section 3, welgtoresequentiality relations, and prove
the two main lemmas of this paper: the Reduction Lemma an@lbsure Lemma, which allow us
to find canonical representatives for the set of presecaléptrelations under which a function is
invariant. In Section 4, we point out the relationship bedwéhe canonical representatives and the
trace of the function, and thus define the notion of preseipliy level. Section 5 then investigates
the structure of the definability preorder guided by presetjality levels, as described above.

This work is in the lineage of the work of Bucciarelli in [2] drBucciarelli and Malacaria in
[5]. The main results from this paper were originally repdrin [11].

2 Preliminaries

In this section, we review some of the mathematical backgtda our study of first-order monotone
boolean functions and the previous work already done onubgst by Trakhtenbrot, Sazanov,
Bucciarelli and Malacaria. We assume knowledge of PCF anddhtinuous model [9], as well
as a passing familiarity with logical relations [10]. LBtbe the flat domain of boolean values.
Givenf : B¥ — Bandz = (z1,..., ), then f(z) stands forf(z1,...,z;), and givend =
{2t,... 2"} C Bk, f(A) is defined to be{ f(z?) : ' € A}. As usual,m; andm, represent the
projection functions associated with the cartesian prodncsets.

Relative definability refers to the ability to define somedtion using another function: a func-
tion can define another function if there exist some algorith some language that uses the former
to compute the latter. In our case, algorithms are taken tB@E-terms: given two continuous
functions f andg, we say thatf is PCF-expressibléor simply expressible) by, denotedf < g,
if there exists a PCF-term/ such thatf = [M ]¢g. Equivalent terminologies in the literature for
f = g are “fis less parallel than g”, of is g-expressible. The< preorder induces an equivalence
relation= on continuous function such tht= ¢ iff f < gandg < f. The equivalence classes are
calleddegrees of parallelispand two functionsf,g with f = g are calledequiparallel The degree
of parallelism of a continuous functiofis denoted f].

We are interested in studying the structure of first-ordgyreles of parallelism. Trakhtenbrot
[16, 17] and Sazonov [13] first investigated the subject avidtpd out finite subposets of degrees



(though not necessarily first-order degrees). Some faete@msequences of well-known results.
The poset of degrees of parallelism must have a top elemard]l& OR (POR), by Plotkin’s full
abstraction result for PCF+POR [9]. On the other hand, tlsefmust have a bottom element, the
degree of all M-sequential functions. Indeed, a fundanmgmtperty of PCF is that PCF-definable
functions are exactly the M-sequential functions. A fumetf : B* — B is M-sequential8] (or
simply sequential) if it is constant or if there exists areg#r: (called anindex of sequentialiy
with 1 <4 < k such thate; = L implies thatf (x4, ...,x;) = L and such that for any fixed value
x;, the function of the remaining arguments is also M-seqaéri [5], it is proved that first-order
degrees of parallelism form a sup-semilattice, which wéaghoteCONT?.

Proposition 2.1 The poset of first-order degrees of parallelism is a sup-satice with a bottom
element (the set of sequential functions) and a top elerttenteégree oPOR).

The trace of a function is the central notion we use to studyldam functions. The trace is a
representation of the minimum inputs needed for the fundbigoroduce a result. Formally, given a
first-order monotone functiofi : B¥ — B, thetraceof f is

L}

Forxz,y € B, letx T y hold if x andy have a common upperboundfthatisifxr = L ory = L
or x = y. Extend?{ pointwise to tuples irB". It is easy to see that a first-order monotone boolean
function f is stable (in the sense of Berry [1]) if and only if for all, vy € 7 (tr(f)), v1 7 v2. Note
that the monotonicity of insures that ifs; 1 v5 then f(vy) = f(v2). For a set of tuplest C B,
a setB C B* is an Egli-Milner lowerbound for if for every = € A, there is ay € B with yy < z,
and for everyy € B, thereis anr € A withy < x.

Linear coherence is used by Bucciarelli and Erhard to stugy-drder boolean functions in
[3, 4, 2]. Asubsetd = {v!,... ,v"} of B is linearly coherent(or simply coherent) if for every
coordinate, either a tuple id contains_L at that coordinate, or all the tuples ihhave the same
value at that coordinate, that is

tr(f) = {(v,b)\v e B*beB,b# L, f(v) =bandvy' < v, f(v')

Wi (L, k} (Ve {1 ndol # 1) = Wl € {1, n},olf = of?

AsubsetA = {v!,... v"} of B* is L-coveringif for every coordinate a tuple il contains. at
that coordinate, that is 4
Vie{l,... khFie{l,... k}v;=1

It is easy to see that il is 1-covering thenA is coherent. Abusing the terminology, we will
sometimes say that a first-order monotone boolean fungti@n_L-covering if 7 (tr(f)) has the
corresponding property.

Monovalued functions are an important class of functionsstugly. A first-order monotone
boolean functionf is monovaluedf |my(tr(f))] = 1. By another abuse of terminology, we will
say that a subset C 7 (tr(f)) is monovalued if f(A)| = 1. A boolean function which is not
monovalued will sometimes be called bivalded

LCONT refers to the fact that those functions are continuous:lIiréfe for first-order boolean functions, monotone
functions are continuous.

2The term “bivalued” refers of course to the fact that theeetao non-L values in the boolean domain — a function
is bivalued if|m2 (tr(f))| = 2.



We define two operations on boolean functions. Given a fid&tomonotone boolean function
f: BF — B, letneg(f) : B¥ — B be the function returningt when f returnsff and returningf
when f returnstt. As for the second operation, given two first-order monotboelean functions
f:B¥ - Bandg : B — B, (without loss of generality, assume there existd an 0 with
k = k' + 1) define the functiory + ¢ : Bmax(k:K)+1 _, 3 py the following trace:

tr(f+g9) = {((tt,zq,...,2),0) : (z1,...,2%),b) € tr(f)}U
{((ff, ..., ffoxq,...,20),0) s ((x1,...,2x),b) € tr(g)}
+1

As shown in [5],f + ¢ is equiparallel to the least upperboundfoéndg in CONT, in other words
[f+9l=[f]V]gl.

Bucciarelli illustrates the non-trivial structure of tiONT semilattice by exhibiting hierar-
chies of functions inCONT [2]. He defines the functioBUCC, ,,,) via the following descrip-
tion: the trace oBUCC,, ,,,) hasm elements and each trace element retutnfor any subset of
less tham elements (and at least two) of the first projection of theerdlaere exists a coordinate
which makes that subset incoherent. The Bucciarelli hibsais actually a two-dimensional infinite
hierarchy of functions.

Generalizing the techniques used in [2], Bucciarelli andadaria prove the following propo-
sition in [5], in their attempt to find a characterization beE{CONT semilattice in terms of hyper-
graphs (this proposition is restated so that it does not tefeypergraphs)

Proposition 2.2 (Bucciarelli, Malacaria) Let f, g be two first-order monotone boolean functions.
If there exists a function : tr(f) — tr(g) such that

1. for all A C tr(f), if m1(A) is non-singleton and linearly coherent, then(«(A)) is non-
singleton and linearly coherent.

2. forall A C tr(f) with 71 (A) non-singleton and linearly coherent, and for ally € A, we
havemy(z) # ma(y) = ma(a(z)) # ma(a(y)).

thenf < g.

This property will be used often in this paper to prove defilitsttresults between functions.

3 Presequentiality relations

Relative definability for first-order boolean functionsudly characterized by Sieber’s sequentiality
relations, introduced in [14]. Sequentiality relations #ne logical relations [10] under which the
constants of PCF are invariant. Recall thataary logical relation? on ax-model(D7™);ctypeis @
family of relationsR™ C (D7)™ such that for all types, r and f1, ..., f, € D77,

R°77(f1, .., fn) & Vdi,...,dn,R7(d1,...,dy) = R™(f1d1,..., fndy)

An elementd € D7 is invariant underR if R™(d,...,d) holds. We now give the definition of
sequentiality relations in a slightly different form thaielger in [14], distinguishing the simple kind
of sequentiality relations which we call presequentialéiations.

3A hierarchy is simply am-chain in the definability preorder.
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Definition 3.1 For eachn > 0 and each pair of setsl C B C {1,...,n}, the presequentiality
relationS2-8 C (D7)", 1 = 1,0, is ann-ary logical relation defined by

SAB(dy,....d,) = (Fi€ Ad; = 1)V (Vi,j € B.d; = d;)

An n-ary logical relation R is called asequentiality relatiorif R is an intersection of presequen-
tiality relations.

Sieber’s relations are defined for full PCF, that is with battegers (type:) and booleans
(type 0). For the purposes of this paper, it is sufficient to look datiens over the booleans,
that is overB = D°. For the special case of a first-order boolean functfon B* — B,
invariance undeiS-? means that for tuplegzi, ..., zl),... (z% ... 2F) in SAB, we have

rn rn
(f(:c%, conxl) o fxl ,azﬁ)) also inS-2. The following proposition, proved in [14], gives
the full characterization of the definability preorder fastiorder functions. It is interesting to note
that this characterization is effective and Stoughton am@nted an algorithm that decidés< ¢
given the functiong andg [15].

Proposition 3.2 (Sieber) For any first-order monotone boolean functiofindg, f < ¢ if and
only if for any sequentiality relatio®, if g is invariant underR then f is also invariant under?.

Proposition 3.2 tells us that a functighis not g-expressible if we can exhibit a sequentiality
relation R such thay is invariant underR but f is not. If we restrict our attention to presequentiality
relations, it is easy to see that invariance under presdiaglignrelations induces a coarser ordering
than invariance under sequentiality relations, that igentifies more functions. If two functions
are invariant under the same presequentiality relatitves) hothing can be said about their relative
definability. However, if they are not invariant under thensgpresequentiality relations, we can de-
rive strong inexpressibility results, since presequétitieelations are a weak class of sequentiality
relations. In effect, invariance under presequentiatations can be viewed as defining the “skele-
ton” of the relative definability preorder. The advantagevofking with presequentiality relations
is that they are simpler than full sequentiality relaticensgl a great deal of structure can be extracted
straightforwardly, as we will presently see.

The central problem of this paper is to determine the presselity relations under which
a given function is invariant. An early restricted form ofstimay already be found in [2]. The
following two lemmas show that it is not necessary to consilary presequentiality relation.
The Reduction Lemma tells us that it is sufficient to look asmquentiality relations of a simple
form. The Closure Lemma says that if a function is invariarder a presequentiality relatic'-?,
invariance holds under any presequentiality relation Vigthaller” A and B. In Section 4, we will
see how these lemmas lead to a simple characterization sétlté presequentiality relations under
which a function is invariant.

Lemma 3.3 (Reduction Lemma) Given f : B¥ — B a first-order monotone boolean function and
A C B C{l1,...,n}, one of the following holds:

1. (A = B) fisinvariant underS4 < f is invariant underS‘{j"""‘A‘}’{l"""A‘}
(1o AL {1, A1}

2. (A C B) fisinvariant underS2-? < f is invariant underS‘A‘Jrl



Lemma 3.4 (Closure Lemma) Givenf : B¥ — B a first-order monotone boolean function and
any integer withm > 0, the following holds:

1. finvariant understh bt o finvariant unders, o o™

{LyeeesmA 1}, {1,mt 1}
m—+1

2. f invariant underS (Lo {L.om}

= f invariant undersS;,

3. finvariant unders’ 5™ L2 o pinvariant unders (AT
The proof of these lemmas is much more digestible when gpiitsa several technical lemmas

(3.5,3.6,3.7) which we now state and prove.

Lemma 3.5 Letm (M) be the leask such thatM C {1,...,n}, and letf : B¥ — B be a first-
order monotone boolean function. The functipis invariant underS:-Z iff f is invariant under
S4B

m(B)

Proof. (=) We show that iff is invariant underS;-Z, then for alln’ < n such thatB C

{1,...,n'}, fisinvariant undes:;”.
For the sake of contradiction, assume there exist, B, n’ with n’ < n such thatf is invariant
under 58 but not underS?. That is, there exist tuplegr!,... z1), -, (az’f, . ,xﬁ/) €
A,B AB
S&Fand(yr, ... yw) € S withy; = f(zl, ... L),
The tuples

(zd, . al L L), (R ek L)

then must be ir5 5. Since(yy, ..., yn) & Siy”?, we must havéy, ...y, L,..., L) & S5,
contradicting the invariance gfunderS4-5,
(«<=) We show that iff is invariant undes2-2, then for alln’ > n, f is invariant undets*fl‘,’B .
For the sake of contradiction, assume there exist, B andn’ > n such thatf is invariant

A,B : ,

under S;4Z but not underS/;”. That is, there exist tupIeSr%,...,x;,),~-,(x’f,...,xﬁ,) €
Sf,’B and (y1,...,yn) & Sf,’B with y; = f(x},...,2F). Observe thafzy,...,z,/) € Sf,’B &
(z1,...,2,) € S, Hence,(x%,...,x;),-.-,(m’f,...,x’;) € SAB but (y1,...,yn) & SHB
contradicting the invariance gfunderS:-5. 0

Lemma 3.6 Givenf : B¥ — B afirst-order monotone boolean functiofijs invariant underS;2
iff f is invariant underS,{Ll"“"A‘}’{l""’|B‘}.

Proof. We show the following more general result: ldt B,C, D be sets withA C B C
{1,...,n},C C D C {1,...,n}, and letp be a permutation of1,...,n} into {1,...,n} such
thatp(A) = C andp(B) = D. Thenf is invariant undeiS:»? « f is invariant undesS-?.
Let us first prove that
(;L'l, ce ,ﬂjn) S S;?’B = (xp—l(l), ce ,[L'pfl(n)) S SS’D. Q)

Let (z1,...,2,) € 547, andy; = z,-1(;). Toshow(yy, ..., y,) € SS*P, consider the two cases:



1. Thereisan € A,z; = L. In which case, let = p(i), with ¢ € C sincei € A. Moreover,
Ye = Tp—1(c) = Tp-1(p(s)) = Li = 1,sothereisa € C, Yj = L.

2. Foralli,j € B,z; = x;. Assume there argj € D,y; # y;. Thenz,-1;) # x,-1(;), hence
there are’, j' € B,z # x, a contradiction. Hence for allj € D, y; = y;.

Hence(yi,...,yn) € SSP. The reverse direction follows by symmetry of the permotatp,
proving (1).

Now, observe that we need only show one direction of the gémesult (the reverse direction
follows by symmetry of the permutatigy).

Consider any tupleéri, ..., zl), -, (m’f,,xﬁ) € SAB. Lety; = f(x},...,2F). Sincef
is invariant undeS:H B, (yy,...,yn) € SZH5.

By (1), each tuple(x{ ,xﬁl) is also inSS"P and so is(y1,...,y.) € S¢P, hencef is
invariant unders$-?.

To prove the lemma, it is sufficient to show that there exigieranutatiorp of {1,...,n} such
thatp(A) = {1,...,|Al}, p(B) = {1,...,|B|}, which is immediate. O

Lemma 3.7 Givenf : B¥ — B a first-order monotone boolean function. Theis invariant under
SAB |B\A| = 1iff f is invariant underS:-5’ for any B’ such thatB C B'.

Proof. (=) We show that iff is invariant underS;»%, |B\A| = 1, then for anyB’ such that
B C B, fisinvariant undes4-5',

By Lemma 3.5 and Lemma 3.6, it is sufficient to show that for anyif f invariant under
SE;I’M}’{l"”’m*l} then f is invariant unders" """ for anyn > m + 1.

For the sake of contradiction, assume that for sesmandn > m + 1, f is invariant under
the presequentiality relatioﬁr{,fjr“l"m}’{l"“’m“} but not underSLb ™" Then there are

tuples(w%’ . ’Z;}L) N ($If7 . ’:L,];:L) c Sjll,...,m}{l,...,n} but (yl, . ,yn) ¢ Sil,...,m}v{lp..,n}, for

yi = f(z},...,zF). Hence, for ali < m, y; # L and there ard, J such thaty; # y;. Without
loss of generality, chooskthe minimal such index.
We proceed by case analysis on the valué ahd.J:

1. (I < m) Consider the following tupleéri, ..., z}  z%) -, (ac'f, ... ,x’fn,xﬁ) which are
in 5,2;;"1}7{17---’"1“}; by assumption of the invariance ¢f we have(yi,...,ym,ys) €

Sﬁ;‘l"m}’{l"“’m“} Hence, either there is< m suchy; = L (a contradiction), ogy; = vy
(also a contradiction).

2. (J < m) Same argument.

3. (I,J > m) We further consider 3 subcases.

(@) (i = L1). Consider the tuplegz!, ... 2l z1) (x’fxfnx’;) which are in
Sﬁ;{’m}’{l"“’mﬂ}; by assumption of the invariance gfwe have(yi, ..., ym,y1) €

Sﬁ;{’m}’{l"“’mﬂ}. So either there i$ < m such thaty; = L (a contradiction), or
yr = y; for all i < m (also a contradiction)



(b) (y; = L) Same argument.
(¢) wr,ys # L) By choice of minimall, we know thaty; = - - - = y,, and all are eithett
or ff. On the other handy; # y; andy;, y; # L, so letc = I or J, such thaty. # ;.

Consider the tupleéri, . .., x} xl),-'-,(xlf,... xk x’“),easilyseen to be tuples in

m e rYmo e
5,2;;"”7{17---’"”1}, and by assumption of the invariancefofve have(ys, . . . , Ym, ye) €

Sﬁ;‘l"m}’{l"“’mﬂ}. So either there is ah< m such that; = L (a contradiction), or
y. = y1 (also a contradiction)

(<) We show that iff is invariant underS:A-Z, then f is invariant underSA-5" for all A C
B’ C B.

For the sake of contradiction, assume there exist, B, B’ with A C B’ C B such thatf is in-
variant undeiS:-Z but not undeis4%'. Then there exist tuplee], ..., zL), - -, (x’f, . xk) €

5 n b n
SAB" such that(yy, . .., yn) & SAB with y; = flat, .. af).

Fix an arbitraryl € A. Consider the following tuples(z{, . ,zg;) for1 < j <k, with

. xl ifie B
zl =4 x) ifie B\B
1 otherwise
We first verify that these tuples are §-Z. For eachj, 1 < j < k, consider the original tuple
(w{, . ,xﬁl) € S4B, In other words, either

1. thereis ani € A, 2 = L, and for that € A, we havez! = 27 = L. Hence(z{, . ,zg;) €
S2HB or

2. Foralli € A, ] # 1, and for alli,i € B, = xJ,. Hence, for alli,i’ € B',z = 2,
Moreover, for alli € B\B',z! =z} for [ € A C B'. Hence, for alli,i’ € B,z = 2/, and
the tuple(z{, - ,zg;) € SAB,

By the above construction, we see that foriadl B', f(z}, ..., 2F) = v; .

since(yi, ..., yn) € S4B, we have forall € A,y; # L andtherearé j € B, y; # y;. This

implies thatforali € A, f(z},...,2F) # Landthere aré,j € B’ C Bsuchthatf(z},...,zF) #
f(zjl-, . ,zf). In other wordsf is not invariant undes4-%, contracting the assumption. O

The proofs of the Reduction and Closure Lemmas are now inateedi

Proof. (Reduction Lemma)

1. (A = B) By Lemma 3.6, we have that is invariant underS:24 iff f is invariant under

5,§1~~"A‘}7{1~~"A‘} and by Lemma 3.5f is invariant unde&{f"“"A”’{l’“'"A‘} iff fisinvariant

underS‘{i‘v---v\A\}v{l,...,m\}'

2. (A C B) By Lemma 3.6, f is invariant underS:»B iff f is invariant under
S,{Ll"""A‘}’{l"""B”. By Lemma 3.7,f is invariant underS,{Ll"""A‘}’{l"""B” iff f is invari-

ant unders;{f"“"A”’{l’“'"A‘H}, and by Lemma 3.5, this happens jffis invariant under
Gl AL A1}

|Al+1 =



Proof. (Closure Lemma)

1. The ) direction in the proof of Lemma 3.7 actually proves thisecas

2. Given tuples(x%,...,m;l),---,(m’f,..., m) € Shbomb et e show(yi, ..., ym) €
Sl with g, = flal,. o).
By assumption, the tuplgs:!, ..., z} ,z1) - -, (x’f, Lk m’f) areing Ly Lt

By invariance of f under iyt we have (yi,...ymiyn) €

gl omth{Lm ¥l \which means that either there is< m such thaty;, = L or for

all ij<m,y; = Y;. Hence(yl, o ’ym) e S;{)%,...7m}7{1,...,m}.
% i {177m}7{177m+1}
3. Same argument as part (2): assume tuplés...,z% ;) in Sl , and con-
sider the tuplegz!, ... %, 2%, 2% ). |

4  Presequentiality levels

The Reduction Lemma and the Closure Lemma of the previoumeaman be used to show that the
set of presequentiality relations under which a functioimiariant is characterized by two integers
(allowing for 00). Given f a function invariant under presequentiality relatidisg':-%:},.r; by the
Reduction Lemma, this is equivalent to saying tfié invariant under the presequentiality relations
{S{l’ SlAilbAL- 1A |}} ie1,4,=B; and {S{l’ oAl AL "A”“}}ig,AicBi. By the Closure Lemma,

there must exist maximalandj (possiblyoco) such thatf is invariant undelS,il"“’k}’{l"“’k} for

all k <4 andf is invariant undeS{l’ SkpAL-R L for gl & < 5. We will call the pair(i, j) the
presequentiality levelp-level) of the functlonf Clearly, a function with a p-level ofoo, ) is
invariant under all presequentiality relations. Sincerg¥anction in a degree of parallelism must
be invariant under the same presequentiality relationsPfioyposition 3.2), we also talk about the
presequentiality level of a degree of parallelism. Alté¢ikrey, a function with a p-level ofi, j) is
easily seen by applications of the Reduction Lemma and thsut® Lemma to be invariant under
a presequentiality relatiofi#-? if and only if either| A| = |B| < i or |A| < |B| with [A] < j.

In view of the discussion following Proposition 3.2, no dafility information can be inferred
for two functions with the same p-level. However, functiovith different p-levels yield immediate
inexpressibility results:

Corollary 4.1 Given f and g first-order monotone boolean functions with p-levelgigf j;) and
(ig,7q) respectively. liy > i, or j; > j,, theng A f.

In summary, two integers are sufficient to completely chiarage the set of presequentiality
relations under which a function is invariant. It turns chdttthese integers can be derived straight-
forwardly from the trace of the function. Define tbeefficient of (linear) coherena# a first-order
monotone boolean functiofiby

ce(f) =min{|A4| : A C m(tr(f)),|A| > 2, A coheren



with cc( f) defined to bexo whenr; (tr(f)) has no non-singleton linearly coherent subset. Similarly,
define thebivalued coefficient of (linear) coherenoéa first-order monotone boolean functigrby

bee(f) = min{|A| : A C m(tx(f)),|A| > 3, A coherent and bivaluéd

with bee(f) is defined to bexo when (tr(f)) has no non-singleton bivalued linearly coherent
subset. We note thafce(f) > cc(f) for all f.

The relationship between coefficients of coherence andeguestiality levels is expressed by
the following proposition, which provides a mechanical wdydetermining the presequentiality
level of a function, and hence of determining the set of pyeestiality relations under which a
function is invariant.

Lemma 4.2 Let f : B¥ — B be a first-order monotone boolean function. Thiehas a p-level of
(bee(f) — 1,cc(f) — 1) (assuming standard rules foo).

Proof. We prove the result fatc( ). Consider the three cases:

1. (cc(f) = 2) We show thatf is invariant undeﬁz{l}’{l’Q} but notSél’Q}’{l’Q’?’}. Assumef

is not invariant undes}"*{"?}. Then there exist tuple&!, z1) ,- - -, (m’f,x’g) e sithtt
such that(y;,y2) ¢ Sél}’{lz}, with y; = f(x},...,2F). This means thay; # L and
y1 # yo. Itis easy to see that},...,z%) < (zi,...,25%), since for each < k, either

¥t = L orazt = x4 So by monotonicity off, y; < 1y, contradictingy; # 1, and

y1 # y2. SO f must be invariant unde?él}’{m}. On the other hand, applyinfjto the tuples

(zl,2d, 1), (m’f,x’g, L) € S§1,2},{1,2,3}’ where the first two coordinates of the tuples

are the elements of the first projection of the trace formitigesarly coherent subset of size
2, yields the tuplétt, tt, L) or (ff, ff, L), neither of which is ing{!2/+t1:23}

2. 3 < ce(f) < oo) We showf is invariant underSC{Cl(’}j’CC(f)_1}’{1"“’Cc(f)} but not under
GiLcelDhALcelDHY - Assumef is not invariant undeSjcl(’}j’CC(f)_1}’{1"“’“(”}. Then

ce(f)+1
there exist tuples(x%,...,mic(f)) ,~~,(m’f,...,m’§c(f)) € Sjcl(’}j’cc(f)_1}’{1"“’“(”} such

that (yl, . ,ycc(f)) 4 Sjcl(’}j’cc(f)_1}’{1"“’“(”} with y; = f(x},...,2F). This means that
forall i < cc(f) — 1, y; # L and there ard, J with y; # y;. LetC C 71(tr(f)) be an
Egli-Milner lowerbound of the firstc(f) — 1 coordinates of the given tupldg;| < cc(f)—1.
We cannot hav@”'| = 1 (sayC = {v}), since that would imply that < (xic(f), . ,m’jc(f)):

for eachi < k, either one oft; = L for j < ce(f) — 1 (hencev; = 1) orzj =z, for all
7,7 < ce(f) — 1 (hencev; < T = ;ngc(f)). But monotonicity off would imply that for all
i,J, y; = y;, a contradiction. Hence('| > 2. But since the firstc(f) — 1 coordinates of the
given tuples form a coherent subsétpeing an Egli-Milner lowerbound must also be coher-
ent (by a result in [2]). But this contradicts the fact that thinimal size for a coherent subset

of my(tr(f)) is ce(f). So, f is invariant undersfcl(’b’cc(f)_1}’{1"“’“(”}. On the other hand,

i 1 1 k k {17"'7CC(f)}7{17"'7CC(f)+1}
consider the tupleéml, . ,xcc(f),J_) e (9617 SR ATT L) € Saifi
where the firstcc(f) coordinates are the elements of a coherent subset ofcsiz8
of m1(tr(f)) (which exists by assumption). Appplyin§ to these tuples yields a tuple

(Y1, > Yee( ) L) With y; # L for i < cc(f), which cannot be irSC{j(’b‘fl(f Mhilee(f)+1}

10



3. (cc(f) = o0) We show thatf is invariant under all presequentiality relations of the
form Sty {1 Assume that there exists dnsuch thatf is not invariant under

sl b1} The same reasoning as in the previous case leads to a dotitradal-
though instead of contradicting the minimal size of a cohereibset ofr; (tr(f)) being
cc(f), we contradict the fact that there is no coherent subset @f(f)).

The argument fobce( f) is similar. O

We can use Lemma 4.2 to show that presequentiality levelpraserved by the least upper-
bound operation on functions in a natural way:

Lemma 4.3 Given f and g first-order monotone boolean functions with p-levelgiof j;) and
(ig,7q) respectively. Then the p-level pf+ g is

(min(if, i!])> min(jfv ]g))

Proof. Immediate by Lemma 4.2 and the definitionfoft ¢ in terms of f andg. O

It is not hard to check that any first-order monotone booleerttion has a p-leveli, j) with
i > 2andj > 1 (consider 3 casesic(f) = oo, ce(f) < oo = bee(f),bee(f) < o0). We can
easily characterize sequential functions:

Proposition 4.4 A first-order monotone boolean function has a p-levelaf, o) if and only if it
is sequential

Proof. (=) Itis sufficient to show that itc(f) = oo, thenf is sequential. Let us first prove the
following auxiliary result: givenf : B¥*1 — B a monotone function angf : B¥ — B defined by

f,('xl?"'?'xk):f(x17"'7y7"'7$k)

for some fixedy as theith argument off. Thence(f’) > cc(f).
Consider the two cases:

1. (cc(f) = o0) In this case, there is no linearly coherent subset¢tr(f)), and hence there
can be no linearly coherent subsetwftr(f’)) (otherwise, it would yield a linearly coherent
subset ofry (tr(f)). Hencecc(f') = oo > ce(f) by definition.

2. (ce(f) < o) Given A C 7 (tr(f’)) a coherent subset of size(f’). Let B be the following
set:

{(ml,. .. ,xk+1) S Wl(tr(f)) : (xl,. oy L1, L1y e - ,xk+1) €A x; < y}

We check thaBB C 7 (tr(f)) is linearly coherent. First, notice thgB| = | A|. Moreover, we
see that for all tuples i®, the fh position is either al or a valuey. Added to the fact thatl
is linearly coherent, we see thBtmust be linearly coherent, and henegf) < cc(f’).

11



And this proves the auxiliary result.

We now prove the sufficient condition by induction on theyaoi f.

(base case) : B — B. Considerf(L). If f(L) # L, then by monotonicityf is constant, and
hence sequential. if(L) = L, then considerf(y) for a fixedy. This must be a constant, gois
sequential (by the definition of sequentiality).

(induction step) Assume the result holds for all functions of arity Considerf : B*t1 — B,
with cc(f) = oc.

1. We first need to show that there exists an index of sequigntidassume not: for all;, for any
fixedz;,Vj # i, f(x1,...,L,...,2k41) # L. Thenm(tr(f)) must beL-covering, which
contradictsce(f) = oo.

2. Giveni the index of sequentiality of, look at the functiory’(z1,...,2k) = f(z1,- -, Yy -+, 2k)
for a fixedy in position:. By the auxiliary resultee(f’) = oo, and the induction hypothesis
applies to show that’ and thereforef must be sequential. O

(<) Immediate, sincg sequential implies that is PCF-definable, and henganust be invari-
ant under all sequentiality relations — including presetjiadity relations.

5 Structural results

In this section, we use p-levels to guide our exploratiorhefGONT semilattice. The approach is
roughly as follows: we identify interesting classes of fiimas (stable functions, unstable functions,
stable-dominating functions, monovalued functions), simow that they have a natural characteri-
zation in terms of p-levels. We then use the p-level chari&etiion to look for interesting natural
hierarchies. A hierarchy is deemed natural if it is made ufuo€tions living on different p-levels.
We also show that interesting well-known functions alsoeh@awatural characterization in terms of
p-levels.

5.1 TheSTABLE semilattice

Define astable degree of parallelisrto be a degree of parallelism containing at least one stable
function. We can characterize stable degrees in terms e¥gid:

Proposition 5.1 A degree of parallelism is stable if and only if its p-levebfghe form(i, j) with
i>2andj > 2

Proof. (=) Given f a stable function. Theec(f) > 3,and by Lemma 4.2f must have a p-level
of the form (i, j) with j > cc(f) — 1 > 2. Sincef is monotone; > 2.

(<) Given f with a p-level(, j) with j > 2. By Lemma 4.2¢c(f) — 1 > 2, so thatce(f) > 3.
Hence,f must be stable. O

As a consequence, every function in a stable degree of pisailmust be stable. L&TABLE
be the subposet @ONT consisting of all stable degrees of parallelism.

Proposition 5.2 STABLE is a subsemilattice oEONT.

12



Proof. Itis easy to see that the least upperbound of two stable eggfgarallelism is itself a stable
degree of parallelism. The degree of sequential functisribé bottom element of the semilattice
and the Berry-Plotkin functionBP) is its top element, as noted by Plotkin and reported by @urie

in [6]. O
The Berry-Plotkin function is defined by the following trace
1ot fftt
tt ff L | ff
ffo L tt|ff

We can in fact completely characterize the degree of péisstieof BP via presequentiality
levels:

Proposition 5.3 Givenf a first-order monotone boolean function. Théhas a p-level of2, 2) iff
f =BP.

Proof. (=) Given f with a p-level of(2,2). This means thabcc(f) = 3, in other words, there
exists anA C m(tr(f)) bivalued and linearly coherent, witil| = 3. We can assume without loss
of generality that one element df returnstt and the remaining two returif (otherwise, consider
neg(f) which is equiparallel tof and has the desired property). Defipe tr(BP) — tr(f) by
sending the first trace elementBP (the one returningt) to the element oA returningtt, and the
remaining elements AP to the elements ofl returningff. SinceA is linearly coherent, it is clear
thatg satisfies the condition of Proposition 2.2, dBf < f, Hence by Proposition 5.%, is stable,
sof < BP.

(<) Given f = BP. Thenf must be invariant under the same sequentiality relatioziscénthe
p-level of f is the same as the p-level BP, namely(2, 2). O

5.2 The Gustave hierarchy

The structure o6 TABLE is non-trivial. Since the functionlSUCC(,, ,,,) are easily seen to be stable,
the whole Bucciarelli hierarchy is iSsTABLE. We can identify a subhierarchy of the Bucciarelli
hierarchy derived from the Gustave function [1]. The Gustiwnction GUST is given by the
following trace (in matrix form):

Lot ff|tt
tt ff L |tt
ffoo Lttt

Definition 5.4 LetGUST;, : B**! — B (i > 1) be defined by the following trace (in matrix form):

Lot ff ..o tt ff |t
ffooL tt .- ff tt|tt
tt ff L ...ttt ff |t
ffott ff ... 1 tt|tt
tt ff tt ... ff L |t

13



Note thatGUST] is justGUST. It is easy to verify the following:
Proposition 5.5 GUST; = BUCC ;11 2i41)-

Proof. First note that a monovalued first-order monotone booleaation with |tr(f)| = cc(f) =
n is such thatf = BUCC, ,,), by an application of Proposition 2.2, and note thatGUST;)| =
cc(GUST;) = 2i + 1. 0

By Lemma 4.2, the functionGUST; have a p-level ofco, 27). This characterization allows us
to derive the following result:

Proposition 5.6 There is no minimal stable non-sequential function.

Proof. Assumeg is a stable non-sequential function that is minimal, i.er b f, f stable,
non-sequentialy < f.

Sinceg is not sequential, by Proposition 4.4, there must be sdmB, n such thatg is not
invariant unders: 5.

ConsiderGUST 4. By the p-level ofGUST; functions, sincgA| < 2 |A
ant unders:-5B,

Henceg A GUST | 4|, a contradiction. O

, GUST) 4 Is invari-

On the other hand, we can show that the Gustave hierarchy-fisalan the non-sequential
functions, that is any non-sequential function must doteimae of the functions in the hierarchy.

Proposition 5.7 Givenf a stable non-sequential first-order monotone boolean fancirhen there
exists an integef such thatGUST; < f.

Proof. The functionf being non-sequential implies that(f) < oo by Propositions 4.4 and 4.2.
Moreover,f being stable implies that:(f) > 3 (by Lemma 4.2 and Proposition 5.1). Lébe a lin-
early coherent subset aof (tr(f)) of sizecc(f). Define a arbitrary functiog : tr(GUST5)) —
tr(f) with 71 (g(tr(GUST(5)))) = A. Itis easy to see that the conditions of Proposition 2.2 are
satisfied, so thatUST. ;) =< f. O

Note that Propositions 5.6 and 5.7 can be derived direatiyn fBucciarelli’'s result. We merely
identify a natural subset of the Bucciarelli hierarchy tisegufficient for our purpose.

5.3 The Bivalued-Gustave hierarchy

Functions in the Gustave hierarchy (and indeed, in the Bwelti hierarchy) are all monovalued.
We return to monovalued functions in Section 5.6. For notwiseextend the Gustave hierarchy to
a hierarchy of bivalued functions, the Bivalued-Gustawrdrichy.

Definition 5.8 LetBGUST{ : B¥%L — B (j < i) be the function defined by the following trace
(in matrix form):

1 ottt ff .. tt ff]
ffoL ot - ff tt 79
tt ff L .. tt ff| 3
ff tt ff e 1 it T4
tt ff tt s ff 1 T2i+1
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with

o if1<i<y
"= tt otherwise
Let us first show that thg parameter irBGUST{ is unnecessary: we may piGGUST! as a

representative of the class BIGUST! functions, and drop the superscript to refer to the function
asBGUST,.

Lemma 5.9 Givenj, j' < i, BGUST! = BGUST/ .

Proof. We prove by induction orj that for aIIj,BGUST{ = BGUST}. The casg = 1is trivial.
For the induction stepj(> 2), assume thaBGUST’ ™! = BGUST} and consideBGUST/. We
showBGUST! = BGUST? . Define the following terms:

M1 = /\f/\ﬂj‘l e $2i+1.if f(ﬂj‘l, e ,$2i+1)
thenf(ﬂj‘g, ey L2441, 33‘1) elseff fi

M2 = /\f/\ﬂj‘l e $2i+1.if f(l‘l, e ,$2i+1)
thentt E|Sef($2i+1, X1,y ,1'21') fi

It is not hard to see thaBGUST! = [M;]BGUST! ' and BGUST! ™' = [M,]|BGUSTY,
thereby showin@GUST! = BGUST?‘1 = BGUST! by the induction hypothesis. 0

It remains to show that the functiod3GUST, actually form a hierarchy. First note that by
Lemma 4.2BGUST, has a p-level of2i, 2i).

Proposition 5.10 BGUST; < BGUST]- iff i > 4.

Proof. («) A straightforward application of Proposition 2.2: coreicany surjective function
g : tr(BGUST;) — tr(BGUST}) sending the unique trace element returrting the unique trace
element returningt, and any trace element returnifigo any trace element returnirffy It is easy
to see that all conditions of Proposition 2.2 are satisfiad BGUST, < BGUSTj.

(=) Assumei < j. The p-level ofBGUST; is (2i, 2i) and the p-level oBGUST) is (27, 25).
By Corollary 4.1,BGUST,; A2 BGUST;. O

The following result is immediate:
Proposition 5.11 For all i, GUST; < BGUST,.
Proof. Via Proposition 2.2. O

Combining functions in the Gustave hierarchy and the BeddGustave hierarchy via the least
upperbound operation produces a two-dimensional hieyanath functions of the fornrBGUST,; +
GUST;. A trivial application of Lemma 4.3 gives a p-level @i, 2min(i, 7)) for BGUST, +
GUST;. This allows us to derive the following governing equatiolescribing the structure of the
hierarchy:

Proposition 5.12 BGUST; + GUST; < BGUST; + GUSTy iff / < i and min(?,j") <

min(z, 7).
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Proof. (=) We prove the contrapositive. 4f< i’ or min(4, j) < min(#’, j'), then by Corollary 4.1
and the p-level of functions in the hierarcB¢GUST, + GUST; A BGUST,, + GUST .

(<) Sincei’ < i, Proposition 5.10 tells us thBGUST,; < BGUST,;, < BGUST,, +GUST}.
We then consider three cases:

1. (min(¢,7) = ) Proposition 5.11 implies that
GUST; = BGUST; = BGUST, < BGUST,, + GUST}/
Hence BGUST, + GUST; < BGUST,, + GUST.

2. (min(4,5) = j, min(¢, ') = ') By assumptionj’ < j, and hence by Proposition 5.11,
GUST; = BGUST; < BGUST,, < BGUST,, + GUST,,. HenceBGUST, + GUST; =
BGUST,, + GUST}.

3. (min(s,j) = j, min(¢', j) = j') By assumption;’ < j, and hence
GUST; < GUST; < BGUST,, + GUST,/

HenceBGUST,; + GUST,; < BGUST;, + GUST}. O

5.4 TheUNSTABLE semilattice

Define arunstable degree of parallelisto be a degree of parallelism containing no stable function.
It is easy to show that a degree of parallelism is unstabladfanly if it has a p-level of the form
(7,1) with ¢ > 2, by Proposition 5.1. Let/NSTABLE be the subposet €@ONT consisting of alll
unstable degrees of parallelism. Define the Detector fandDET) to simply returntt if one of

its two inputs has a valudt (or ff indifferently). For various reasons, it is simpler to workmthe
following functionttDET which is easily seem to be equiparallelldxT:

tt L |tt
1ottt

Proposition 5.13 UNSTABLE is a subsemilattice oCONT.

Proof. Itis easy to see that the least upperbound of two unstabledegf parallelism is unstable.
The top element dUNSTABLE is the degree oPOR and its bottom element is the degree of the
Detector function. This last fact is an application of Prsiion 2.2: givenf an unstable first-order
monotone boolean function; singeis unstable, there must exigt C 7 (tr(f)) with A coherent
and|A| = 2. Define a function

g : tr(ttDET) — tr(f)

with the only constraint that each element of the tracetBfET goes to a distinct element of the
trace of f corresponding to the subsdt It is easy to see that all the conditions of Proposition 2.2
are met, henceDET =< f. O

Detector first appeared in the context of asynchronous dataiétworks. Rabinovich shows in
[12] thatDET is minimal among unstable functions in that context.
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A degree of parallelism is unstable if and only if it is nottdtg so we see that ti®TABLE and
the UNSTABLE semilattices form a partition of the fulONT semilattice. We presently identify
one hierarchy of functions iIWNSTABLE (another will be presented in Section 5.5 ); functions in
this hierarchy are derived froiAOR:

Definition 5.14 LetPOR,; : B' — B (i > 2) be defined by the following trace (in matrix form):

tt ottt ... ot L |tt
tt ot ot ... L tttt

tt ottt L ... ottt tt
tt L ot ... ottt ottt
B 1 A T L SN { O
ff ff f ... ff ff|ff

Note thatPORy is justPOR. POR, takesi inputs and returnt if at least: — 1 arett, andff if
all areff. These functions span the whole range of allowable p-l€eelanstable functions as the
next proposition shows:

Proposition 5.15 POR; has a p-level ofi, 1).

Proof. SincePOR; is monotone and unstable, it must have a p-level of the fgim) for some
j > 2, by the characterization of p-levels of monotone and staletions.

By inspection, we see that the only bivalued coherent sudisat(tr(POR;)) is 7 (tr(POR;))
itself. Hencepce(f) =i+ 1 and by Lemma 4.2 = bee(f) — 1 = 1. O

These functions indeed form a hierarchy:
Proposition 5.16 POR; < POR;; iff ¢ > j.
Proof. (<) Consider the following PCF-term:
M =Xf xy... 241 ALLEQ(t1 (21, ..., Tit1), - s tit1(T1, -+ -, Tix1))

where
ALLEQ =Ax1... w,-+1.if (1‘1 =...= xi+1) thenx else L fi

which returns the value if and only if all the arguments have the value
Eacht; is an application oPOR; to a subset of inputs out of thel + 1 possible inputs. Since
i+1
i
[ M ]POR,.

= i 4+ 1, there arei + 1 such terms. We claim this term is such tR®OR;,; =

1. Thet; functions all returrtt iff at least: tt’s appear in their arguments

(a) (atleast tt's) Each subset of sizehas at least + 1 tt's, so eacht; function returndt.

(b) (less then tt's) There exists one subset of sizwith less than — 1 tt's, so the corre-
spondingt; function returnsL.
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2. Thet; functions all returrff iff all inputs areff.

(a) (allff's) Everyt; returnsff.

(b) (not allff's) There exists a subset of sizevith not all inputs beindf. The corresponding
t; does not returif.

(=) Assumei < j. The result is immediate by Corollary 4.1 and Propositidrb5.

5.5 TheSDOM semilattice

It is clear that unstable functions are strictly more powikttian stable functions, in the sense that
no stable function can implement an unstable function, hatable functions can implement stable
functions. In this section, we characterize the unstabtetfans that can implement all stable

functions, and show that they form a subsemilattice/ MISTABLE.

Definition 5.17 Let f be an unstable first-order monotone boolean function. Wefs@ystable-
dominatingif for any stable first-order monotone boolean functigrwe havey < f.

Since theSTABLE semilattice has a top elemeBP, a necessary and sufficient condition for
an unstable functiorf to be stable-dominating is to haBB® =< f. Since any stable-dominating
function must also dominateET (the bottom element dNSTABLE), we have thaff is stable-
dominating if and only iBP + DET = f. This allows us to derive the following characterization
of stable-dominating functions:

Proposition 5.18 Given f an unstable first-order monotone boolean function. Tligs stable-
dominating ifff has a p-level of2, 1).

Proof. (=) Assumef is stable-dominating. Then by previous argumé&t,+ DET < f. Since
BP has p-level(2,2) andDET has p-level(co, 1), BP 4+ DET has p-level(2,1) by Lemma 4.3.
Assumef does not have a p-level ¢2, 1). By Proposition 4.4f must have a p-level dfi, j) with
1>2,7>1andi #2orj # 1. Butby Corollary 4.1, we get th&8P + DET £ f, a contradiction.
(«) Given f with p-level (2,1). By the characterization of the p-level of stable functiofis
is unstable. We need only check tiaP < f. By Lemma 4.2bcc(f) = 3. Let A be the subset
of w1 (tr(f)) of size 3. Assume without loss of generality thhhas one element returningand
two elements returnindf (if not, considereg(f) which is equiparallel tof). Define a function
g : tr(BP) — tr(f) sending the element of the trace BP returningtt to the element ofd
returningtt and the elements of the trace BP returningff to the elements ofl returningff. It is
easy to see that all the conditions of Proposition 2.2 haid, llence we havBP < f. Sof is
stable-dominating. O

Define astable-dominating degree of parallelisto be a degree of parallelism containing a
stable-dominating function. By Proposition 5.18, evemydiion in a stable-dominating degree of
parallelism is stable-dominating. L8DOM be the subposet GEONT (in fact, of UNSTABLE)
consisting of all stable-dominating degrees of paralelis

Proposition 5.19 SDOM is a subsemilattice cOUNSTABLE.
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Proof. It is easy to see by the above characterization that the lggerbound of two stable-
dominating degrees of parallelism is itself stable-dortiiga The bottom element SDOM is the
degree oBP 4+ DET, and its top element is the degreeRidR. O

To show this subsemilattice is non-trivial, we exhibit aarhichy of functions itsDOM. Note
however that because stable-dominating functions ara &l same p-level, we cannot show inex-
pressibility using presequentiality relations. Consither functionsBP + POR;, which are easily
seen to be stable-dominating. Note tidt + POR; = PORy; = POR. These functions form a
hierarchy:

Proposition 5.20 BP + POR; < BP + POR;; iff 7 > j.

Proof. (<) We knowBP =< BP + POR; for all j > 2. Similarly, by Proposition 5.16°OR;
POR; =< BP + POR;. Hence, by the property of least upperbounds, we getiiifat- POR;
BP + POR,;.

(=) Assumei < j. Define the following sequentiality relation of arify

R gL2h12} A glledh (L)
J J

By Proposition 3.2, it is sufficient to show thBP + POR; is invariant undet?, but BP + POR;
is not.

1. (BP + POR; invariant) Going back to the definition ef, without loss of generality we can
take
(BP + PORj)(tt,l‘l, . ,.Z'j) = PORj(l‘l, . ,wj)
For the sake of contradiction, assuB® + POR; is not invariant unde?. Then there

exists tuples(m%,...,x}) ,'-',(x’f,...,w;?) € R. Lety = (y1,...,y;), With y,, =

BP + POR;(z},,...,2%), andy ¢ R.
By induction on2 < m < j, we showBP +POR,; must be invariant undeﬁ‘j{l"“’m}’{l"“’m}.

Form = 2, BP+POR,; is invariant undeSjl’Q}’{M} by the Closure Lemma and Proposition
4.4.

For the induction step, assume for the sake of contradi¢hiatBP + POR;; is not invariant
underSJ{l"“’m“}’{l"“’m“}. Then there is na. in v1, . . ., ym+1, and there exists, J with

yr # yg. By the induction hypothesi§}P + POR; is invariant undenSj{-l""’m}’{l"“’m}, o)
we must have, = --- = y,,,, and hence the only possibility is thgt, 1 # 1. Since nol
appears in the resulting tuple, the first tuple above mustelti or all beff, by the definition

of +. Ifitis all ff, then the columns of the tuples must come from the tradéRyfbut since
the firstm columns are linearly coherent and return the same residtwbuld mean that
the Egli-Milner lowerbound of the first: column has only one element, and since it is also
coherent with the last column (which returns a differenul@sthis contradictSBP being
stable. Hence, the first tuple must be talland the columns must come from the trace of
POR;. Butthem + 1 columns form a linearly coherent set of size less than orl¢gyaand
we can easily show that they cannot contain the trace eleofiéf®R ; that returns false. So
we must havey,,,. 1 = 1.

Therefore BP+POR; is invariant undeS]{I""’m}’{l""’m} for2 < m < j, henceBP+POR,;
is invariant underr.
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2. (BP 4+ POR; not invariant) Again without loss of generality, we can take
(BP + PORi)(tt, L1y ,xi) = PORi(acl, - ,wi)

We show thaBP + POR,; is not invariant undeS]{1’“"”1}’{1"“’”1}, implying it is not in-
variant underR. Consider the following tuples of lenggh

(tt...,tt),(x%,...,x}H,L,...,L),.--,(xg,...,xgiH,L,...,L)

where{(tt,z} ... 2! )} (m < i+ 1) is the subset of the first projection of the traceBdf +
POR,; corresponding t®?OR,;. Itis easy to see that all those tuples aré‘jﬁ"“”“}’{1"“”“}.

Applying BP + POR,; to the columns of the tuples yields the tugte ... tt,ff, L ... 1),
W—/

)

which is not inSJ{.l"'"”1}’{1’”"”1}. O

5.6 TheMONO semilattice

Up to this point all the semilattices we have introduced welated in some way to the partitioning
of functions according to whether or not they were stable ndé¥e consider a different characteristic
and derive a corresponding semilattice. Defimeanovalued degree of parallelisimbe a degree of
parallelism containing at least one monovalued functioe.ddh characterize monovalued degrees
of parallelism by their p-level:

Proposition 5.21 A degree of parallelism is monovalued if and only if its peleis of the form
(00, 7) withj > 1.

Proof. If fis monovalued thebcc(f) = oo, since there can be no bivalued coherent subset of
m1(tr(f)). Moreover, sincef is monotone, it must have a p-level of the fofi;) with ¢ > 2 and
j > 1. We knowi = oo (sincebcece(f) = o0), so f must have a p-level of the forifpo, j) with
Jj=z1 O

Let MONO be the subposet @ONT containing all monovalued degrees of parallelism.
Proposition 5.22 MONO is a subsemilattice 0€CONT.

Proof. The least upperbound of two monovalued degrees of pasaigh itself monovalued. The
bottom element oMONO is the degree of all sequential functions, and its top eldnseghe degree
of DET, the Detector function. To show this, consigieat monovalued first-order monotone boolean
function. Without loss of generality, assunfiealways returngt (if not, considemeg( f) which is
equiparallel tof). LetttDET,, be the function of arity, that returndt if one of its arguments it.
It is not hard to show that for alt, ttDET,, < ttDET. Letn = |tr(f)|. Consider the following
PCF-term:

M = Mphxy ... xp.p(ty(z1, ... xk), . tn(T1, ..y 2g))

wheret; is a term checking if its arguments agree with ﬂtﬂeejlement ofry (tr(f)) — and returning
tt if they do and blocking if they don’t. For exampl