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Abstract. Let P (x) = pdx
d + . . . + p0 ∈ Z[x] be such that d ≥ 1, pd = 1, p0 ≥ 2 and

N = {0, 1, . . . , p0 − 1}. We are proving in this note a new criterion for the pair {P (x),N} to
be a canonical number system. This enables us to prove that if p2, . . . , pd−1,

∑d
i=1 pi ≥ 0 and

p0 > 2
∑d

i=1 |pi|, then {P (x),N} is a canonical number system.
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1 Introduction

Let P (x) = pdx
d + . . . + p0 ∈ Z[x] be such that d ≥ 1 and pd = 1. Let R denote the

quotient ring Z[x]/P (x)Z[x]. Then all α ∈ R can be represented in the form

α = a0 + a1x + . . . + ad−1x
d−1

with ai ∈ Z, i = 0, . . . , d− 1.
The pair {P (x),N} with N = {0, 1, . . . , |p0| − 1} is called canonical number system,

CNS, if every α ∈ R,α 6= 0 can be written uniquely in the form

α =
`(α)∑

j=0

ajx
j, (1)

where aj ∈ N , j = 0, . . . , `(α), a`(α) 6= 0.
If P (x) is irreducible, then let γ denote one of its zeros. In this case Z[x]/P (x)Z[x] is

isomorphic to Z[γ], the minimal ring generated by γ and Z, hence we may replace x by γ
in the above expansions. Moreover N forms a complete representative system mod γ in
Z[γ]. We simplify in this case the notation {P (x),N} to {γ,N}.

Extending the results of [7] and [3], I. Kátai and B. Kovács and independently W.J.
Gilbert [2] classified all quadratic CNS, provided the corresponding P (x) is irreducible.
B. Kovács [8] proved that in any algebraic number field there exists an element γ such
that {γ,N} is a CNS 1. J. Thuswaldner [13] gave in the quadratic and K. Scheicher [12]

∗Partially supported by the Japanese Ministry of Education, Science, Sports and Culture, Grand-in
Aid for fundamental reseach, 12640017, 2000.

†Research supported in part by the Hungarian Foundation for Scientific Research, Grant N0. 25157/98.
1We need a slight explanation of their results, since their definition of canonical number system is

more restricted than ours. In fact, they assumed still more that Z[γ] coincides with the integer ring of
Q(γ), the field generated by γ over the field of rational numbers.
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in the general case a new proof of the above theorems based on automaton theory. B.
Kovács [8] proved further that if pd ≤ pd−1 ≤ pd−2 ≤ . . . ≤ p0, p0 ≥ 2, and if P (x) is
irreducible and γ is a zero of P (x) then {γ,N} is a CNS in Z[γ]. In [9] B. Kovács and A.
Pethő gave also a characterization of those irreducible polynomials P (x), whose zeros are
bases of CNS.

Interesting connections between CNS and fractal tilings of the Euclidean space were
discussed by several mathematicians. D.E. Knuth [7] seems to be the first discoverer of
this phenomenon in the case x = −1 +

√−1. For the recent results on this topic, the
reader can consult [4] or [1] and their references.

The concept of CNS for irreducible polynomials was generalized to arbitrary polynomi-
als with leading coefficient one by the second author [11]. He extended most of the results
of [8] and [9] and proved among others that if {P (x),N} is a CNS then all real zeroes of
P (x) are less than −1 and the absolute value of all the complex roots are larger than 1.
This implies that if {P (x),N} is a CNS then p0 > 0, which we will assume throughout
this paper.2

The aim of the present paper is to give a new characterization of CNS provided p0 is
large enough. It enables us to prove for a large class of polynomials that their zeros to-
gether with the corresponding set N yield a CNS. Unfortunately our criterion in Theorem
1 cannot be adapted to polynomials with small p0, but it suggests us that the characteri-
zation problem of CNS does not depend on the structure of the corresponding field, such
as fundamental units, ramifications or discriminants, but only on the coefficients of its
defining polynomials.

2 Notations and results

For a polynomial P (x) = pdx
d + . . . + p0 ∈ Z[x], let

L(P ) =
d∑

i=1

|pi|,

which we call the length of P . Every α ∈ R = Z[x]/P (x)Z[x] has a unique representation
in the form

α =
d−1∑

j=0

ajx
j.

Put q =
⌊

a0

p0

⌋
, where b c denotes the integer part function. Let us define the map

T : R → R by

T (α) =
d−1∑

j=0

(aj+1 − qpj+1)x
j,

where ad = 0. Putting

T (0)(α) = α and T (i+1)(α) = T (T (i)(α))

2In Theorem 6.1 of [11] it is assumed that g(t) is square-free, but this assumption is necessary only
for the proof of (iii).
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we define the iterates of T. As T (i)(α) ∈ R for all non-negative integers i, and α ∈ R,
the element T (i)(α) can be represented with integer coefficients in the basis 1, x, . . . , xd−1.

The coefficients of this representation will be denoted by T
(i)
j (α), i ≥ 0, 0 ≤ j ≤ d− 1. It

is sometimes convenient to extend this definition by putting T
(i)
j (α) = 0 for j ≥ d. This

map T obviously describes the algorithm to express any α ∈ R in a form (1) since we
have

α =
`(α)∑

j=0

T
(j)
0 (α)

p0

 xj,

when {P (x),N} is a CNS. With this notation we have

α =
d−1∑

j=0

T
(0)
j (α)xj,

and

T (i)(α) =
d−1∑

j=0

T
(i)
j (α)xj, (2)

=
d−1∑

j=0

(T
(i−1)
j+1 (α)− qi−1pj+1)x

j, (3)

where qi−1 =

T
(i−1)
0 (α)

p0

 for i ≥ 1.

After this preparation we are in the position to formulate our results. The first as-
sertion is a new characterization of CNS provided p0 > L(P ). By Lemma 1 in §3, the
roots of such a P have moduli greater than 1, which is a necessary condition for a CNS.
So we are interested in such a class of polynomials. The spirit of Theorem 1 below and
Theorems 3 of [9] and 6.1 of [11] is the same: it is proved that {P (x),N} is a CNS
in R if and only if every element of bounded size of R is representable in {P (x),N}.
The difference is in the choice of the size. Whereas Kovács and Pethő used the height,
max

{∣∣∣T (0)
j (α)

∣∣∣ , 0 ≤ j ≤ d− 1
}
, we use the weight, defined by (13) in §4.

Theorem 1 Let M be a positive integer. Assume that p0 ≥ (1+1/M)L(P ), if pi 6= 0 for
i = 1, . . . , d− 1, and assume that p0 > (1 + 1/M)L(P ) otherwise. The pair {P (x),N} is
a CNS in R if and only if each of the following elements α ∈ R has a representation in
{P (x),N}:

α =
d−1∑

i=0




d−1∑

j=i

εjpd+i−j


 xi, (4)

where εj ∈ [1−M,M ] ∩ Z for 0 ≤ j ≤ d− 1.

Our algorithm is easier and more suitable for hand calculation than the ones in [9]
and [11], since we do not need any information on the roots of P . We need only to
check whether (2M)d elements have representations in {P (x),N} or not. Running time
estimates for the Kovács and Pethő algorithm of [9] is difficult, since it depends on the
distribution of the roots of P . But in many cases, our method is very rapid when p0 or d
is large.
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Example 1 We compare for three CNS polynomials the number of elements needed to be
checked for representability in {P (x),N} by our algorithm and by the algorithm of Kovács
and Pethő.

Case x3 + x2 + 5:
(Our algorithm) 8 elements (M=1),
(Kovács and Pethő algorithm) 89 elements.

Case x3 + 2x2 − x + 7:
(Our algorithm) 64 elements (M=2),
(Kovács and Pethő algorithm) 123 elements.

Case x4 + x3 − x2 + x + 8:
(Our algorithm) 16 elements (M=1),
(Kovács and Pethő algorithm) 1427 elements.

Using Theorem 1 we are able to prove that a wide class of polynomials correspond
to a CNS. Similar results were proven in [8] and in [11]. Using the idea of B. Kovács [8]
it was proved in [11] that if 0 < pd−1 ≤ . . . ≤ p0, p0 ≥ 2 then {P (x),N} is a CNS. We
however do not assume the monotonicity of the sequence of the coefficients. Moreover p1

is allowed to be negative.

Theorem 2 Assume that p2, . . . , pd−1,
∑d

i=1 pi ≥ 0 and p0 > 2
∑d

i=1 |pi| Then {P (x),N}
is a CNS in R. The last inequality can be replaced by p0 ≥ 2

∑d
i=1 |pi| when all pi 6= 0.

Note that the conditions p2, . . . , pd−1,
∑d

i=1 pi ≥ 0 are necessary if d = 3 by Proposition
1 in §3. So Theorem 2 gives us a characterization of all cubic CNS provided p0 > 2L(P ).
Generally, the inequality

∑d
i=1 pi ≥ 0 is by Lemma 4 below necessary for {P (x),N} to be a

CNS. On the other hand the following examples show that the inequalities p2, . . . , pd−1 ≥ 0
are not necessary if d ≥ 4.

Example 2 In fact, we can show that the roots of each polynomials

x4 + 2x3 − x2 − x + 5, x4 − x3 + 2x2 − 2x + 3, x5 + x4 + x3 − x2 − x + 4

form a CNS by the criterion of [9].

We are also able to prove that pd−1 cannot be too small. More precisely the following
theorem is true.

Theorem 3 If p0 ≥ ∑d
i=1 |pi| and {P (x),N} is a CNS then p` +

∑d
j=`+1 |pj| ≥ 0 holds

for all ` ≥ 0. In particular pd−1 ≥ −1.

The characterization of higher dimensional CNS where p0 is large is an interesting problem
left to the reader. Numerical evidence supports the following:

Conjecture 1 Assume that p2, . . . , pd−1,
∑d

i=1 pi ≥ 0 and p0 >
∑d

i=1 |pi|. Then {P (x),N}
is a CNS.

Conjecture 2 The pair {P (x),N} is a CNS in R if and only if all α ∈ R of the form
(4) with εj ∈ {−1, 0, 1}, 0 ≤ j ≤ d− 1, have a representation in {P (x),N}.

This conjecture is best possible in the sense that that we can not remove −1 or 1 from
the allowed set of εj. Considering polynomial P (x) = x3 + 4x2 − 2x + 6, the element
−x2 − 5x− 1 does not have a representation in {P (x), {0, 1, 2, 3, 4, 5}}.
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3 Auxiliary results

Several general results of CNS are shown in this section. Some of them are used in the
proof of our Theorems.

Lemma 1 If p0 > L(P ) then each root of P has modulus greater than 1.

Proof: Assume that γ is a root of P with |γ| ≤ 1. Then we have
∣∣∣∣∣

d∑

i=1

piγ
i

∣∣∣∣∣ ≤ L(P ) < p0,

which is absurd. 2

In the sequel we will put T
(i)
j (α) = 0 for j > d− 1 and pj = 0 for j > d.

Lemma 2 Let α ∈ R and i, j, k be non-negative integers such that k ≥ i. Let qk =⌊
T

(k)
0 (α)

p0

⌋
. Then

T
(k)
j (α) = T

(k−i)
j+i (α)−

i∑

`=1

qk−`pj+`, (5)

α =
k−1∑

`=0

(T
(`)
0 (α)− q`p0)x

` + xkT (k)(α). (6)

Proof: Identity (5) is obviously true if i = 0. Assume that it is true for an i such that
0 ≤ i < k. We have

T
(k−i)
j+i (α) = T

(k−i−1)
j+i+1 (α)− qk−i−1pj+i+1

by (3). Inserting this into (5) we obtain at once the stated identity for i + 1.
Identity (6) is obviously true for k = 0. Assume that it is true for k − 1 ≥ 0. Using

that P (x) = 0 in R we have

T (k−1)(α) =
d−1∑

j=0

T
(k−1)
j (α)xj

=
d−1∑

j=0

T
(k−1)
j (α)xj − qk−1

d∑

j=0

pjx
j

=
d∑

j=0

(T
(k−1)
j (α)− qk−1pj)x

j

= (T
(k−1)
0 (α)− qk−1p0) + xT (k)(α).

Considering (6) for k − 1 and using the last identity we obtain

α =
k−2∑

`=0

(T
(`)
0 (α)− q`p0)x

` + xk−1T (k−1)(α)

=
k−2∑

`=0

(T
(`)
0 (α)− q`p0)x

` + xk−1((T
(k−1)
0 (α)− qk−1p0) + xT (k)(α))

=
k−1∑

`=0

(T
(`)
0 (α)− q`p0)x

` + xkT (k)(α).
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Thus (6) is proved for all k ≥ 0. 2

Lemma 3 The element α ∈ R is representable in {P (x),N} if and only if there exists a
k ≥ 0 for which T (k)(α) = 0.

Proof: The condition is sufficient, because if α is representable in {P (x),N} then we
can take k = `(α).

To prove the necessity, assume that there exists a k ≥ 0 for which T (k)(α) = 0. Then

α =
k−1∑

`=0

(T
(`)
0 (α)− q`p0)x

`

by Lemma 2, and since T
(`)
0 (α)− q`p0 ∈ N this is a representation of α in {P (x),N}. 2

Lemma 4 If {P (x),N} is a CNS, then
∑d

i=1 pi ≥ 0.

Proof: By the results of [11], stated in the introduction, we have P (1) =
∑d

i=0 pi > 0,
since otherwise P (x) would have a real root greater or equal to 1.

Assume that
∑d

i=1 pi < 0. Then P (1) = p0 +
∑d

i=1 pi < p0, i.e., P (1) ∈ N . Let

α =
d−1∑

i=0

d−1∑

j=i

pd+i−jx
i.

Then T
(0)
0 (α) =

∑d
i=1 pi, hence −p0 < T

(0)
0 (α) < 0, which implies q = bT (0)

0 (α)/p0c = −1.
Thus T (α) = α 6= 0 and α does not have a representation in {P (x),N} by Lemma 3. 2

We wish to summarize some inequalities satisfied by a cubic CNS. These were proved
by W.J. Gilbert [2]. For the sake of completeness we are given here a slightly different
proof.

Proposition 1 Let {P (x),N} be a cubic CNS. Then we have the following inequalities:

1 + p1 + p2 ≥ 0, (7)

p0 + p2 > 1 + p1, (8)

p0p2 + 1 < p2
0 + p1, (9)

p2 ≤ p0 + 1, (10)

p1 < 2p0, (11)

p2 ≥ 0. (12)

Proof: Lemma 4 implies (7). By a similar argument to Lemma 4, we see P (−1) > 0.
This shows (8). If P (−p0) ≥ 0 then there exists a real root less than or equal to −p0.
Since p0 is the product of the three roots of P (x), this implies that there exists a root
whose modulus is less than or equal to 1. This shows P (−p0) < 0 which is (9).

Let γi (i = 1, 2, 3) be the roots of P (x). Noting xy + 1 > x + y for x, y > 1, we see

|p2| = |γ1 + γ2 + γ3| < |γ1γ2|+ |γ3|+ 1 < |γ1γ2γ3|+ 2 = p0 + 2.
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Thus we have (10). Using (8) we have (11).
Finally we want to show (12). By (7), if p2 < 0 then p1 ≥ 0. Let w = x + p2. By (8),

we have p2 > −p0. Thus
T (w) = x2 + p2x + p1 + 1.

Since 1 ≤ p1 + 1 ≤ p0 + p2 < p0, we see p1 + 1 ∈ N . Thus we have

T (2)(w) = x + p2 = w.

Hence T (2k)(w) = w and T (2k+1)(w) = x2 + p2x + p1 + 1 for all k ≥ 0, i.e., T (j)(w) 6= 0
holds for all j ≥ 0. By Lemma 4 w is not representable in {P (x),N}. This completes the
proof of the proposition. 2

We can find a CNS with pd−1 = −1 when d = 2 or d ≥ 4.

4 Proof of Theorem 1.

Proof:
Let η be a positive number and put p∗i = pi if pi 6= 0 and p∗i = η otherwise. Taking a

small η, we may assume

p0 ≥ (1 + 1/M)
d∑

i=1

|p∗i |.

Define the weight of α ∈ R by

W(α) = max



M, max

i=0,1,...,d−1

|T (0)
i (α)|

∑d
k=i+1 |p∗k|



 . (13)

Obviously the weight of α takes discrete values. We have

|T (0)
i (α)| ≤ W(α)

d∑

k=i+1

|p∗k|,

by definition. Remark that this inequality is also valid when i = d.
First we show that W(T (α)) ≤ W(α) for any α ∈ R. If |T (0)

0 (α)/p0| ≥ M then we
have

∣∣∣∣∣∣

T
(0)
0 (α)

p0


∣∣∣∣∣∣
<

∣∣∣∣∣∣
T

(0)
0 (α)

p0

∣∣∣∣∣∣
+ 1 ≤

(
1 +

1

M

) ∣∣∣∣∣∣
T

(0)
0 (α)

p0

∣∣∣∣∣∣
≤ |T (0)

0 (α)|
∑d

k=1 |p∗k|
≤ W(α).

If |T (0)
0 (α)/p0| < M , we see bT (0)

0 (α)/p0c ∈ [−M,M − 1]∩ Z. (Here we used the fact that

M is a positive integer.) This shows |bT (0)
0 (α)/p0c| ≤ M ≤ W(α). So we have shown

∣∣∣∣∣∣

T
(0)
0 (α)

p0


∣∣∣∣∣∣
≤ W(α)
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for any α. We note that the equality holds only when q0 = bT (0)
0 (α)/p0c = −M . This

fact will be used later. Recall the relation:

T (α) =
d−1∑

i=0

(T
(0)
i+1(α)− q0pi+1)x

i

with q0 = bT (0)
0 (α)/p0c. So we have

∣∣∣T (0)
i+1(α)− q0pi+1

∣∣∣
∑d

k=i+1 |p∗k|
≤ W(α)

∑d
k=i+2 |p∗k|+W(α)|pi+1|∑d

k=i+1 |p∗k|
≤ W(α),

which shows W(T (α)) ≤ W(α).

If {P (x),N} is a CNS then every element of form (4) must have a representation in
{P (x),N}.

Assume that {P (x),N} is not a CNS. Then there exist elements of R which do not
have any representation in {P (x),N}. Let κ ∈ R be such an element of minimum weight.
Our purpose is to prove that there exists some m such that T (m)(κ) must have the form
(4). First we show W(κ) = M . So assume that W(κ) > M . Then we have

W(κ) = max
i=0,1,...,d−1

|T (0)
i (κ)|

∑d
k=i+1 |p∗k|

.

Since p∗i 6= 0, reviewing the above proof, we easily see W(T (κ)) < W(κ) when q0 6= −M .

By the minimality of κ, we see bT (0)
0 (κ)/p0c = −M and W(T (κ)) = W(κ). Repeating

this argument we have

qj =

T
(j)
0 (κ)

p0

 = −M, j = 0, 1, . . . , d− 1.

By (5) with k = i = d and α = κ, we have

T
(d)
j (κ) = −

d−j∑

`=1

qd−`pj+`

= −
d∑

`=j+1

qd−`+jp`

= M
d∑

`=j+1

p`,

but this implies W(T (d)(κ)) = M , which contradicts the inequality W(κ) > M . This
shows W(κ) = M and moreover W(T (j)(κ)) = M for any j. So we have

|T (j)
0 (κ)|
p0

≤ |T (j)
0 (κ)|

(1 + 1/M)
∑d

k=1 |p∗k|
≤ M2

1 + M
< M,
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which shows qj = [−M,M − 1]∩ Z for j ≥ 0. Again by (5) with k = i = d and α = κ, we
have

T
(d)
` (κ) = −

d−1∑

j=`

qjpd+`−j.

Letting εj = −qj ∈ [1−M,M ] ∩ Z, we have

T (d)(κ) =
d−1∑

`=0




d−1∑

j=`

εjpd+`−j


 x`,

which has the form (4). This proves the assertion. 2

Remark 1 The integer assumption on M is not necessary for the above proof but we
cannot get a better bound by choosing non-integer M ≥ 1.

Remark 2 To derive a result of this type, we first used the length of α (
∑d−1

i=0 |T (0)
i |)

instead of the weight and used a technique inspired by the analysis of the running time of
the euclidean algorithm. (See e.g. [10].) Under this choice, we could only show a rather
bad bound but it was an inspiring experience for us.

5 Proof of Theorem 2.

Proof: Define

α(ε0, . . . , εd−1) =
d−1∑

i=0




d−1∑

j=i

εjpd+i−j


 xi.

Since the assumption of Theorem 1 is satisfied with M = 1, it is enough to prove that every
element of the form α = α(ε0, . . . , εd−1) with εj ∈ {0, 1}, 0 ≤ j ≤ d− 1 is representable in
{P (x),N}. A simple computation shows that

|T (0)
i (α)| ≤ L(P ) < p0.

This means that if T
(0)
i (α) ≥ 0 for some i, then T

(0)
i (α) ∈ N , otherwise p0−T

(0)
i (α) ∈ N .

If p1 ≥ 0, then T
(0)
i (α) ≥ 0 for all i, such that 0 ≤ i ≤ d − 1 and for all choices of

εj ∈ {0, 1}, 0 ≤ j ≤ d− 1. Similarly, as p2, . . . , pd−1 are non-negative T
(0)
i (α) ≥ 0 for all i,

such that 1 ≤ i ≤ d− 1. If εd−1 = 0 then T
(0)
0 (α) =

∑d−2
j=0 εjpd−j > 0. In these cases every

α of form (4) is representable in {P (x),N}.
We assume p1 < 0 and εd−1 = 1 in the sequel. Let εj ∈ {0, 1}, 0 ≤ j ≤ d− 1 be fixed.

Put α = α(ε0, . . . , εd−1). If T
(0)
0 (α) ≥ 0, then α is representable in {P (x),N}. Thus we

may assume T
(0)
0 (α) < 0. Then there exists an i with 0 ≤ i < d − 1 such that εi = 0

because
∑d

j=1 pj ≥ 0 by Lemma 2. Let j be the index such that εj = . . . = εd−1 = 1, but
εj−1 = 0. We apply to α the transformation T several times and ultimately we obtain an
element, which is represented in {P (x),N}.
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Indeed, as T
(0)
0 (α) < 0 we have q0 =

T
(0)
0 (α)

p0

 = −1. Putting εd = 1 we obtain

T (1)(α) =
d−1∑

i=0




d−1∑

j=i

εj+1pd+i−j


 xi.

Hence T (1)(α) = α(ε1, . . . , εd). If T
(1)
0 (α) ≥ 0 then this is already the representation

of T (1)(α) in {P (x),N}. Otherwise, i.e., if T
(1)
0 (α) < 0 we continue the process with

q1 =

T
(1)
0 (α)

p0

 = −1 and εd+1 = 1. Hence either T
(k)
0 (α) ≥ 0 for some k < j − 1 or

T
(k)
0 (α) < 0 for all k with 0 ≤ k < j−1. In the second case we have T (j−1)(α) = α(1, . . . , 1).

Thus there exists always a k ≥ 0 such that T (k)(α) is representable in {P (x),N}. Theorem
2 follows now immediately from Lemma 3. 2

6 Proof of Theorem 3.

For

α = α(ε0, . . . , εd−1) =
d−1∑

i=0

(
d−1∑

j=i

εjpd+i−j)x
i (14)

with εi ∈ Z, i = 0, . . . , d− 1 let

E(α) = max{|εi|, i = 0, . . . , d− 1}.

With this notation we prove the following useful lemma.

Lemma 5 Assume that p0 ≥ L(P ) and that α is given in the form (14). Then

E(T (α)) ≤ E(α).

Proof: Taking

q =

 1

p0

d−1∑

j=0

εjpd−j



we have
1

p0

d−1∑

j=0

εjpd−j − 1 < q ≤ 1

p0

d−1∑

j=0

εjpd−j.

The inequality ∣∣∣∣∣∣
1

p0

d−1∑

j=0

εjpd−j

∣∣∣∣∣∣
≤ E(α)L(P )

p0

≤ E(α)

implies
|q| ≤ E(α).
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Putting εd = −q we obtain

T (α) =
d−1∑

i=0

(
d−1∑

j=i

εj+1pd+i−j)x
i,

which implies
E(T (α)) = max{|ε1|, . . . , |εd−1|, |εd|} ≤ E(α).

The lemma is proved. 2

Now we are in the position to prove Theorem 3.
Assume that there exists some ` with 0 < ` < d, such that p` +

∑d
j=`+1 |pj| < 0. We

show that −1 is not representable in {P (x),N}. More precisely we prove for all k ≥ 0

that at least one of the T
(k)
j (−1), j = 0, . . . , d− 1, is negative.

This assertion is obviously true for k = 0. Let k ≥ 0 and assume that at least one of
the T

(k)
j (−1), j = 0, . . . , d− 1, is negative. We have

−1 =
d−1∑

i=0

(
d−1∑

j=i

εjpd+i−j)x
i

with ε0 = −1 and εj = 0, j = 1, . . . , d− 1. Hence

T (k)(−1) =
d−1∑

i=0

(
d−1∑

j=i

εj+kpd+i−j)x
i

holds with |εj+k| ≤ 1, j = 0, . . . , d− 1, by Lemma 5 for all k ≥ 0. Hence we have

T (k+1)(−1) =
d−1∑

i=0

(
d−1∑

j=i

εj+k+1pd+i−j)x
i

with εd+k = −bT (k)
0 (−1)/p0c. We distinguish three cases according to the values of εd+k.

Case 1: εd+k = −1. Then T
(k+1)
d−1 (−1) = εd+kpd = −1. Hence the assertion is true for

k + 1.
Case 2: εd+k = 0. Then T

(k+1)
j (−1) = T

(k)
j+1(−1) for j = 0, . . . , d− 2, and T

(k+1)
d−1 (−1) =

0. There exists by the hypothesis a j with 0 ≤ j ≤ d − 1 such that T
(k)
j (−1) < 0. This

index cannot be zero because εd+k = 0. Hence j > 0 and T
(k+1)
j−1 (−1) = T

(k)
j (−1) < 0. The

assertion is true again.
Case 3: εd+k = 1. In this case we have

T
(k+1)
`−1 (−1) = εk+`pd + . . . + εk+d−1p`+1 + εk+dp`

= εk+`pd + . . . + εk+d−1p`+1 + p` ≤ p` +
d∑

j=`+1

|pj| < 0

because |εk+j| ≤ 1, j = `, . . . , d− 1, by Lemma 5. Theorem 3 is proved.
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[8] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad.
Sci. Hungar. 37 (1981), 405–407.
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[10] A. Pethő, Algebraische Algorithmen, Vieweg Verlag, 1999.
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