On canonical number systems

Shigeki Akiyama^{*} and Attila Pethő[†]

Abstract. Let $P(x) = p_d x^d + \ldots + p_0 \in \mathbb{Z}[x]$ be such that $d \ge 1, p_d = 1, p_0 \ge 2$ and $\mathcal{N} = \{0, 1, \ldots, p_0 - 1\}$. We are proving in this note a new criterion for the pair $\{P(x), \mathcal{N}\}$ to be a canonical number system. This enables us to prove that if $p_2, \ldots, p_{d-1}, \sum_{i=1}^d p_i \ge 0$ and $p_0 > 2 \sum_{i=1}^d |p_i|$, then $\{P(x), \mathcal{N}\}$ is a canonical number system.

Key words and phrases: canonical number system, radix representation, algebraic number field, height.

1 Introduction

Let $P(x) = p_d x^d + \ldots + p_0 \in \mathbb{Z}[x]$ be such that $d \ge 1$ and $p_d = 1$. Let R denote the quotient ring $\mathbb{Z}[x]/P(x)\mathbb{Z}[x]$. Then all $\alpha \in R$ can be represented in the form

$$\alpha = a_0 + a_1 x + \ldots + a_{d-1} x^{d-1}$$

with $a_i \in \mathbb{Z}, i = 0, ..., d - 1$.

The pair $\{P(x), \mathcal{N}\}$ with $\mathcal{N} = \{0, 1, \dots, |p_0| - 1\}$ is called *canonical number system*, *CNS*, if every $\alpha \in R, \alpha \neq 0$ can be written uniquely in the form

$$\alpha = \sum_{j=0}^{\ell(\alpha)} a_j x^j,\tag{1}$$

where $a_j \in \mathcal{N}, j = 0, \dots, \ell(\alpha), a_{\ell(\alpha)} \neq 0$.

If P(x) is irreducible, then let γ denote one of its zeros. In this case $\mathbb{Z}[x]/P(x)\mathbb{Z}[x]$ is isomorphic to $\mathbb{Z}[\gamma]$, the minimal ring generated by γ and \mathbb{Z} , hence we may replace x by γ in the above expansions. Moreover \mathcal{N} forms a complete representative system mod γ in $\mathbb{Z}[\gamma]$. We simplify in this case the notation $\{P(x), \mathcal{N}\}$ to $\{\gamma, \mathcal{N}\}$.

Extending the results of [7] and [3], I. Kátai and B. Kovács and independently W.J. Gilbert [2] classified all quadratic CNS, provided the corresponding P(x) is irreducible. B. Kovács [8] proved that in any algebraic number field there exists an element γ such that $\{\gamma, \mathcal{N}\}$ is a CNS¹. J. Thuswaldner [13] gave in the quadratic and K. Scheicher [12]

^{*}Partially supported by the Japanese Ministry of Education, Science, Sports and Culture, Grand-in Aid for fundamental research, 12640017, 2000.

[†]Research supported in part by the Hungarian Foundation for Scientific Research, Grant N0. 25157/98.

¹We need a slight explanation of their results, since their definition of canonical number system is more restricted than ours. In fact, they assumed still more that $\mathbb{Z}[\gamma]$ coincides with the integer ring of $\mathbb{Q}(\gamma)$, the field generated by γ over the field of rational numbers.

in the general case a new proof of the above theorems based on automaton theory. B. Kovács [8] proved further that if $p_d \leq p_{d-1} \leq p_{d-2} \leq \ldots \leq p_0, p_0 \geq 2$, and if P(x) is irreducible and γ is a zero of P(x) then $\{\gamma, \mathcal{N}\}$ is a CNS in $\mathbb{Z}[\gamma]$. In [9] B. Kovács and A. Pethő gave also a characterization of those irreducible polynomials P(x), whose zeros are bases of CNS.

Interesting connections between CNS and fractal tilings of the Euclidean space were discussed by several mathematicians. D.E. Knuth [7] seems to be the first discoverer of this phenomenon in the case $x = -1 + \sqrt{-1}$. For the recent results on this topic, the reader can consult [4] or [1] and their references.

The concept of CNS for irreducible polynomials was generalized to arbitrary polynomials with leading coefficient one by the second author [11]. He extended most of the results of [8] and [9] and proved among others that if $\{P(x), \mathcal{N}\}$ is a CNS then all real zeroes of P(x) are less than -1 and the absolute value of all the complex roots are larger than 1. This implies that if $\{P(x), \mathcal{N}\}$ is a CNS then $p_0 > 0$, which we will assume throughout this paper.²

The aim of the present paper is to give a new characterization of CNS provided p_0 is large enough. It enables us to prove for a large class of polynomials that their zeros together with the corresponding set \mathcal{N} yield a CNS. Unfortunately our criterion in Theorem 1 cannot be adapted to polynomials with small p_0 , but it suggests us that the characterization problem of CNS *does not* depend on the structure of the corresponding field, such as fundamental units, ramifications or discriminants, but only on the coefficients of its defining polynomials.

2 Notations and results

For a polynomial $P(x) = p_d x^d + \ldots + p_0 \in \mathbb{Z}[x]$, let

$$L(P) = \sum_{i=1}^{d} |p_i|,$$

which we call the *length* of P. Every $\alpha \in R = \mathbb{Z}[x]/P(x)\mathbb{Z}[x]$ has a unique representation in the form

$$\alpha = \sum_{j=0}^{d-1} a_j x^j.$$

Put $q = \lfloor \frac{a_0}{p_0} \rfloor$, where $\lfloor \rfloor$ denotes the integer part function. Let us define the map $T: R \to R$ by

$$T(\alpha) = \sum_{j=0}^{d-1} (a_{j+1} - qp_{j+1})x^j,$$

where $a_d = 0$. Putting

$$T^{(0)}(\alpha) = \alpha$$
 and $T^{(i+1)}(\alpha) = T(T^{(i)}(\alpha))$

²In Theorem 6.1 of [11] it is assumed that g(t) is square-free, but this assumption is necessary only for the proof of (iii).

we define the iterates of T. As $T^{(i)}(\alpha) \in R$ for all non-negative integers i, and $\alpha \in R$, the element $T^{(i)}(\alpha)$ can be represented with integer coefficients in the basis $1, x, \ldots, x^{d-1}$. The coefficients of this representation will be denoted by $T_j^{(i)}(\alpha), i \ge 0, 0 \le j \le d-1$. It is sometimes convenient to extend this definition by putting $T_j^{(i)}(\alpha) = 0$ for $j \ge d$. This map T obviously describes the algorithm to express any $\alpha \in R$ in a form (1) since we have

$$\alpha = \sum_{j=0}^{\ell(\alpha)} \left\lfloor \frac{T_0^{(j)}(\alpha)}{p_0} \right\rfloor x^j,$$

when $\{P(x), \mathcal{N}\}$ is a CNS. With this notation we have

$$\alpha = \sum_{j=0}^{d-1} T_j^{(0)}(\alpha) x^j,$$

and

$$T^{(i)}(\alpha) = \sum_{j=0}^{d-1} T_j^{(i)}(\alpha) x^j,$$
(2)

$$= \sum_{j=0}^{d-1} (T_{j+1}^{(i-1)}(\alpha) - q_{i-1}p_{j+1})x^j, \qquad (3)$$

where $q_{i-1} = \left\lfloor \frac{T_0^{(i-1)}(\alpha)}{p_0} \right\rfloor$ for $i \ge 1$.

After this preparation we are in the position to formulate our results. The first assertion is a new characterization of CNS provided $p_0 > L(P)$. By Lemma 1 in §3, the roots of such a P have moduli greater than 1, which is a necessary condition for a CNS. So we are interested in such a class of polynomials. The spirit of Theorem 1 below and Theorems 3 of [9] and 6.1 of [11] is the same: it is proved that $\{P(x), \mathcal{N}\}$ is a CNS in R if and only if every element of bounded size of R is representable in $\{P(x), \mathcal{N}\}$. The difference is in the choice of the size. Whereas Kovács and Pethő used the height, $\max\{|T_i^{(0)}(\alpha)|, 0 \le j \le d-1\}$, we use the *weight*, defined by (13) in §4.

Theorem 1 Let M be a positive integer. Assume that $p_0 \ge (1+1/M)L(P)$, if $p_i \ne 0$ for i = 1, ..., d-1, and assume that $p_0 > (1+1/M)L(P)$ otherwise. The pair $\{P(x), \mathcal{N}\}$ is a CNS in R if and only if each of the following elements $\alpha \in R$ has a representation in $\{P(x), \mathcal{N}\}$:

$$\alpha = \sum_{i=0}^{d-1} \left(\sum_{j=i}^{d-1} \varepsilon_j p_{d+i-j} \right) x^i, \tag{4}$$

where $\varepsilon_j \in [1 - M, M] \cap \mathbb{Z}$ for $0 \le j \le d - 1$.

Our algorithm is easier and more suitable for hand calculation than the ones in [9] and [11], since we do not need any information on the roots of P. We need only to check whether $(2M)^d$ elements have representations in $\{P(x), \mathcal{N}\}$ or not. Running time estimates for the Kovács and Pethő algorithm of [9] is difficult, since it depends on the distribution of the roots of P. But in many cases, our method is very rapid when p_0 or dis large. **Example 1** We compare for three CNS polynomials the number of elements needed to be checked for representability in $\{P(x), \mathcal{N}\}$ by our algorithm and by the algorithm of Kovács and Pethő.

Case $x^3 + x^2 + 5$: (Our algorithm) 8 elements (M=1), (Kovács and Pethő algorithm) 89 elements.

Case $x^3 + 2x^2 - x + 7$: (Our algorithm) 64 elements (M=2), (Kovács and Pethő algorithm) 123 elements.

Case $x^4 + x^3 - x^2 + x + 8$: (Our algorithm) 16 elements (M=1), (Kovács and Pethő algorithm) 1427 elements.

Using Theorem 1 we are able to prove that a wide class of polynomials correspond to a CNS. Similar results were proven in [8] and in [11]. Using the idea of B. Kovács [8] it was proved in [11] that if $0 < p_{d-1} \leq \ldots \leq p_0, p_0 \geq 2$ then $\{P(x), \mathcal{N}\}$ is a CNS. We however do not assume the monotonicity of the sequence of the coefficients. Moreover p_1 is allowed to be negative.

Theorem 2 Assume that $p_2, \ldots, p_{d-1}, \sum_{i=1}^d p_i \ge 0$ and $p_0 > 2 \sum_{i=1}^d |p_i|$ Then $\{P(x), \mathcal{N}\}$ is a CNS in R. The last inequality can be replaced by $p_0 \ge 2 \sum_{i=1}^d |p_i|$ when all $p_i \ne 0$.

Note that the conditions $p_2, \ldots, p_{d-1}, \sum_{i=1}^d p_i \ge 0$ are necessary if d = 3 by Proposition 1 in §3. So Theorem 2 gives us a characterization of all cubic CNS provided $p_0 > 2L(P)$. Generally, the inequality $\sum_{i=1}^d p_i \ge 0$ is by Lemma 4 below necessary for $\{P(x), \mathcal{N}\}$ to be a CNS. On the other hand the following examples show that the inequalities $p_2, \ldots, p_{d-1} \ge 0$ are not necessary if $d \ge 4$.

Example 2 In fact, we can show that the roots of each polynomials

 $x^4 + 2x^3 - x^2 - x + 5, \ x^4 - x^3 + 2x^2 - 2x + 3, \ x^5 + x^4 + x^3 - x^2 - x + 4$

form a CNS by the criterion of [9].

We are also able to prove that p_{d-1} cannot be too small. More precisely the following theorem is true.

Theorem 3 If $p_0 \geq \sum_{i=1}^d |p_i|$ and $\{P(x), \mathcal{N}\}$ is a CNS then $p_\ell + \sum_{j=\ell+1}^d |p_j| \geq 0$ holds for all $\ell \geq 0$. In particular $p_{d-1} \geq -1$.

The characterization of higher dimensional CNS where p_0 is large is an interesting problem left to the reader. Numerical evidence supports the following:

Conjecture 1 Assume that $p_2, \ldots, p_{d-1}, \sum_{i=1}^d p_i \ge 0$ and $p_0 > \sum_{i=1}^d |p_i|$. Then $\{P(x), \mathcal{N}\}$ is a CNS.

Conjecture 2 The pair $\{P(x), \mathcal{N}\}$ is a CNS in R if and only if all $\alpha \in R$ of the form (4) with $\varepsilon_j \in \{-1, 0, 1\}, \quad 0 \leq j \leq d-1$, have a representation in $\{P(x), \mathcal{N}\}$.

This conjecture is best possible in the sense that that we can not remove -1 or 1 from the allowed set of ε_j . Considering polynomial $P(x) = x^3 + 4x^2 - 2x + 6$, the element $-x^2 - 5x - 1$ does not have a representation in $\{P(x), \{0, 1, 2, 3, 4, 5\}\}$.

3 Auxiliary results

Several general results of CNS are shown in this section. Some of them are used in the proof of our Theorems.

Lemma 1 If $p_0 > L(P)$ then each root of P has modulus greater than 1.

Proof: Assume that γ is a root of P with $|\gamma| \leq 1$. Then we have

$$\left|\sum_{i=1}^{d} p_i \gamma^i\right| \le L(P) < p_0,$$

which is absurd. \Box

In the sequel we will put $T_j^{(i)}(\alpha) = 0$ for j > d - 1 and $p_j = 0$ for j > d.

Lemma 2 Let $\alpha \in R$ and i, j, k be non-negative integers such that $k \geq i$. Let $q_k = \left|\frac{T_0^{(k)}(\alpha)}{p_0}\right|$. Then

$$T_{j}^{(k)}(\alpha) = T_{j+i}^{(k-i)}(\alpha) - \sum_{\ell=1}^{i} q_{k-\ell} p_{j+\ell},$$
(5)

$$\alpha = \sum_{\ell=0}^{k-1} (T_0^{(\ell)}(\alpha) - q_\ell p_0) x^\ell + x^k T^{(k)}(\alpha).$$
(6)

Proof: Identity (5) is obviously true if i = 0. Assume that it is true for an i such that $0 \le i < k$. We have

$$\Gamma_{j+i}^{(k-i)}(\alpha) = T_{j+i+1}^{(k-i-1)}(\alpha) - q_{k-i-1}p_{j+i+1}$$

by (3). Inserting this into (5) we obtain at once the stated identity for i + 1.

Identity (6) is obviously true for k = 0. Assume that it is true for $k - 1 \ge 0$. Using that P(x) = 0 in R we have

$$T^{(k-1)}(\alpha) = \sum_{j=0}^{d-1} T_j^{(k-1)}(\alpha) x^j$$

=
$$\sum_{j=0}^{d-1} T_j^{(k-1)}(\alpha) x^j - q_{k-1} \sum_{j=0}^d p_j x^j$$

=
$$\sum_{j=0}^d (T_j^{(k-1)}(\alpha) - q_{k-1} p_j) x^j$$

=
$$(T_0^{(k-1)}(\alpha) - q_{k-1} p_0) + x T^{(k)}(\alpha)$$

Considering (6) for k-1 and using the last identity we obtain

$$\begin{aligned} \alpha &= \sum_{\ell=0}^{k-2} (T_0^{(\ell)}(\alpha) - q_\ell p_0) x^\ell + x^{k-1} T^{(k-1)}(\alpha) \\ &= \sum_{\ell=0}^{k-2} (T_0^{(\ell)}(\alpha) - q_\ell p_0) x^\ell + x^{k-1} ((T_0^{(k-1)}(\alpha) - q_{k-1} p_0) + x T^{(k)}(\alpha)) \\ &= \sum_{\ell=0}^{k-1} (T_0^{(\ell)}(\alpha) - q_\ell p_0) x^\ell + x^k T^{(k)}(\alpha). \end{aligned}$$

Thus (6) is proved for all $k \ge 0$. \Box

Lemma 3 The element $\alpha \in R$ is representable in $\{P(x), \mathcal{N}\}$ if and only if there exists a $k \geq 0$ for which $T^{(k)}(\alpha) = 0$.

Proof: The condition is sufficient, because if α is representable in $\{P(x), \mathcal{N}\}$ then we can take $k = \ell(\alpha)$.

To prove the necessity, assume that there exists a $k \ge 0$ for which $T^{(k)}(\alpha) = 0$. Then

$$\alpha = \sum_{\ell=0}^{k-1} (T_0^{(\ell)}(\alpha) - q_\ell p_0) x^\ell$$

by Lemma 2, and since $T_0^{(\ell)}(\alpha) - q_\ell p_0 \in \mathcal{N}$ this is a representation of α in $\{P(x), \mathcal{N}\}$. \Box

Lemma 4 If $\{P(x), \mathcal{N}\}$ is a CNS, then $\sum_{i=1}^{d} p_i \ge 0$.

Proof: By the results of [11], stated in the introduction, we have $P(1) = \sum_{i=0}^{d} p_i > 0$, since otherwise P(x) would have a real root greater or equal to 1.

Assume that $\sum_{i=1}^{d} p_i < 0$. Then $P(1) = p_0 + \sum_{i=1}^{d} p_i < p_0$, i.e., $P(1) \in \mathcal{N}$. Let

$$\alpha = \sum_{i=0}^{d-1} \sum_{j=i}^{d-1} p_{d+i-j} x^i.$$

Then $T_0^{(0)}(\alpha) = \sum_{i=1}^d p_i$, hence $-p_0 < T_0^{(0)}(\alpha) < 0$, which implies $q = \lfloor T_0^{(0)}(\alpha)/p_0 \rfloor = -1$. Thus $T(\alpha) = \alpha \neq 0$ and α does not have a representation in $\{P(x), \mathcal{N}\}$ by Lemma 3. \Box

We wish to summarize some inequalities satisfied by a cubic CNS. These were proved by W.J. Gilbert [2]. For the sake of completeness we are given here a slightly different proof.

Proposition 1 Let $\{P(x), \mathcal{N}\}$ be a cubic CNS. Then we have the following inequalities:

$$1 + p_1 + p_2 \ge 0,$$
 (7)

$$p_0 + p_2 > 1 + p_1,$$
 (8)

$$p_0 p_2 + 1 < p_0^2 + p_1,$$
 (9)

$$p_2 \leq p_0 + 1, \tag{10}$$

$$p_1 < 2p_0,$$
 (11)

$$p_2 \geq 0. \tag{12}$$

Proof: Lemma 4 implies (7). By a similar argument to Lemma 4, we see P(-1) > 0. This shows (8). If $P(-p_0) \ge 0$ then there exists a real root less than or equal to $-p_0$. Since p_0 is the product of the three roots of P(x), this implies that there exists a root whose modulus is less than or equal to 1. This shows $P(-p_0) < 0$ which is (9).

Let γ_i (i = 1, 2, 3) be the roots of P(x). Noting xy + 1 > x + y for x, y > 1, we see

$$|p_2| = |\gamma_1 + \gamma_2 + \gamma_3| < |\gamma_1\gamma_2| + |\gamma_3| + 1 < |\gamma_1\gamma_2\gamma_3| + 2 = p_0 + 2$$

Thus we have (10). Using (8) we have (11).

Finally we want to show (12). By (7), if $p_2 < 0$ then $p_1 \ge 0$. Let $w = x + p_2$. By (8), we have $p_2 > -p_0$. Thus

$$T(w) = x^2 + p_2 x + p_1 + 1$$

Since $1 \le p_1 + 1 \le p_0 + p_2 < p_0$, we see $p_1 + 1 \in \mathcal{N}$. Thus we have

$$T^{(2)}(w) = x + p_2 = w.$$

Hence $T^{(2k)}(w) = w$ and $T^{(2k+1)}(w) = x^2 + p_2 x + p_1 + 1$ for all $k \ge 0$, i.e., $T^{(j)}(w) \ne 0$ holds for all $j \ge 0$. By Lemma 4 w is not representable in $\{P(x), \mathcal{N}\}$. This completes the proof of the proposition. \Box

We can find a CNS with $p_{d-1} = -1$ when d = 2 or $d \ge 4$.

4 Proof of Theorem 1.

Proof:

Let η be a positive number and put $p_i^* = p_i$ if $p_i \neq 0$ and $p_i^* = \eta$ otherwise. Taking a small η , we may assume

$$p_0 \ge (1 + 1/M) \sum_{i=1}^d |p_i^*|$$

Define the *weight* of $\alpha \in R$ by

$$\mathcal{W}(\alpha) = \max\left\{M, \max_{i=0,1,\dots,d-1} \frac{|T_i^{(0)}(\alpha)|}{\sum_{k=i+1}^d |p_k^*|}\right\}.$$
(13)

Obviously the weight of α takes discrete values. We have

$$|T_i^{(0)}(\alpha)| \le \mathcal{W}(\alpha) \sum_{k=i+1}^d |p_k^*|,$$

by definition. Remark that this inequality is also valid when i = d.

First we show that $\mathcal{W}(T(\alpha)) \leq \mathcal{W}(\alpha)$ for any $\alpha \in R$. If $|T_0^{(0)}(\alpha)/p_0| \geq M$ then we have

$$\left| \left| \frac{T_0^{(0)}(\alpha)}{p_0} \right| \right| < \left| \frac{T_0^{(0)}(\alpha)}{p_0} \right| + 1 \le \left(1 + \frac{1}{M} \right) \left| \frac{T_0^{(0)}(\alpha)}{p_0} \right| \le \frac{|T_0^{(0)}(\alpha)|}{\sum_{k=1}^d |p_k^*|} \le \mathcal{W}(\alpha).$$

If $|T_0^{(0)}(\alpha)/p_0| < M$, we see $\lfloor T_0^{(0)}(\alpha)/p_0 \rfloor \in [-M, M-1] \cap \mathbb{Z}$. (Here we used the fact that M is a positive integer.) This shows $|\lfloor T_0^{(0)}(\alpha)/p_0 \rfloor| \le M \le \mathcal{W}(\alpha)$. So we have shown

$$\left| \left\lfloor \frac{T_0^{(0)}(\alpha)}{p_0} \right\rfloor \right| \le \mathcal{W}(\alpha)$$

for any α . We note that the equality holds only when $q_0 = \lfloor T_0^{(0)}(\alpha)/p_0 \rfloor = -M$. This fact will be used later. Recall the relation:

$$T(\alpha) = \sum_{i=0}^{d-1} (T_{i+1}^{(0)}(\alpha) - q_0 p_{i+1}) x^i$$

with $q_0 = \lfloor T_0^{(0)}(\alpha)/p_0 \rfloor$. So we have

$$\frac{\left|T_{i+1}^{(0)}(\alpha) - q_0 p_{i+1}\right|}{\sum_{k=i+1}^d |p_k^*|} \leq \frac{\mathcal{W}(\alpha) \sum_{k=i+2}^d |p_k^*| + \mathcal{W}(\alpha)|p_{i+1}|}{\sum_{k=i+1}^d |p_k^*|} \leq \mathcal{W}(\alpha),$$

which shows $\mathcal{W}(T(\alpha)) \leq \mathcal{W}(\alpha)$.

If $\{P(x), \mathcal{N}\}$ is a CNS then every element of form (4) must have a representation in $\{P(x), \mathcal{N}\}$.

Assume that $\{P(x), \mathcal{N}\}$ is not a CNS. Then there exist elements of R which do not have any representation in $\{P(x), \mathcal{N}\}$. Let $\kappa \in R$ be such an element of minimum weight. Our purpose is to prove that there exists some m such that $T^{(m)}(\kappa)$ must have the form (4). First we show $\mathcal{W}(\kappa) = M$. So assume that $\mathcal{W}(\kappa) > M$. Then we have

$$\mathcal{W}(\kappa) = \max_{i=0,1,\dots,d-1} \frac{|T_i^{(0)}(\kappa)|}{\sum_{k=i+1}^d |p_k^*|}.$$

Since $p_i^* \neq 0$, reviewing the above proof, we easily see $\mathcal{W}(T(\kappa)) < \mathcal{W}(\kappa)$ when $q_0 \neq -M$. By the minimality of κ , we see $\lfloor T_0^{(0)}(\kappa)/p_0 \rfloor = -M$ and $\mathcal{W}(T(\kappa)) = \mathcal{W}(\kappa)$. Repeating this argument we have

$$q_j = \left\lfloor \frac{T_0^{(j)}(\kappa)}{p_0} \right\rfloor = -M, \qquad j = 0, 1, \dots, d-1.$$

By (5) with k = i = d and $\alpha = \kappa$, we have

$$T_j^{(d)}(\kappa) = -\sum_{\ell=1}^{d-j} q_{d-\ell} p_{j+\ell}$$
$$= -\sum_{\ell=j+1}^d q_{d-\ell+j} p_\ell$$
$$= M \sum_{\ell=j+1}^d p_\ell,$$

but this implies $\mathcal{W}(T^{(d)}(\kappa)) = M$, which contradicts the inequality $\mathcal{W}(\kappa) > M$. This shows $\mathcal{W}(\kappa) = M$ and moreover $\mathcal{W}(T^{(j)}(\kappa)) = M$ for any j. So we have

$$\frac{|T_0^{(j)}(\kappa)|}{p_0} \le \frac{|T_0^{(j)}(\kappa)|}{(1+1/M)\sum_{k=1}^d |p_k^*|} \le \frac{M^2}{1+M} < M,$$

which shows $q_j = [-M, M-1] \cap \mathbb{Z}$ for $j \ge 0$. Again by (5) with k = i = d and $\alpha = \kappa$, we have

$$T_{\ell}^{(d)}(\kappa) = -\sum_{j=\ell}^{d-1} q_j p_{d+\ell-j}.$$

Letting $\varepsilon_j = -q_j \in [1 - M, M] \cap \mathbb{Z}$, we have

$$T^{(d)}(\kappa) = \sum_{\ell=0}^{d-1} \left(\sum_{j=\ell}^{d-1} \varepsilon_j p_{d+\ell-j} \right) x^{\ell},$$

which has the form (4). This proves the assertion. \Box

Remark 1 The integer assumption on M is not necessary for the above proof but we cannot get a better bound by choosing non-integer $M \ge 1$.

Remark 2 To derive a result of this type, we first used the length of α $(\sum_{i=0}^{d-1} |T_i^{(0)}|)$ instead of the weight and used a technique inspired by the analysis of the running time of the euclidean algorithm. (See e.g. [10].) Under this choice, we could only show a rather bad bound but it was an inspiring experience for us.

5 Proof of Theorem 2.

Proof: Define

$$\alpha(\varepsilon_0,\ldots,\varepsilon_{d-1}) = \sum_{i=0}^{d-1} \left(\sum_{j=i}^{d-1} \varepsilon_j p_{d+i-j} \right) x^i.$$

Since the assumption of Theorem 1 is satisfied with M = 1, it is enough to prove that every element of the form $\alpha = \alpha(\varepsilon_0, \ldots, \varepsilon_{d-1})$ with $\varepsilon_j \in \{0, 1\}, 0 \le j \le d-1$ is representable in $\{P(x), \mathcal{N}\}$. A simple computation shows that

$$|T_i^{(0)}(\alpha)| \le L(P) < p_0.$$

This means that if $T_i^{(0)}(\alpha) \ge 0$ for some *i*, then $T_i^{(0)}(\alpha) \in \mathcal{N}$, otherwise $p_0 - T_i^{(0)}(\alpha) \in \mathcal{N}$.

If $p_1 \ge 0$, then $T_i^{(0)}(\alpha) \ge 0$ for all *i*, such that $0 \le i \le d-1$ and for all choices of $\varepsilon_j \in \{0,1\}, 0 \le j \le d-1$. Similarly, as p_2, \ldots, p_{d-1} are non-negative $T_i^{(0)}(\alpha) \ge 0$ for all *i*, such that $1 \le i \le d-1$. If $\varepsilon_{d-1} = 0$ then $T_0^{(0)}(\alpha) = \sum_{j=0}^{d-2} \varepsilon_j p_{d-j} > 0$. In these cases every α of form (4) is representable in $\{P(x), \mathcal{N}\}$.

We assume $p_1 < 0$ and $\varepsilon_{d-1} = 1$ in the sequel. Let $\varepsilon_j \in \{0, 1\}, 0 \le j \le d-1$ be fixed. Put $\alpha = \alpha(\varepsilon_0, \ldots, \varepsilon_{d-1})$. If $T_0^{(0)}(\alpha) \ge 0$, then α is representable in $\{P(x), \mathcal{N}\}$. Thus we may assume $T_0^{(0)}(\alpha) < 0$. Then there exists an *i* with $0 \le i < d-1$ such that $\varepsilon_i = 0$ because $\sum_{j=1}^d p_j \ge 0$ by Lemma 2. Let *j* be the index such that $\varepsilon_j = \ldots = \varepsilon_{d-1} = 1$, but $\varepsilon_{j-1} = 0$. We apply to α the transformation *T* several times and ultimately we obtain an element, which is represented in $\{P(x), \mathcal{N}\}$. Indeed, as $T_0^{(0)}(\alpha) < 0$ we have $q_0 = \left\lfloor \frac{T_0^{(0)}(\alpha)}{p_0} \right\rfloor = -1$. Putting $\varepsilon_d = 1$ we obtain $T^{(1)}(\alpha) = \sum_{i=0}^{d-1} \left(\sum_{j=i}^{d-1} \varepsilon_{j+1} p_{d+i-j} \right) x^i.$

Hence $T^{(1)}(\alpha) = \alpha(\varepsilon_1, \ldots, \varepsilon_d)$. If $T_0^{(1)}(\alpha) \ge 0$ then this is already the representation of $T^{(1)}(\alpha)$ in $\{P(x), \mathcal{N}\}$. Otherwise, i.e., if $T_0^{(1)}(\alpha) < 0$ we continue the process with $q_1 = \left\lfloor \frac{T_0^{(1)}(\alpha)}{p_0} \right\rfloor = -1$ and $\varepsilon_{d+1} = 1$. Hence either $T_0^{(k)}(\alpha) \ge 0$ for some k < j - 1 or $T_0^{(k)}(\alpha) < 0$ for all k with $0 \le k < j - 1$. In the second case we have $T^{(j-1)}(\alpha) = \alpha(1, \ldots, 1)$. Thus there exists always a $k \ge 0$ such that $T^{(k)}(\alpha)$ is representable in $\{P(x), \mathcal{N}\}$. Theorem 2 follows now immediately from Lemma 3. \Box

6 Proof of Theorem 3.

For

$$\alpha = \alpha(\varepsilon_0, \dots, \varepsilon_{d-1}) = \sum_{i=0}^{d-1} (\sum_{j=i}^{d-1} \varepsilon_j p_{d+i-j}) x^i$$
(14)

with $\varepsilon_i \in \mathbb{Z}, i = 0, \dots, d-1$ let

$$E(\alpha) = \max\{|\varepsilon_i|, i = 0, \dots, d-1\}.$$

With this notation we prove the following useful lemma.

Lemma 5 Assume that $p_0 \ge L(P)$ and that α is given in the form (14). Then

$$E(T(\alpha)) \le E(\alpha).$$

Proof: Taking

$$q = \left\lfloor \frac{1}{p_0} \sum_{j=0}^{d-1} \varepsilon_j p_{d-j} \right\rfloor$$

we have

$$\frac{1}{p_0}\sum_{j=0}^{d-1}\varepsilon_j p_{d-j} - 1 < q \le \frac{1}{p_0}\sum_{j=0}^{d-1}\varepsilon_j p_{d-j}.$$

The inequality

$$\left|\frac{1}{p_0}\sum_{j=0}^{d-1}\varepsilon_j p_{d-j}\right| \le \frac{E(\alpha)L(P)}{p_0} \le E(\alpha)$$

implies

 $|q| \le E(\alpha).$

Putting $\varepsilon_d = -q$ we obtain

$$T(\alpha) = \sum_{i=0}^{d-1} (\sum_{j=i}^{d-1} \varepsilon_{j+1} p_{d+i-j}) x^i,$$

which implies

$$E(T(\alpha)) = \max\{|\varepsilon_1|, \ldots, |\varepsilon_{d-1}|, |\varepsilon_d|\} \le E(\alpha).$$

The lemma is proved. \Box

Now we are in the position to prove Theorem 3.

Assume that there exists some ℓ with $0 < \ell < d$, such that $p_{\ell} + \sum_{j=\ell+1}^{d} |p_j| < 0$. We show that -1 is not representable in $\{P(x), \mathcal{N}\}$. More precisely we prove for all $k \ge 0$ that at least one of the $T_j^{(k)}(-1), j = 0, \ldots, d-1$, is negative.

This assertion is obviously true for k = 0. Let $k \ge 0$ and assume that at least one of the $T_j^{(k)}(-1), j = 0, \ldots, d-1$, is negative. We have

$$-1 = \sum_{i=0}^{d-1} (\sum_{j=i}^{d-1} \varepsilon_j p_{d+i-j}) x^i$$

with $\varepsilon_0 = -1$ and $\varepsilon_j = 0, j = 1, \dots, d-1$. Hence

$$T^{(k)}(-1) = \sum_{i=0}^{d-1} (\sum_{j=i}^{d-1} \varepsilon_{j+k} p_{d+i-j}) x^i$$

holds with $|\varepsilon_{j+k}| \leq 1, j = 0, \ldots, d-1$, by Lemma 5 for all $k \geq 0$. Hence we have

$$T^{(k+1)}(-1) = \sum_{i=0}^{d-1} (\sum_{j=i}^{d-1} \varepsilon_{j+k+1} p_{d+i-j}) x^i$$

with $\varepsilon_{d+k} = -\lfloor T_0^{(k)}(-1)/p_0 \rfloor$. We distinguish three cases according to the values of ε_{d+k} . Case 1: $\varepsilon_{d+k} = -1$. Then $T_{d-1}^{(k+1)}(-1) = \varepsilon_{d+k}p_d = -1$. Hence the assertion is true for k+1.

Case 2: $\varepsilon_{d+k} = 0$. Then $T_j^{(k+1)}(-1) = T_{j+1}^{(k)}(-1)$ for j = 0, ..., d-2, and $T_{d-1}^{(k+1)}(-1) = 0$. There exists by the hypothesis a j with $0 \le j \le d-1$ such that $T_j^{(k)}(-1) < 0$. This index cannot be zero because $\varepsilon_{d+k} = 0$. Hence j > 0 and $T_{j-1}^{(k+1)}(-1) = T_j^{(k)}(-1) < 0$. The assertion is true again.

Case 3: $\varepsilon_{d+k} = 1$. In this case we have

$$T_{\ell-1}^{(k+1)}(-1) = \varepsilon_{k+\ell}p_d + \ldots + \varepsilon_{k+d-1}p_{\ell+1} + \varepsilon_{k+d}p_\ell$$
$$= \varepsilon_{k+\ell}p_d + \ldots + \varepsilon_{k+d-1}p_{\ell+1} + p_\ell \le p_\ell + \sum_{j=\ell+1}^d |p_j| < 0$$

because $|\varepsilon_{k+j}| \leq 1, j = \ell, \ldots, d-1$, by Lemma 5. Theorem 3 is proved.

References

- [1] S. AKIYAMA AND J. THUSWALDNER, Topological properties of two-dimensional number systems, Journal de Théorie des Nombres de Bordeaux **12** (2000) 69–79.
- [2] W.J.GILBERT, Radix representations of quadratic number fields, J. Math. Anal. Appl. 83 (1981) 263–274.
- [3] I. KÁTAI AND J. SZABÓ, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975) 255–260.
- [4] I. KÁTAI AND I. KŐRNYEI, On number systems in algebraic number fields, Publ. Math. Debrecen 41 no. 3–4 (1992) 289–294.
- [5] I. KÁTAI AND B. KOVÁCS, Canonical number systems in imaginary quadratic fields, Acta Math. Hungar. 37 (1981) 159–164.
- [6] I. KÁTAI AND B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980) 99–107.
- [7] D. E. KNUTH The Art of Computer Programming, Vol. 2 Semi-numerical Algorithms, Addison Wesley (1998) London 3rd-edition.
- [8] B. KOVÁCS, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 405–407.
- [9] B. KOVÁCS and A. PETHŐ, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. Szeged, 55 (1991) 287–299.
- [10] A. PETHŐ, Algebraische Algorithmen, Vieweg Verlag, 1999.
- [11] А. РЕТНО, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Walter de Gruyter Publ. Comp. Eds.: A. Pethő, M. Pohst, H.G. Zimmer and H.C. Williams, 1991, pp 31-44.
- [12] K. SCHEICHER, Kanonische Ziffernsysteme und Automaten, Grazer Math. Ber., 333 (1997), 1–17.
- [13] J. THUSWALDNER, Elementary properties of canonical number systems in quadratic fields, in: Applications of Fibonacci numbers Vol. 7, (Graz, 1996), 405–414, Kluwer Acad. Publ., Dordrecht, 1998.

Shigeki Akiyama Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan e-mail: akiyama@math.sc.niigata-u.ac.jp Attila Pethő Institute of Mathematics and Computer Science, University of Debrecen, H-4010 Debrecen P.O.Box 12, Hungary e-mail: pethoe@math.klte.hu