
Minimal Cover-Automata for Finite Languages?

Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

Department of Computer Science
University of Western Ontario

London, Ontario, Canada N6A 5B7
{cezar,santean,syu}@csd.uwo.ca

Abstract. A cover-automaton A of a finite language L ⊆ Σ∗ is a finite
automaton that accepts all words in L and possibly other words that are
longer than any word in L. A minimal deterministic cover automaton
of a finite language L usually has a smaller size than a minimal DFA
that accept L. Thus, cover automata can be used to reduce the size
of the representations of finite languages in practice. In this paper, we
describe an efficient algorithm that, for a given DFA accepting a finite
language, constructs a minimal deterministic finite cover- automaton of
the language. We also give algorithms for the boolean operations on
deterministic cover automata, i.e., on the finite languages they represent.

1 Introduction

Regular languages and finite automata are widely used in many areas such as
lexical analysis, string matching, circuit testing, image compression, and parallel
processing. However, many applications of regular languages use actually only
finite languages. The number of states of a finite automaton that accepts a finite
language is at least one more than the length of the longest word in the language,
and can even be in the order of exponential to that number. If we do not restrict
an automaton to accept the exact given finite language but allow it to accept
extra words that are longer than the longest word in the language, we may obtain
an automaton such that the number of states is significantly reduced. In most
applications, we know what is the maximum length of the words in the language,
and the systems usually keep track of the length of an input word anyway. So,
for a finite language, we can use such an automaton plus an integer to check the
membership of the language. This is the basic idea behind cover automata for
finite languages.

Informally, a cover-automaton A of a finite language L ⊆ Σ∗ is a finite
automaton that accepts all words in L and possibly other words that are longer
than any word in L. In many cases, a minimal deterministic cover automaton
of a finite language L has a much smaller size than a minimal DFA that accept
? This research is supported by the Natural Sciences and Engineering Research Council

of Canada grants OGP0041630.

J.-M. Champarnaud, D. Maurel, D. Ziadi (Eds.): WIA’98, LNCS 1660, pp. 43–56, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

44 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

L. Thus, cover automata can be used to reduce the size of automata for finite
languages in practice.

Intuitively, a finite automaton that accepts a finite language (exactly) can
be viewed as having structures for the following two functionalities:

1. checking the patterns of the words in the language, and
2. controlling the lengths of the words.

In a high-level programming language environment, the length-control function
is much easier to implement by counting with an integer than by using the
structures of an automaton. Furthermore, the system usually does the length-
counting anyway. Therefore, a DFA accepting a finite language may leave out
the structures for the length-control function and, thus, reduce its complexity.

The concept of cover automata is not totally new. Similar concepts have
been studied in different contexts and for different purposes. See, for example,
[1,7,4,10]. Most of previous work has been in the study of a descriptive complexity
measure of arbitrary languages, which is called “automaticity” by Shallit et al.
[10]. In our study, we consider cover automata as an implementing method that
may reduce the size of the automata that represent finite languages.

In this paper, as our main result, we give an efficient algorithm that, for
a given finite language (given as a deterministic finite automaton or a cover
automaton), constructs a minimal cover automaton for the language. Note that
for a given finite language, there might be several minimal cover automata that
are not equivalent under a morphism. We will show that, however, they all have
the same number of states.

2 Preliminaries

Let T be a set. Then by #T we mean the cardinality of T . The elements of T ∗

are called strings or words. The empty string is denoted by λ. If w ∈ T ∗ then
|w| is the length of x.

We define T l = {w ∈ T ∗ | |w| = l}, T≤l =
l⋃

i=0

T i, and T <l =
l−1⋃
i=0

T i. We say

that x is a prefix of y, denoted x �p y, if y = xz for some z ∈ T ∗.The relation
�p is a partial order on T ∗. If T = {t1, . . . , tk} is an ordered set, k > 0, the
quasi-lexicographical order on T ∗, denoted ≺, is defined by: x ≺ y iff |x| < |y|
or |x| = |y| and x = ztiv, y = ztju, i < j, for some z, u, v ∈ T ∗ and 1 ≤ i, j ≤ k.
Denote x � y if x ≺ y or x = y.

We say that x is a prefix of y, denoted x �p y, if y = xz for some z ∈ T .

A deterministic finite automaton (DFA) is a quintuple A = (Σ, Q, q0, δ, F),
where Σ and Q are finite nonempty sets, q0 ∈ Q, F ⊆ Q and δ : Q ×Σ −→ Q
is the transition function. We can extend δ from Q×Σ to Q×Σ∗ by

δ(s, λ) = s

δ(s, aw) = δ(δ(s, a), w).

We usually denote δ by δ.

Minimal Cover-Automata for Finite Languages 45

The language recognised by the automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. For simplicity, we assume that Q = {0, 1, . . . , #Q− 1} and q0 = 0. In what
follows we assume that δ is a total function, i.e., the automaton is complete.

Let l be the length of the longest word(s) in the finite language L. A DFA
A such that L(A) ∩ Σ≤l = L is called a deterministic finite cover-automaton
(DFCA) of L. Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. We say
that A is a minimal DFCA of L if for every DFCA B = (Q′, Σ, δ′, 0, F ′) of L
we have #Q ≤ #Q′.

Let A = (Q, Σ, δ, 0, F) be a DFA. Then
a) q ∈ Q is said to be accessible if there exists w ∈ Σ∗ such that δ(0, w) = q,
b) q is said to be useful (coaccessible) if there exists w ∈ Σ∗ such that

δ(q, w) ∈ F .
It is clear that for every DFA A there exists an automaton A′ such that L(A′) =
L(A) and all the states of A′ are accessible and at most one of the states is not
useful (the sink state). The DFA A′ is called a reduced DFA.

In what follows we shall use only reduced DFA.

3 Similarity Sequences and Similarity Sets

In this section, we describe the L-similarity relation on Σ∗, which is a generali-
sation of the equivalence relation ≡L (x ≡L y: xz ∈ L iff yz ∈ L for all z ∈ Σ∗).
The notion of L-similarity was introduced in [7] and studied in [4] etc. In this
paper, L-similarity is used to establish our algorithms.

Let Σ be an alphabet, L ⊆ Σ∗ a finite language, and l the length of the
longest word(s) in L. Let x, y ∈ Σ∗. We define the following relations:

(1) x ∼L y if for all z ∈ Σ∗ such that |xz| ≤ l and |yz| ≤ l, xz ∈ L iff yz ∈ L;
(2) x 6∼L y if x ∼L y does not hold.
The relation ∼L is called similarity relation with respect to L.
Note that the relation ∼L is reflexive, symmetric, but not transitive. For

example, let Σ = {a, b} and L = {aab, baa, aabb}. It is clear that aab ∼L aabb
and baa ∼L aabb, but aab 6∼L baa.

The following lemma is obvious:

Lemma 1 Let L ⊆ Σ∗ be a finite language and x, y, z ∈ Σ∗, |x| ≤ |y| ≤ |z|.
The following statements hold:

1. If x ∼L y, x ∼L z, then y ∼L z.
2. If x ∼L y, y ∼L z, then x ∼L z.
3. If x ∼L y, y 6∼Lz, then x6∼Lz.

If x 6∼L y and y ∼L z, we cannot say anything about the similarity relation
between x and z.

Example 1. Let x, y, z ∈ Σ∗, |x| ≤ |y| ≤ |z|. We may have
1) x6∼Ly, y ∼L z and x ∼L z, or
2) x6∼Ly, y ∼L z and x6∼Lz.

46 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

Indeed, if L = {aa, aaa, bbb, bbbb, aaab} we have 1) if we choose x = aa, y = bbb,
z = bbbb, and 2) if we choose x = aa, y = bba, z = abba.

Definition 1. Let L ∈ Σ∗ be a finite language.

1. A set S ⊆ Σ∗ is called an L-similarity set if x ∼L y for every pair x, y ∈ S.
2. A sequence of words [x1, . . . , xn] over Σ is called a dissimilar sequence of L

if xi 6∼L xj for each pair i, j, 1 ≤ i, j ≤ n and i 6= j.
3. A dissimilar sequence [x1, . . . , xn] is called a canonical dissimilar sequence

of L if there exists a partition π = {S1, . . . , Sn} of Σ∗ such that for each i,
1 ≤ i ≤ n, xi ∈ Si, and Si is a L-similarity set.

4. A dissimilar sequence [x1, . . . , xn] of L is called a maximal dissimilar se-
quence of L if for any dissimilar sequence [y1, . . . , ym] of L, m ≤ n.

Theorem 1. A dissimilar sequence of L is a canonical dissimilar sequence of L
if and only if it is a maximal dissimilar sequence of L.

Proof. Let L be a finite language. Let [x1, . . . , xn] be a canonical dissimilar
sequence of L and π = {S1, . . . , Sn} the corresponding partition of Σ∗ such that
for each i, 1 ≤ i ≤ n, Si is an L-similarity set. Let [y1, . . . , ym] be an arbitrary
dissimilar sequence of L. Assume that m > n. Then there are yi and yj , i 6= j,
such that yi, yj ∈ Sk for some k, 1 ≤ k ≤ n. Since Sk is a L-similarity set,
yi ∼L yj. This is a contradiction. Then, the assumption that m > n is false, and
we conclude that [x1, . . . , xn] is a maximal dissimilar sequence.

Conversely, let [x1, . . . , xn] a maximal dissimilar sequence of L. Without loss
of generality we can suppose that |x1| ≤ . . . ≤ |xn|. For i = 1, . . . , n, define

Xi = {y ∈ Σ∗ | y ∼L xi and y 6∈ Xj for j < i}.
Note that for each y ∈ Σ∗, y ∼L xi for at least one i, 1 ≤ i ≤ n, since [x1, . . . , xn]
is a maximal dissimilar sequence. Thus, π = {X1, . . . , Xn} is a partition of Σ∗.
The remaining task of the proof is to show that each Xi, 1 ≤ i ≤ n, is a similarity
set.

We assume the contrary, i.e., for some i, 1 ≤ i ≤ n, there exist y, z ∈ Xi such
that y 6∼Lz. We know that xi ∼L y and xi ∼L z by the definition of Xi. We have
the following three cases: (1) |xi| < |y|, |z|, (2) |y| ≤ |xi| ≤ |z| (or |z| ≤ |xi| ≤ |y|),
and (3) |xi| > |y|, |z|. If (1) or (2), then y ∼L z by Lemma 1. This would contra-
dict our assumption. If (3), then it is easy to prove that y 6∼ xj and z 6∼ xj , for all
j 6= i, using Lemma 1 and the definition of Xi. Then we can replace xi by both
y and z to obtain a longer dissimilar sequence [x1, . . . , xi−1, y, z, xi+1, . . . , xn].
This contradicts the fact that [x1, . . . , xi−1, xi, xi+1, . . . , xn] is a maximal dis-
similar sequence of L. Hence, y ∼ z and Xi is a similarity set.

Corollary 1. For each finite language L, there is a unique number N(L) which
is the number of elements in any canonical dissimilar sequence of L.

Minimal Cover-Automata for Finite Languages 47

Theorem 2. Let S1 and S2 be two L-similarity sets and x1 and x2 the shortest
words in S1 and S2, respectively. If x1 ∼L x2 then S1 ∪ S2 is a L-similarity set.

Proof. It suffices to prove that for an arbitrary word y1 ∈ S1 and an arbitrary
word y2 ∈ S2, y1 ∼L y2 holds. Without loss of generality, we assume that
|x1| ≤ |x2|. We know that |x1| ≤ |y1| and |x2| ≤ |y2|. Since x1 ∼L x2 and
x2 ∼L y2, we have x1 ∼L y2 (Lemma 1 (2)), and since x1 ∼L y1 and x1 ∼L y2,
we have y1 ∼L y2 (Lemma 1 (1)).

4 Similarity Relations on States

Let A = (Q, Σ, δ, 0, F) be a DFA and L = L(A). Then it is clear that if δ(0, x) =
δ(0, y) = q for some q ∈ Q, then x ≡L y and, thus, x ∼L y. Therefore, we can
also define equivalence as well as similarity relations on states.

Definition 2. Let A = (Q, Σ, δ, 0, F) be a DFA. We define, for each state q ∈ Q,

level(q) = min{|w| | δ(0, w) = q},
i.e., level(q) is the length of the shortest path from the initial state to q.

Definition 3. Let A = (Q, Σ, δ, 0, F) be a DFA and L = L(A). We say that
p ≡A q (state p is equivalent to q in A) if for every w ∈ Σ∗, δ(s, w) ∈ F iff
δ(q, w) ∈ F .

Definition 4. Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let
level(p) = i and level(q) = j, m = max{i, j}. We say that p ∼A q (state p is
L-similar to q in A) if for every w ∈ Σ≤l−m, δ(p, w) ∈ F iff δ(q, w) ∈ F .

If A = (Q, Σ, δ, 0, F) is a DFA, for each q ∈ Q, we denote xA(q) = min{w |
δ(0, w) = q}, where the minimum is taken according to the quasi-lexicographical
order, and LA(q) = {w ∈ Σ∗ | δ(q, w) ∈ F}. When the automaton A is under-
stood, we write xq instead of xA(q) and Lq instead LA(q).

Lemma 2 Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let x, y ∈
Σ∗ such that δ(0, x) = p and δ(0, y) = q. If p ∼A q then x ∼L y.

Proof. Let level(p) = i and level(q) = j, m = max{i, j}, and p ∼A q. Choose an
arbitrary w ∈ Σ∗ such that |xw| ≤ l and |yw| ≤ l. Because i ≤ |x| and j ≤ |y| it
follows that |w| ≤ l −m. Since p ∼A q we have that δ(p, w) ∈ F iff δ(q, w) ∈ F ,
i.e. δ(0, xw) ∈ F iff δ(0, yw) ∈ F , which means that xw ∈ L(A) iff yw ∈ L(A).
Hence x ∼L y.

Lemma 3 Let A = (Q, Σ, δ, 0, F) be DFCA of a finite language L. Let level(p) =
i and level(q) = j, m = max{i, j}, and x ∈ Σi, y ∈ Σj such that δ(0, x) = p
and δ(0, y) = q. If x ∼L y then p ∼A q.

48 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

Proof. Let x ∼L y and w ∈ Σ≤l−m. If δ(p, w) ∈ F , then δ(0, xw) ∈ F . Because
x ∼L y, it follows that δ(0, yw) ∈ F , so δ(q, w) ∈ F . Using the symmetry we get
that p ∼A q. ¿

Corollary 2. Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let
level(p) = i and level(q) = j, m = max{i, j}, and x1 ∈ Σi, y1 ∈ Σj, x2, y2 ∈
Σ∗, such that δ(0, x1) = δ(0, x2) = p and δ(0, y1) = δ(0, y2) = q. If x1 ∼L y1

then x2 ∼L y2.

Example 2. If x1 and y1 are not minimal, i.e. |x1| > i, but p = δ(0, x1) or
|y1| > j, but q = δ(0, y1), then the conclusion of Corollary 2 is not true.

Let L = {a, b, aa, aaa, bab}, so l = 3 (Figure 1).

Fig. 1. A DFCA of L

we have that b ∼L bab, but b 6∼La.

Corollary 3. Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L and
p, q ∈ Q, p 6= q. Then xp ∼L xq iff p ∼A q.

If p ∼A q, and level(p) ≤ level(q) and q ∈ F then p ∈ F .

Lemma 4 Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let s, p, q ∈
Q such that level(s) = i, level(p) = j, level(q) = k, i ≤ j ≤ k. The following
statements are true:

1. If s ∼A p, s ∼A q, then p ∼A q.
2. If s ∼A p, p ∼A q, then s ∼A q.
3. If s ∼A p, p 6∼Aq, then s 6∼Aq.

Proof. We apply Lemma 1 and Corollary 3.

Lemma 5 Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let
level(p) = i, level(q) = j, and m = max{i, j}. If p ∼A q then Lp ∩ Σ≤l−m =
Lq ∩Σ≤l−m and Lp ∪ Lq is a L- similarity set.

Minimal Cover-Automata for Finite Languages 49

The proof is left to the reader.The next lemma is obvious.

Lemma 6 Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. Let i =
level(p) and j = level(q), i ≤ j. Let p ∼L q.Let w = w1 . . . wn ∈ Σ≤l and
pi = δ(0, w1 . . . wi), 1 ≤ i ≤ n. Then w ∈ L iff xkwk+1 . . . wn ∈ L for 1 ≤ k ≤ n.

Lemma 7 Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L. If p ∼A q
for some p, q ∈ Q, i = level(p), j = level(q) and i ≤ j, p 6= q, q 6= 0. then
we can construct a DFCA A′ = (Q′, Σ, δ′, 0, F ′) of L such that Q′ = Q − {q},
F ′ = F − {q}, and

δ′(s, a) =
{

δ(s, a) if δ(s, a) 6= q,
p δ(s, a) = q

for each s ∈ Q′ and a ∈ Σ. Thus, A is not a minimal DFCA of L.

Proof. It suffices to prove that A′ is a DFCA of L. Let l be the length of the
longest word(s) in L and assume that level(p) = i and level(q) = j, i ≤ j.
Consider a word w ∈ Σ≤L. We now prove that w ∈ L iff δ′(0, w) ∈ F ′.

If there is no prefix w1 of w such that δ(0, w1) = q, then clearly δ′(0, w) ∈ F ′

iff δ(0, w) ∈ F . Otherwise, let w = w1w2 where w1 is the shortest prefix of w such
that δ(0, w1) = q. In the remaining, it suffices to prove that δ′(p, w2) ∈ F ′ iff
δ(q, w2) ∈ F . We prove this by induction on the length of w2. First consider the
case |w2| = 0, i.e., w2 = λ. Since p ∼A q, p ∈ F iff q ∈ F . Then p ∈ F ′ iff q ∈ F
by the construction of A′. Thus, δ′(p, w2) ∈ F ′ iff δ(q, w2) ∈ F . Suppose that
the statement holds for |w2| < l′ for l′ ≤ l − |w1|. (Note that l − |w1| ≤ l − j.)
Consider the case that |w2| = l′. If there does not exist u ∈ Σ+ such that
u �p w2 and δ(p, u) = q, then δ(p, w2) ∈ F − {q} iff δ(q, w2) ∈ F − {q}, i.e.,
δ′(p, w2) ∈ F ′ iff δ(q, w2) ∈ F . Otherwise, let w2 = uv and u be the shortest
nonempty prefix of w2 such that δ(p, u) = q. Then |v| < l′ (and δ′(p, u) = p).
By induction hypothesis, δ′(p, v) ∈ F ′ iff δ(q, v) ∈ F . Therefore, δ′(p, uv) ∈ F ′

iff δ(q, uv) ∈ F .

Lemma 8 Let A be a DFCA of L and L′ = L(A). Then x ≡L′ y implies x ∼L y.

Proof. It is clear that if x ≡L y then x ∼L y. Let l be the length of the longest
word(s) in L. Let x ≡L′ y. So, for each z ∈ Σ∗, xz ∈ L′ iff yz ∈ L′. We now
consider all words z ∈ Σ∗, such that | xz |≤ l and | yz |≤ l. Since L = L′ ∩Σ≤l

and xz ∈ L′ iff yz ∈ L′, we have xz ∈ L iff yz ∈ L. Therefore, x ∼L y by the
definition of ∼L.

Corollary 4. Let A = (Q, Σ, δ, 0, F) be a DFCA of a finite language L, L′ =
L(A). Then p ≡A q implies p ∼L q.

Corollary 5. A minimal DFCA of L is a minimal DFA.

50 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

Proof. Let A = (Q, Σ, δ, 0, F) be a minimal DFCA of a finite language L. Sup-
pose that A is not minimal as a DFA for L(A), then there exists p, q ∈ Q such
that p ≡L′ q, then p ∼L q. By Lemma 7 it follows that A is not a minimal
DFCA, contradiction.

Remark 1. Let A be a DFCA of L and A a minimal DFA. Then A may not be
a minimal DFCA of L.

Example 3. We take the DFA’s of Figure 2.

Fig. 2. Example

The DFA in Automaton 1 is a minimal DFA and a DFCA of L = {λ, a, aa}
but not a minimal DFCA of L, since the DFA in Automaton 2 is a minimal
DFCA of L:

Theorem 3. Any minimal DFCA of L has exactly N(L) states.

Proof. Let A = (Q, Σ, δ, 0, F) be DFCA of a finite language L, and #Q = n.
Suppose that n > N(L). Then there exist p, q ∈ Q, p 6= q, such that xp ∼L xq

(because of the definition of N(L)). Then p ∼A q by Lemma 3. Thus, A is not
minimal. A contradiction.

Suppose that N(L) > n. Let [y1, . . . , yN(L)] be a canonical dissimilar se-
quence of L. Then there exist i, j, 1 ≤ i, j ≤ N(L) and i 6= j, such that
δ(0, yi) = δ(0, yj) = q for some q ∈ Q. Then yi ∼L yj. Again a contradiction.

Therefore, we have n = N(L).

5 The Construction of Minimal DFCA

The first part of this section describe an algorithm that determines the similar-
ity relations between states. The second part is to construct a minimal DFCA
assuming that the similarity relation between states is known.

An ordered DFA is a DFA where δ(i, a) = j implies that i ≤ j, for all states
i, j and letters a.

Minimal Cover-Automata for Finite Languages 51

5.1 Determining Similarity Relation between States

The aim is to present an algorithm which determines the similarity relations
between states.

Let A = (Σ, Q, 0, δ, F) a DFCA of a finite language L. For each s ∈ Q let
γs = min{w | δ(s, w) ∈ F}, where minimum is taken according to the quasi-
lexicographical order. Define Di = {s ∈ Q | |γs| = i}, for each i = 0, 1,

Lemma 9 Let A = (Σ, Q, 0, δ, F) a DFCA of a finite language L, and s ∈ Di,
p ∈ Dj. If i 6= j then s 6∼p.

Proof. We can assume that i < j. Then obviously δ(s, γs) ∈ F and δ(p, γs) /∈ F .
Since l ≥ |xs|+ γs|, l ≥ |xp|+ |γp|, and i < j, it follows that |γs| < |γp|. So, we
have that |γs| ≤ min(l − |xs|, l − |xp|). Hence, s 6∼p.

Lemma 10 Let A = (Q, Σ, 0, δ, F) be a reduced ordered DFA accepting L, p, q ∈
Q− {#Q− 1}, where #Q− 1 is the sink state, and either p, q ∈ F or p, q 6∈ F .
If for all a ∈ Σ, δ(p, a) ∼A δ(q, a), then p∼Aq.

Proof. Let a ∈ Σ and δ(p, a) = r and δ(q, a) = s. If r ∼A s then for all |w|,
|w| < l − max{xA(s), xA(r)}, xA(r)w ∈ L iff xA(s)w ∈ L. Using Lemma 2 we
also have: xA(q)aw ∈ L iff xA(s)w ∈ L for all w ∈ Σ∗, |w| ≤ l − |xA(s)| and
xA(p)aw ∈ L iff xA(r)w ∈ L for all w ∈ Σ∗, |w| ≤ l − |xA(r)|.

Hence xA(p)aw ∈ L iff xA(q)aw ∈ L, for all w ∈ Σ∗, |w| ≤ l −max{|xA(r)|,
|xA(s)|}. Because |xA(r)| ≤ |xA(q)a| = |xA(q)| + 1 and |xA(s)| ≤ |xA(p)a| =
|xA(p)| + 1, we get xA(p)aw ∈ L iff xA(q)aw ∈ L, for all w ∈ Σ∗, |w| ≤
l −max{|xA(p)|, |xA(q)|} − 1.

Since a ∈ Σ is chosen arbitrary, we conclude that xA(p)w ∈ L iff xA(q)w ∈ L,
for all w ∈ Σ∗, |w| ≤ l −max{|xA(p)|, |xA(q)|}, i.e. xA(p) ∼A xA(q). Therefore,
by using Lemma 3, we get that p ∼A q.

Lemma 11 Let A = (Q, Σ, 0, δ, F) be a reduced ordered DFA accepting L such
that δ(0, w) = s implies |w| = |xs| for all s ∈ Q. Let p, q ∈ Q−{#Q− 1}, where
#Q − 1 is the sink state. If there exists a ∈ Σ such that δ(p, a)6∼Aδ(q, a), then
p 6∼Aq.

Proof. Suppose that p ∼A q. then for all aw ∈ Σl−m, δ(p, aw) ∈ F iff δ(q, aw) ∈
F , where m = max{level(p), level(q)}. So δ(δ(p, a), w) ∈ F iff δ(δ(q, a), w) ∈ F
for all w ∈ Σl−m−1. Since |xδ(p,a)| = |xp| + 1 and |xδ(q,a)| = |xq| + 1 it follows
by definition that δ(p, a) ∼A δ(q, a). This is a contradiction.

Our algorithm for determining the similarity relation between the states of
a DFA (DFCA) of a finite language is based on Lemmas 10 and 11. However,
most of DFA (DFCA) do not satisfy the condition of Lemma 11. So, we shall
first transform the given DFA (DFCA) into one that does.

Let A = (QA, Σ, 0, δA, FA) be a DFCA of L. We construct the minimal
DFA for the language Σ≤l, B = (QB, Σ, 0, δB, FB) (QB = {0, . . . , l, l + 1},

52 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

δB(i, a) = i + 1, for all i, 0 ≤ i ≤ l, δB(l + 1, a) = l + 1, for all a ∈ Σ,
FB = {0, . . . , l}). The DFA B will have exact l + 2 states.

Now we use the standard Cartesian product construction (see, e.g., [3], for
details) for the DFA C = (QC , Σ, q0, δC , FC) such that L(C) = L(A) ∩ L(B),
and we eliminate all inaccessible states. Obviously, L(C) = L and C satisfies the
condition of Lemma 11.

The next lemma is easy to prove and left for the reader.

Lemma 12 For the DFA C constructed above we have (p, q) ∼C (p, r).

Lemma 13 For the DFA C constructed above, if δC((0, 0), w) = (p, q), then
|w| = q.

Proof. We have δC((0, 0), w) = (p, q), so δB(0, w) = q so |w| = q.

Now we are able to present an algorithm, which determines the similarity
relation between the states of C. Note that QC is ordered by that (pA, pB) <
(qA, qB) if pA < qA or pA = qA and pB < qB . Attaching to each state of C is a
list of similar states. For α, β ∈ QC , if α ∼C β and α < β, then β is stored on
the list of similar states for α.

We assume that QA = {0, 1, . . . , n} and n is the sink state of A.

1. Generate the DFA B for the language Σ≤l.
2. Compute the DFA C such that L(C) = L(A) ∩ L(B) using the standard

Cartesian product algorithm (see [3] for details).
3. Compute Di of C, 0 ≤ i ≤ l.
4. Initialize the similarity relation by specifying:

– For all (n, p), (n, q) ∈ QC , (n, p) ∼C (n, q).
– For all (n, l +1− i) ∈ QC , (n, l +1− i) ∼C α for all α ∈ Dj , j = i, . . . , l,

0 ≤ i ≤ l.
5. For each Di, 0 ≤ i ≤ l, create a list Listi, which is initialized to ∅.
6. For each α ∈ QC −{(n, q) | q ∈ QB}, following the reversed order of QC , do

the following: Assuming α ∈ Di.
– For each β ∈ Listi, if δC(α, a) ∼C δC(β, a) for all a ∈ Σ, then α ∼C β.
– Put α on the list Listi.

Remark 2. The above algorithm has complexity O((n × l)2), where n is the
number of states of the initial DFA (DFCA) and l is the maximum accepted
length for the finite language L.

5.2 The Construction of a Minimal DFCA

As input we have the above DFA C and, with each α ∈ QC , a set Sα = {β ∈
QC | α ∼C β and α < β}. The output is D = (QD, Σ, δD, q0, FD), a minimal
DFCA for L.

Minimal Cover-Automata for Finite Languages 53

We define the following:
i = 0, qi = 0, T = QC − Si, (x0 = λ);
while (T 6= ∅) do the following:

i = i + 1;
qi = min{s ∈ T },
T = T − Sqi , (xi = min{w | δC(0, w) ∈ Si});

m = i;
Then QD = {q0, . . . , qm}; q0 = 0; δD(i, a) = j, iff k = min Si and δC(k, a) ∈

Sj ; FD = {i | Si ∩ FC 6= ∅}.
Note that the constructions of xi above are useful for the proofs in the fol-

lowing only, where the min (minimum) operator for xi is taken according to the
lexicographical order. Let Xi = {(i, s) | (i, s) ∈ QC} and ai = #Xi, 0 ≤ i ≤ l+1.

Step 1. For all 1 ≤ i ≤ l +1 do bi = ai, for all (i, j) ∈ QC do new((i, j)) = −1.
Set m = 0, r = 0 and s = 0.

Step 2. Put Sm = {(p, q) ∈ QC | (r, s) ∼A (p, q)}.
Step 3. For all (p, q) ∈ Sm, perform new((p, q)) = m and bp = bp − 1.
Step 4. Put m = m + 1.
Step 5. While br = 0 and r ≤ l + 1 do r = r + 1. If r > l + 1 then go to Step 7,

else go to Step 6.
Step 6. Take the state (r, s) ∈ Ar such that new(r, s) 6= −1, and s is the

minimal with this property. Go to Step 2.
Step 7. QD = {0, . . . , m − 1}, F = {i | new((p, q)) = i, (p, q) ∈ FC}. For all

q ∈ QD and a ∈ Σ set δD(q, a) = −1.
Step 8. For all p = 0, . . . , l + 1, q = 0, . . . , n, (p, q) ∈ QC and a ∈ Σif

δD(new(p, q), a) = −1 define

δD(new(p, q), a) = new(δC((p, q), a)).

According to the algorithm we have a total ordering of the states QC : (p, q) ≤
(r, s) if (p, q) = (r, s) or p < r or p = r and q < s. Hence δD(i, a) = j iff
δD(0, xia) = j. Also, using the construction (i.e. the total order on QC) it follows
that 0 = |x0| ≤ |x1| ≤ . . . ≤ |xm−1|.
Lemma 14 The sequence [x0, x1, . . . , xm−1], constructed above is a cannonical
L- dissimilar sequence.

Proof. We construct the sets Xi = {w ∈ Σ∗ | δ(0, w) ∈ Si}. Obviously Xi 6= ∅.
From Lemma 2 it follows that Xi is a L- similarity set for all 0 ≤ i ≤ m− 1.

Let w ∈ Σ∗. Because (Si)1≤i≤m−1 is a partition of Q, w ∈ Xi for some
0 ≤ i ≤ n − 1, so (Xi)0≤i≤n−1 is a partition of Σ∗ and therefore a cannonical
L-dissimilar sequence.

Corollary 6. The automaton D constructed above is a minimal DFCA for L.

Proof. Since the number of states is equal to the number of elements of a cannon-
ical L-dissimilar sequence, we only have to prove that D is a cover automaton
for L. Let w ∈ Σ≤l. We have that δD(0, w) ∈ FD iff δC((0, 0), w) ∈ Sf and
Sf ∩ FC 6= ∅, i.e. xf ∼C w. Since |w| ≤ l, xf ∈ L iff w ∈ L (because C is a
DFCA for L).

54 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

6 Boolean Operations

We shall use similar constructions as in [3] for constructing DFCA of languages
which are a result of boolean operations between finite languages. The modifi-
cations are suggested by the previous algorithm. We first construct the DFCA
which satisfies hypothesis of Lemma 11 and afterwards we can minimise it using
the general algorithm. Since the minimisation will follow in a natural way we
shall present only the construction of the necessarily DFCA.

Let Ai =(Qi, Σ, 0, δi, Fi), two DFCA of the finite languages Li, li =max{|w| |
w ∈ Li}, i = 1, 2.

6.1 Intersection
We construct the following DFA:

A = (Q1 ×Q2 × {0, . . . , l}, Σ, δ, (0, 0, 0), F), where
l = min{l1, l2}, δ((s, p, q), a) = (δ1(s, a), δ2(p, a), q + 1), for s ∈ Q1, p ∈ Q2,

q ≤ l, and δ((s, p, l + 1), a) = (δ1(s, a), δ2(p, a), l + 1) and F = {(s, p, q) | s ∈
F1, p ∈ F2, q ≤ l}.
Theorem 4. The automaton A constructed above is a DFA for L = L(A1) ∩
L(A2).

Proof. We have the following relations: w ∈ L1 ∩ L2 iff |w| ≤ l and w ∈ L1

and w ∈ L2 iff |w| ≤ l and w ∈ L(A1) and w ∈ L(A2). The rest of the proof is
obvious.

6.2 Union
We construct the following DFA:

A = (Q1 ×Q2 × {0, . . . , l}, Σ, δ, (0, 0, 0), F), where
l = max{l1, l2}, m = min{l1, l2}, δ((s, p, q), a) = (δ1(s, a), δ2(p, a), q + 1),

for s ∈ Q1, p ∈ Q2, q ≤ l, and δ((s, p, l + 1), a) = (δ1(s, a), δ2(p, a), l + 1) and
F = {(s, p, q) | s ∈ F1 or p ∈ F2, q ≤ m} ∪ {(s, p, q) | s ∈ Fr and m < q ≤ l},
where r is such that lr = l.

Theorem 5. The automaton A constructed above is a DFA for L = L(A1) ∪
L(A2).

Proof. We have the following relations: w ∈ L1 ∪ L2 iff |w| ≤ m and w ∈ L1 or
w ∈ L2, or m < |w| ≤ l and w ∈ Lr iff |w| ≤ m and w ∈ L(A1) or w ∈ L(A2),
or m < |w| ≤ l and w ∈ L(Ar). The rest of the proof is obvious.

6.3 Symmetric Difference
We construct the following DFA:

A = (Q1 ×Q2 × {0, . . . , l}, Σ, δ, (0, 0, 0), F), where
l = max{l1, l2}, m = min{l1, l2}, δ((s, p, q), a) = (δ1(s, a), δ2(p, a), q + 1),

for s ∈ Q1, p ∈ Q2, q ≤ l, and δ((s, p, l + 1), a) = (δ1(s, a), δ2(p, a), l + 1) and
F = {(s, p, q) | s ∈ F1 or exclusive p ∈ F2, q ≤ m} ∪ {(s, p, q) | s ∈ Fr and m <
q ≤ l}, where r is such that lr = l.

Minimal Cover-Automata for Finite Languages 55

Theorem 6. The automaton A constructed above is a DFA for L = L(A1)∆
L(A2).

Proof. We have the following relations: w ∈ L1∆L2 iff |w| ≤ m and w ∈ L1 or
exclusive w ∈ L2, or m < |w| ≤ l and w ∈ Lr iff |w| ≤ m and w ∈ L(A1) or
exclusive w ∈ L(A2), or m < |w| ≤ l and w ∈ L(Ar). The rest of the proof is
obvious.

6.4 Difference
We construct the following DFA:

A = (Q1 ×Q2 × {0, . . . , l}, Σ, δ, (0, 0, 0), F), where
l = max{l1, l2}, m = min{l1, l2} and δ((s, p, q), a) = (δ1(s, a), δ2(p, a), q + 1),

for s ∈ Q1, p ∈ Q2, q ≤ l, and δ((s, p, l + 1), a) = (δ1(s, a), δ2(p, a), l + 1). If
l1 < l2 then F = {(s, p, q) | s ∈ F1 and p /∈ F2, q ≤ m} and F = {(s, p, q) | s ∈
F1 and p /∈ F2, q ≤ m} ∪ {(s, p, q) | s ∈ F1 and m < q ≤ l}, if l1 ≥ l2.

Theorem 7. The automaton A constructed above is a DFA for L = L(A1) −
L(A2).

Proof. We have the following relations: w ∈ L1−L2 iff |w| ≤ m and w ∈ L1 and
w /∈ L2, or m < |w| ≤ l and w ∈ L1 iff |w| ≤ m and w ∈ L(A1) and w /∈ L(A2),
or m < |w| ≤ l and w ∈ L(A1). The rest of the proof is obvious.

Open Problems 1) Try to find a better algorithm for minimisation 2) or prove
that any minimisation algorithm has complexity Ω(n2). 3) Find a better al-
gorithm for determining similar states 4) in any DFCA of L. 3) Find better
algorithms for boolean operations on DFCA.

References

1. J.L. Balcàzar, J. Diaz, and J. Gabarrò, Uniform characterisations of non-uniform
complexity measures, Information and Control 67 (1985) 53-89.

2. Y. Breitbart, On automaton and “zone” complexity of the predicate “tobe a kth
power of an integer”,Dokl. Akad. Nauk SSSR196 (1971), 16-19[Russian]; Engl.
transl.,Soviet Math. Dokl. 12 (1971), 10-14.

3. Cezar Câmpeanu. Regular languages and programming languages, Revue
Roumaine de Linguistique - CLTA, 23 (1986), 7-10.

4. C.Dwork and L.Stockmeyer, A time complexity gap for two-way probabilistic finite-
state automata, SIAM Journal on Computing 19 (1990) 1011-1023.

5. J. Hartmanis, H.Shank, Two memory bounds for the recognition of primes by
automata, Math. Systems Theory 3 (1969), 125-129.

6. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison Wesley (1979), Reading, Mass.

7. J. Kaneps, R. Freivalds, Minimal Nontrivial Space Space Complexity of Proba-
bilistic One-Way Turing Machines, in Proceedings of Mathematical Foundations of
Computer Science, Banská Bystryca, Czechoslovakia, August 1990, Lecture Notes
in Computer Science, vol 452, pp. 355-361, Springer-Verlag, New York/Berlin,
1990.

56 Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu

8. J. Kaneps, R. Freivalds, Running time to recognise non-regular languages by 2-way
probabilistic automata, in ICALP’91, Lecture Notes in Computer Science, vol 510,
pp. 174-185, Springer-Verlag, New York/Berlin, 1991.

9. J. Paredaens, R. Vyncke, A class of measures on formal languages,Acta Informatica,
9 (1977), 73-86.

10. Jeffrey Shallit, Yuri Breitbart, Automaticity I: Properties of a Measure of Descrip-
tional Complexity, Journal of Computer and System Sciences, 53, 10-25 (1996).

11. A. Salomaa, Theory of Automata, Pergamon Press (1969), Oxford.
12. K. Salomaa, S. Yu, Q. Zhuang, The state complexities of some basic operations on

regular languages, Theoretical Computer Science 125 (1994) 315-328.
13. B.A. Trakhtenbrot, Ya. M. Barzdin, Finite Automata: Behaviour and Synthe-

sis, Fundamental Studies in Computer Science, Vol.1, North-Holland, Amsterdam,
1973.

14. S. Yu, Q. Zhung, On the State Complexity of Intersection of Regular Languages,
ACM SIGACT News, vol. 22, no. 3, (1991) 52-54.

15. S. Yu, Regular Languages, Handbook of Formal Languages, Springer Verlag, 1995.

	Introduction
	Preliminaries
	Similarity Sequences and Similarity Sets
	Similarity Relations on States
	The Construction of Minimal DFCA
	Determining Similarity Relation between States
	The Construction of a Minimal DFCA

	Boolean Operations
	Intersection
	Union
	Symmetric Difference
	Difference

