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Abstract

Recent results of Bucciarelli show that the semilattice of degrees of parallelism of first-
order boolean functions in PCF has both infinite chains and infinite antichains. By considering
a simple subclass of Sieber’s sequentiality relations, we identify levels in the semilattice and
derive inexpressibility results concerning functions on different levels. This allows us to further
explore the structure of the semilattice of degrees of parallelism: we identify semilattices char-
acterized by simple level properties, and show the existence of new infinite hierarchies which
are in a certain sense natural with respect to the levels.

1 Introduction

In this paper we study the relative definability of first-order boolean functions with respect to
Plotkin’s language PCF [9], a simply-typedλ-calculus with recursion over the ground types of in-
tegers and booleans. Relative definability defines a preorder on continuous boolean functions, and
this ordering induces a natural equivalence relation. The object of our study will be the structure of
the resulting partially ordered set of equivalence classesof functions (called degrees of parallelism).
Work by Trakhtenbrot [16, 17], Sazonov [13], Lichtenthäler [7] and Bucciarelli and Malacaria [2, 5]
show that the structure of degrees of parallelism is highly non-trivial: even when restricted to first-
order functions, the poset forms a sup-semilattice and contains a ”two-dimensional” hierarchy of
functions, both infinite chains and infinite antichains of functions.

It is known that the definability ordering is completely characterized by the sequentiality re-
lations of Sieber. The result is a duality of sorts:f can be defined usingg if the sequentiality
relations under whichg is invariant is a subset of the sequentiality relations under whichf is invari-
ant. Therefore, it seems worthwhile to try to derive the set of sequentiality relations under which a
given function is invariant. As a first step towards this goalwe focus our attention in this paper on
a simple class of sequentiality relations we call presequentiality relations. Invariance under prese-
quentiality relations induces a coarser ordering on functions than full sequentiality relations, from

∗This paper is essentially the same as one that appeared inTheoretical Computer Science266(1-2), pp. 543-567,
2001. This work was done while the first author was at McGill University, and was supported in part by a scholarship
from FCAR. A preliminary version of this paper was written while the first author was at Bell Laboratories, Lucent
Technologies.

1

http://arxiv.org/abs/cs/0405085v1


which we cannot infer definability results but can infer strong inexpressibility results. In effect, this
coarser ordering is a “skeleton” of the definability preorder.

The main advantage of working with presequentiality relations is that we can completely charac-
terize the set of presequentiality relations under which a given function is invariant. It turns out that
a pair of integers is sufficient to completely describe this set. This pair of integers, called the pre-
sequentiality level of the function, can straightforwardly be derived from the trace of the function.
Well-known functions in the definability preorder, such as Parallel OR, the Berry-Plotkin function,
the Gustave function, the Detector function, can be easily characterized in terms of presequential-
ity levels. We use presequentiality levels to guide our exploration of the definability preorder: we
present subsemilattices with natural presequentiality level characterizations, namely the stable, un-
stable, stable-dominating and monovalued functions. We exhibit natural hierarchies of functions in
these lattices, where natural is taken to mean that every function in the hierarchy has a different
presequentiality level, thereby making the hierarchy partof the skeleton of the definability preorder.

This paper is structured as follows. In the next section, we review the required mathematical
preliminaries, rigorously defining the notions of relativedefinability, traces, linear coherence, as
well as stating useful existing results. In Section 3, we study presequentiality relations, and prove
the two main lemmas of this paper: the Reduction Lemma and theClosure Lemma, which allow us
to find canonical representatives for the set of presequentiality relations under which a function is
invariant. In Section 4, we point out the relationship between the canonical representatives and the
trace of the function, and thus define the notion of presequentiality level. Section 5 then investigates
the structure of the definability preorder guided by presequentiality levels, as described above.

This work is in the lineage of the work of Bucciarelli in [2] and Bucciarelli and Malacaria in
[5]. The main results from this paper were originally reported in [11].

2 Preliminaries

In this section, we review some of the mathematical background to our study of first-order monotone
boolean functions and the previous work already done on the subject by Trakhtenbrot, Sazanov,
Bucciarelli and Malacaria. We assume knowledge of PCF and its continuous model [9], as well
as a passing familiarity with logical relations [10]. LetB be the flat domain of boolean values.
Given f : Bk → B andx = (x1, . . . , xk), thenf(x) stands forf(x1, . . . , xk), and givenA =
{
x1, . . . , xn

}
⊆ Bk, f(A) is defined to be

{
f(xi) : xi ∈ A

}
. As usual,π1 andπ2 represent the

projection functions associated with the cartesian product on sets.
Relative definability refers to the ability to define some function using another function: a func-

tion can define another function if there exist some algorithm in some language that uses the former
to compute the latter. In our case, algorithms are taken to bePCF-terms: given two continuous
functionsf andg, we say thatf is PCF-expressible(or simply expressible) byg, denotedf � g,
if there exists a PCF-termM such thatf = M g. Equivalent terminologies in the literature for
f � g are “f is less parallel than g”, orf is g-expressible. The� preorder induces an equivalence
relation≡ on continuous function such thatf ≡ g iff f � g andg � f . The equivalence classes are
calleddegrees of parallelism, and two functionsf ,g with f ≡ g are calledequiparallel. The degree
of parallelism of a continuous functionf is denoted [f ].

We are interested in studying the structure of first-order degrees of parallelism. Trakhtenbrot
[16, 17] and Sazonov [13] first investigated the subject and pointed out finite subposets of degrees
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(though not necessarily first-order degrees). Some facts are consequences of well-known results.
The poset of degrees of parallelism must have a top element, Parallel OR (POR), by Plotkin’s full
abstraction result for PCF+POR [9]. On the other hand, the poset must have a bottom element, the
degree of all M-sequential functions. Indeed, a fundamental property of PCF is that PCF-definable
functions are exactly the M-sequential functions. A function f : Bk → B is M-sequential[8] (or
simply sequential) if it is constant or if there exists an integeri (called anindex of sequentiality)
with 1 ≤ i ≤ k such thatxi = ⊥ implies thatf(x1, . . . , xk) = ⊥ and such that for any fixed value
xi, the function of the remaining arguments is also M-sequential. In [5], it is proved that first-order
degrees of parallelism form a sup-semilattice, which we will denoteCONT1.

Proposition 2.1 The poset of first-order degrees of parallelism is a sup-semilattice with a bottom
element (the set of sequential functions) and a top element (the degree ofPOR).

The trace of a function is the central notion we use to study boolean functions. The trace is a
representation of the minimum inputs needed for the function to produce a result. Formally, given a
first-order monotone functionf : Bk → B, thetraceof f is

tr(f) =
{

(v, b)|v ∈ Bk, b ∈ B, b 6= ⊥, f(v) = b and∀v′ < v, f(v′) = ⊥
}

Forx, y ∈ B, let x ↑ y hold if x andy have a common upperbound inB, that is ifx = ⊥ or y = ⊥
or x = y. Extend↑ pointwise to tuples inBn. It is easy to see that a first-order monotone boolean
functionf is stable (in the sense of Berry [1]) if and only if for allv1, v2 ∈ π1(tr(f)), v1 6↑ v2. Note
that the monotonicity off insures that ifv1 ↑ v2 thenf(v1) = f(v2). For a set of tuplesA ⊆ Bk,
a setB ⊆ Bk is an Egli-Milner lowerbound forA if for everyx ∈ A, there is ay ∈ B with y ≤ x,
and for everyy ∈ B, there is anx ∈ A with y ≤ x.

Linear coherence is used by Bucciarelli and Erhard to study first-order boolean functions in
[3, 4, 2]. A subsetA =

{
v1, . . . , vn

}
of Bk is linearly coherent(or simply coherent) if for every

coordinate, either a tuple inA contains⊥ at that coordinate, or all the tuples inA have the same
value at that coordinate, that is

∀j ∈ {1, . . . , k}
(

∀l ∈ {1, . . . , n}, vlj 6= ⊥
)

⇒ ∀l1, l2 ∈ {1, . . . , n}, vl1j = vl2j

A subsetA =
{
v1, . . . , vn

}
of Bk is ⊥-coveringif for every coordinate a tuple inA contains⊥ at

that coordinate, that is
∀j ∈ {1, . . . , k},∃i ∈ {1, . . . , k}, vij = ⊥

It is easy to see that ifA is ⊥-covering thenA is coherent. Abusing the terminology, we will
sometimes say that a first-order monotone boolean functionf is ⊥-covering ifπ1(tr(f)) has the
corresponding property.

Monovalued functions are an important class of functions westudy. A first-order monotone
boolean functionf is monovaluedif |π2(tr(f))| = 1. By another abuse of terminology, we will
say that a subsetA ⊆ π1(tr(f)) is monovalued if|f(A)| = 1. A boolean function which is not
monovalued will sometimes be called bivalued2.

1CONT refers to the fact that those functions are continuous: recall that for first-order boolean functions, monotone
functions are continuous.

2The term “bivalued” refers of course to the fact that there are two non-⊥ values in the boolean domain — a function
is bivalued if|π2(tr(f))| = 2.
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We define two operations on boolean functions. Given a first-order monotone boolean function
f : Bk → B, let neg(f) : Bk → B be the function returningtt whenf returnsff and returningff
whenf returnstt. As for the second operation, given two first-order monotoneboolean functions
f : Bk → B andg : Bk′ → B, (without loss of generality, assume there exists anl ≥ 0 with
k = k′ + l) define the functionf + g : Bmax(k,k′)+1 → B by the following trace:

tr(f + g) = {((tt, x1, . . . , xk), b) : ((x1, . . . , xk), b) ∈ tr(f)}
⋃

{((ff, . . . , ff
︸ ︷︷ ︸

l+1

, x1, . . . , xk′), b) : ((x1, . . . , xk′), b) ∈ tr(g)}

As shown in [5],f + g is equiparallel to the least upperbound off andg in CONT, in other words
[f + g] = [f ] ∨ [g].

Bucciarelli illustrates the non-trivial structure of theCONT semilattice by exhibiting hierar-
chies3 of functions inCONT [2]. He defines the functionBUCC(n,m) via the following descrip-
tion: the trace ofBUCC(n,m) hasm elements and each trace element returnstt; for any subset of
less thann elements (and at least two) of the first projection of the trace, there exists a coordinate
which makes that subset incoherent. The Bucciarelli hierarchy is actually a two-dimensional infinite
hierarchy of functions.

Generalizing the techniques used in [2], Bucciarelli and Malacaria prove the following propo-
sition in [5], in their attempt to find a characterization of theCONT semilattice in terms of hyper-
graphs (this proposition is restated so that it does not refer to hypergraphs)

Proposition 2.2 (Bucciarelli, Malacaria) Let f, g be two first-order monotone boolean functions.
If there exists a functionα : tr(f) → tr(g) such that

1. for all A ⊆ tr(f), if π1(A) is non-singleton and linearly coherent, thenπ1(α(A)) is non-
singleton and linearly coherent.

2. for all A ⊆ tr(f) with π1(A) non-singleton and linearly coherent, and for allx, y ∈ A, we
haveπ2(x) 6= π2(y) ⇒ π2(α(x)) 6= π2(α(y)).

thenf � g.

This property will be used often in this paper to prove definability results between functions.

3 Presequentiality relations

Relative definability for first-order boolean functions is fully characterized by Sieber’s sequentiality
relations, introduced in [14]. Sequentiality relations are the logical relations [10] under which the
constants of PCF are invariant. Recall that ann-ary logical relationR on aλ-model(Dτ )t∈Type is a
family of relationsRτ ⊆ (Dτ )n such that for all typesσ, τ andf1, . . . , fn ∈ Dσ→τ ,

Rσ→τ (f1, . . . , fn) ⇔ ∀d1, . . . , dn, R
σ(d1, . . . , dn) ⇒ Rτ (f1d1, . . . , fndn)

An elementd ∈ Dτ is invariant underR if Rτ (d, . . . , d) holds. We now give the definition of
sequentiality relations in a slightly different form than Sieber in [14], distinguishing the simple kind
of sequentiality relations which we call presequentialityrelations.

3A hierarchy is simply anω-chain in the definability preorder.
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Definition 3.1 For eachn ≥ 0 and each pair of setsA ⊆ B ⊆ {1, . . . , n}, thepresequentiality
relationSA,B

n ⊆ (Dτ )n, τ = ι, o, is ann-ary logical relation defined by

SA,B
n (d1, . . . , dn) ⇔ (∃i ∈ A.di = ⊥) ∨ (∀i, j ∈ B.di = dj)

An n-ary logical relationR is called asequentiality relationif R is an intersection of presequen-
tiality relations.

Sieber’s relations are defined for full PCF, that is with bothintegers (typeι) and booleans
(type o). For the purposes of this paper, it is sufficient to look at relations over the booleans,
that is overB = Do. For the special case of a first-order boolean functionf : Bk → B,
invariance underSA,B

n means that for tuples(x11, . . . , x
1
n), . . . , (x

k
1 , . . . , x

k
n) in SA,B

n , we have
(

f(x11, . . . , x
k
1), . . . , f(x

1
n, . . . , x

k
n)
)

also inSA,B
n . The following proposition, proved in [14], gives

the full characterization of the definability preorder for first-order functions. It is interesting to note
that this characterization is effective and Stoughton implemented an algorithm that decidesf � g

given the functionsf andg [15].

Proposition 3.2 (Sieber)For any first-order monotone boolean functionsf and g, f � g if and
only if for any sequentiality relationR, if g is invariant underR thenf is also invariant underR.

Proposition 3.2 tells us that a functionf is not g-expressible if we can exhibit a sequentiality
relationR such thatg is invariant underR butf is not. If we restrict our attention to presequentiality
relations, it is easy to see that invariance under presequentiality relations induces a coarser ordering
than invariance under sequentiality relations, that is it identifies more functions. If two functions
are invariant under the same presequentiality relations, then nothing can be said about their relative
definability. However, if they are not invariant under the same presequentiality relations, we can de-
rive strong inexpressibility results, since presequentiality relations are a weak class of sequentiality
relations. In effect, invariance under presequentiality relations can be viewed as defining the “skele-
ton” of the relative definability preorder. The advantage ofworking with presequentiality relations
is that they are simpler than full sequentiality relations,and a great deal of structure can be extracted
straightforwardly, as we will presently see.

The central problem of this paper is to determine the presequentiality relations under which
a given function is invariant. An early restricted form of this may already be found in [2]. The
following two lemmas show that it is not necessary to consider every presequentiality relation.
The Reduction Lemma tells us that it is sufficient to look at presequentiality relations of a simple
form. The Closure Lemma says that if a function is invariant under a presequentiality relationSA,B

n ,
invariance holds under any presequentiality relation with“smaller” A andB. In Section 4, we will
see how these lemmas lead to a simple characterization of theset of presequentiality relations under
which a function is invariant.

Lemma 3.3 (Reduction Lemma)Givenf : Bk → B a first-order monotone boolean function and
A ⊆ B ⊆ {1, . . . , n}, one of the following holds:

1. (A = B) f is invariant underSA,A
n ⇔f is invariant underS{1,...,|A|},{1,...,|A|}

|A|

2. (A ⊂ B) f is invariant underSA,B
n ⇔f is invariant underS{1,...,|A|},{1,...,|A|+1}

|A|+1 .
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Lemma 3.4 (Closure Lemma)Givenf : Bk → B a first-order monotone boolean function andm
any integer withm ≥ 0, the following holds:

1. f invariant underS{1,...,m},{1,...,m+1}
m+1 ⇒ f invariant underS{1,...,m},{1,...,m}

m .

2. f invariant underS{1,...,m+1},{1,...,m+1}
m+1 ⇒ f invariant underS{1,...,m},{1,...,m}

m

3. f invariant underS{1,...,m+1},{1,...,m+2}
m+2 ⇒ f invariant underS{1,...,m},{1,...,m+1}

m+1

The proof of these lemmas is much more digestible when split across several technical lemmas
(3.5,3.6,3.7) which we now state and prove.

Lemma 3.5 Letm(M) be the leastn such thatM ⊆ {1, . . . , n}, and letf : Bk → B be a first-
order monotone boolean function. The functionf is invariant underSA,B

n iff f is invariant under
S
A,B
m(B).

Proof. (⇒) We show that iff is invariant underSA,B
n , then for alln′ ≤ n such thatB ⊆

{1, . . . , n′}, f is invariant underSA,B
n′ .

For the sake of contradiction, assume there existn,A,B, n′ with n′ ≤ n such thatf is invariant
underSA,B

n but not underSA,B
n′ . That is, there exist tuples

(
x11, . . . , x

1
n′

)
, · · · ,

(

xk1 , . . . , x
k
n′

)

∈

S
A,B
n′ and(y1, . . . , yn′) 6∈ S

A,B
n′ with yi = f(x1i , . . . , x

k
i ).

The tuples
(x11, . . . , x

1
n′ ,⊥, . . . ,⊥), · · · , (xk1 , . . . , x

k
n′ ,⊥, . . . ,⊥)

then must be inSA,B
n . Since(y1, . . . , yn′) 6∈ S

A,B
n′ , we must have(y1, . . . , yn′ ,⊥, . . . ,⊥) 6∈ SA,B

n ,
contradicting the invariance off underSA,B

n .
(⇐) We show that iff is invariant underSA,B

n , then for alln′ ≥ n, f is invariant underSA,B
n′ .

For the sake of contradiction, assume there existn,A,B andn′ ≥ n such thatf is invariant
underSA,B

n but not underSA,B
n′ . That is, there exist tuples

(

x11, . . . , x
1
n′

)

, · · · ,
(

xk1 , . . . , x
k
n′

)

∈

S
A,B
n′ and(y1, . . . , yn′) 6∈ S

A,B
n′ with yi = f(x1i , . . . , x

k
i ). Observe that(x1, . . . , xn′) ∈ S

A,B
n′ ⇔

(x1, . . . , xn) ∈ SA,B
n . Hence,

(
x11, . . . , x

1
n

)
, · · · ,

(

xk1, . . . , x
k
n

)

∈ SA,B
n but (y1, . . . , yn) 6∈ SA,B

n

contradicting the invariance off underSA,B
n . ⊓⊔

Lemma 3.6 Givenf : Bk → B a first-order monotone boolean function,f is invariant underSA,B
n

iff f is invariant underS{1,...,|A|},{1,...,|B|}
n .

Proof. We show the following more general result: letA,B,C,D be sets withA ⊆ B ⊆
{1, . . . , n} , C ⊆ D ⊆ {1, . . . , n}, and letp be a permutation of{1, . . . , n} into {1, . . . , n} such
thatp(A) = C andp(B) = D. Thenf is invariant underSA,B

n ⇔f is invariant underSC,D
n .

Let us first prove that

(x1, . . . , xn) ∈ SA,B
n ⇔ (xp−1(1), . . . , xp−1(n)) ∈ SC,D

n . (1)

Let (x1, . . . , xn) ∈ SA,B
n , andyi = xp−1(i). To show(y1, . . . , yn) ∈ SC,D

n , consider the two cases:
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1. There is ani ∈ A, xi = ⊥. In which case, letc = p(i), with c ∈ C sincei ∈ A. Moreover,
yc = xp−1(c) = xp−1(p(i)) = xi = ⊥, so there is aj ∈ C, yj = ⊥.

2. For alli, j ∈ B,xi = xj. Assume there arei, j ∈ D, yi 6= yj. Thenxp−1(i) 6= xp−1(j), hence
there arei′, j′ ∈ B,xi′ 6= xj′ , a contradiction. Hence for alli, j ∈ D, yi = yj.

Hence(y1, . . . , yn) ∈ SC,D
n . The reverse direction follows by symmetry of the permutation p,

proving (1).
Now, observe that we need only show one direction of the general result (the reverse direction

follows by symmetry of the permutationp).
Consider any tuples

(
x11, . . . , x

1
n

)
, · · · ,

(

xk1, . . . , x
k
n

)

∈ SA,B
n . Let yi = f(x1i , . . . , x

k
i ). Sincef

is invariant underSA,B
n , (y1, . . . , yn) ∈ SA,B

n .

By (1), each tuple
(

x
j
1, . . . , x

j
n

)

is also inSC,D
n and so is(y1, . . . , yn) ∈ SC,D

n , hencef is

invariant underSC,D
n .

To prove the lemma, it is sufficient to show that there exists apermutationp of {1, . . . , n} such
thatp(A) = {1, . . . , |A|}, p(B) = {1, . . . , |B|}, which is immediate. ⊓⊔

Lemma 3.7 Givenf : Bk → B a first-order monotone boolean function. Thenf is invariant under
SA,B
n , |B\A| = 1 iff f is invariant underSA,B′

n for anyB′ such thatB ⊆ B′.

Proof. (⇒) We show that iff is invariant underSA,B
n , |B\A| = 1, then for anyB′ such that

B ⊆ B′, f is invariant underSA,B′

n .
By Lemma 3.5 and Lemma 3.6, it is sufficient to show that for anym, if f invariant under

S
{1,...,m},{1,...,m+1}
m+1 thenf is invariant underS{1,...,m},{1,...,n}

n for anyn ≥ m+ 1.
For the sake of contradiction, assume that for somem andn ≥ m + 1, f is invariant under

the presequentiality relationS{1,...,m},{1,...,m+1}
m+1 but not underS{1,...,m},{1,...,n}

n . Then there are

tuples
(

x11, . . . , x
1
n

)

, · · · ,
(

xk1 , . . . , x
k
n

)

∈ S
{1,...,m},{1,...,n}
n but (y1, . . . , yn) 6∈ S

{1,...,m},{1,...,n}
n , for

yi = f(x1i , . . . , x
k
i ). Hence, for alli ≤ m, yi 6= ⊥ and there areI, J such thatyI 6= yJ . Without

loss of generality, chooseI the minimal such index.
We proceed by case analysis on the value ofI andJ :

1. (I ≤ m) Consider the following tuples
(
x11, . . . , x

1
m, x1J

)
, · · · ,

(

xk1, . . . , x
k
m, xkJ

)

which are

in S
{1,...,m},{1,...,m+1}
m+1 ; by assumption of the invariance off , we have(y1, . . . , ym, yJ) ∈

S
{1,...,m},{1,...,m+1}
m+1 Hence, either there isi ≤ m suchyi = ⊥ (a contradiction), oryI = yJ

(also a contradiction).

2. (J ≤ m) Same argument.

3. (I, J > m) We further consider 3 subcases.

(a) (yI = ⊥). Consider the tuples
(
x11, . . . , x

1
m, x1I

)
, . . . ,

(

xk1 , . . . , x
k
m, xkI

)

which are in

S
{1,...,m},{1,...,m+1}
m+1 ; by assumption of the invariance off we have(y1, . . . , ym, yI) ∈

S
{1,...,m},{1,...,m+1}
m+1 . So either there isi ≤ m such thatyi = ⊥ (a contradiction), or

yI = yi for all i ≤ m (also a contradiction)
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(b) (yJ = ⊥) Same argument.

(c) (yI , yJ 6= ⊥) By choice of minimalI, we know thaty1 = · · · = ym and all are eithertt
or ff. On the other hand,yI 6= yJ andyI , yJ 6= ⊥, so letc = I or J , such thatyc 6= y1.

Consider the tuples
(
x11, . . . , x

1
m, x1c

)
, · · · ,

(

xk1 , . . . , x
k
m, xkc

)

, easily seen to be tuples in

S
{1,...,m},{1,...,m+1}
m+1 , and by assumption of the invariance off , we have(y1, . . . , ym, yc) ∈

S
{1,...,m},{1,...,m+1}
m+1 . So either there is ani ≤ m such thatyi = ⊥ (a contradiction), or

yc = y1 (also a contradiction)

(⇐) We show that iff is invariant underSA,B
n , thenf is invariant underSA,B′

n for all A ⊆
B′ ⊆ B.

For the sake of contradiction, assume there existn,A,B,B′ with A ⊆ B′ ⊆ B such thatf is in-
variant underSA,B

n but not underSA,B′

n . Then there exist tuples
(
x11, . . . , x

1
n

)
, · · · ,

(

xk1 , . . . , x
k
n

)

∈

SA,B′

n such that(y1, . . . , yn) 6∈ SA,B′

n with yi = f(x1i , . . . , x
k
i ).

Fix an arbitraryI ∈ A. Consider the following tuples:
(

z
j
1, . . . , z

j
n

)

for 1 ≤ j ≤ k, with

z
j
i =







x
j
i if i ∈ B′

x
j
I if i ∈ B\B′

⊥ otherwise

We first verify that these tuples are inSA,B
n . For eachj, 1 ≤ j ≤ k, consider the original tuple

(

x
j
1, . . . , x

j
n

)

∈ SA,B′

n . In other words, either

1. there is ani ∈ A, xji = ⊥, and for thati ∈ A, we havezji = x
j
i = ⊥. Hence

(

z
j
1, . . . , z

j
n

)

∈

SA,B
n , or

2. For all i ∈ A, xji 6= ⊥, and for alli, i′ ∈ B′, x
j
i = x

j
i′ . Hence, for alli, i′ ∈ B′, z

j
i = z

j
i′ .

Moreover, for alli ∈ B\B′, z
j
i = x

j
I for I ∈ A ⊆ B′. Hence, for alli, i′ ∈ B, z

j
i = z

j
i′ and

the tuple
(

z
j
1, . . . , z

j
n

)

∈ SA,B
n .

By the above construction, we see that for alli ∈ B′, f(z1i , . . . , z
k
i ) = yi .

Since(y1, . . . , yn) 6∈ SA,B′

n , we have for alli ∈ A, yi 6= ⊥ and there arei, j ∈ B′, yi 6= yj. This
implies that for alli ∈ A, f(z1i , . . . , z

k
i ) 6= ⊥ and there arei, j ∈ B′ ⊆ B such thatf(z1i , . . . , z

k
i ) 6=

f(z1j , . . . , z
k
j ). In other words,f is not invariant underSA,B

n , contracting the assumption. ⊓⊔

The proofs of the Reduction and Closure Lemmas are now immediate.

Proof. (Reduction Lemma)

1. (A = B) By Lemma 3.6, we have thatf is invariant underSA,A
n iff f is invariant under

S
{1,...,|A|},{1,...,|A|}
n and by Lemma 3.5,f is invariant underS{1,...,|A|},{1,...,|A|}

n iff f is invariant
underS{1,...,|A|},{1,...,|A|}

|A| .

2. (A ⊂ B) By Lemma 3.6, f is invariant underSA,B
n iff f is invariant under

S
{1,...,|A|},{1,...,|B|}
n . By Lemma 3.7,f is invariant underS{1,...,|A|},{1,...,|B|}

n iff f is invari-
ant underS{1,...,|A|},{1,...,|A|+1}

n , and by Lemma 3.5, this happens ifff is invariant under
S
{1,...,|A|},{1,...,|A|+1}
|A|+1 . ⊓⊔
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Proof. (Closure Lemma)

1. The (⇐) direction in the proof of Lemma 3.7 actually proves this case.

2. Given tuples
(
x11, . . . , x

1
m

)
, · · · ,

(

xk1 , . . . , x
k
m

)

∈ S
{1,...,m},{1,...,m}
m we show(y1, . . . , ym) ∈

S
{1,...,m},{1,...,m}
m with yi = f(x1i , . . . , x

k
i ).

By assumption, the tuples
(

x11, . . . , x
1
m, x11

)

, · · · ,
(

xk1 , . . . , x
k
m, xk1

)

are inS{1,...,m+1},{1,...,m+1}
m+1 .

By invariance of f under S
{1,...,m+1},{1,...,m+1}
m+1 , we have (y1, . . . , ym, y1) ∈

S
{1,...,m+1},{1,...,m+1}
m+1 which means that either there isi ≤ m such thatyi = ⊥ or for

all i, j ≤ m, yi = yj. Hence(y1, . . . , ym) ∈ S
{1,...,m},{1,...,m}
m .

3. Same argument as part (2): assume tuples
(

xi1, . . . , x
i
m+1

)

in S
{1,...,m},{1,...,m+1}
m+1 , and con-

sider the tuples
(

xi1, . . . , x
i
m, xi1, x

i
m+1

)

. ⊓⊔

4 Presequentiality levels

The Reduction Lemma and the Closure Lemma of the previous section can be used to show that the
set of presequentiality relations under which a function isinvariant is characterized by two integers
(allowing for∞). Givenf a function invariant under presequentiality relations{SAi,Bi

n }i∈I ; by the
Reduction Lemma, this is equivalent to saying thatf is invariant under the presequentiality relations
{S

{1,...,|Ai|},{1,...,|Ai|}
|Ai|

}i∈I,Ai=Bi
and{S

{1,...,|Ai|},{1,...,|Ai|+1}
|Ai|+1 }i∈I,Ai⊂Bi

. By the Closure Lemma,

there must exist maximali andj (possibly∞) such thatf is invariant underS{1,...,k},{1,...,k}
k for

all k ≤ i andf is invariant underS{1,...,k},{1,...,k+1}
k+1 for all k ≤ j. We will call the pair(i, j) the

presequentiality level(p-level) of the functionf . Clearly, a function with a p-level of(∞,∞) is
invariant under all presequentiality relations. Since every function in a degree of parallelism must
be invariant under the same presequentiality relations (byProposition 3.2), we also talk about the
presequentiality level of a degree of parallelism. Alternatively, a function with a p-level of(i, j) is
easily seen by applications of the Reduction Lemma and the Closure Lemma to be invariant under
a presequentiality relationSA,B

n if and only if either|A| = |B| ≤ i or |A| < |B| with |A| ≤ j.
In view of the discussion following Proposition 3.2, no definability information can be inferred

for two functions with the same p-level. However, functionswith different p-levels yield immediate
inexpressibility results:

Corollary 4.1 Givenf andg first-order monotone boolean functions with p-levels of(if , jf ) and
(ig, jg) respectively. Ifif > ig or jf > jg, theng 6� f .

In summary, two integers are sufficient to completely characterize the set of presequentiality
relations under which a function is invariant. It turns out that these integers can be derived straight-
forwardly from the trace of the function. Define thecoefficient of (linear) coherenceof a first-order
monotone boolean functionf by

cc(f) = min {|A| : A ⊆ π1(tr(f)), |A| ≥ 2, A coherent}
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with cc(f) defined to be∞ whenπ1(tr(f)) has no non-singleton linearly coherent subset. Similarly,
define thebivalued coefficient of (linear) coherenceof a first-order monotone boolean functionf by

bcc(f) = min {|A| : A ⊆ π1(tr(f)), |A| ≥ 3, A coherent and bivalued}

with bcc(f) is defined to be∞ whenπ1(tr(f)) has no non-singleton bivalued linearly coherent
subset. We note thatbcc(f) ≥ cc(f) for all f .

The relationship between coefficients of coherence and presequentiality levels is expressed by
the following proposition, which provides a mechanical wayof determining the presequentiality
level of a function, and hence of determining the set of presequentiality relations under which a
function is invariant.

Lemma 4.2 Let f : Bk → B be a first-order monotone boolean function. Thenf has a p-level of
(bcc(f)− 1, cc(f)− 1) (assuming standard rules for∞).

Proof. We prove the result forcc(f). Consider the three cases:

1. (cc(f) = 2) We show thatf is invariant underS{1},{1,2}
2 but notS{1,2},{1,2,3}

3 . Assumef

is not invariant underS{1},{1,2}
2 . Then there exist tuples

(

x11, x
1
2

)

, · · · ,
(

xk1 , x
k
2

)

∈ S
{1},{1,2}
2

such that(y1, y2) 6∈ S
{1},{1,2}
2 , with yi = f(x1i , . . . , x

k
i ). This means thaty1 6= ⊥ and

y1 6= y2. It is easy to see that(x11, . . . , x
k
1) ≤ (x12, . . . , x

k
2), since for eachi ≤ k, either

xi1 = ⊥ or xi1 = xi2. So by monotonicity off , y1 ≤ y2, contradictingy1 6= ⊥, and

y1 6= y2. Sof must be invariant underS{1},{1,2}
2 . On the other hand, applyingf to the tuples

(
x11, x

1
2,⊥

)
, · · · ,

(

xk1 , x
k
2 ,⊥

)

∈ S
{1,2},{1,2,3}
3 , where the first two coordinates of the tuples

are the elements of the first projection of the trace forming alinearly coherent subset of size
2, yields the tuple(tt, tt,⊥) or (ff, ff,⊥), neither of which is inS{1,2},{1,2,3}

3 .

2. (3 ≤ cc(f) < ∞) We showf is invariant underS{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) but not under

S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1 . Assumef is not invariant underS{1,...,cc(f)−1},{1,...,cc(f)}

cc(f) . Then

there exist tuples
(

x11, . . . , x
1
cc(f)

)

, · · · ,
(

xk1, . . . , x
k
cc(f)

)

∈ S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) such

that
(

y1, . . . , ycc(f)

)

6∈ S
{1,...,cc(f)−1},{1,...,cc(f)}
cc(f) with yi = f(x1i , . . . , x

k
i ). This means that

for all i ≤ cc(f) − 1, yi 6= ⊥ and there areI, J with yI 6= yJ . Let C ⊆ π1(tr(f)) be an
Egli-Milner lowerbound of the firstcc(f)−1 coordinates of the given tuples,|C| ≤ cc(f)−1.
We cannot have|C| = 1 (sayC = {v}), since that would imply thatv ≤ (x1cc(f), . . . , x

k
cc(f)):

for eachi ≤ k, either one ofxij = ⊥ for j ≤ cc(f) − 1 (hencevj = ⊥) or xij = xij′ for all
j, j′ ≤ cc(f) − 1 (hencevj ≤ xij = xicc(f)). But monotonicity off would imply that for all
i, j, yi = yj, a contradiction. Hence,|C| ≥ 2. But since the firstcc(f)− 1 coordinates of the
given tuples form a coherent subset,C being an Egli-Milner lowerbound must also be coher-
ent (by a result in [2]). But this contradicts the fact that the minimal size for a coherent subset
of π1(tr(f)) is cc(f). So,f is invariant underS{1,...,cc(f)−1},{1,...,cc(f)}

cc(f) . On the other hand,

consider the tuples
(

x11, . . . , x
1
cc(f),⊥

)

, · · · ,
(

xk1 , . . . , x
k
cc(f),⊥

)

∈ S
{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1

where the firstcc(f) coordinates are the elements of a coherent subset of sizecc(f)
of π1(tr(f)) (which exists by assumption). Appplyingf to these tuples yields a tuple

(y1, . . . , ycc(f),⊥) with yi 6= ⊥ for i ≤ cc(f), which cannot be inS{1,...,cc(f)},{1,...,cc(f)+1}
cc(f)+1 .
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3. (cc(f) = ∞) We show thatf is invariant under all presequentiality relations of the

form S
{1,...,i},{1,...,i+1}
i+1 . Assume that there exists ani such thatf is not invariant under

S
{1,...,i},{1,...,i+1}
i+1 . The same reasoning as in the previous case leads to a contradiction, al-

though instead of contradicting the minimal size of a coherent subset ofπ1(tr(f)) being
cc(f), we contradict the fact that there is no coherent subset ofπ1(tr(f)).

The argument forbcc(f) is similar. ⊓⊔

We can use Lemma 4.2 to show that presequentiality levels arepreserved by the least upper-
bound operation on functions in a natural way:

Lemma 4.3 Givenf and g first-order monotone boolean functions with p-levels of(if , jf ) and
(ig, jg) respectively. Then the p-level off + g is

(min(if , ig),min(jf , jg))

.

Proof. Immediate by Lemma 4.2 and the definition off + g in terms off andg. ⊓⊔

It is not hard to check that any first-order monotone boolean function has a p-level(i, j) with
i ≥ 2 andj ≥ 1 (consider 3 cases:cc(f) = ∞, cc(f) < ∞ = bcc(f),bcc(f) < ∞). We can
easily characterize sequential functions:

Proposition 4.4 A first-order monotone boolean function has a p-level of(∞,∞) if and only if it
is sequential

Proof. (⇒) It is sufficient to show that ifcc(f) = ∞, thenf is sequential. Let us first prove the
following auxiliary result: givenf : Bk+1 → B a monotone function andf ′ : Bk → B defined by

f ′(x1, . . . , xk) = f(x1, . . . , y, . . . , xk)

for some fixedy as theith argument off . Thencc(f ′) ≥ cc(f).
Consider the two cases:

1. (cc(f) = ∞) In this case, there is no linearly coherent subset ofπ1(tr(f)), and hence there
can be no linearly coherent subset ofπ1(tr(f

′)) (otherwise, it would yield a linearly coherent
subset ofπ1(tr(f)). Hence,cc(f ′) = ∞ ≥ cc(f) by definition.

2. (cc(f) < ∞) GivenA ⊆ π1(tr(f
′)) a coherent subset of sizecc(f ′). LetB be the following

set:

{(x1, . . . , xk+1) ∈ π1(tr(f)) : (x1, . . . , xi−1, xi+1, . . . , xk+1) ∈ A, xi ≤ y} .

We check thatB ⊆ π1(tr(f)) is linearly coherent. First, notice that|B| = |A|. Moreover, we

see that for all tuples inB, the ith position is either a⊥ or a valuey. Added to the fact thatA
is linearly coherent, we see thatB must be linearly coherent, and hencecc(f) ≤ cc(f ′).
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And this proves the auxiliary result.
We now prove the sufficient condition by induction on the arity of f .
(base case)f : B → B. Considerf(⊥). If f(⊥) 6= ⊥, then by monotonicityf is constant, and

hence sequential. iff(⊥) = ⊥, then considerf(y) for a fixedy. This must be a constant, sof is
sequential (by the definition of sequentiality).

(induction step) Assume the result holds for all functions of arityk. Considerf : Bk+1 → B,
with cc(f) = ∞.

1. We first need to show that there exists an index of sequentiality. Assume not: for alli, for any
fixedxj ,∀j 6= i, f(x1, . . . ,⊥, . . . , xk+1) 6= ⊥. Thenπ1(tr(f)) must be⊥-covering, which
contradictscc(f) = ∞.

2. Giveni the index of sequentiality off , look at the functionf ′(z1, . . . , zk) = f(z1, . . . , y, . . . , zk)
for a fixedy in positioni. By the auxiliary result,cc(f ′) = ∞, and the induction hypothesis
applies to show thatf ′ and thereforef must be sequential. ⊓⊔

(⇐) Immediate, sincef sequential implies thatf is PCF-definable, and hencef must be invari-
ant under all sequentiality relations — including presequentiality relations.

5 Structural results

In this section, we use p-levels to guide our exploration of theCONT semilattice. The approach is
roughly as follows: we identify interesting classes of functions (stable functions, unstable functions,
stable-dominating functions, monovalued functions), andshow that they have a natural characteri-
zation in terms of p-levels. We then use the p-level characterization to look for interesting natural
hierarchies. A hierarchy is deemed natural if it is made up offunctions living on different p-levels.
We also show that interesting well-known functions also have a natural characterization in terms of
p-levels.

5.1 TheSTABLE semilattice

Define astable degree of parallelismto be a degree of parallelism containing at least one stable
function. We can characterize stable degrees in terms of p-levels:

Proposition 5.1 A degree of parallelism is stable if and only if its p-level isof the form(i, j) with
i ≥ 2 andj ≥ 2

Proof. (⇒) Givenf a stable function. Thencc(f) ≥ 3,and by Lemma 4.2,f must have a p-level
of the form(i, j) with j ≥ cc(f)− 1 ≥ 2. Sincef is monotone,i ≥ 2.

(⇐) Givenf with a p-level(i, j) with j ≥ 2. By Lemma 4.2,cc(f)− 1 ≥ 2, so thatcc(f) ≥ 3.
Hence,f must be stable. ⊓⊔

As a consequence, every function in a stable degree of parallelism must be stable. LetSTABLE
be the subposet ofCONT consisting of all stable degrees of parallelism.

Proposition 5.2 STABLE is a subsemilattice ofCONT.
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Proof. It is easy to see that the least upperbound of two stable degrees of parallelism is itself a stable
degree of parallelism. The degree of sequential functions is the bottom element of the semilattice
and the Berry-Plotkin function (BP) is its top element, as noted by Plotkin and reported by Curien
in [6]. ⊓⊔

The Berry-Plotkin function is defined by the following trace:

⊥ tt ff tt
tt ff ⊥ ff
ff ⊥ tt ff

We can in fact completely characterize the degree of parallelism of BP via presequentiality
levels:

Proposition 5.3 Givenf a first-order monotone boolean function. Thenf has a p-level of(2, 2) iff
f ≡ BP.

Proof. (⇒) Givenf with a p-level of(2, 2). This means thatbcc(f) = 3, in other words, there
exists anA ⊆ π1(tr(f)) bivalued and linearly coherent, with|A| = 3. We can assume without loss
of generality that one element ofA returnstt and the remaining two returnff (otherwise, consider
neg(f) which is equiparallel tof and has the desired property). Defineg : tr(BP) → tr(f) by
sending the first trace element ofBP (the one returningtt) to the element ofA returningtt, and the
remaining elements ofBP to the elements ofA returningff. SinceA is linearly coherent, it is clear
thatg satisfies the condition of Proposition 2.2, andBP � f , Hence by Proposition 5.1,f is stable,
sof � BP.

(⇐) Givenf ≡ BP. Thenf must be invariant under the same sequentiality relations, hence the
p-level off is the same as the p-level ofBP, namely(2, 2). ⊓⊔

5.2 The Gustave hierarchy

The structure ofSTABLE is non-trivial. Since the functionsBUCC(n,m) are easily seen to be stable,
the whole Bucciarelli hierarchy is inSTABLE. We can identify a subhierarchy of the Bucciarelli
hierarchy derived from the Gustave function [1]. The Gustave functionGUST is given by the
following trace (in matrix form):

⊥ tt ff tt
tt ff ⊥ tt
ff ⊥ tt tt

Definition 5.4 LetGUSTi : B
2i+1 → B (i ≥ 1) be defined by the following trace (in matrix form):

⊥ tt ff · · · tt ff tt
ff ⊥ tt · · · ff tt tt
tt ff ⊥ · · · tt ff tt

...
...

ff tt ff · · · ⊥ tt tt
tt ff tt · · · ff ⊥ tt
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Note thatGUST1 is justGUST. It is easy to verify the following:

Proposition 5.5 GUSTi ≡ BUCC(2i+1,2i+1).

Proof. First note that a monovalued first-order monotone boolean function with |tr(f)| = cc(f) =
n is such thatf ≡ BUCC(n,n), by an application of Proposition 2.2, and note that|tr(GUSTi)| =
cc(GUSTi) = 2i+ 1. ⊓⊔

By Lemma 4.2, the functionsGUSTi have a p-level of(∞, 2i). This characterization allows us
to derive the following result:

Proposition 5.6 There is no minimal stable non-sequential function.

Proof. Assumeg is a stable non-sequential function that is minimal, i.e. for all f , f stable,
non-sequential,g � f .

Sinceg is not sequential, by Proposition 4.4, there must be someA,B, n such thatg is not
invariant underSA,B

n .
ConsiderGUST|A|. By the p-level ofGUSTi functions, since|A| ≤ 2 |A|, GUST|A| is invari-

ant underSA,B
n .

Henceg 6� GUST|A|, a contradiction. ⊓⊔

On the other hand, we can show that the Gustave hierarchy is co-final in the non-sequential
functions, that is any non-sequential function must dominate one of the functions in the hierarchy.

Proposition 5.7 Givenf a stable non-sequential first-order monotone boolean function. Then there
exists an integeri such thatGUSTi � f .

Proof. The functionf being non-sequential implies thatcc(f) < ∞ by Propositions 4.4 and 4.2.
Moreover,f being stable implies thatcc(f) ≥ 3 (by Lemma 4.2 and Proposition 5.1). LetA be a lin-
early coherent subset ofπ1(tr(f)) of sizecc(f). Define a arbitrary functiong : tr(GUSTcc(f)) →
tr(f) with π1(g(tr(GUSTcc(f)))) = A. It is easy to see that the conditions of Proposition 2.2 are
satisfied, so thatGUSTcc(f) � f . ⊓⊔

Note that Propositions 5.6 and 5.7 can be derived directly from Bucciarelli’s result. We merely
identify a natural subset of the Bucciarelli hierarchy thatis sufficient for our purpose.

5.3 The Bivalued-Gustave hierarchy

Functions in the Gustave hierarchy (and indeed, in the Bucciarelli hierarchy) are all monovalued.
We return to monovalued functions in Section 5.6. For now, let us extend the Gustave hierarchy to
a hierarchy of bivalued functions, the Bivalued-Gustave hierarchy.

Definition 5.8 LetBGUSTj
i : B2i+1 → B (j ≤ i) be the function defined by the following trace

(in matrix form):

⊥ tt ff · · · tt ff r1
ff ⊥ tt · · · ff tt r2
tt ff ⊥ · · · tt ff r3

...
...

ff tt ff · · · ⊥ tt r2i
tt ff tt · · · ff ⊥ r2i+1
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with

rl =

{

ff if 1 ≤ l ≤ j

tt otherwise

Let us first show that thej parameter inBGUSTj
i is unnecessary: we may pickBGUST1

i as a
representative of the class ofBGUSTj

i functions, and drop the superscript to refer to the function
asBGUSTi.

Lemma 5.9 Givenj, j′ ≤ i, BGUSTj
i ≡ BGUSTj′

i .

Proof. We prove by induction onj that for allj,BGUSTj
i ≡ BGUST1

i . The casej = 1 is trivial.
For the induction step (j ≥ 2), assume thatBGUSTj−1

i ≡ BGUST1
i and considerBGUSTj

i . We
showBGUSTj

i ≡ BGUSTj−1
i . Define the following terms:

M1 = λfλx1 . . . x2i+1.if f(x1, . . . , x2i+1)

thenf(x2, . . . , x2i+1, x1) elseff fi

M2 = λfλx1 . . . x2i+1.if f(x1, . . . , x2i+1)

thentt elsef(x2i+1, x1, . . . , x2i) fi

It is not hard to see thatBGUSTj
i = M1 BGUSTj−1

i andBGUSTj−1
i = M2 BGUSTj

i ,

thereby showingBGUSTj
i ≡ BGUSTj−1

i ≡ BGUST1
i by the induction hypothesis. ⊓⊔

It remains to show that the functionsBGUSTi actually form a hierarchy. First note that by
Lemma 4.2BGUSTi has a p-level of(2i, 2i).

Proposition 5.10 BGUSTi � BGUSTj iff i ≥ j.

Proof. (⇐) A straightforward application of Proposition 2.2: consider any surjective function
g : tr(BGUSTi) → tr(BGUSTj) sending the unique trace element returningtt to the unique trace
element returningtt, and any trace element returningff to any trace element returningff. It is easy
to see that all conditions of Proposition 2.2 are satisfied, andBGUSTi � BGUSTj .

(⇒) Assumei < j. The p-level ofBGUSTi is (2i, 2i) and the p-level ofBGUSTj is (2j, 2j).
By Corollary 4.1,BGUSTi 6� BGUSTj. ⊓⊔

The following result is immediate:

Proposition 5.11 For all i, GUSTi � BGUSTi.

Proof. Via Proposition 2.2. ⊓⊔

Combining functions in the Gustave hierarchy and the Bivalued-Gustave hierarchy via the least
upperbound operation produces a two-dimensional hierarchy, with functions of the formBGUSTi+
GUSTj. A trivial application of Lemma 4.3 gives a p-level of(2i, 2min(i, j)) for BGUSTi +
GUSTj. This allows us to derive the following governing equationsdescribing the structure of the
hierarchy:

Proposition 5.12 BGUSTi + GUSTj � BGUSTi′ + GUSTj′ iff i′ ≤ i and min(i′, j′) ≤
min(i, j).
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Proof. (⇒) We prove the contrapositive. Ifi < i′ ormin(i, j) < min(i′, j′), then by Corollary 4.1
and the p-level of functions in the hierarchy,BGUSTi +GUSTj 6� BGUSTi′ +GUSTj′ .

(⇐) Sincei′ ≤ i, Proposition 5.10 tells us thatBGUSTi ≤ BGUSTi′ ≤ BGUSTi′ +GUSTj′ .
We then consider three cases:

1. (min(i, j) = i) Proposition 5.11 implies that

GUSTj � BGUSTj � BGUSTi � BGUSTi′ +GUSTj′

Hence,BGUSTi +GUSTj � BGUSTi′ +GUSTj′ .

2. (min(i, j) = j, min(i′, j′) = i′) By assumption,i′ ≤ j, and hence by Proposition 5.11,
GUSTj � BGUSTj � BGUSTi′ � BGUSTi′ + GUSTj′ . HenceBGUSTi + GUSTj �
BGUSTi′ +GUSTj′ .

3. (min(i, j) = j, min(i′, j′) = j′) By assumption,j′ ≤ j, and hence

GUSTj � GUSTj′ � BGUSTi′ +GUSTj′

HenceBGUSTi +GUSTj � BGUSTi′ +GUSTj′ . ⊓⊔

5.4 TheUNSTABLE semilattice

Define anunstable degree of parallelismto be a degree of parallelism containing no stable function.
It is easy to show that a degree of parallelism is unstable if and only if it has a p-level of the form
(i, 1) with i ≥ 2, by Proposition 5.1. LetUNSTABLE be the subposet ofCONT consisting of all
unstable degrees of parallelism. Define the Detector function (DET) to simply returntt if one of
its two inputs has a value (tt or ff indifferently). For various reasons, it is simpler to work with the
following functionttDET which is easily seem to be equiparallel toDET:

tt ⊥ tt
⊥ tt tt

Proposition 5.13 UNSTABLE is a subsemilattice ofCONT.

Proof. It is easy to see that the least upperbound of two unstable degrees of parallelism is unstable.
The top element ofUNSTABLE is the degree ofPOR and its bottom element is the degree of the
Detector function. This last fact is an application of Proposition 2.2: givenf an unstable first-order
monotone boolean function; sincef is unstable, there must existA ⊆ π1(tr(f)) with A coherent
and|A| = 2. Define a function

g : tr(ttDET) → tr(f)

with the only constraint that each element of the trace ofttDET goes to a distinct element of the
trace off corresponding to the subsetA. It is easy to see that all the conditions of Proposition 2.2
are met, hencettDET � f . ⊓⊔

Detector first appeared in the context of asynchronous dataflow networks. Rabinovich shows in
[12] thatDET is minimal among unstable functions in that context.
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A degree of parallelism is unstable if and only if it is not stable, so we see that theSTABLE and
theUNSTABLE semilattices form a partition of the fullCONT semilattice. We presently identify
one hierarchy of functions inUNSTABLE (another will be presented in Section 5.5 ); functions in
this hierarchy are derived fromPOR:

Definition 5.14 LetPORi : B
i → B (i ≥ 2) be defined by the following trace (in matrix form):

tt tt tt · · · tt ⊥ tt
tt tt tt · · · ⊥ tt tt

...
...

tt tt ⊥ · · · tt tt tt
tt ⊥ tt · · · tt tt tt
⊥ tt tt · · · tt tt tt
ff ff ff · · · ff ff ff

Note thatPOR2 is justPOR. PORi takesi inputs and returnstt if at leasti− 1 arett, andff if
all areff. These functions span the whole range of allowable p-levelsfor unstable functions as the
next proposition shows:

Proposition 5.15 PORi has a p-level of(i, 1).

Proof. SincePORi is monotone and unstable, it must have a p-level of the form(j, 1) for some
j ≥ 2, by the characterization of p-levels of monotone and stablefunctions.

By inspection, we see that the only bivalued coherent subsetof π1(tr(PORi)) is π1(tr(PORi))
itself. Hence,bcc(f) = i+ 1 and by Lemma 4.2,j = bcc(f)− 1 = i. ⊓⊔

These functions indeed form a hierarchy:

Proposition 5.16 PORi � PORj iff i ≥ j.

Proof. (⇐) Consider the following PCF-term:

M = λf.λx1 . . . xi+1.ALLEQ(t1(x1, . . . , xi+1), . . . , ti+1(x1, . . . , xi+1))

where
ALLEQ = λx1 . . . xi+1.if (x1 = . . . = xi+1) thenx1 else⊥ fi

which returns the valuev if and only if all the arguments have the valuev.
Eachtj is an application ofPORi to a subset ofi inputs out of thei+ 1 possible inputs. Since

(

i+ 1
i

)

= i + 1, there arei + 1 such terms. We claim this term is such thatPORi+1 =

M PORi.

1. Thetj functions all returntt iff at leasti tt’s appear in their arguments

(a) (at leasti tt’s) Each subset of sizei has at leasti+ 1 tt’s, so eachtj function returnstt.

(b) (less theni tt’s) There exists one subset of sizei with less thani − 1 tt’s, so the corre-
spondingtj function returns⊥.

17



2. Thetj functions all returnff iff all inputs areff.

(a) (all ff’s) Everytj returnsff.

(b) (not allff’s) There exists a subset of sizei with not all inputs beingff. The corresponding
tj does not returnff.

(⇒) Assumei < j. The result is immediate by Corollary 4.1 and Proposition 5.15.

5.5 TheSDOM semilattice

It is clear that unstable functions are strictly more powerful than stable functions, in the sense that
no stable function can implement an unstable function, but unstable functions can implement stable
functions. In this section, we characterize the unstable functions that can implement all stable
functions, and show that they form a subsemilattice ofUNSTABLE.

Definition 5.17 Let f be an unstable first-order monotone boolean function. We sayf is stable-
dominatingif for any stable first-order monotone boolean functiong, we haveg � f .

Since theSTABLE semilattice has a top elementBP, a necessary and sufficient condition for
an unstable functionf to be stable-dominating is to haveBP � f . Since any stable-dominating
function must also dominateDET (the bottom element ofUNSTABLE), we have thatf is stable-
dominating if and only ifBP + DET � f . This allows us to derive the following characterization
of stable-dominating functions:

Proposition 5.18 Givenf an unstable first-order monotone boolean function. Thenf is stable-
dominating ifff has a p-level of(2, 1).

Proof. (⇒) Assumef is stable-dominating. Then by previous argument,BP + DET � f . Since
BP has p-level(2, 2) andDET has p-level(∞, 1), BP + DET has p-level(2, 1) by Lemma 4.3.
Assumef does not have a p-level of(2, 1). By Proposition 4.4,f must have a p-level of(i, j) with
i ≥ 2, j ≥ 1 andi 6= 2 or j 6= 1. But by Corollary 4.1, we get thatBP+DET 6� f , a contradiction.

(⇐) Given f with p-level (2, 1). By the characterization of the p-level of stable functions, f
is unstable. We need only check thatBP � f . By Lemma 4.2,bcc(f) = 3. Let A be the subset
of π1(tr(f)) of size 3. Assume without loss of generality thatA has one element returningtt and
two elements returningff (if not, considerneg(f) which is equiparallel tof ). Define a function
g : tr(BP) → tr(f) sending the element of the trace ofBP returning tt to the element ofA
returningtt and the elements of the trace ofBP returningff to the elements ofA returningff. It is
easy to see that all the conditions of Proposition 2.2 hold, and hence we haveBP � f . Sof is
stable-dominating. ⊓⊔

Define astable-dominating degree of parallelismto be a degree of parallelism containing a
stable-dominating function. By Proposition 5.18, every function in a stable-dominating degree of
parallelism is stable-dominating. LetSDOM be the subposet ofCONT (in fact, of UNSTABLE)
consisting of all stable-dominating degrees of parallelism.

Proposition 5.19 SDOM is a subsemilattice ofUNSTABLE.
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Proof. It is easy to see by the above characterization that the leastupperbound of two stable-
dominating degrees of parallelism is itself stable-dominating. The bottom element ofSDOM is the
degree ofBP +DET, and its top element is the degree ofPOR. ⊓⊔

To show this subsemilattice is non-trivial, we exhibit an hierarchy of functions inSDOM. Note
however that because stable-dominating functions are all in the same p-level, we cannot show inex-
pressibility using presequentiality relations. Considerthe functionsBP + PORi, which are easily
seen to be stable-dominating. Note thatBP + POR2 ≡ POR2 ≡ POR. These functions form a
hierarchy:

Proposition 5.20 BP + PORi � BP + PORj iff i ≥ j.

Proof. (⇐) We knowBP � BP + PORj for all j ≥ 2. Similarly, by Proposition 5.16,PORi �
PORj � BP + PORj . Hence, by the property of least upperbounds, we get thatBP + PORi �
BP + PORj.

(⇒) Assumei < j. Define the following sequentiality relation of arityj

R = S
{1,2},{1,2}
j ∩ · · · ∩ S

{1,...,j},{1,...,j}
j

By Proposition 3.2, it is sufficient to show thatBP + PORj is invariant underR, butBP + PORi

is not.

1. (BP + PORj invariant) Going back to the definition of+, without loss of generality we can
take

(BP + PORj)(tt, x1, . . . , xj) = PORj(x1, . . . , xj)

For the sake of contradiction, assumeBP + PORj is not invariant underR. Then there

exists tuples
(

x11, . . . , x
1
j

)

, · · · ,
(

xk1 , . . . , x
k
j

)

∈ R . Let y = (y1, . . . , yj), with ym =

BP + PORj(x
1
m, . . . , xkm), andy 6∈ R.

By induction on2 ≤ m ≤ j, we showBP+PORj must be invariant underS{1,...,m},{1,...,m}
j .

Form = 2, BP+PORj is invariant underS{1,2},{1,2}
j by the Closure Lemma and Proposition

4.4.

For the induction step, assume for the sake of contradictionthatBP + PORj is not invariant

underS{1,...,m+1},{1,...,m+1}
j . Then there is no⊥ in y1, . . . , ym+1, and there existsI, J with

yI 6= yJ . By the induction hypothesis,BP + PORj is invariant underS{1,...,m},{1,...,m}
j , so

we must havey1 = · · · = ym, and hence the only possibility is thatym+1 6= y1. Since no⊥
appears in the resulting tuple, the first tuple above must allbe tt or all beff, by the definition
of +. If it is all ff, then the columns of the tuples must come from the trace ofBP, but since
the firstm columns are linearly coherent and return the same result, this would mean that
the Egli-Milner lowerbound of the firstm column has only one element, and since it is also
coherent with the last column (which returns a different result), this contradictsBP being
stable. Hence, the first tuple must be alltt, and the columns must come from the trace of
PORj. But them+1 columns form a linearly coherent set of size less than or equal to j, and
we can easily show that they cannot contain the trace elementof PORj that returns false. So
we must haveym+1 = y1.

Therefore,BP+PORj is invariant underS{1,...,m},{1,...,m}
j for 2 ≤ m ≤ j, henceBP+PORj

is invariant underR.
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2. (BP + PORi not invariant) Again without loss of generality, we can take

(BP + PORi)(tt, x1, . . . , xi) = PORi(x1, . . . , xi)

We show thatBP + PORi is not invariant underS{1,...,i+1},{1,...,i+1}
j , implying it is not in-

variant underR. Consider the following tuples of lengthj:

(tt . . . , tt) ,
(

x11, . . . , x
1
i+1,⊥, . . . ,⊥

)

, · · · ,
(

xi1, . . . , x
i
i+1,⊥, . . . ,⊥

)

where{(tt, x1m, . . . , xim)} (m ≤ i+1) is the subset of the first projection of the trace ofBP+

PORi corresponding toPORi. It is easy to see that all those tuples are inS
{1,...,i+1},{1,...,i+1}
j .

Applying BP + PORi to the columns of the tuples yields the tuple(tt, . . . , tt
︸ ︷︷ ︸

i

, ff,⊥, . . . ,⊥),

which is not inS{1,...,i+1},{1,...,i+1}
j . ⊓⊔

5.6 TheMONO semilattice

Up to this point all the semilattices we have introduced wererelated in some way to the partitioning
of functions according to whether or not they were stable. Wenow consider a different characteristic
and derive a corresponding semilattice. Define amonovalued degree of parallelismto be a degree of
parallelism containing at least one monovalued function. We can characterize monovalued degrees
of parallelism by their p-level:

Proposition 5.21 A degree of parallelism is monovalued if and only if its p-level is of the form
(∞, j) with j ≥ 1.

Proof. If f is monovalued thenbcc(f) = ∞, since there can be no bivalued coherent subset of
π1(tr(f)). Moreover, sincef is monotone, it must have a p-level of the form(i, j) with i ≥ 2 and
j ≥ 1. We knowi = ∞ (sincebcc(f) = ∞), sof must have a p-level of the form(∞, j) with
j ≥ 1. ⊓⊔

Let MONO be the subposet ofCONT containing all monovalued degrees of parallelism.

Proposition 5.22 MONO is a subsemilattice ofCONT.

Proof. The least upperbound of two monovalued degrees of parallelism is itself monovalued. The
bottom element ofMONO is the degree of all sequential functions, and its top element is the degree
ofDET, the Detector function. To show this, considerf a monovalued first-order monotone boolean
function. Without loss of generality, assumef always returnstt (if not, considerneg(f) which is
equiparallel tof ). Let ttDETn be the function of arityn that returnstt if one of its arguments istt.
It is not hard to show that for alln, ttDETn � ttDET. Let n = |tr(f)|. Consider the following
PCF-term:

M = λpλx1 . . . xk.p(t1(x1, . . . , xk), . . . , tn(x1, . . . , xk))

wheretj is a term checking if its arguments agree with the jth element ofπ1(tr(f)) — and returning
tt if they do and blocking if they don’t. For example, for the Gustave functionGUST, the terms
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look like:

t1 = λx1x2x3.(x2 ∧ ¬x3)

t2 = λx1x2x3.(x1 ∧ ¬x2)

t3 = λx1x2x3.(x3 ∧ ¬x1)

It is easy to see thatf = M ttDETn, and sincettDETn � ttDET, f � ttDET. ⊓⊔

We note that theMONO semilattice contains the Bucciarelli hierarchy.
We can fully characterize the degree of parallelism ofDET via p-levels, as we did withBP:

Proposition 5.23 Givenf a first-order monotone boolean function. Thenf has a p-level of(∞, 1)
iff f ≡ DET.

Proof. (⇒) If f has a p-level of(∞, 1), thenf must be both monovalued and unstable. By
minimality of DET in theUNSTABLE semilattice,DET � f . SinceDET is the top element for
monovalued functions andf monovalued,f � DET. Hencef ≡ DET.

(⇐) Givenf ≡ DET. Thenf must be invariant under the same sequentiality relations, hence
the p-level off is the same as the p-level ofDET, namely(∞, 1). ⊓⊔

Since a function is unstable if and only if its p-level is(i, 1) for somei ≥ 2, and it is monovalued
if and only if its p-level is(∞, j) for somej ≥ 1, [DET] is the only unstable and monovalued degree
of parallelism.

We will mention a final interesting result concerning monovalued degrees of parallelism. We
can further characterize monovalued degrees of parallelism, a notion involving the description of a
function, via extensional properties of the correspondingfunctions. A functionf is subsequential
if there exists a sequential functiong that extendsf , that is that dominatesf in the extensional
ordering onBk.

Proposition 5.24 A functionf is subsequential if and only if[f ] is monovalued.

Proof. The proof is a corollary of the proposition in [5] which in ourterminology states that
givenf a first-order monotone boolean function, thenf is subsequential iffbcc(f) = ∞. By this
proposition,f is subsequential iffbcc(f) = ∞. By Lemma 4.2,f is subsequential ifff has p-level
(∞, j) for somej ≥ 1. By Proposition 5.21,f is subsequential iff[f ] is monovalued. ⊓⊔

Therefore, every subsequential function is expressible byDET and conversely,DET can only
express subsequential functions.

6 Conclusion

In this paper, we set out to explore the structure ofCONT, the semilattice of degrees of parallelism
of first-order monotone boolean functions. It is known that Sieber’s sequentiality relations fully
characterize the ordering on the semilattice. By turning our attention to presequentiality relations,
a simple class of sequentiality relations, we were able to focus on the skeleton of the definability
preorder. The advantage of looking at presequentiality relations is that we were able to completely
characterize the set of presequentiality relations under which a given function is invariant via their
p-level, a pair of integers which can be extracted from the trace of the function.
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We showed that interesting classes of functions have natural characterizations in terms of p-
levels, namely stable functions, unstable functions, stable-dominating functions and monovalued
functions, and moreover exhibited natural hierarchies within those classes of functions, hierarchies
that make up the skeleton of the definability preorder. We were also able to completely charaterize
various well-known functions in terms of p-levels: any function with a p-level of(2, 2) is equiparal-
lel to BP, any function with a p-level of(∞, 1) is equiparallel toDET, any function with a p-level
of (2, 1) is equiparallel toPOR.

The keys to the p-level characterization are clearly the Reduction and Closure Lemmas, which
allow us to derive canonical representatives for large classes of presequentiality relations. The char-
acterization itself is based on the fact that only two canonical presequentiality relations are needed
to describe the full set of presequentiality relations under which a function is invariant. The next
obvious step in the investigation is to extend this result tofull sequentiality realtions. The ques-
tion becomes: can we find canonical representatives of classes of sequentiality relations? A look
at more complicated examples of sequentiality relations (for example, the ones used in the proof
in [2], or in the proof of the strictness of theBP + PORi hierarchy in Proposition 5.20) indicates
that canonical representatives for full sequentiality relations are far less nicely characterized than
their presequentiality counterparts. This is an area of future work, along the lines of the hypergraph
approach of [2, 5]. Another area of future work is a study of unstable functions (or unstable degrees
of parallelism). The structure of p-levels for stable functions is richer than for unstable functions.
Moreover, Bucciarelli’s original hierarchy fully lives intheSTABLE semilattice. It would be inter-
esting to see if the structure of theUNSTABLE semilattice is equivalently complicated, or simpler
in some respect.

Acknowledgments. Thanks to the anonymous referees for suggestions that helped improve and
tighten the presentation, and for various technical corrections.
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