Performance Measure Sensitive Congruences
for Markovian Process Algebras

Marco Bernardo !

Universita di Torino, Dipartimento di Informatica
Corso Svizzera 185, 10149 Torino, Italy

Mario Bravetti

Universita di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

The modeling and analysis experience with process algebras has shown the necessity
of extending them with priority, probabilistic internal/external choice, and time
while preserving compositionality. The purpose of this paper is to make a further
step by introducing a way to express performance measures, in order to allow the
modeler to capture the QoS metrics of interest. We show that the standard technique
of expressing stationary and transient performance measures as weighted sums of
state probabilities and transition frequencies can be imported in the process algebra
framework.

Technically speaking, if we denote by n € IN the number of performance mea-
sures of interest, in this paper we define a family of extended Markovian process
algebras with generative master-reactive slaves synchronization mechanism called
EMPAg, ~including probabilities, priorities, exponentially distributed durations,
and sequences of rewards of length n. Then we show that the Markovian bisim-
ulation equivalence ~\, is a congruence for EMPAg, ~which preserves the spec-
ified performance measures and we give a sound and complete axiomatization for
finite EMPAg, ~terms. Finally, we present a case study conducted with the soft-
ware tool TwoTowers in which we contrast the average performance of a selection
of distributed algorithms for mutual exclusion modeled with EMPAg;, .

I Corresponding author. E-mail: bernardo@di.unito.it

Preprint submitted to Elsevier Preprint 12 July 2006

1 Introduction

The experience of the past twenty years with process algebras has shown
that several expressive features are necessary to be able to model real world
systems. Moreover, to be hopefully able to analyze such systems, the expressive
features must be introduced in such a way that semantic compositionality is
achieved, i.e. in such a way that it is possible to define a congruence that can
be exploited to compositionally minimize the state space before applying the
analysis techniques.

In this paper ? we consider the process algebra EMPA,, [8], because it in-

cludes probabilities, priorities, and exponentially distributed durations while
preserving compositionality. EMPA,, is recalled in an incremental fashion. We
start with a simple process algebra and we show how to introduce the concept
of time through the capability of expressing exponentially timed actions and
passive actions (whose duration becomes specified only upon synchronization
with exponentially timed actions of the same type) and that the resulting
Markovian process algebra can be given semantics in the usual interleaving
style thanks to the memoryless property of exponential distributions. We then
extend the language with immediate actions, i.e. actions having duration zero,
in order to be able to represent activities that are irrelevant from the timing
viewpoint or just control the system behavior. We subsequently augment the
language by attaching priorities and weights to immediate actions, to reflect
the fact that it often happens in practice to encounter systems where differ-
ent competing activities are scheduled according to some priority assignment
and/or with a certain frequency. Finally we recall that, when abandoning
the classical nondeterministic setting by considering the expressive features
above, a natural solution to the problem of achieving semantic composition-
ality is to break the symmetry of the roles of the processes participating in
a synchronization. We accomplish this by distinguishing between master ac-
tions (exponentially timed and prioritized-weighted immediate actions) and
slave actions (passive actions enriched with priorities and weights enforced
only among passive actions of the same type) and by imposing that a mas-
ter action can synchronize with slave actions only. Following the terminology
of [17], the choice among master actions is carried out generatively according
to their priorities/weights or exponentially distributed durations, while the
choice among slave actions of the same type is carried out reactively accord-
ing to their priorities/weights (Sect. 2).

Starting from EMPA,,, the objective of this paper is to make a further step
in the direction of expressivity by introducing a way to describe performance
measures, in order to allow the modeler to capture the QoS metrics of interest.

2 Full and revised version of [4] and [5] Chap. 7.

We achieve this by showing that the standard technique of expressing station-
ary and transient performance measures as weighted sums of state probabilities
and transition frequencies can be imported in the process algebra framework.
This is carried out by extending the action format to include sequences of
n € N yield and bonus rewards [23], thus allowing the specification of several
instant-of-time performance measures (Sect. 3).

After introducing all the ingredients for our extended Markovian process alge-
bra with generative-reactive synchronizations and rewards, called EMPA,, ,
we formalize its syntax and we define its operational semantics as a mapping
from terms to reward master-slaves transition systems of order n (Sect. 4).

We subsequently define a notion of equivalence in the bisimulation style, which
equates EMPA,, terms possessing the same functional, probabilistic, priori-
tized and exponentially timed behavior as well as the same performance mea-
sure values. We then show that such an equivalence is a congruence, thus
providing support for compositional manipulation while preserving the val-
ues of the specified performance measures, and we give a sound and complete
axiomatization for nonrecursive process terms (Sect. 5).

Afterwards, we present a case study in which we model with EMPA,, a se-
lection of mutual exclusion algorithms and we compute through the EMPA,,
based software tool TwoTowers their average performance, based on indices
such as the mean numbers of accesses per time unit to the critical section and
to the shared control variables (Sect. 6).

The paper concludes with a discussion of related work (Sect. 7).

2 An Overview of EMPA,,

In this section we recall EMPA,, in an incremental fashion as in [§].

2.1 Markovian Process Algebras

Process algebras (see, e.g., [28,22]) are compositional languages for the high
level specification of concurrent systems. The main operators to build up sys-
tem specifications are:

e The action prefix operator: a.F is a system that can perform action a and
then behaves as described by F.

e The alternative composition operator: Fy + FEs is a system that behaves as
either F; or Ey depending on whether an action of E; or an action of Ej is

executed. The choice above is nondeterministic.

e The parallel composition operator: Ey ||s Es is a system that asynchronously
executes actions of £ or Es not belonging to S, and synchronously executes
actions of E; and E, belonging to the synchronization set S if they are of
the same type, which becomes the type of the resulting action.

The syntax of a process algebra is then integrated with other operators. For
the time being, we consider the null term 0, which represents a system that
cannot execute any action, and the mechanism of constant defining equation

A2E , which allows repetitive behaviors to be described.

The semantics for process algebra terms is given by means of rooted labeled
transition systems (LTSs for short) in which states correspond to process terms
and transitions are labeled with actions. Such LTSs are defined by following
the interleaving approach, i.e. parallel executions are serialized by representing
each of them through the set of all the possible sequential executions obtained
by interleaving the actions executed by the parallel components. A conse-
quence of the interleaving approach is that the two different systems a.0 ||y .0
and a.b.0 + b.a.0 are assigned isomorphic LTSs:
e

P
St

In the field of performance evaluation, a model largely used to compute effi-
ciency measures is that of Markov chains [32] (MCs for short). In their contin-
uous time variant, MCs are essentially LT'Ss where the initial state is replaced
by a probability mass function, which expresses for each state the probabil-
ity that it is the initial one, and the transitions are labeled by positive real
numbers, which are the rates of the exponentially distributed random vari-
ables describing transition durations. Two important properties of continuous
time Markov chains (CTMCs for short, as opposed to DTMCs where the first
letter stands for discrete) are the following. Given a state s with n outgoing
transitions labeled with Ay, ..., \,, respectively, we have that:

e The average sojourn time in s is exponentially distributed with rate >>7" ; ;.
e The probability of executing the k-th outgoing transition of sis A\g/ > 7 A;.

The two properties above essentially stem from the fact that the transitions
leaving the same state are thought of as being in a race: the fastest one is the
one that is executed. Such a race policy naturally applies also to the case in
which two actions, whose durations are exponentially distributed with rate A
and p respectively, are executed in parallel:

1

0/\ 0
e

We point out that the CTMC above correctly depicts the aforementioned
scenario thanks to the memoryless property of the exponential distribution,
because an action can be regarded as being initiated in the same state in which
it terminates its execution. For instance, if in the initial state of the CTMC
above (i.e., the state labeled with initial probability 1) the action with rate A
is terminated before the action with rate u, the leftmost state is reached and
its outgoing transition is labeled with p because, when entering that state,
the time to the completion of the action with rate p is still exponentially
distributed with rate u. We also observe that no transition is possible from
the initial state to the absorbing one as the probability that the two actions
terminate simultaneously is zero.

When merged together, the specification languages and the stochastic models
above give rise to Markovian process algebras. From the syntactical viewpoint,
we describe each action as a pair <a, 5\>, where a is the type of the action
and) is the rate of the action. If A € R, then the action is called exponen-
tially timed as its duration is assumed to be exponentially distributed with
rate . If instead A\ = %, then the action is called passive and its duration is
unspecified. As for the binary operators, the alternative composition operator
is governed by the race policy as long as a choice among exponentially timed
actions is concerned. In the case of the parallel composition operator, instead,
a synchronization between <a, A> and <a, f>, with a in the synchronization
set, is possible only if at least one of A and it is *, and the resulting rate is
given by the other rate. This entails that, in a multiway synchronization, at
most one exponentially timed action can be involved, which determines the
rate of the synchronization, while all the other actions must be passive. We
shall return on this master-slaves synchronization mechanism in Sect. 2.5.

From the semantic viewpoint, we observe that the interleaving approach of
process algebras and the memoryless property of exponential distributions fit
together well, so that the interleaving approach can be followed also in the
case of Markovian process algebras. As an example, the two different systems
<a, A>.0lp <b, u>.0 and <a, A>.<b, u>.0+ <b, u>.<a, A>.0 are assigned iso-
morphic LTSs:

S
A
The LTS above is called the integrated interleaving semantics of the process
terms at hand, because each transition is labeled with both the type and the

rate of the corresponding action. From such an integrated model two projected
semantic models can be derived by discarding action rates or action types, re-
spectively. The former is called the functional semantics as its transitions are
not decorated with performance related information, thus representing only
the functional behavior of the system. The latter, instead, is called the Marko-
vian semantics as it expresses the CTMC governing the stochastic behavior
of the system.

\ produce,A produce,A \ produce produce
o consume, | 3 consume, | consume consume

@ (b) ©
Fig. 1. Interleaving semantic models of PCSystem,

Example 2.1 A producer/consumer system is a system composed of a pro-
ducer, a buffer, and a consumer. The producer repeatedly produces new items
at a certain speed and puts them into the buffer until the buffer is empty,
while the consumer withdraws items from the buffer at a certain rate unless
the buffer is empty. Assuming for simplicity a buffer of capacity two, the ar-
chitecture of this system can be modeled with our Markovian process algebra
as follows:

PCSystem, £ Producer | (producey Buffery || {consumey Consumer

Assuming that the item production process and the item consumption process
are Markovian with rate A and p, respectively, the producer and the consumer
can be modeled as follows:

Producer £ <produce, \>. Producer

A
Consumer = <consume, u>.Consumer

The buffer, instead, is at any time ready to accept new incoming items (if not
full) and to deliver previously produced items (if not empty):

Buffer, 2 <produce, *>. Buffer,
Buffer,

1>

<produce, x>. Buffer, +
<consume, x>. Buffer

Buffery 2 <consume, *>. Buffer,
Note that only passive actions occur in Buffer, to reflect the fact that the inter-
actions established by the two synchronization sets {produce} and {consume}
are guided by the exponentially timed actions of the producer and the con-
sumer.

In Fig. 1(a) we show the integrated interleaving semantic model of PCSystem.,.
The initial state sy corresponds to PCSystem,, state s; to Producer H{pmduce}
Buffer, || {consumey Consumer, state sy to Producer || (producey Buffers ||{consume}

Consumer. As reported in Fig. 1(b) and (c¢), from such a LTS a functional

LTS and a CTMC can be derived by dropping action rates or action types,
respectively. |

2.2 Immediate Actions

The first extension of our Markovian process algebra is concerned with the
introduction of immediate actions. They are executed in zero time, hence
their rate is denoted by oco. Introducing immediate actions is necessary to
model system activities which are several orders of magnitude faster than
those relevant from the performance viewpoint, as well as system activities
that control the system behavior.

Since immediate actions have zero duration, they take precedence over ex-
ponentially timed ones. To make this clear, let us consider a system £ that
initially can perform either an exponentially timed action a or an immediate
action b: <a, \>.F; 4+ <b,00>.F,. The integrated interleaving semantic model
of E has the two following initial transitions:

E

a, \ b, oo

E, Es

If E represents a closed system, i.e. a system for which all the interactions
with its environment have been described, then only the transition labeled
with action <b, co> can be actually executed. If instead F represents an open
system, then the execution of action <b, co> may be disabled by the environ-
ment. For instance, E |1 0 has a single initial transition labeled with action
<a, >, as 0 is not willing to perform any b action hence no synchronization
on b can occur.

Similarly to exponentially timed actions, in a synchronization at most one
immediate action can be involved while all the other actions must be passive.
If an immediate action is involved, then the rate of the resulting action is
immediate, otherwise it is passive.

a Queue d Server s
T 5= | o= O

Fig. 2. Structure of a queueing system M/M/1/q

Example 2.2 From now on we shall exemplify each feature added to our
language by means of queueing systems [24] (QSs for short), which are ab-
stract models largely used for evaluating the performance of computer and
communication systems through the computation of measures such as system
throughput, resource utilization, and user response time. A QS is a service

center, composed of a waiting queue and a given number of servers, which
provides a certain service to a population of customers according to a given
discipline. In the following, we shall be concerned with QSs M /M /n/q/m with
arrival rate A and service rate p, which are defined as follows:

(1) The customer arrival process is Markovian with rate A.

(2) The customer service process is Markovian with rate p.

(3) There are n independent servers.

(4) There is a FIFO queue with ¢ — n seats. When missing, parameter ¢
denotes an unbounded queue.

(5) There are m independent customers. When missing, parameter m denotes
an unbounded population of customers.

Let us consider a QS M/M/1/q with arrival rate A and service rate u, whose
structure is depicted in Fig. 2 where a stands for arrive, d for deliver, and s
for serve. To faithfully represent the fact that the buffer has capacity ¢ — 1,
an immediate action is necessary to model the fact that the customer at the
beginning of the queue is passed to the server as soon as it becomes free.
Without such an immediate action, the capacity of the service center would
be decreased by one.

The QS at hand can be modeled as follows:

QS vymy/q £ Arrivals || {a) (Queuey || 1qy Server)

Arrivals 2 <a, \>.Arrivals
Queue, = <a,*>.Queue,
Queue,, = <a, *>.Queue, , +
<d,*>.Queue,_;, 0 <h<qg—1
Queue, 4 £ <d,*>.Queue,_,
Server 2 <d,00>.<s, u>.Server

where we note that all the actions describing the behavior of the queue are pas-
sive. We conclude by showing the Markovian semantic model of QS5 y;/p/1/4 I
Fig. 3(b), which is obtained from the integrated semantic model of QS y;/r1/1/4
in Fig. 3(a), where AQ,S stands for Arrivals ||(q)(Queue,, ||(ay Server), AQpS’
stands for Arrivals ||(q) (Queuey, ||{ay <s, u>.Server), and 0 < h < g — 1. We
observe that, when deriving a CTMC from an integrated LTS, the immediate
transitions and the related source states are removed. The reason is that the
sojourn time in those states is zero, so they are irrelevant from the performance
viewpoint.]

\?&?& N

s,
Ale e (AQ2S g @

(@)

(b)

Fig. 3. Integrated and Markovian semantic models of QSpz/nr/1/4

2.3 Prioritized Choices

The second extension of our Markovian process algebra is concerned with the
introduction of priorities, which are expressed as positive natural numbers
attached to immediate action rates (o0o;). Introducing priorities is necessary
to model prioritized choices and to improve the capability of expressing system
control mechanisms, such as preemption.

Higher priority immediate actions take precedence over lower priority ones. To
make this clear, let us consider a system FE that initially can perform either
an immediate action a with priority 1 or an immediate action b with priority
2: <a,001>.F) 4+ <b, 005>.F5. The integrated interleaving semantic model of
E has the two following initial transitions:

E

a, 001 b, 002

By Es

If E represents a closed system, then only the transition labeled with action
<b, 009> can be actually executed. If instead E represents an open system,
then the execution of action <b, cos> may be disabled by the environment. For
instance, E ||;» 0 has a single initial transition labeled with action <a, co;>.

In the case of synchronization of an immediate action and a passive action,
the resulting immediate action inherits the priority of the original immediate
action.

Example 2.3 Let us consider a variant of the QS of Ex. 2.2 in which there are
two different classes of customers, reds and blacks, with two different arrival
rates, A, and \,. The service center comprises two distinct queues of capacity
qg—1 for the two classes of customers. In the situation in which both queues are
nonempty and the server is free, the first come red customer must be served,

i.e. red customers take precedence over black customers. This can be easily
modeled in our Markovian process algebra extended with priorities as follows:

QS prio 2 (Arrivals,||gArrivals,) | {ar.as} ((Queue, o |lo Queuey o) || (4,.4,y Server)

A

Server = <d,., 00,>.<s, u>.Server +

<dp, 00p>.<s, u>.Server

where Arrivals, (Arrivalsy) is the same as Arrivals in which every action type
is given subscript r (b), Queue,, (Queue,,) is the same as Queue, in which
every action type is given subscript r (b), and r > b.

Note that in the model above, no preemption can be exercised on the black
customer being served in the case a red customer arrives at the service center.
To take this into account, it is sufficient to modify the model of the server as
follows:

A
Server = <d,., 00,>.<s, u>.Server, +
<dp, 00p>.<s, u>.Servery
Server, 2 <s, pu>.Server

Servery, = <s, u>.Server +

<d,,00,.>.<s, u>.Servery,

where the second summand of Server;, describes the service of the newly ar-
rived, preempting red customer. In such a model the memoryless property
of exponential distributions guarantees that the remaining time to the com-
pletion of the service of a preempted black customer is still exponentially
distributed with rate p. Therefore, the first summand of Server, is used to
describe both the service of a black customer with no interruption and the
service of a black customer which has been interrupted several times.]

2.4 Probabilistic Choices

The third extension of our Markovian process algebra is concerned with the
introduction of weights, which are expressed as positive real numbers attached
to immediate action rates (00, thus resembling immediate transitions of
generalized stochastic Petri nets [1]). Introducing weights is necessary to model
probabilistic choices and to improve the capability of expressing system control
mechanisms, such as probabilistic events.

The execution probability of immediate actions at the same priority level
is proportional to their weights. To make this clear, let us consider a sys-
tem FE that initially can perform either an immediate action a with prior-
ity 1 and weight 2 or an immediate action b with priority 1 and weight 3:

10

<a,0019>.F + <b, 001 3>.E,. The integrated interleaving semantic model of
E has the two following initial transitions:

FE
a, Oomlﬁ
Ey FEs

If E represents a closed system, then the former transition is executed with
probability 2/(2 + 3) = 0.4, while the latter transition is executed with prob-
ability 3/(2 + 3) = 0.6. If instead E represents an open system, then the
execution of one of its two actions may be disabled by the environment. For
instance, F ||{b} 0 has a single initial transition labeled with action <a, co; 2>
which is executed with probability 2/2 = 1.

In summary, the strategy adopted to choose among several alternative im-
mediate actions is the preselection policy: the immediate actions having the
highest priority level are singled out, then each of them is given an execution
probability proportional to its weight.

In the case of synchronization of an immediate action and a passive action, the
resulting immediate action inherits also the weight of the original immediate
action.

Example 2.4 Let us consider a variant of the QS of Ex. 2.3 such that, in
the situation in which both queues are nonempty and the server is free, the
first come red customer and the first come black customer have the same pri-
ority but different frequencies with which they are served, say r/(r 4+ b) and
b/(r +b), respectively. This can be taken into account with our Markovian
process algebra extended with weights by simply modifying the model of the
server as follows:

A
Server = <d,, 00;,>.<s, 1>.Server +

<dy, 001 p>.<5, p>.Server [
2.5 Master-Slaves Synchronization

Our extended Markovian process algebra employs an asymmetric master-
slaves synchronization mechanism, where exponentially timed and immediate
actions (also called active actions) play the role of the masters, in the sense
that they determine the rate of the resulting action, while passive actions play
the role of the slaves. Such a mechanism is enforced by imposing that, in case
of multiway synchronization, at most one active action can be involved while
all the other actions must be passive. More formally, we adopt a CSP [22] like
parallel composition operator, which allows for multiway synchronizations by
assuming that the result of the synchronization of two actions with type a is

11

again an action with type a. In addition, we impose that a synchronization
between two actions of type a may occur only if either they are both passive
actions (and the result is a passive action of type a), or one of them is an
active action and the other one is a passive action (and the result is an active
action of type a).

So far we have considered particular kinds of binary synchronizations in which
an active action of a process could synchronize with a single passive action of
another process only. However, if several alternative passive actions of a given
type may synchronize with the same active action of that type, it remains to
establish how we choose among those passive actions. This is accomplished in
two steps.

First of all, we endow passive actions with positive natural numbers acting as
reactive priorities (x;). Unlike priorities of immediate actions, reactive prior-
ities are enforced only among passive actions of the same type, which makes
it safe to discard lower priority passive actions of a given type. To make this
clear, let us consider a system £ that initially can perform a passive action a
with priority 1, a passive action a with priority 2, or a passive action b with
priority 3: <a, %1>.E] 4+ <a, x9>.Fs + <b, *3>.F3. The integrated interleaving
semantic model of E has the two following initial transitions:

As can be noted, a transition labeled with action <a, %2> is in the model above
because the highest priority transition has a different type, whereas there is
no transition labeled with action <a, *;> because of the presence of a higher
priority transition of the same type. Due to the reactive meaning ascribed to
priorities of passive actions, the environment cannot disable the higher prior-
ity passive a action and enable the lower priority passive a action at the same
time, so it is safe to neglect lower priority passive actions of a given type.
Since the role of the reactive priorities is to realize a choice mechanism among
passive actions of the same type, the choice among passive actions of different
types is nondeterministic, i.e. it is guided by the type of the selected active
action. Thus, in the example above, the choice between <a, *3> and <b, x3>
is nondeterministic.

Second, we endow passive actions with positive real numbers acting as reactive
weights (%;,,). Unlike weights of immediate actions, reactive weights determine
the choice only among passive actions of the same type. To make this clear,
let us consider a system E that initially can perform a passive action a with
priority 1 and weight 2, a passive action a with priority 1 and weight 3, or a
passive action b with priority 1 and weight 4: <a, *;9>.E) + <a, *13>.Fy +
<b, x1 4>.I3. The integrated interleaving semantic model of E has the three

12

following initial transitions:

a,*1,2 b,*1,4
CL,*173

Ey E> E3

Because of the reactive interpretation of passive action weights, the first tran-
sition is executed with probability 2/(2+3) = 0.4, the second with probability
3/(2+3) = 0.6, and the third with probability 4/4 = 1. Note that the sum of
such probabilities is greater than 1. This is a consequence of the fact that the
role of the reactive weights is to realize a choice mechanism among passive ac-
tions of the same type and priority level. The choice among passive actions of
different types is nondeterministic, i.e. it is guided by the type of the selected
active action. Thus, in the example above, the choice between a passive action
of type a and a passive action of type b is nondeterministic.

In summary, the strategy adopted to choose among several alternative passive
actions is the reactive preselection policy: for a given type, the passive actions
of that type having the highest priority level are singled out, then each of
them is given an execution probability proportional to its weight.

We are now in a position of explaining how the rate of an action result-
ing from a master-slaves synchronization is determined. In the case of syn-
chronization between an exponentially timed action of rate A and a passive
action of the same type, the resulting rate is A - p where p is the execu-
tion probability of the passive action. As an example, term £ defined by
<a, \>. By ||{ay (<@, *1,2>.Ea 4 <a, *1 3>.F3) has the two following initial tran-
sitions:
E

a,A.M.?)/E)

Eilltay B2 Erll{a} Es

In the case of synchronization between an immediate action of rate oo;,, and
a passive action of the same type, the resulting rate is 0oy, Where p is the
execution probability of the passive action. As an example, term F defined by
<a,0014>.F (o) (<a, %12>.Fy + <a, %1 3>.F3) has the two following initial
transitions:

E

a, 01,4.2/5 a,X01,4.3/5

Eill{ayE2 FEill{a} Es

In the case of a multiway synchronization where an active action is synchro-
nized with several passive actions, each passive action is chosen by performing
an independent choice. That is, if an exponentially timed (immediate) action
with rate A (00;.,) synchronizes with n passive actions of the same type, the
resulting rate is A - [[7"; p; (Ool,w-H?_l »;) Where p; is the execution probability

7

13

of the i-th passive action involved in the synchronization. As an example, term
E defined by <a, \>.E; ||1q)(<a, %12>.Ey + <a, *13>.E3) ||{a} (<a, %11>.Ey +
<a, 1 9>.F5) has the four following initial transitions:

E

a\-2/5-1/3 a,\-3/5-2/3

a,\2/5-2/3 a,\-3/5-1/3

Erll{ayB2ll{ayEs Erll{ayElliayBs Eill{ayEsll{a1 s Eill{a) Eslla) Es

In general our master-slaves synchronization mechanism can be interpreted as
an extension to priorities and exponential time of the probabilistic synchro-
nization mechanism presented in [7] based on a mixture of the generative and
reactive models of probabilistic processes of [17].

We now briefly recall the two models above by resorting to the terminology
of [28], where an action type based synchronization is described in terms of
button pushing experiments. In this view, the environment experiments on a
process by pushing one of several buttons, where a button represents an action
type. According to the reactive model of probability, a process reacts internally
to a button push performed by its environment on the basis of a probability
distribution which depends on the button which is pushed. According to the
generative model of probability, instead, the process itself autonomously de-
cides, on the basis of a probability distribution, which button will go down
and how to behave after such an event.

When two processes behaving in a reactive way synchronize on an action a,
each of them reacts internally to the synchronization according to the probabil-
ity distribution associated with the actions of type a it can perform. Whenever
the two processes can synchronize on more than one action type, each of them
leaves the decision to the environment, hence the choice of the synchronizing
action type turns out to be nondeterministic. This kind of synchronization
is simple and natural, but does not make it possible to express a mechanism
for the choice of the button to be pushed (external choice), thus leaving the
system, in a sense, underspecified.

On the other hand, two processes behaving in a generative way independently
decide the action type on which they want to synchronize, hence there may
be no agreement on the action type.

A solution to this problem proposed in [36,7] is to adopt a mized generative-

reactive approach based on an asymmetric form of synchronization, where a
process which behaves generatively may synchronize only with processes which

14

behave reactively. The intuition behind this solution, suggested also in [31], is
that the process which behaves generatively decides which button will go down
(and how to behave afterwards) and the process which behaves reactively just
reacts to the button push of the other process. In [36,7], the integration of the
generative and reactive approaches is naturally obtained by designating some
actions (the master actions) as behaving generatively and the other actions
(the slave actions) as behaving reactively, and by imposing (as we do in this
paper) that master actions can synchronize with slave actions only.

According to the master-slaves synchronization mechanism of our extended
Markovian process algebra, which extends the generative-reactive mechanism
explained above, we have that, in a system state, first a master choice is gener-
atively made according to the rates of the master actions. Then, if the chosen
master action must synchronize, a slave choice is reactively made among the
slave actions that can synchronize with the selected master action according
to their reactive rates.

We conclude by observing that our generative master-reactive slaves synchro-
nization mechanism complies with the bounded capacity assumption [21], which
establishes that the rate of an action cannot be arbitrarily
increased /decreased when synchronizing it with several actions. This assump-
tion, which imposes a safe modeling methodology from the stochastic view-
point, is satisfied because it can be easily shown that our mechanism preserves
the average sojourn times. For instance, in the example depicted in the last
encountered figure, we have that the rates of the four transitions sum up to A,
which is exactly the rate of the only active action present in . Additionally, we
point out that in our Markovian framework extended with immediate actions
it is possible to simulate a synchronization between two a actions with rate A
and u, respectively, whose duration is the mazimum of the two durations [20].
If we denote by 7 an action type representing an invisible activity, this is easily
achieved by means of a term like <7, A\>.<a, 00;,>.0 ||1q} <T, >.<a, *pr 4y >.0,
as it gives rise to the first CTMC depicted in Sect. 2.1.

Example 2.5 Attaching reactive priorities and weights to passive actions
turns out to be advantageous from the modeling viewpoint as it allows more
compact process algebraic descriptions to be obtained. As an example, let us
consider a variant of the QSs of Ex. 2.3 and 2.4 in which there are n classes
of customers, with class 7, 1 < ¢ < n, having arrival rate \;, service priority [;,
and service frequency w;/ Z?Zl w;. If we denote by [] the parallel composition
of several terms which do not synchronize on any action, the QS above can be
modeled in our Markovian process algebra extended with reactive priorities
and weights as follows:

QS, = ']:[1 Arrivals; ||{ai|1§i§n}(‘l:[1 Queue; |y Server)

Arrivals; = <a;, \i>. Arrivals;

15

Queue,; o = <aj, *11>. Queue, ;

>

Queue; , = <a;,*1,1>.Queue, 4y +
<d, *p; ;> Queuve; 1, 0<h<qg—1

A
Queue; , 1 = <d,*y, ;> Queue, , 5

[

Server = <d, 0011>.<s, u>.Server

It is worth observing that the model above is scalable w.r.t. the number of
classes, in the sense that the description of the server does not need to be
modified when adding/removing a class of customers. This is made possible
by the fact that the information about the service priority and frequency of
each class must not necessarily be described within the server (as it would be
if priorities and weights could not be attached to passive actions), but can be
described in the model for the queue corresponding to the class. |

3 Reward Structures

In the performance evaluation area the technique of rewards is frequently used
to specify and derive measures for system models whose underlying stochastic

process is a MC. According to (23], a reward structure for a MC is composed
of:

o A yield function y; ;(t) expressing the rate at which reward is accumulated
at state ¢ ¢ time units after ¢ was entered when the successor state is j.

o A bonus function b; ;(t) expressing the reward awarded upon exit from state
1 and subsequent entry into state j given that the holding time in state ¢
was t time units.

Since the generality of this structure is difficult to fully exploit due to the
complexity of the resulting solution, the analysis is usually simplified by con-
sidering yield functions that do not depend on the time nor the successor
state, as well as bonus functions that do not depend on the holding time of
the previously occupied state: y; ;(t) = y; and b; j(t) = b; ;.

Several performance measures can be calculated by exploiting rewards. Ac-
cording to the classifications proposed in [30,18], we have instant-of-time mea-
sures, expressing the gain received at a particular time instant, and interval-of-
time (or cumulative) measures, expressing the overall gain received over some
time interval. Both kinds of measures can refer to stationary or transient
state. In the following, we shall concentrate on instant-of-time performance
measures.

16

In the stationary case, instant-of-time performance measures quantify the long
run gain received per unit of time. Given yield rewards y; and bonus rewards
b;; for a certain MC, the corresponding stationary performance measure is
computed as:

DY miA Y Y bijbiy (1)

where m; is the stationary probability of state ¢ and ¢; ; is the stationary fre-
quency with which the transition from state 7 to state j is traversed. Since
¢ ; is given by the stationary frequency with which state 7 is entered (i.e. the
ratio of its stationary probability to its average holding time) multiplied by
the probability with which the transition from state ¢ to state j is traversed
given that the current state is 4, in the case of a CTMC we have

¢z‘,j =T - qij
while in the case of a DTMC we have
Gij = Ti - Dij

In the transient case, instant-of-time performance measures quantify the gain
received at a specific time instant. Given yield rewards y; and bonus rewards
b; j for a certain MC, the corresponding transient state performance measure
is computed as:

Z Yi - mi(t) + Z Z bij - ¢i;(t) (2)

where ;(¢) is the probability of being in state i at time ¢ and ¢; ;(¢) is the
transient frequency with which the transition from state i to state j is traversed
at time ¢, which is computed in the same way as ¢; ; with 7;(¢) in place of ;.

When using a formal description technique to represent the performance as-
pects of a system, the stochastic process associated with the underlying per-
formance model is not directly provided by the modeler but automatically
derived from the more abstract formal description of the system in order to
ease the task of the modeler. As a consequence, rewards should not be defined
at the level of the stochastic process but at the level of the formal description,
and then automatically inherited by the stochastic process.

This is exactly what happens for well known and tool supported extensions
of the Petri net formalism such as reward generalized stochastic Petri nets [9]
and stochastic activity networks with rewards [29]. In both cases, yield rewards
(also called rate rewards) are naturally associated with net markings, while
bonus rewards (also called impulse rewards) are naturally associated with net
transitions/activities.

17

The method we propose in this paper for specifying instant-of-time perfor-
mance measures for process algebras consists of attaching sequences of pairs
of the form (yield reward, bonus_reward) to process algebra actions, where
rewards are unspecified in the case of passive actions. As far as yield rewards
are concerned, we assume that the yield reward earned by a state is the sum of
the yield rewards of the actions it can execute (additivity assumption). Since
rewards are specified in the process algebraic description, we call the proposed
method algebra based. We now assess its adequacy w.r.t. the following criteria:
expressive power, ease of use, computational cost, and equational characteri-
zation.

As far as the first two criteria (expressive power and ease of use) are concerned,
we observe that the algebra based method achieves a reasonable balance in
that it allows many of the more frequent performance measures to be specified
in a relatively easy way, which in particular does not require the knowledge of
any extra formalism to describe reward structures. As an example, we show
how to specify for a QS M /M /n/n with arrival rate A and service rate p sev-
eral stationary performance measures frequently occurring in practice such as
those identified in [10]: rate type (e.g. throughput of a service center), counting
type (e.g. mean number of customers waiting in a service center), delay type
(e.g. mean response time experienced by customers in a service center), and
percentage type (e.g. utilization of a service center). The QS at hand can be
given two different descriptions: a state oriented description, where the focus
is on the state of the set of servers (intended as the number of servers that are
currently busy), and a resource oriented description, where the servers (i.e.
the resources) are modeled separately [35]. The state oriented description is
given by:

QSN0 /njn £ Arrivals || ay Serversg

>

Arrivals = <a, A\>.Arrivals

1>

Serversy = <a, x>.5ervers;

>

Serversy, = <a,*>.Serverspy1 +
<8, h-pu>.Servers,_1, 1< h<n-—1

A
Servers, = <s,n - u>.Servers,
whereas the resource oriented description is given by:

QSN /M /mn £ Arrivals | {ay Servers

>

<a, \>.Arrivals
SloSlo---lloS

n
S = <a,*x>.<s, 4>.5

where a stands for arrival of a customer and s stands for service of a customer.

Arrivals

1>

Servers

18

These two different descriptions represent the same system, as it can easily be
shown that they are Markovian bisimulation equivalent (see Sect. 5).

Let us compute for the QS above the mean number of customers in the system,
which is the sum of the numbers of customers over all the states with each
number weighted by the stationary probability of the corresponding state.
According to formula (1), every state of the CTMC underlying each of the
two terms above must then be given a yield reward equal to the number of
customers in that state. Such a number is the number of s actions executable
in that state. Therefore, in the case of QS77/y//,,/, We must replace every action
of the form <s,h - u> with <s,h -, (h,0)>, while in the case of QS%/x//,/n
every action of the form <s, u> must be replaced with <s, i, (1,0)> by virtue
of the additivity assumption for yield rewards. All the other actions must be
given zero or unspecified rewards. More precisely, unspecified rewards must
be assigned to all and only the passive actions; in case of synchronization of
an active action and a passive action, the resulting action essentially inherits
the rewards of the original active action.

If we want to compute the throughput of the QS, defined as the mean number
of customers served per time unit, we have to take into account the rate of
actions having type s. In fact, the throughput is given by the service rate
multiplied by the stationary probability of being in a state where service can
be provided. As a consequence, in the case of QS;Z/M/R /n We must replace
every action of the form <s, h - pu> with <s,h - u, (h - 1,0)> or equivalently
<s,h-p,(0,1)>, while in the case of QS%7/5//,,/,, We must replace every action
of the form <s, u> with <s, , (i, 0)> or equivalently <s, u, (0,1)>. 3

If we want to compute instead the mean response time of the QS, defined as
the mean time spent by one customer in the service center, we can exploit
Little’s law [24] which states that the mean response time experienced by
a customer is equal to the mean number of customers in the service center
divided by the customer arrival rate. Therefore, in the case of QS37/r/5/, We
must replace every action of the form <s, h-u> with <s, h-pu, (h/A,0)>, while
in the case of QS nr/n/, We must replace every action of the form <s, p>
with <s, p, (1/A,0)>.

Finally, if we want to compute the utilization of the QS, defined as the fraction
of time during which servers are busy, we have to single out those states hav-
ing an outgoing transition labeled with s, because the utilization is the sum
of the stationary probabilities of such states. Thus, in the case of QS37/r/5/n
we must replace every action of the form <s,h - u> with <s,h - pu, (1,0)>.
However, in the case of QS}7/r/n/, the algebra based method fails to deter-
mine the utilization due to the additivity assumption: the yield reward to

3 In the continuous time case, yield rewards and bonus rewards can be used inter-
changeably.

19

associate with actions of the form <s, u> would be the reciprocal of the num-
ber of transitions labeled with s leaving the same state. Since one of the two
main objectives of the algebra based method is its ease of use, we prefer to
keep the specification of rewards as simple as possible, i.e. just by means of
numbers. Thus we avoid the introduction of arithmetical expressions involving
particular functions such as the one determining the number of transitions of
a given type leaving the same state. Incidentally, the inability to compute the
utilization in the case of the resource oriented description should not come as
a surprise, since this description is more suited to the determination of perfor-
mance indices concerning a single server instead of the whole set of servers. As
it turns out, it is quite easy to measure the utilization of a given server spec-
ified in QSN a1/n/m, Whereas this is not possible for QS%7 a1/, This means
that the style [35] used to describe a given system through an algebraic term is
strongly related to the possibility of specifying certain performance measures
through the algebra based method.

For the considered QS, the algebra based method also allows transient mea-
sures to be expressed according to formula (2). As an example, yield rewards
can be used to measure the mean number of customers in the system at a
given instant or the probability that a certain server is in use at a given in-
stant, whereas bonus rewards can be employed to assess the frequency with
which customers arrive or are served at a given instant.

The third criterion (computational cost) requires associating rewards with
states and transitions to be not exceedingly expensive: in particular, a full scan
of the state space should be avoided. As we shall see in Sect. 4, the algebra
based method satisfies this requirement because rewards can be computed and
assigned to states and transitions at semantic model construction time.

Finally, the fourth criterion (equational characterization) requires the method
to allow process terms to be compositionally manipulated without altering
their performance measures. This is an important feature. As an example,
if one uses a measure insensitive equivalence to reduce the state space before
evaluating the performance, there is the risk to merge together states which are
different w.r.t. the measures of interest, thus resulting in wrong performance
figures. In Sect. 5 we shall see that the algebra based method permits the
definition of performance measure sensitive congruences over process terms.
This is the other main objective of the algebra based method and constitutes
its major advantage.

20

4 Syntax and Semantics for EMPA,,

In this section we formalize the syntax and the semantics for the process alge-
bra informally presented in the previous sections. More precisely, denoted by
n € N the number of performance measures of interest, we define the syntax
of a family of extended Markovian process algebras with generative-reactive
synchronizations EMPA,, , where each action is extended to accommodate a
sequence of n pairs of rewards. Then we introduce the semantic model con-
stituted by the reward master-slaves transition system. Finally we present an
operational semantics that maps EMPA,, terms onto reward master-slaves
transition systems of order n.

4.1 Syntax and Informal Semantics

The main ingredients of our calculus are the actions, each composed of a
type, a rate, and a sequence of pairs of yield and bonus rewards, and the
algebraic operators. As far as actions are concerned, based on their rates they
are classified into exponentially timed, immediate, and passive, as already seen.
Moreover, based on their types they are classified into visible and invisible
depending on whether they are different or equal to 7, as usual.

Definition 4.1 Let AType be the set of action types including the invisible
type 7, ARate = Ry U{oojp [l €E Ny Aw e Ry U{x4 |l € N Awe Ry}
be the set of action rates, ARew = RU{*} be the set of action rewards. We use
a to range over AType, A to range over ARate, \ to range over exponentially
timed rates, A to range over nonpassive rates, § to range over yield rewards
(y if not %), and b to range over bonus rewards (b if not). The set of actions
with n € N pairs of rewards is defined by

Act, = {<a, \, (§j1,01) . .. (§jn, bp)> € AType x ARate x (ARew x ARew)" |
AeR,U{ocoiw [lEN, Awe R FAVIE{L,...,n}. 0i;,b € R)}
]

Definition 4.2 Let Const be a set of constants ranged over by A and let
ATRFun = {¢ : AType — AType | o=1(1) = {7}} be a set of action type
relabeling functions ranged over by ¢. The set L£,, of process terms of EMPA,,
is generated by the following syntax

E:=0]<aX {1,01) ... Gnbn)>E|E/L|E[p]|E+E|E|sE|A
where L, S C AType — {}.]

The null term “0” is the term that cannot execute any action.

21

The action prefiz operator “<a, \, (71, 51) e (Un, Bn)>~.,” denotes the sequen-
tial composition of an action and a term. Term <a, A, (§1,b1) ... (Gn, bp)>.E
can execute an action with type a and rate A, thus making the corresponding
state earn additional yield rewards g, ...y, and the related transition gain
bonus rewards b . . . En, and then behaves as term FE.

The functional abstraction operator “_/L” abstracts from the type of the ac-
tions. Term F/L behaves as term E except that the type a of each executed
action is turned into 7 whenever a € L.

The functional relabeling operator “_[¢]” changes the type of the actions. Term
E[p] behaves as term E except that the type a of each executed action becomes

e(a).

The alternative composition operator “_+ ” expresses a choice between two
terms. Term FE; + E5 behaves as either term FE; or term FE5 depending on
whether an action of E; or an action of Ey is executed. As we have already
seen, the choice is solved according to the race policy in case of exponentially
timed actions, the preselection policy in case of immediate actions, and the
reactive preselection policy in case of passive actions.

The parallel composition operator “_||s ” expresses the concurrent execution
of two terms. Term F ||g Ey asynchronously executes actions of E; or E; not
belonging to S and synchronously executes actions of £} and Fs belonging to
S according to the two following synchronization disciplines. The synchroniza-
tion discipline on action types establishes that two actions can synchronize if
and only if they have the same observable type in S, which becomes the re-
sulting type. The synchronization discipline on action rates is the generative
master-reactive slaves mechanism explained in Sect. 2.5. In case of synchro-
nization of an active action a having rate \ executed by E; (F,) with a passive
action a having rate %,,, executed by Ey (E;), the resulting active action a
has rate/weight given by the original rate/weight multiplied by the probabil-
ity that Ey (E)) chooses the passive action at hand among its passive actions
of type a. Instead, in case of synchronization of two passive actions a having
rate *;, ., and *, ., executed by F; and Fs, respectively, the resulting passive
action of type a has priority level given by the maximum [,,,, between [; and [,
and weight given by the probability that E; and E5 independently choose the
two actions, multiplied by a normalization factor given by the overall weight of
the passive actions of type a executable by F; and Fs at the priority level [,,4,.
The choice of such a normalization factor and of the priority level of the re-
sulting passive action complies with the bounded capacity assumption, hence
makes the structure of synchronizations in a system state easier to understand,
as formally shown in [8]. As far as action rewards are concerned, since only
the rewards of active actions are specified, in case of synchronization they are
handled as follows. The yield rewards of an active action are treated exactly

22

as the rate of that action, i.e. they are multiplied by the execution probabili-
ties of the passive actions involved in the synchronization. Instead, the bonus
rewards of an active action are just inherited, as multiplying them by the
execution probabilities of the aforementioned passive actions would lead to
an underestimation of the performance measures. The reason is that, in the
calculation of the performance measures, each bonus reward of a transition is
multiplied by a factor which is proportional to the rate of the transition itself,
hence multiplying the rates by the execution probabilities of passive actions is
all we have to do. In the case of synchronization between two passive actions,
the rewards of the resulting passive actions are still unspecified.

Finally, let partial function Def, : Const —e~L,, be a set of constant defining

equations of the form A 2 E. In order to guarantee the correctness of recursive
definitions, as usual we restrict ourselves to the set G, of terms that are closed
and guarded w.r.t. Def, .

4.2 Reward Master-Slaves Transition Systems

The semantic model of EMPA,, is a special kind of LTS we call master-slaves
transition system of order n (RMSTS,, for short), whose transitions are labeled
with elements of Act,,. Recalling that active actions play the role of the masters
while passive actions play the role of the slaves, each state of a RMSTS,, has
a single master bundle composed of all the transitions labeled with an active
action and, for each action type a, a single slave bundle of type a composed of
all the transitions labeled with a passive action of type a. Since the operational
semantics for EMPA,, will be defined in such a way that lower priority active
transitions are not pruned (see the congruence related motivation in Sect. 5)
while lower priority passive transitions of a given type are, all the passive
transitions belonging to the same slave bundle of a generated RMSTS,, have
the same priority level. For the sake of simplicity, in the rest of this section
we shall deal with reward pair sequences of length one.

Definition 4.3 A reward master-slaves transition system of order 1 (RMSTS;)
is a triple

<S7 AType7 —>)

where: *

e S is a set of states;

o AType is a set of action types;

o —— € M(S x Acty x S) is a multiset of transitions such that for all
s € S and a € AType:

4 We use “{” and “}” as brackets for multisets and M(S) (P(S)) to denote the
collection of multisets over (subsets of) set S.

23

a,*l/7w17(*7*) , av*l”,w”?(*v*) ” ,
(s ——— S Ns——— ") = I'=1

"
A rooted reward master-slaves transition system of order 1 (RRMSTS;) is a
quadruple
(57 ATyp67 - SO)
where (S, AType, ——) is a RMSTS; and sy € S is the initial state.]

We point out that the transition relation is a multiset, not a set. This allows
the multiplicity of identically labeled transitions to be taken into account,
which is necessary from the stochastic point of view. As an example, if a
state has two transitions both labeled with <a, A, (y,b)>, using sets instead
of multisets would reduce the two transitions into a single one with rate A,
thus erroneously altering the average sojourn time in the state.

The choice among the bundles of transitions enabled in a state is nondeter-
ministic. The choice of a transition within the master bundle of a state is made
according to the race policy, i.e. the transition sampling the least duration suc-
ceeds, with immediate transitions taking precedence over exponentially timed
transitions. We consider the transitions composing a master bundle as grouped
according to their priority level. The level zero is composed of all the tran-
sitions labeled with exponentially timed actions and, for each [€ N, the
level [is composed of all the transitions labeled with an immediate action
with priority [. If all the transitions composing the master bundle are labeled
with exponentially timed actions, then the master bundle includes the group
of transitions at level zero only. Supposed that such a group is composed of
n transitions labeled with active actions <a;, A;, (vi,0;)>, 1 < i@ < n, then
the time to choose one of such actions is exponentially distributed with rate
Y 1<i<n A and the probability of choosing ay, is given by A/ Y21 <;<p, Ai. Other-
wise, if there is some transition labeled with an immediate action, the preselec-
tion policy is applied, which means that a probabilistic choice is made in zero
time according to the weights of the immediate actions labeling the group of
transitions at the maximum priority level [,,... Supposed that such a group is
composed of n transitions labeled with active actions <a;, 00y, w;, (Yi, bi)>,
1 <'i < n, then the probability of choosing aj, is given by wy/ > <;<, w;.

The choice within a slave bundle of type a is governed by the prelection policy:
each transition of the bundle is chosen with probability proportional to its
weight. Supposed that such a bundle is composed of n transitions labeled
with passive actions <a;,*pu,, (*,%)>, 1 < i < n, then the probability of
choosing ay, is given by wy/ > <;<,, w;. Since the duration of passive actions is
unspecified, the time to choose one of the actions above is unspecified.

We conclude by recalling that passive actions are seen as incomplete actions
which must synchronize with active actions of the same type of another sys-

24

tem component in order to form a complete system. Therefore a fully specified
system is performance closed, in the sense that it gives rise to a fully prob-
abilistic transition system which does not include slave bundles. If in such a
transition system we keep for each state only the highest priority transitions,
then we can easily derive a performance model in the form of a reward DTMC
or CTMC, depending on whether only immediate transitions occur or not.
Should exponentially timed and immediate transitions coexist (in different
states), a CTMC is derived by eliminating the immediate transitions and the
related source states and by suitably splitting the exponentially timed transi-
tions entering the removed source states in such a way that they are caused
to reach the target states of the removed immediate transitions. The reader
interested in the details of this procedure is referred to [5] Chap. 4.

4.8 Operational Semantics

The formal semantics for EMPA,, maps terms onto RRMSTS,,. In the fol-
lowing, we shall consider EMPA,, for the sake of simplicity. We also provide
the following shorthands to make the definition of the operational semantic
rules easier.

Definition 4.4 Given a RMSTS; M = (S, AType, ——), s € S, and a €
AType, we denote by L,(s) the priority level of the slave transitions of type a
executable at s (L, (s) = 0 if the slave bundle a of s is empty) and we denote
by W,(s) the overall weight of the slave transitions of type a executable at s:

a’7*Lu(S),’U}7(*7*)

Wa(s)=> {w|3s' € S.s —— |}
Furthermore, we extend the real number multiplication to immediate rates as
follows:

ROpw =P = Ol wp [

The operational semantics for EMPA,, is the least RMSTS; (G1, AType, ——1)
satisfying the inference rules of Table 1, where in addition to the rules (Chl,),
(Ch2;), (Paly), (Pa2;), (Syl;) referring to a move of the lefthand process
E,, we consider also the symmetrical rules (Chl,), (Ch2,), (Pal,), (Pa2,),
(Syl,) taking into account the moves of the righthand process Es, obtained
by exchanging the roles of terms E; and Es. Similarly to [21], we consider the
operational rules as generating a multiset of transitions (consistently with the
definition of RMSTS;), where a transition has arity m if and only if it can be
derived in m possible ways from the operational rules.

Some explanations are now in order. First of all, the operational rules give
rise to an interleaving semantics, which is made possible by the memoryless
property of exponential distributions. The removal of lower priority passive
transitions of the same type is carried out in rules (Ch2;) and (Ch2,) for the

25

~ ~ a,\,(#,b)
(Pr) <a,\,(y,0)>.FE———1 FE
7X7 ~7B 7X7 ~7
Ea_(y’)_n E E @ L E
(H31) 3G a¢ L (H32) 3 a€L
E/L——% FE'/L E/L——""5 FE'/L
a,\(,b)
E— F
(Re) —
@(a),A,(7,b)
Elp] ———1 E'[¢]
075\,(%})) av*l,wv(*7*)
11— Ei El e | Ei l Z La(EQ)
(Chll) a,jx,(y,b) (Chzl) av*l,wv(*v*) /
Ey+E,— E] Ey+Ey—— 1 B
a,\,(y,b)
E1 —1 Ei
(Paly) a\,(y,b) a¢ s
Ei|ls Ex ——1 E} ||s E2
av*l,w:(*v*) ’
Ey, —— E 1> Lo (E>)
(Pazl) a,*] wv(*v*) a ¢ S
E|ls By —————1 B} ||s B
zz,;\,(y,b) av*l,’wv(*:*)
B — Ei Es ”1 Eé
(Sy1y) AN W (g 2 b) a€S
7 Wa(Eg) '\ Wa(Eg)’ , ,
Eylls B 1B ||s B
Q%1 w 7(*7*) Ay 5w 7(*7*)
El 1,w1) Ei E2 2,w2 . Eé
(Sy2) -) a€e S
a*max(ll,l2),p-N7 *, % , ,
E1 ||s B2 1 E1 ||s B
Wa(El) + Wa(EQ) if ll = 12
where: p= W:(}}EH) . W:E2E2) N = Wa(E1) if 13> 1o
Wa(EQ) if Iog > 11
a,\(,b)
E— | F A
(Co) — = A=F
a,\,(g,b)
A— F
Table 1

EMPA,, operational semantics

26

alternative composition operator and rules (Pal;) and (Pal,) for the parallel
composition operator by using L,(E). As we shall see in Thm. 5.4, discarding
lower priority passive transitions does not compromise the achievement of
the congruence property for the Markovian bisimulation equivalence. While
higher priority active transitions can be prevented by a context which does
not prevent lower priority active transitions (because of their different types),
this cannot happen for passive transitions as their priorities are reactive, i.e.
imposed only among passive transitions of the same type. We also note that
the priorities are intepreted as being global according to the classification
of [13], as their scope is not limited to sequential terms but includes terms
composed in parallel.

In the case of a synchronization, the evaluation of the rate of the resulting
action is carried out by rules (Syl,), (Syl,), and (Sy2) as follows. Whenever
an active action synchronizes with a passive action of the same type, the
rate of the resulting active action is evaluated in rules (Syl;) and (Syl,)
by multiplying the rate of the active action by the probability of choosing
the passive action. The yield reward of the active action undergoes the same
treatment, while the bonus reward is just inherited. Whenever two passive
actions of type a synchronize, instead, the priority level and the weight of the
resulting passive action are computed as described by rule (Sy2). In particular,
the weight is computed by multiplying the probability p of independently
choosing the two original actions by the normalization factor N. As explained
in Sect. 4.1, N is given by the overall weight of the passive transitions of type
a with maximum priority level executable by E; and FEs, computed by using
W, (E).

Definition 4.5 The integrated semantics of E € G; is the RRMSTS;
7, [[E]] = (gl,E, AType, ——>1,E>E)

where G, g is the set of terms reachable from E according to the RMSTS,
(G1, AType, ——1) and ———1 g is the restriction of ———1 to transi-
tions between terms in G, g. We say that £/ € G is performance closed if and
only if Z; [E] does not contain passive transitions. n

We conclude by recalling that from Z; [E] two projected semantic models can
be obtained by essentially dropping action rates or action types, respectively.
Before applying such a transformation to Z;[E], lower priority active transi-
tions are pruned because E is no longer to be composed with other terms as
it describes the whole system we are interested in. The functional semantics
Fi[E] is a standard LTS whose transitions are decorated with action types
only. The Markovian semantics M[E] is instead a reward CTMC or DTMC,
as seen in Sect. 4.2, which is well defined only if E is performance closed.

27

5 Markovian Bisimulation Equivalence ~yp

In this section we equip EMPAg, ~with a Markovian bisimulation equivalence
~MB, , Which relates systems having the same functional, probabilistic, pri-
oritized and exponentially timed behavior as well as the same performance
measure values. We then show that such an equivalence is a congruence, thus
providing support for compositional manipulation while preserving the values
of the specified performance measures, and we give a sound and complete ax-
iomatization for nonrecursive process terms. Finally, we present an example of
application of the Markovian bisimulation equivalence to the performability
analysis of a QS.

5.1 Definition, Congruence Property, and Axiomatization

Our Markovian bisimulation equivalence ~\p, extends the Markovian bisim-
ulation equivalence for EMPA,, [8]. The latter is in turn inspired by the prob-
abilistic bisimulation equivalence of [25], according to which two equivalent
terms have the same aggregated probability to reach the same equivalence
class of terms by executing actions of the same type and priority level.

Let us consider EMPA,, for the moment. In the case of exponentially timed
actions, we have to take into account not only the transition probabilities but
also the state sojourn times. Because of the adoption of the race policy (see
Sect. 2.1), this can be easily accomplished by considering the aggregated rate
with which an equivalence class is reached by a term by executing actions of
the same type. As an example, it must hold that
<a, \i>.E+ <a, o> E ~\p, <a, A\ + o> E

This treatment of rates, originally proposed in [21], is basically the same as
that of the exact aggregation for MCs known as ordinary lumping [32], thus
establishing a clear connection between the Markovian bisimulation equiva-
lence and the ordinary lumping. In the case of immediate and passive actions,
instead, the probabilistic bisimulation equivalence must be rephrased in terms
of weights. As an example, it must hold that

<a, 00, > B 4 <a, 001 o > B ~MB, <, 00wy 4w >- L
<a7 >l<l,w1>'E1 + <a, *l,w2>'E ~MByg <a, *l,w1+w2>-E

This treatment of weights was originally proposed in [33].

As far as rewards are concerned, according to the formulas of Sect. 3 we have
that yield rewards must be handled in the same way as rates, because of the
additivity assumption. Bonus rewards of actions of the same type and priority
level, instead, cannot be summed up, as this would result in an overestimation

28

of the specified performance measures. The reason is that, in the calculation of
the performance measures, the bonus reward of a transition is multiplied by a
factor which is proportional to the rate of the transition itself, hence summing
rates up is all we have to do. As an example, in EMPA,, it must hold that

<a, A1, (y1,0)>.E + <a, Ag, (y2,0)>.E ~yp, <a, A1 + Ao, (y1 + y2,0)>.E

We are now in a position of defining a Markovian bisimulation equivalence
that is sensitive to performance measures. For the sake of simplicity, we shall
be working with EMPA,, , with the understanding that, when working with
arbitrarily long sequences of pairs of rewards, all the yield rewards must be
treated in the same way and that all the bonus rewards must be treated in
the same way.

Definition 5.1 We define function priority level PL : ARate — 7 by:

PL(*l,w) = —
PL(\) =0
PL(OOMU) = l

and we extend the real number summation to rates of the same priority level
and to unspecified rewards as follows:

*l,HJ1 + *l,’wg = *l,w1+w2
ool,w1 + OOZ,’LUQ = ool,w1+w2

* 4+ % = x
We then define partial function aggregated rate-yield RY 1 : Gy x AType X Z x
ARew x P(Gy) —e» ARate x ARew by:

~ ~ a,S\,(~,l~)) ~
RY (E,a,1,b,C) = (X4 7| 39.3E" € 0. E 20 B A PL(Y) = [,
~ a,s\,(”,l;) ~
) S{g|3N3E e . BN BOA PLOY) = 1)
with RY1(E,a,l,b,C) = L whenever the multisets above are empty. n

Definition 5.2 An equivalence relation B C G; x G; is a Markovian bisimu-
lation of order 1if and only if, whenever (Ey, Ey) € B, then for all a € AType,
l €% ,be ARew, and equivalence classes C' € G;/B

RY(Ey,a,1,b,C) = RY(Es,a,l1,b,C) .

It is easy to see that the union of all the Markovian bisimulations of order 1
is a Markovian bisimulation of order 1.

Definition 5.3 We call ~\p,, defined as the union of all the Markovian
bisimulations of order 1, the Markovian bisimulation equivalence of order 1.
|

29

Theorem 5.4 Let Ey, Es € Gy. If Ey ~\p, Fs then:

(1) For all <a, \, (§,b)> € Acty, <a, A, (§,0)>.E1 ~yp, <a,\, (4, b)>.Fs.

(2) For all L C AType — {7}, E1/L ~\p, F2/L.

(3) For all ¢ € ATRFun, Ei[p] ~us, Ea[p].

(4) FOI‘ all F S gl, E1 + F ~MB; E2 + F and F+ E1 ~MB; F + EQ.

(5) For all ' € Gy and S C AType — {7}, E1|s F ~mB, E2llsF and
Flls By ~uB, F|s Eo.

Additionally, ~\p, is closed w.r.t. recursive constant definitions.

Proof The proof is similar to that of the corresponding theorem of [8] with
some changes in the case of the alternative and parallel composition operators
that we now show. In the following, the extended real number summation and
multiplication of Def. 5.1 and 4.4, respectively, are also used to express the
componentwise, extended real number vector summation and multiplication.
We also denote by Rate; the partial function obtained from RY; by returning
only the first component of the result vector.

e Let B C Gy x Gy be a Markovian bisimulation of order 1 such that (Ey, Ey) €
B. Given F' € Gy, we prove that B = (BU{(E, + F,Ey+ F), (Es+ F, Ey +
F)})* is a Markovian bisimulation of order 1. Observed that B’ is an equiv-
alence relation, we have two cases:

- If (E1 + F,Ey+ F) € B, then B’ = B and the result trivially follows.

- Assume that (Ey + F, Ey + F') ¢ B. Observed that

G1/B' = (Gi/B —{[E\ + Fls, [E> ﬁF]B}) U{[Ey + FlgU[Ey + Fls}
let (F1,Fy) € B, a € AType, l € Z , b € ARew, and C € G1/B'.

If (F,F;) € Band C € G/B—{[E1 + Flg, |[E2 + F|g}, then trivially
RY(Fy,a,1,b,C) = RY (Fs,a,1,b,C).
If (F1,F;) € Band C = [E; + F|gU[Ey+ F|p, then for j € {1,2} we
have RY {(F},a,1,b,C) = RY 1(F;, a,1,b,[Ey + F|g) + RY 1(F}, a,1,b,
[Ey+ Fg) so RY ((Fy,a,l,b,C) = RY {(Fy,a,l,b,C).
If (Fi,F,) e B—B,ie. Fy € [E1+ Flg and Fy € [Ey + Flg, then for
Jj € {1,2} we have

RY(E;,a,1,b,C) + RY (F,a,l,b,C)
RY ((Ej,a,1,b,C)
RY(F,a,l,b,C)

1

depending on whether RYl(Ej,a,l,B, C) # LARY((F,a,l, b, C)# 1L
or RY(E;,a,1,b,C) # LA((I > 0ARY (F,a,1,b,C) = L)V (I < OA
VI'eZ _.I' <1 = RY{(F,a,l',%,Gy) = L)) or RY|(F,a,l,b,C) #
LA((I>0ARY (E;a,1,b,C)= L)V <OAVI' €Z _.I' <=
RY(Ej,a,l',*,G;) = L)) or none of the previous clauses holds.

RY ((Fj,a,1,b,C) =

30

If C € Gi/B—{[E1+ Fls, [E2+ F|s}, then from (Ey, Ey) € B we
derive RY; (El,a,llb C) = RY, (Eg,a,l,b C')so RY, (Fl,a,l,b
C) = RY4(Fy,a,l,b,C).
If C = [Ey + F|g U [Ey + Flg, then for j € {1,2} we have
RY (E;,a,1,b,C) = RY (E;,a,1,b,[Ey+ F]g)+ RY, (E],a,l,b
[Ex+Fp). Since (Ey, Ey) € B, it turns out that RY 1 (FEy, a,l,b, C)
= RY(Es,a,1,b,C) so RY{(Fy,a,1,b,C) = RY, (Fg,a,l,b C’)
e Given F' € G; and S C AType — {7}, we prove that B’ = B U Idg,, where
B = {(Ei||lsF,Ex|sF) | E1 ~uB, E2} and Idg, is the identity relation
over Gi, is a Markovian bisimulation of order 1. Observed that B’ is an
equivalence relation and that either each of the terms of an equivalence class
has “_||s F” as outermost operator or none of them has, let (Fy, Fy) € B/,
a€ AType, | € , b € ARew, and C € G1/B'.
- If (Fy, Fy) € Idg,, then trivially RY ((Fy, a,1,b,C) = RY (Fy, a,1,b,C).
- If (F1, F) € B, then F} = Ey ||s F and F;, = Es ||s F where E; ~yp, Es.

If none of the terms in C has “_[[s I as outermost operator, then
trivially RY1(F1,a,0,0,C) = L = RY1(Fy,a,1,b,C).
If each of the terms in C has “_||s F” as outermost operator, given

E||sG € C it turns out that C = {F'||s G | E' € [E]
If a ¢ S, then for j € {1,2} we have that

~MB, }

RY 1(Ej,a,1,b, [E] oy +#RY 1(F, a,1,b,{G})
8 RY(E;,a,1,b,[E].
RYl(Fj,a,l,b,C): 1(J i [] MB1>
RY{(F,a,l,b,{G})
1
depending on whether E; € [E].,,;, A F =GARY (Ej,a,l, b,

[E)ons,) # L ARY1(Foa,1,5,{G}) # L or E; ¢ [Eluyy AF =
GARY 1(Ej,a,1,b,[Eloy,) # LAI> 0V <OAVI €Z .1 <
|l = RY(Fia,l',+x,Gi) = 1)) or Ej € [Eloy, ANF # GA
RY{(F,a,l,0,{G}) #LA(I>0V(I<OAVI € _I' <=
RY (Ej, a,U', %, [E].,y) = L or none of the previous clauses

holds. Since By ~yp, Bb, it follows that RY((Fy,a,1,b,C) =
Ryl(FQ, a, l, b, C)
If a € S then, supposed

*lwg,, = = Ratei(Ej, a,l,, [Elwyy)
*lwp, o = = Rate (Ej, a,l,%,Gy)
*_twp, = Rate1(F,a,l, % {G})
* lwpe = Rater(F,a,l,*,Gy)

forl eZ _ and

31

WE 1y tot T WEly tot it I =1y
N = WE; Iy tot if h >0

WE L, tot it Iy > 1
we have that for j € {1,2}

RY1<E]7 a, l> 1;7 [E]NMBl) ' wF,l’/wF,l’,tot +
RY ((F,a,1,b,{G}) - wg, 11 /W, 17 1ot
RYl(Eja a,l, 57 [E]NMBl) ’ wF,l’/wFJ’,tot

RY (Fj,a,1,b,C) = 5
RY1<F7 a, l> ba {G}) ’ ij:l”/ijvl//vtOt

*—Lij,zl /ij,ll,tot‘wF,l2 JWF,1y 0t N

1

depending on whether | > 0 A RY,(E},a,1,b, [Elays,) # LA
' e# _.RY(F,a,l',%,{G}) # LARY (F,a,1,b,{G}) # LA
A" eZ _. RY (Ej,a,l", %, [E]NMBl) # Lorl>0ARY+(E;,a,l,
b, [Eleym,) # LA €Z . RY((F,a,l',%,{G}) # LA(RY(F,
a,1,b,{G}) = LVVI" € Z _. RY (Ej,a,l" %, [E] ;) = 1) or
1> 0ARY (F,a,l,b{G}) # LA €Z _.RY (Ej,a,l",*,
[E]NMBl) # L AN(RY1(E;, a,l,b, [E]NMBl) =1lvvWW"eZ .

RY (F,a, 1", ,{G}) = L)orl <OA3ly,ly €Z . RY1(Ej, a,l4,
b, [E]NMBl) §£ J_/\Ryl(F, a, lg, b, {G}) # IAn=l= max(—ll, —lg>
or none of the previous clauses holds. From E; ~yp, FEs, it
follows that RY1(Fy,a,l,b,C) = RY {(Fy,a,l,b,C). m

We observe that the congruence result above holds because the operational
semantics is defined in such a way that lower priority active transitions are
not pruned. If this were not the case, we would have e.g. <ay, A, (y1,b1)>.0 +
<ag, 00w, (Y2,b2)>.0 ~\p, <ag, 001w, (Y2,b2)>.0 as both terms would have
only one transition labeled with <as, 004, (Y2, ba)>, but (<a, A, (y1,b1)>.0+
<ag, 001w, (Y2,02)>.0) ||1as3 0 %mB, <2, 001w, (¥2,02)>.0 ||14,} O because the
first term has a transition labeled with action <ay, A, (y1, b1)> while the second
term has no transitions at all. On the contrary, the removal of lower priority
passive actions of a given type does not cause any problem.

Theorem 5.5 Let A; be the set of axioms in Table 2. The deductive system
Ded(A;) is sound and complete for ~yp, over the set of nonrecursive terms

of gl.

Proof The proof is similar to that of the corresponding theorem of [8] with
the difference that a nonrecursive term E € G, is defined to be in sum normal

form (snf) if and only if E is 0 or > ;¢ <aq, A, (9i, b;)>.E; with every E; in snf,

32

(A (E1 + E2) + E3 = Ey + (E2 + E3)
(A2)1 Ei+ Ey = B>+ Ey

(A3)1 E+0=F

(A1 <a, A1, (§1,0)>.E + <a, Xo, (§2,0)>.E =

<a, M\ + Ao, (1 + G2, 0)>.E if PL(\;) = PL()\2)
(A5)1 <@, ¥y w5 (*7 *)>'E1 + <@, *15 ws; (*7 *)>‘E2 =

<@, *, (%, %)>.E if Iy > 1o
(As)1 0/L =0
(A7) (<a, N, (5,0)>.E)/L = <a, \, (§,b)>.(E/L) ifa ¢ L
(Ag)1 (<a,\, (§,0)>.E)/L = <7, X, (§,b)>.(E/L) ifa €L
(Ag)l (E1—|—E2)/L:E1/L—|—E2/L
(A10)1 0] =0
(An)i (<, X, (5,0)>.E)[¢] = <p(a), A, (§,b)>.(E[])
(Ar2)1 (E1+ E2)l¢] = Erlg] + Eafy]

(A1z)1 X <ai, My (§i,00)>.Ei s Y <ai, N, (3, b;)>.E; =

i€y i€l

j€lo,a; ¢S icly

Z <aj, S‘jﬂ (gﬁ [;j)>'(Z <ay, S‘ia (gu BZ)>EZ ”S E]) +
j€lh,a; &S i€lp

Y Y <ap M- (W /Wiay)s (T - (wn/Wia), bk)>.(Ex ||s En) +
keKy hEPI,ak

Y Y <ap Mk (W /Woa)s (T - (wn/Wo.a,), bk)>-(En || s Ex) +
ke Ky hEPO,ak,

2 <Gk Fma(iy by, (wi/Wo ey,)-(wn/Wo.ay) Nay, > (55 %) > (B || s Ep)
KeP) he Py a,

where Ig NI} = 0, \; = #, , for i € Iy U I;. PL()\;) < 0, and for j € {0,1}
Ljo=max{ly |keljNap=aA e = 1, wp |
Pio={keljlar=aN =% N =Lj.}

Ki={kel|ay€SAPL) >0AP_ja #0}
Pi={kely|3aeS ke PyaNPi,#0}
Wia = S{wk | k€ Pjahd= %0, }
Woa+Wia ifLog= L1,
No = ¢ Woa if Log > Lig
Wia if L1 > Lo

Table 2
Axiomatization of ~y\p,

33

where the nonempty finite set I is such that there are no 4,4’ € I for which
a; = Gy NXNi = %30, N Nir = %1, 0, N i 7 L. u

We observe that axiom (Ay); is exactly the rule we wanted our equivalence to
satisfy, while axiom (Aj5); establishes that lower priority passive actions of a
given type can be left out.

We conclude by pointing out that all the results above smoothly extend to an
arbitrary length n of the sequences of pairs of rewards within the actions. In
particular, the set of axioms A, is a trivial extension of A;.

5.2 Modeling the Performability of a Queueing System

We now report an example of application of the Markovian bisimulation equiv-
alence of order 1. The performance of computing and communicating systems
is often degradable because internal or external faults can reduce the quality
of the delivered service even though that service remains proper according to
its specification. It is therefore important to measure their ability to perform,
or performability, at different accomplishment levels specifying the extent to
which a system is faulty, i.e. which resources are faulty and, among them,
which ones have failed, which ones are being recovered, and which ones con-
tain latent faults [27]. From the modeling point of view, we would like to be
able to describe both performance and dependability within a single model.
On the other hand, this results in problems from the analysis standpoint such
as largeness, caused by the presence of several resources working in parallel
possibly at different operational levels, and stiffness, originated from the large
difference of performance related event rates and rare failure related event
rates implying numerical instability. As recognized in [34], this leads to a nat-
ural hierarchy of models: a higher level dependability model and a set of as
many lower level performance models as there are states in the higher level
model. This stems from the fact that the rate of occurrence of failure and
repair events is smaller than the rate of occurrence of performance related
events, hence the system achieves a quasi steady state w.r.t. the performance
related events between successive occurrences of failure or repair events [15].
This means that the system can be characterized by weighing these quasi
steady state performance measures by the probabilities of the corresponding
states of the higher level model.

We show that ~yp, can be used while building the hierarchy of models of [34]
to correctly manipulate the lower level models, so that they are translated
into equivalent models whose solution is well known. Let us consider a QS
M /M /n/n 4+ q whose servers can fail and be repaired, where the arrival rate
is A, the service rates are y; (1 < i < n), the failure rates are ¢; (1 <i < n),

34

and the repair rates are p; (1 < i < n), with ¢; and p; much smaller than A
and p;:

FRQS vjjat/nnq 2 Arrivals | {ay (Queuey || p Servers)
D={d;|1<i<n}

>

Arrivals = <a, A, (0,0)>. Arrivals

[l

Queue, = <a,*y1, (%, %)>. Queue,

>

Queuve, = <a,*11, (%, ¥)>.Queue, | +

> <di,*11, (%, %)>. Queue,_,, 1<h<qg-—1
i=1

1>

n
Queue, = 21 <d;, *1,1, (%, %)>. Queue,_,
1=
SilleSzllo---lloSn

<di, 01,1, <O7O)>Sz/7 1<:<n

>

Servers
Si

!

Si

>

>

<S8i, iy (Oa 1>>Sz +
<fi7¢i> (070)>'<Ti7pi7 (070)>Sz/7 1 S l S n

where a stands for arrival, d; stands for delivery, s; stands for service, f; stands
for failure, and r; stands for repair. Note that in terms S; and S actions d;
have been modeled as immediate, in that irrelevant from the performance
standpoint, and actions s; have been given bonus reward 1, since we are inter-
ested in computing the throughput of the system, i.e. the number of customers
served per unit of time.

Now, since the monolithic model above causes largeness and stiffness prob-
lems during its analysis, we build the hierarchy of models proposed in [34] to
facilitate the analysis. First we recognize that the higher level dependability
model, i.e. the failure-repair model, can be represented as follows:

FR 2 FRy||o FRs |lg- .. ||o FR»

FR; 2 <fi, qb,‘, (0, O)>.<T7;,pi, (0, O)>FRZ, 1<:<n
and can be efficiently studied since it trivially admits a product form solution,
i.e. the stationary probability of a given state of M[FR] is the product of the
stationary probabilities of the related states of M[FR;] for 1 < i < n. Each
state of FR determines the set I of operational servers and the set J of failed
servers, with TUJ = {1,...,n} and INJ = (), so that the corresponding lower
level performance model is given by:

A
FRQSM/M/n/n+q,I,J = FRQSM/M/n/n+q ||DJUFI 0
Dy ={d;|jeJ}

Fr={filiel}
The effect of the synchronization with 0 is that only operational servers can

35

receive customers (D) and these servers cannot fail (F7). It is easily seen that
FRQS v/0/njntq,1,0 18 equivalent via ~ns, 10 QS vy ag)111/11144,1 described below:

A .
QS vymayin)114+q0 = Arrivals ||y (Queue, g || p, Serversy)

Dy ={d;|iel}

>

Arrivals = <a, A, (0,0)>. Arrivals

[

Queuery = <a,*1.1, (x,%)>. Queuey |

>

<a, *1,1, (%, %)>. Queuey ;1 +

> <di, *11, (%, %)>. Queuer, 4, 1<h<qg—1
il

Queuey ,

>

Queuey , §<di, *1,1, (%, %)>. Queuey ,_,
1€

Sil ||@SZ2 ”@ cee ||@Sim7 {ihi% e 7Z|I|} =1
A

S; = <d;, 0011, (0, O)>.<s,~,,ui, (0, 1)>.SZ’, 1el
Since the servers of QS /nr/1/)114+4,1 2r€ subject neither to failures nor to re-
pairs, the manipulations above preserve the properties of the system under
study and give rise to a model whose solution is well known in the litera-
ture [24]. The overall throughput is finally obtained as the weighted sum of
the throughputs of every lower level model, where the product form stationary
probabilities of the higher level model are used as weights.

>

Servers;

6 Comparing Mutual Exclusion Algorithms

The mutual exclusion problem is the problem of managing access to a single
indivisible resource that can only support one user at a time. Alternatively, it
can be viewed as the problem of ensuring that certain portions of program code
are executed within critical sections, where no two programs are permitted to
be in critical sections at the same time.

In this section we consider six mutual exclusion algorithms taken from [26]:
Dijkstra, Peterson, tournament, Lamport, Burns, and ticket, and we compare
their performance by evaluating the corresponding mean numbers of accesses
per time unit to the critical section and to the shared control variables. The
contribution of this case study is to show that EMPA,, constitutes a valid
support to the analysis of the performance of distributed algorithms in the
average case. This is important because in the literature only lower and upper
bounds are usually provided.

In the rest of this section, first we briefly describe the software tool used to
conduct the case study, then we provide the EMPA,, model of the Dijkstra
algorithm only, and finally we show the results of the comparison. The struc-

36

ture of the EMPA,, models of the other five algorithms are similar to that
of the Dijkstra algorithm; the interested reader is referred to [5], where each
passive action should be read as having priority level and weight equal to one.

6.1 An Overview of TwoTowers

The case study has been conducted with TwoTowers [6,5], a software tool
for modeling and analyzing functional and performance properties of com-
puter, communication and software systems described in EMPA,, . As shown
in Fig. 4, TwoTowers is composed of a graphical user interface, a compiler, a
functional analyzer, a performance analyzer, and an integrated analyzer.

Graphical User Interface

Compiler:

- Lexical Analysis

- Parsing

- Static Semantic Analysis

- Semantic Model Generation

Integrated Analyzer:

Functional Analyzer: - Markovian Bisimulation Performance Analyzer:
- Model Checking Equivalence Checking

- Equivalence Checking — Markovian Transient Analysis

- Markovian Stationary Analysis

- Preorder Checking - Simulation

Fig. 4. Architecture of TwoTowers

The graphical user interface allows the user to edit the specifications of the
systems in EMPA,, , compile them, and run the various analysis routines.
Additionally, it permits to edit the specifications of functional requirements
and QoS metrics for the systems under investigation.

The compiler is in charge of parsing EMPA,, specifications and pinpointing
lexical, syntactical and static semantical errors. If a specification is correct,
the compiler can produce the semantic model (integrated LTS, functional LTS,
CTMC/DTMC) on which further analysis is based.

The integrated analyzer conducts those investigations that require both func-
tional and performance information. It thus contains a routine to check two
correct EMPA,, ~specifications for Markovian bisimulation equivalence of or-
der n.

37

The functional analyzer takes care of verifying that certain functional require-
ments are satisfied by the functional LTS derived from a correct EMPA,,
specification. This is achieved by interfacing TwoTowers with the Concurrency
Workbench of New Century (CWB-NC) [14], thereby providing support for
model checking in the p-calculus or CTL [12], equivalence checking (strong
and weak bisimulation equivalences [28] and may and must testing equiva-
lences [16]), and preorder checking (may and must testing preorders [16]).

Finally, the performance analyzer computes certain performance measures on
the CTMC/DTMC derived from a correct EMPA,, specification. This can be
done via numerical analysis through the Markov Chain Analyzer (MarCA) [32]
or via simulation. As far as the attachment of rewards is concerned, we observe
that in TwoTowers it is separated from the system specification for operational
convenience. In other words, two distinguished files must be prepared: one with
the EMPA,, specification of the system and one with the specification of the
performance measures, each under the form id = (reward_list) where id is
the measure identifier and reward_list is a list of reward assignments of the
form “ayb”, which means that every nonpassive action with type a must be
given yield reward y and bonus reward b for the measure under specification.
This way of specifying rewards, which is equivalent to attaching sequences
of reward pairs to actions, has two advantages. On the one hand, the system
specification is not obfuscated by performance measure related details. On the
other hand, the specification of performance measures can be easily updated
without changing the specification of the system they refer to and can be
reused for other system specifications.

6.2 Dikstra Algorithm

This algorithm makes use of two shared variables for controlling the access to
the critical section. Variable turn (an integer in {1,...,n}) indicates which
program owns the turn to access the critical section, while flag(i), 1 <i < n,
denotes the stage (an integer in {1,2,3}) of program 7 in accessing the critical
section.

The Dijkstra algorithm works as follows. In the first stage, program ¢ starts
by setting flag(i) to 1 and then repeatedly checks turn until it is equal to
7. If not, and if the current owner of the turn is seen not to be currently
active (flag(turn) = 0), program i sets turn to i. Once having seen turn = 1,
program ¢ moves on to the second stage. In this stage, program i sets flag(7)
to 2 and then checks to see that no other program j has flag(j) = 2. If the
check completes successfully, program ¢ goes to its critical section, otherwise
it returns to the first stage. Upon leaving the critical section, program i lowers

flag(7) to 0.

38

The Dijkstra algorithm can be modeled with EMPA,, as follows:

DigkstraMFE,, 2 (Programy ||g - . . ||g Program,,) ||s
((Flag0y llp - - - llo Flag0y,) ||lr
Turnl)

S = {set_flag_to_0;, set_flag_to_1,, set_flag_-to_2;, modify_turn,,
read_turn_eq_i, turn_eq_i, turn_neq_,
read_flag_turn_eq_0,;, flag_turn_eq_0,;, flag_turn_neq_0,,
read_flag_eq_2;, flag_eq_2;, flag_-neq_2; | 1 <i <n}

R = {read_flag_eq_0;, flag_eq_0;, flag-neq-0; | 1 < i < n}

Let us denote by exec; (exec_cs;) the action type describing the fact that
Program,; is executing outside (inside) the critical section. These actions are
assumed to be exponentially timed with rate \; and d;, respectively. All the
other actions related to reading or writing shared control variables are assumed
to have the same duration for every program (the convention is that they are
exponentially timed with rate 1).

Program; can be modeled as follows:

Program,; = <ezec;, \i>.SetFlagl,

SetFlagl;

1>

<set_flag_to_1;,1>.TestTurn;

>

TestTurn; = <read_turn_eq_t,1>.
(<turn_eq_i,*1,1>.SetFlag2; +
<turn_neq_i, 1 1>. TestFlag;)
TestFlag; £ <read_flag_turn_eq_-0;,1>.
(<flag_turn_eq_0;, %1 1>.<modify_turn;, 1>.SetFlag2; +
<flag-turn_neq_0;,*11>. TestTurn;)

SetFlag2; 2 < set_flag_to_2;,1>.TestFlag2y .y (iy.i

39

TestFlag2 k ; = Y. <read_flag_eq_2;,1>.
keK

(<flag-eq-2,, *11>.SetFlagl; +

<flag-neq-2;, 11> . TestFlag2 gy ;), 1 < |K|<n
TestFlag?2 gy ; = <read_flag_eq_2;,1>.

(<flag-eq-2},, x11>.SetFlagl; +

<flag_neq_2,,, %1 1>.CriticalSection;), 1 <k <n

CriticalSection; = <ezec_cs;, 0;>.<set_flag_to_0;,1>.Program,

FlagV,, where V' denotes the value of the flag, can be modeled as follows:
Flag0, 2 <set_flag_to_1;,*;1>.Flagl; +
<read_flag_eq_0;,*1,1>.<flag_eq_0;,001,1>.Flag0; +

<read_flag_eq_2;,*1,1>.<flag_neq_2;,001,1>.Flag0;

Flagl, = <set_flag_to_2;,*11>.Flag2; +
<read_flag_eq_0;,*11>.<flag_neq_0;,001 1>.Flagl; +
<read_flag_eq_2;,*1,1>.<flag_neq_2;,0011>.Flagl;
Flag2, 2 <set_flag_to_0;,*1,1>.Flag0; +
<set_flag_to_1;,%11>.Flagl; +
<read_flag_eq_0;,*11>.<flag_neq_0;,0011>.Flag2; +
<read_flag_eq_2;,*1,1>.<flag_eq_2;,001,1>.Flag2;

Note that testing shared control variables is modeled through two actions:
reading and outcome (either true or false). The duration of the testing op-
eration is associated with the former action, while the latter is described as
immediate.

Finally, Turn i can be modeled as follows:

n
Turni 2 > <modify_turn;,x11>.Turn j +
j=1
n
'21 <read_flag_turn_eq_0;,*1,1>.<read_flag_eq-0;,001,1>.
J:
(<flag_eq_0,, *1,1>.<flag-turn_eq_0;,001,1>. Turn i +

<flag-neq_0;,%11>.<flag_turn_neq_0;,0011>.Turn i) +

<read_turn_eq_i,*11>.<turn_eq_i,001,1>. Turn ¢ +

n
Y., <read_turn_eq_j,*11>.<turn_neq_j,oo11>.Turn i
J=1nji

40

6.3 Performance Analysis

We now compare the performance of the six mutual exclusion algorithms we
have selected. The performance measures we are interested in are the mean
numbers of accesses per time unit to the critical section and to the shared
variables. They are computed on the Markovian semantic model of each al-
gorithm; the size of such models in the case of two programs is shown in
Table 3. The former performance index represents the throughput of the al-
gorithm and has been specified by assigning bonus reward 1 to every action
with type exec_cs;. The latter performance index represents instead the delay
introduced by the algorithm in order to guarantee the mutual exclusive ac-
cess to the critical section and has been specified by assigning bonus reward
1 to every action related to reading or writing shared control variables. As
an example, for DikstraMFE, the following reward specification file has been
provided:

“critical _section_accesses = (exvec_csy 01
exec_csa 01)

“shared _variable_accesses = (set_flag_to_0, 01
set_flag_to_1, 01
set_flag_to_2, 01
read_turn_eq_1 01

read_flag_turn_eq_0, 0 1

modify_turn, 01
read _flag_eq_2, 01
set_flag_to_0, 01
set_flag_to_1, 01
set_flag_to_24 01
read_turn_eq_2 01

read_flag_turn_eq_05 0 1
modify_turny 01
read_flag-eq_25 01)

We report in Fig. 5 and 6 the curves concerning the mean number of accesses
per time unit to the critical section and to the shared variables, respectively,
for each of the six algorithms in the case of two programs. The curves are
plotted for different values of the ratio d; '/A;' of the average time spent
inside the critical section to the average time spent outside the critical section.

41

0.036 T T T T T T T

0.024

0.022

Mean number of accesses to the critical section

0.02 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

Average time spent outside the critical section

Fig. 5. Mean number of accesses per time unit to the critical section

Such values are those obtained by letting §; = 0.04 (corresponding to 25 time
units) and varying A; from 0.1 (10 time units) to 0.02 (50 time units). The two
figures show that the throughput and the delay of each algorithm decrease as
the above mentioned ratio decreases, i.e. as the frequency with which programs
want to access the critical section decreases. Moreover, the two figures confirms
that the Peterson algorithm and the tournament algorithm behave the same if
two programs only are involved. Finally, the figures indicate that, in a scenario
with only two programs, the six algorithms have comparable performance,
with the ticket algorithm achieving the higher throughput and introducing
the lower delay. Note that such a comparison is not based on lower or upper
bounds for the performance of the algorithms, as usually happens, but on
average values, so that it provides additional information to choose the most
appropriate algorithm for a specific case.

algorithm states|transitions
DyjikstraME 148 296
PetersonMFE+ 49 98
TournamentMEo| 49 98
LamportME, | 346 692
BurnsMFE, 44 88
TicketMEo 72 144

Table 3
Size of the Markovian semantic models of the six mutual exclusion algorithms

42

0.034 :\\ |
0.032
0.03 TicketME2
TournamentME2
PetersonME2 -
o BurnsME2
LamportME2
0.020 DjikstraME2 --------

~

N

N

N
AN —
. N
~
. N

LamportME2
DjikstraME2
BurnsME2
PetersonME2
TournamentME2
TicketME2

Mean number of accesses to the shared variables

03 1 1 1 1 1 1 1 B
10 15 20 25 30 35 40 45 50
Average time spent outside the critical section

Fig. 6. Mean number of accesses per time unit to the shared variables

7 Conclusion

The experience with process algebras has shown the necessity of mechanisms
like priority, probabilistic internal /external choice, and time to model the be-
havior of real systems, as well as the necessity of compositionality for efficient
system analysis. In this paper we have made a further step by introducing
a way to express performance measures, in order to allow the modeler to
capture the QoS metrics of interest. The proposed method consists of specify-
ing performance measures by attaching sequences of yield and bonus reward
pairs to process algebra actions, thus resulting in a family of process algebras
EMPA,, . We have shown that this method achieves an acceptable expressive
power and ease of use and, most importantly, allows performance measure
sensitive congruences to be defined.

Prior to our algebra based method, a different method was proposed in [10] to
specify reward based performance measure in a process algebraic framework.
Such a method was inspired by the preliminary work in [19], where it is pro-
posed to use a temporal logic formula to partition the semantic model of a
Markovian process algebra description in such a way that each part exhibits
or not a particular behavior formalized through the logic formula itself. The
idea is to define a reward structure as a function of such a partition, which
associates a unique (yield) reward to all the states of the same class.

In [10] this logic based method is further elaborated on. The process of speci-
fying performance measures is split into two stages. The first stage consists of
defining a reward specification, which is a pair composed of a Hennessy-Milner
logic formula [28] and an expression: every state satisfying the modal logic

43

formula is assigned as a yield reward the value of the expression, which may
consist of the usual arithmetic operators applied to real numbers, action rates,
and special variables storing previously or currently assigned rewards. The sec-
ond stage, instead, consists of defining a reward attachment that determines at
which process derivatives a particular reward specification is evaluated. Such
a method addresses only yield rewards and stationary measures.

If we compare the algebra based method and the logic based method w.r.t.
the four criteria of Sect. 3, we see that in general the algebra based method
is less powerful than the logic based method, as rewards are simply expressed
as real numbers in the former method and particular behaviors formalizable
through logic formulas cannot be captured (see e.g. the specification of the
utilization for QS%7/a//,/, in Sect. 3), but easier to learn and use, as it does
not require the knowledge of any extra formalism to specify rewards (consider
e.g. the logic formula necessary to specify the mean number of customers for
QSN /v ymm in Sect. 3). The logic based method is more time consuming than
the algebra based method, as it would require in principle an additional scan
of the state space in order to check states against the modal logic formulas in
order to attach yield rewards: fortunately, model checking on the fly should be
possible. Finally, an equational characterization is possible in the case of the
algebra based method but not in the case of the logic based method, hence
with the latter method a compositional, performance measure preserving term
manipulation cannot be conducted. Because of the results about the relation-
ship between bisimulation equivalence and Hennessy-Milner logic formula sat-
isfiability [28], the logic based method only guarantees that if two terms are
related by ~yp, then equivalent states get the same yield reward, hence the
performance index under study has the same value for the two terms. The
converse does not hold: if two terms satisfy a given set of Hennessy-Milner
logic formulas, then the two terms may be bisimulation equivalent but not
necessarily Markovian bisimulation equivalent, which means that the value of
the specified performance measures for the two terms may be different.

Recently, in [11] the lack of equational characterization for the logic based
method has been remedied. This has been accomplished by using a Marko-
vian modal logic inspired by the probabilistic modal logic of [25], instead of
the Hennessy-Milner logic, and by showing that two terms satisfy the same
Markovian modal logic formulas if and only if they are Markovian bisimula-
tion equivalent. As a consequence, Markovian bisimulation equivalent states
get the same reward according to the approach of [11]. In this respect, the
algebra based method turns out to be more flexible, as it allows different re-
wards to be associated with Markovian bisimulation equivalent states, hence
the need for the previously presented family of Markovian bisimulation equiv-
alences that take rewards into account. Additionally, in [11] the ease of use of
the logic based method has been enhanced by proposing a high level language
for enquiring about the stationary performance characteristics possessed by a

44

process term. Such a language, whose formal underpinning is constituted by
the Markovian modal logic (which thus becomes transparent to the user), is
based on the combination of the standard mathematical notation (arithmeti-
cal, relational and logical operators as well as probability), a notation based
on the Markovian bisimulation equivalence which is useful to focus queries di-
rectly on states, and a notation expressing the potential to perform an action
of a given type.

We conclude by mentioning that, as far as the problem of specifying perfor-
mance measures is concerned, more recently a different logic based approach
has been proposed in [3], which has a relationship with the Markovian bisim-
ulation equivalence. Unlike [10,11], where the logic is used to single out those
states to which a certain yield reward must be attached, this new approach
relies on the logic CSL, a continuous stochastic time variant of CTL [12], to
inquiry (similarly to the high level language of [11]) about the value of sta-
tionary and transient performability measures of a process term. Based on
the observation that the progress of time can be regarded as the earning of
reward, a variant of CSL called CRL has been subsequently proposed in [2],
where yield rewards are assumed to be attached to the states. A drawback
of this approach is that the way in which yield rewards should be specified
and attached to the states is not provided. We thus envision that this novel
approach may be profitably integrated with the algebra based method of this
paper or the logic based method of [11].

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995

[2] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, “On the Logical
Characterisation of Performability Properties”, in Proc. of the 27th Int. Coll.
on Automata, Languages and Programming (ICALP ’00), LNCS 1853:780-
792, Geneve (Switzerland), 2000

[3] C. Baier, J.-P. Katoen, H. Hermanns, “Approximate Symbolic Model Checking
of Continuous Time Markov Chains”, in Proc. of the 10th Int. Conf. on
Concurrency Theory (CONCUR ’00), LNCS 1664:146-162, Eindhoven (The
Netherlands), 1999

[4] M. Bernardo, “An Algebra-Based Method to Associate Rewards with EMPA
Terms”, in Proc. of the 24th Int. Coll. on Automata, Languages and
Programming (ICALP ’97), LNCS 1256:358-368, Bologna (Italy), 1997

5] M. Bernardo, “Theory and Application of Extended
Markovian Process Algebra”, Ph.D. Thesis, University of Bologna (Italy), 1999
(http://www.di.unito.it/ bernardo/)

45

[6]

[15]

[16]

[17]

M. Bernardo, W.R. Cleaveland, S.T. Sims, W.J. Stewart, “TwoTowers:
A Tool Integrating Functional and Performance Analysis of Concurrent
Systems”, in Proc. of the IFIP Joint Int. Conf. on Formal Description
Techniques for Distributed Systems and Communication Protocols and
Protocol Specification, Testing and Verification (FORTE/PSTV ’98), Kluwer,
457-467, Paris (France), 1998

M. Bravetti, A. Aldini, “An Asynchronous Calculus for Generative-Reactive
Probabilistic Systems”; Tech. Rep. UBLCS-2000-03, University of Bologna
(Italy), 2000 (extended abstract in Proc. of the 8th Int. Workshop on Process
Algebra and Performance Modelling (PAPM ’00), Carleton Scientific, pp. 591-
605, Geneva (Switzerland), 2000)

M. Bravetti, M. Bernardo, “Compositional Asymmetric Cooperations for
Process Algebras with Probabilities, Priorities, and Time”, Tech. Rep.
UBLCS-2000-01, University of Bologna (Italy), 2000 (extended abstract
in Proc. of the 1st Int. Workshop on Models for Time Critical Systems
(MTCS ’00), Electronic Notes in Theoretical Computer Science 39(3), State
College (PA), 2000)

G. Ciardo, J. Muppala, K.S. Trivedi, “On the Solution of GSPN Reward
Models”, in Performance Evaluation 12:237-253, 1991

G. Clark, “Formalising the Specification of Rewards with PEPA” in Proc.
of the 4th Workshop on Process Algebras and Performance Modelling
(PAPM ’96), CLUT, pp. 139-160, Torino (Italy), 1996

G. Clark, S. Gilmore, J. Hillston, “Specifying Performance Measures for
PEPA” in Proc. of the 5th AMAST Int. Workshop on Formal Methods
for Real Time and Probabilistic Systems (ARTS ’99), LNCS 1601:211-227,
Bamberg (Germany), 1999

E.M. Clarke, O. Grumberg, D.A. Peled, “Model Checking”, MIT Press, 1999

W.R. Cleaveland, G. Littgen, V. Natarajan, “Priority in Process Algebras”,
in “Handbook of Process Algebra”, Elsevier, 2001

W.R. Cleaveland, S. Sims, “The NCSU Concurrency Workbench”, in
Proc. of the 8th Int. Conf. on Computer Aided Verification (CAV ’96),
LNCS 1102:394-397, New Brunswick (NJ), 1996

P.J. Courtois, “Decomposability: Queueing and Computer System
Applications”, Academic Press, 1977

R. De Nicola, M.C.B. Hennessy, “Testing Fquivalences for Processes”, in
Theoretical Computer Science 34:83-133, 1983

R.J. van Glabbeek, S.A. Smolka, B. Steffen, “Reactive, Generative
and Stratified Models of Probabilistic Processes”, in Information and
Computation 121:59-80, 1995

46

22]
[23]
[24]
[25]

B.R. Haverkort, K.S. Trivedi, “Specification Techniques for Markov Reward
Models”, in Discrete Event Dynamic Systems: Theory and Applications 3:219-
247, 1993

H. Hermanns, “Leistungsvorhersage von Verhaltensbeschreibungen mittels
Temporaler Logik”, contribution to the GI/ITG Fachgespraech '95: Formale
Beschreibungstechniken fuer Verteilte Systeme, 1995

H. Hermanns, “Interactive Markov Chains”, Ph.D. Thesis, University of
Erlangen-Niirnberg (Germany), 1998

J. Hillston, “A Compositional Approach to Performance Modelling”,
Cambridge University Press, 1996

C.A.R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985
R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971
L. Kleinrock, “Queueing Systems”, John Wiley & Sons, 1975

K.G. Larsen, A. Skou, “Bisimulation through Probabilistic Testing”, in
Information and Computation 94:1-28, 1991

N.A. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publishers, 1996

J.F. Meyer, “Performability: A Retrospective and some Pointers to the
Future”, in Performance Evaluation 14:139-156, 1992

R. Milner, “Communication and Concurrency”, Prentice Hall, 1989

M.A. Qureshi, W.H. Sanders, “Reward Model Solution Methods with Impulse
and Rate Rewards: An Algorithm and Numerical Results”, in Performance
Evaluation 20:413-436, 1994

W.H. Sanders, J.F. Meyer, “A Unified Approach for Specifying Measures of
Performance, Dependability, and Performability”, in Dependable Computing
and Fault Tolerant Systems 4:215-237, 1991

R. Segala, “Modeling and Verification of Randomized Distributed Real-Time
Systems”, Ph.D. Thesis, MIT, Boston (MA), 1995

W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994

C.M.N. Tofts, “Processes with Probabilities, Priority and Time”, in Formal
Aspects of Computing 6:536-564, 1994

K.S. Trivedi, J.K. Muppala, S.P. Woolet, B.R. Haverkort, “Composite
Performance and Dependability Analysis”, in Performance Evaluation 14:197-
215, 1992

C.A. Vissers, G. Scollo, M. van Sinderen, E. Brinksma, “Specification Styles
in Distributed Systems Design and Verification”, in Theoretical Computer
Science 89:179-206, 1991

47

[36] S.-H. Wu, S.A. Smolka, E.W. Stark, “Composition and Behaviors of
Probabilistic I/O Automata”, in Theoretical Computer Science 176:1-38, 1997

48

