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Abstract. Assume that n persons communicate via a channel; to each person a certain
number is attached, and the goal is to see the numbers of all persons, e. g. in order to
sort them. In this paper three algorithms to achieve this are analyzed with respect to
the average number of rounds. While a precise description of the algorithmic aspects can
be found in the companion paper [14], we concentrate here on the mathematical aspects
of the analysis. The quantities of interest can be written as certain contour integrals
involving zeta functions. The numerical evaluation leads first via residues to extremely
slowly converging series, and the acceleration of them is a nontrivial task that is done in
a slightly more general fashion in order to fit all the applications.

1. Introduction

The purpose of this paper is two-fold: firstly we want to discuss a probabilistic model for
conflict resolution in broadcast communication and secondly we want to present a method
to compute certain integrals which occur in the asymptotic analysis of this model (and
also elsewhere) numerically to a high precision.

Let us first describe the model: Assume that n persons communicate via a channel; to
each person a certain number is attached, and the goal is to see the numbers of all persons,
e. g. in order to sort them.

We will analyze three algorithms to achieve this; the interest is in the average number
of rounds.

When more than one person sends at a time, a conflict arises. The conflict resolution
schemes that are considered here are all based on coin flippings: The persons involved in
a conflict flip a coin, and those who flipped tail step out and wait until those who flipped
head have resolved their conflict.

A key issue is the selection of a loser, see [5, 10]; it is also known as leader election,
see [11, 2, 7]. (The loser is determined by consecutive rounds of coin flippings; those who
flip heads create smaller and smaller populations until a single person remains. There is
a special rule to be applied however when nobody flips head; then this round has to be
repeated.) The loser announces his number, and then a recursive strategy is applied.

The first algorithm finds the maximal number present in the file. Such an algorithm
per se appeared in [12, 4]. It needs several rounds of recursive coin flippings; after each
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round (a successful broadcast of a number) only the persons with larger numbers than the
announced one go on recursively. Thus, in the process of finding the maximum, we see
already several people (those who broadcast successfully). They are taken out, and the
remaining set of people follow the same strategy recursively, until no persons are left. See
[14] for a more detailed description of the algorithm.

The second algorithm does not use maxima; it is the loser who announces his number,
and he therefore splits the set of persons into two subfiles (larger resp. smaller numbers),
and one can go on recursively with the two subfiles, until all persons have been seen. See
[13] for a detailed description.

Finally, we discuss a very naive strategy, where we just take the loser out, and find the
next loser of the reduced set of n− 1 persons, etc. This is naturally slower.

Loser selection works by coin flippings; the first two algorithms use additionally a split-
ting à la binary search, whereas the naive strategy only works sequentially. It turns out
that the second algorithm is the best, the intuitive reason being perhaps that it is good to
split the file as soon as possible, i. e. when the first loser has been found.

The average number of rounds to select a loser is given by the recursion

Sn(1− 2−n) = 1 + 2−n

n∑

k=0

(
n

k

)
Sk, n ≥ 2, S0, S1 = 0.

(Note that this algorithm itself is recursive).
From [10] we know the solution

Sn = 1−
n−1∑

k=1

(
n

k

)
Bk

2k − 1
, n ≥ 2

with Bernoulli numbers Bk.
There is also the very useful representation of Sn as a contour integral, viz.

Sn = 1−
1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(1− s)Γ(n+ 1)ζ(1− s)

Γ(n+ 1− s)(2s − 1)
ds.

See [3] for some background on such integrals.
The average number of rounds Mn to find the maximum [12, 4] is given by

Mn = 1 +
n−1∑

k=0

2Bk

1− 2−k−1

[(
n

k + 1

)
− 1

]
, n ≥ 0;

it was also proved that

Mn −Mn−1 =
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

Γ(n)Γ(1− s)

Γ(n− s)

2ζ(1− s)

1− 2−s−1
ds.
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Several parameters of the probabilistic model described above can be expressed in terms
of series involving the sequences Mn and Sn. These series turn out to converge very slowly
so that they are not even suitable to compute three digits of the values in question. In the
specific case here the second possibility to compute these constants is also not applicable:
deform the line of integration in the contour integral representation and collect residues
(cf. section 5). Here the resulting series is again converging too slowly. In section 6 we will
describe how to use the integral representation to obtain a rapidly converging algorithm
for numerical computation of these integrals. This algorithm is formulated rather general
and could be applied to similar problems immediately.

Remark. If the only task were to see all the elements, then the most obvious
strategy is the conflict resolution scheme as described in [8]; everybody shouts in the
beginning, and then the conflict is resolved by consecutive rounds of coin flippings.
The average number of rounds for that is (apart from small fluctuations) 2

log 2
n; the

constant 2
log 2

= 2.885390082 is better than the constants for the algorithms in this
paper. However, in this way the data arrive in random order, whereas the strategies
in this paper produce the sorted file very easily (one can think about the data as
arranged in the Quicksort tree [11]), from which sorting is trivial.

2. The maximum finding strategy

Denote by Tn the average number of rounds with this method. Shiau and Yang [14]
argue like this: There are extra costs of Mn for finding the maximum on the first level
of recursion. The first successful broadcast, which can be any element with the same
probability 1

n
, splits the file into a subfile of n − k − 1 smaller elements to which the

recursive strategy is applied at a later stage, with costs Tn−k−1. In the file of k larger
elements, the search for the maximum is still continuing, but we have taken care already
for the extra cost for maximum searching, thus a contribution Tk −Mk. If k = 0, it costs
however 0, and if k = 1, it costs 1, so that we have the recursion for n ≥ 2

Tn =Mn +
1

n

n−1∑

k=0

Tk +
1

n

n−1∑

k=2

(Tk −Mk) +
1

n
,

with T0 = 1 and T1 = 1.
We multiply that by n:

nTn = nMn +
n−1∑

k=0

Tk +
n−1∑

k=2

(Tk −Mk) + 1,

write this with n replaced by n− 1:

(n− 1)Tn−1 = (n− 1)Mn−1 +
n−2∑

k=0

Tk +
n−2∑

k=2

(Tk −Mk) + 1,

and take differences:

nTn − (n− 1)Tn−1 = nMn − (n− 1)Mn−1 + Tn−1 + Tn−1 −Mn−1,
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or (replacing n by k)
Tk

k + 1
−
Tk−1

k
=
Mk −Mk−1

k + 1
.

Summing this from k = 3, . . . , n we get

Tn

n+ 1
−
T2

3
=

n∑

k=3

Mk −Mk−1

k + 1

or

Tn =
13

6
(n+ 1) + (n+ 1)

n∑

k=3

Mk −Mk−1

k + 1
.

Since asymptotics of Mn are well–known [4] we know a priori that Tn ∼ A1 · n, where the
constant A1 is given by

A1 =
13

6
+

∞∑

k=3

Mk −Mk−1

k + 1
.

(With more effort, one could derive a full asymptotic expansion; see section 6 for such
computations.)

As cited already in the introduction,

Mk −Mk−1 =
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

Γ(k)Γ(1− s)

Γ(k − s)

2ζ(1− s)

1− 2−s−1
ds

and therefore

∞∑

k=3

1

k + 1
(Mk −Mk−1) =

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

∞∑

k=3

Γ(k)Γ(1− s)

(k + 1)Γ(k − s)

2ζ(1− s)

1− 2−s−1
ds. (1)

Define

f(s) := Γ(1− s)

∞∑

n=3

Γ(n)

(n+ 1)Γ(n− s)
= −

6s2 − 3s− 5

6(s− 1)
− s(s+ 1)ψ′(−s), (2)

where as usual ψ(s) = Γ′(s)
Γ(s)

(identity (2) was found with the help of Mathematica c©).

As ψ(s) is given by the uniformly convergent expansion

ψ(s) =

∞∑

n=0

1

(n+ s)2

it is easy to see that ψ has double poles at the negative integers. For further details on ψ
we refer to [9, 15]. Furthermore, we note that (cf. [1]) for | arg(−s)| < π

ψ′(−s) = −
1

s
+

1

2s2
−

1

6s3
+

1

30s5
+O(|s|−6).
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Using the identity

ψ′(s) + ψ′(−s) =
π2

sin2 πs
+

1

s2

we can find an estimate valid for all s with ∀n ∈ N0 : |s− n| > ε:

f(s) = O

(
1

|s|2
+

1

ε2
e−2π|ℑs|

)
. (3)

Our goal is to compute the integral

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)
2ζ(1− s)

1− 2−s−1
ds.

Expanding the ζ–function and the geometric series it is

∑

k≥1

1

k

∑

j≥0

21−j 1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)
( k
2j

)s
ds.

For the evaluation of the integral we need now

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)xsds =






0 for x ≥ 1
(3− x)(1 + x+ x2)

3(1− x)2
+

2x log x

(1− x)3
for 0 < x < 1.

(4)

This equation is achieved as follows (this is actually a standard technique in analytic
number theory): to obtain the formula for x ≥ 1 consider the integral over the segment
{−1

2
+ it | −R ≤ t ≤ R} and the arc {σ + it | σ2 + t2 = R2, σ < −1

2
}. Since the integrand

has no poles in this region, the integral vanishes; now let R tend to ∞ and observe that
the estimate (3) implies that the integral over the arc tends to 0. For x < 1 we shift the
line of integration to the right (technically, we again truncate the integral at t = ±R and
show that the contribution tends to 0 for R → ∞) and collect residues:

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)xs ds = −

K∑

k=1

Res
s=k

{
f(s)xs

}
+

1

2πi

K+ 1

2
+i∞∫

K+ 1

2
−i∞

f(s)xs ds.

By (3) the integral is bounded by O(xK), which allows the limit K → ∞. Computing the
residues and summing up yields the desired result.

Using (4) we obtain

∑

k≥1

1

k

∑

j≥0

21−j 1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)
( k
2j

)s
ds = 2

∑

j≥0

∑

1≤k<2j

2−j

k
Φ
( k
2j

)
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with

Φ(t) :=
(3− t)(1 + t+ t2)

3(1− t)2
+

2t log t

(1− t)3
.

Observe that Φ(1) = 0, so that we can add the term k = 2j to the sum.
In section 6 we will explain how to compute such sums numerically to a high precision.

Therefore we get

A1 =
13

6
+ 2 · 0.756579 · · · = 3.679826.

Note that the paper [14] provides the elementary bounds 7
2
= 3.5 ≤ A1 ≤

23
6
= 3.833 · · · .

3. Splitting the file using the loser

It is not hard to find a recursion for Tn, the average number of rounds for this method.
(We use the notation Tn again, but there is no chance for confusion.) The values T0 = 1
and T1 = 1 are self-explanatory, and for n ≥ 2 we have

Tn = 1 + Sn +
1

n

n−1∑

k=0

(Tk + Tn−1−k);

the 1 counts the initial broadcast, causing the conflict, which needs Sn to be resolved.
Then, the probability is uniformly 1

n
that the file splits. (See [13] for a more elaborate

description.)
The traditional method to solve that is as in the previous section:

nTn = n+ nSn + 2
n−1∑

k=0

Tk;

replace n by n− 1

(n− 1)Tn−1 = n− 1 + (n− 1)Sn−1 + 2

n−2∑

k=0

Tk

and subtract to get

nTn − (n+ 1)Tn−1 = 1 + nSn − (n− 1)Sn−1.

Divide this by n(n+ 1):

Tn

n + 1
−
Tn−1

n
=

1

n
−

1

n + 1
+

Sn

n+ 1
−

n− 1

n(n + 1)
Sn−1

and sum this from n = 3, . . . , N , but write again n for N :

Tn

n+ 1
−

5

3
=

1

3
−

1

n + 1
+

n∑

k=3

Sk

k + 1
+

n∑

k=3

(1
k
−

2

k + 1

)
Sk−1

or

Tn

n+ 1
= 2−

1

n+ 1
−

Sn

n+ 1
+

2

3
+ 2

n∑

k=3

Sk

k + 1
− 2

n∑

k=3

Sk−1

k + 1
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from which we conclude that

Tn =
8

3
n+

5

3
− Sn + 2(n+ 1)

n∑

k=3

Sk − Sk−1

k + 1
.

(In [13] this is slightly wrong.) We know again a priori that Tn ∼ A2 · n. Our aim is
compute this constant A2:

A2 =
8

3
+ 2

∞∑

k=3

Sk − Sk−1

k + 1
. (5)

From the integral formula for Sk we conclude that

Sk − Sk−1 = −
1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(1− s)Γ(k + 1)ζ(1− s)

Γ(k + 1− s)(2s − 1)
ds+

1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(1− s)Γ(k)ζ(1− s)

Γ(k − s)(2s − 1)
ds

= −
1

2πi

1

2
+i∞∫

1

2
−i∞

sΓ(1− s)Γ(k)ζ(1− s)

Γ(k + 1− s)(2s − 1)
ds.

Define

f(s) = Γ(1− s)
∑

k≥3

1

k + 1

Γ(k)

Γ(k + 1− s)
,

which makes sense for ℜs < 1. Mathematica c© found the identity

f(s) =
6s2 − 15s+ 4

6(s− 1)(s− 2)
−

1

s
+ sψ′(−s),

which provides the analytic continuation of f(s) (notice that this identity is equivalent to
(2)). Then

A2 =
8

3
+ 2 ·

1

2πi

1

2
+i∞∫

1

2
−i∞

sf(s)ζ(1− s)

2s − 1
ds.

Note that
1

2s − 1
=
∑

k≥1

2−ks.

Therefore

1

2πi

1

2
+i∞∫

1

2
−i∞

sf(s)ζ(1− s)

2s − 1
ds =

∑

k≥1

1

2πi

1

2
+i∞∫

1

2
−i∞

sf(s)ζ(1− s)2−ks ds.
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The integral

1

2πi

1

2
+i∞∫

1

2
−i∞

sf(s)ζ(1− s)2−ks ds

can be computed by shifting the line of integration to ℜs = −1
2
(again this is justified by

the growth rate of the integrand) and expanding the ζ–function:

∞∑

n=1

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

sf(s)ns−12−ks ds.

Thus it remains to compute the function

h(x) =
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

sf(s)xs ds.

This is done in a similar way as above and gives

h(x) =





x(17− 14x+ 13x2 − 4x3)

6(x− 1)2
−

x+ x2

(x− 1)3
log x for 0 < x ≤ 1

0 for x > 1.

With this notation, the constant A2 evaluates to

A2 =
8

3
+ 2

∑

j≥0

∑

1≤k<2j

1

k
Ψ
( k
2j

)
= 3.5455178132673228852,

where we write

Ψ(t) =
t(17− 14t+ 13t2 − 4t3)

6(t− 1)2
−
t(1 + t)

(t− 1)3
log t;

(see the last section for such evaluations).
Note also that the paper [13] gives the bounds (after correcting the simple error) 3.33 · · · ≤

A2 ≤ 4.

4. The naive algorithm

The average cost of selecting one loser is given by cn = 1 + Sn with the quantities Sn

from the introduction. Thus we have

cn = 2−
n−1∑

k=1

(
n

k

)
Bk

2k − 1
.

In total, we need to evaluate

Cn = c1 + · · ·+ cn.
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We know

n−1∑

k=1

(
n

k

)
Bk

2k − 1
=

1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(n+ 1)Γ(1− s)

Γ(n+ 1− s)

ζ(1− s)

2s − 1
ds;

since c1 = 1 and c2 = 3 this leads to

Cn = 2n−

n∑

k=3

1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(k + 1)Γ(1− s)

Γ(k + 1− s)

ζ(1− s)

2s − 1
ds.

As before we sum up the terms in the integral

n∑

k=3

Γ(k + 1)Γ(1− s)

Γ(k + 1− s)
=

Γ(n+ 2)Γ(1− s)

(s+ 1)Γ(n+ 1− s)
−

6

(s− 1)(s− 2)(s+ 1)

and obtain

Cn = 2n+
1

2πi

1

2
+i∞∫

1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)

ζ(1− s)

2s − 1
ds

−
1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(n+ 2)Γ(1− s)

(s+ 1)Γ(n+ 1− s)

ζ(1− s)

2s − 1
ds.

(6)

Now we use
Γ(n+ 2)

Γ(n+ 1− s)
= ns+1

(
1−

(s− 3)(s+ 1)

2n
+O

( |s|4
n2

))
(7)

(cf. [1]) to obtain

Cn = 2n+
1

2πi

1

2
+i∞∫

1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)

ζ(1− s)

2s − 1
ds

−
1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(1− s)
ζ(1− s)

2s − 1
ns+1 ds

+
1

2πi

1

2
+i∞∫

1

2
−i∞

Γ(1− s)
(s− 3)(s+ 1)

2

ζ(1− s)

2s − 1
ns ds+O(n− 1

2 ).

(8)
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We shift the line of integration to ℜs = −1
2
and obtain by calculating the residues at

the poles on the line ℜs = 0

Cn = 2n+
1

2πi

1

2
+i∞∫

1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)

ζ(1− s)

2s − 1
ds−

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

Γ(1− s)
ζ(1− s)

2s − 1
ns+1 ds

+
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

Γ(1− s)
(s− 3)(s+ 1)

2

ζ(1− s)

2s − 1
ns ds+ n log2 n−

1

2
n+ nF (log2 n)

+
3

2
log2 n +

1

log 2
−

3

4
+G(log2 n) +O(n− 1

2 ),

where F and G denote two periodic continuous functions of period 1 and mean 0 given by
their Fourier-expansions (χk =

2kπi
log 2

)

F (x) = −
1

log 2

∑

k∈Z\{0}

Γ(1− χk)ζ(1− χk)e
2kπix

G(x) = −
1

2 log 2

∑

k∈Z\{0}

(1 + χk)(3− χk)Γ(1− χk)ζ(1− χk)e
2kπix.

(9)

It remains to compute the integral

I =
1

2πi

1

2
+i∞∫

1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)

ζ(1− s)

2s − 1
ds.

This is done as follows:

I =
∞∑

k=1

1

2πi

1

2
+i∞∫

1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)
ζ(1− s)2−ks ds

=
∞∑

k=1

(
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)
ζ(1− s)2−ks ds− 3

)

=
∞∑

k=1

∞∑

n=1

(
1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)
ns−12−ks ds− 3

)
.
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As before we compute the integral

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

6

(s− 1)(s− 2)(s+ 1)
xs ds =

{
3x− 2x2 for 0 < x ≤ 1
1
x

for x > 1.

We obtain

I =
∞∑

k=1

( 2k∑

n=1

1

n

(
3
( n
2k

)
− 2

( n
2k

)2)
+ 2k

∞∑

n=2k+1

1

n2
− 3

)
.

After summing up the first sum and some obvious cancellation we arrive at

I =

∞∑

k=1

(
2k

∞∑

n=2k

1

n2
− 1

)
.

This can be computed by the methods outlined in section 6; the numerical value is given
by

I = 0.55362 35886 51960 06650 57338 02083 98410 43408 93083 09495 . . . .

This gives

Cn = n log2 n+
3

2
n+ nF (log2 n) +

3

2
log2 n+B +G(log2 n) +O(n− 1

2 )

with

B =
1

log 2
−

3

4
+ I = 1.24631 86295 40923 47386 56584 83085 87624 17675 39037 2479 . . . .

5. Mellin Integrals

One possible way to give a reasonably convergent series expansion for the value of an
integral of the form

1

2πi

1

2
+i∞∫

1

2
−i∞

f(s)
ζ(1− s)

2s − 1
ds (10)

would be to move the line of integration to the left. This yields

1

2πi

1

2
+i∞∫

1

2
−i∞

f(s)
ζ(1− s)

2s − 1
ds =

∑

k∈Z

Res
s=χk

{
f(s)

ζ(1− s)

2s − 1

}
+

1

2πi

− 1

2
+i∞∫

− 1

2
−i∞

f(s)
ζ(1− s)

2s − 1
ds, (11)

where again χk = 2kπi
log 2

. Under the growth condition |f(s)| = O(|s|−2) the last integral

is zero by the same arguments as used above. Thus we have a series expansion for the
integral (10)

1

log 2

∑

k∈Z\{0}

f(χk)ζ(1− χk) + Res
s=0

{
f(s)

ζ(1− s)

2s − 1

}
.
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Unfortunately, the rate of convergence of this sum is not better than the rate of con-
vergence of the sums (1) and (5). Thus this method does not yield a numerically feasible
method to compute integrals of the form (10). The next section will describe how to find
high precision approximations to the numerical value of such integrals.

6. How to compute the integrals numerically

In this section we discuss how to compute a sums like

S1 =
∑

j≥0

∑

1≤k<2j

2−j

k
Φ
( k
2j

)
and S2 =

∑

j≥0

∑

1≤k<2j

1

k
Φ
( k
2j

)
(12)

numerically. We assume that Φ ∈ C2m(0, 1], Φ(0) = D, and

Φ(t)−D

t
=

2m∑

ℓ=0

Cℓt
ℓ log t+Q2m(t) +O(t2m+1 log t), (13)

where Q2m ∈ C2m+1[0, 1] and Cℓ are constants (these two properties are satisfied for the
functions to which these studies will be applied later).

In the sequel we will use the Bernoulli-polynomials Pk(t) defined by

∞∑

ℓ=0

Pℓ(t)
zℓ

ℓ!
=

zezt

ez − 1

and the Bernoulli numbers Bℓ = Pℓ(0). Throughout this section we use the notation {x}
to indicate the fractional part of x.

Then we have

∑

1≤k≤2j

1

k
f
( k
2j

)
=

2j∑

k=1

1

k

(
f
( k
2j

)
−D

)
+D

2j∑

k=1

1

k

=
2j∑

k=1

1

k

(
f
( k
2j

)
−D

)

+D

(
j log 2 + γ +

1

2j+1
−

m∑

ℓ=1

B2ℓ

2ℓ

1

22ℓj
+ 2−(2m+1)j

∞∫

1

P2m+1({2
jx})x−2m−2 dx

)

= 2−j

2j∑

k=1

[
2j

k

(
f
( k
2j

)
−D

)
−

2m∑

ℓ=0

Cℓ

( k
2j

)ℓ
log

k

2j

]

+

2m∑

ℓ=0

Cℓ2
−j

2j∑

k=1

( k
2j

)ℓ
log

k

2j
+D

(
j log 2 + γ +

1

2j+1
−

m∑

ℓ=1

B2ℓ

2ℓ

1

22ℓj
+Rj

)

where |Rj| ≤
1

2m+1
‖P2m+1‖∞2−(2m+1)j .
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We set g(t) = g2m(t) =
f(t)−D

t
−
∑2m

ℓ=0Cℓt
ℓ log t; under our assumptions on f , the function

g is 2m times differentiable on [0, 1] and the (2m+ 1)–st derivative is in L1[0, 1]. Then we
have

2−j

2j∑

k=1

g
( k
2j

)
=

1∫

0

g(t) dt+
1

2

(
g(1)− g(0)

)
2−j +

m∑

ℓ=1

B2ℓ

(2ℓ)!

(
g(2ℓ−1)(1)− g(2ℓ−1)(0)

)
2−2ℓj

+
1

(2m+ 1)!
2−(2m+1)j

1∫

0

P2m+1({2
jx})g(2m+1)(x) dx (14)

=

1∫

0

g(t) dt+
1

2

(
g(1)− g(0)

)
2−j +

m∑

ℓ=1

B2ℓ

(2ℓ)!

(
g(2ℓ−1)(1)− g(2ℓ−1)(0)

)
2−2ℓj +R′

j

with |R′
j | ≤

1
(2m+1)!

‖P2m+1‖∞‖g(2m+1)‖1.

Finally, we compute the sums

2−j

2j∑

k=1

( k
2j

)r
log

k

2j
(15)

for r ∈ N0 using the Euler-MacLaurin summation formula. For this purpose we first
compute the sum

2−(s+1)j

2j∑

k=1

ks =
1

s+ 1
+

1

21+j
+

m∑

ℓ=1

B2ℓ

2ℓ

(
s

2ℓ− 1

)
2−2ℓj + 2−jsζ(−s)

− 2−(2m+1)j

(
s

2m+ 1

) ∞∫

1

P2m+1({2
jx})xs−2m−1 dx;

(16)

here we have used the identity (cf. [6])

ζ(−s) = −
1

s+ 1
+

1

2
−

m∑

ℓ=1

B2ℓ

2ℓ

(
s

2ℓ− 1

)
+

(
s

2m+ 1

) ∞∫

1

P2m+1({x})x
s−2m−1 dx,

which is valid for ℜs < 2m.
Differentiating (16) and setting s = r ∈ N0 yields

2−j

2j∑

k=1

( k
2j

)r
log

k

2j
= −

1

(r + 1)2
+

m∑

ℓ=1

B2ℓ

2ℓ

d

ds

(
s

2ℓ− 1

)∣∣∣∣
s=r

2−2ℓj

+ j2−jrζ(−r) log 2− 2−jrζ ′(−r) (17)

− 2−(2m+1)j d

ds

(
s

2m+ 1

)∣∣∣∣
s=r

∞∫

1

P2m+1({2
jx})xr−2m−1 dx;
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here we have used that
(

r

2m+1

)
= 0 for r < 2m. We note also that ζ(−r) = −Br+1

r+1
for r ≥ 1

and ζ(0) = −1
2
.

Finally, we observe that

d

ds

(
s

2ℓ− 1

)∣∣∣∣
s=r

=





(−1)r
r!(2ℓ− r − 2)!

(2ℓ− 1)!
for r ≤ 2ℓ− 2

(
r

2ℓ− 1

) 2ℓ−2∑

t=0

1

r − t
for r > 2ℓ− 2.

Inserting this into (17) and estimating the integral trivially yields

2−j

2j∑

k=1

( k
2j

)r
log

k

2j
= −

1

(r + 1)2
+

⌊ r+1

2
⌋∑

ℓ=1

B2ℓ

2ℓ

(
r

2ℓ− 1

) 2ℓ−2∑

t=0

1

r − t
2−2ℓj

+ j2−jrζ(−r) log 2− 2−jrζ ′(−r)

− (−1)r
m∑

ℓ=⌊ r+3

2
⌋

r!(2ℓ− r − 2)!

(2ℓ− 1)!

B2ℓ

2ℓ
2−2ℓj +Rj,r

(18)

with |Rj,r| ≤
r!(2m−r−1)!

(2m+1)!
2−(2m+1)j‖P2m+1‖∞.

Extending the last sum (18) to m + 2 for r = 2m and putting everything together we
obtain (the C0j2

−j log 2–term in the fourth line is to compensate the difference between
ζ(0) and B1)

2j∑

k=1

1

k
f
( k
2j

)
= D

(
j log 2 + γ +

1

2j+1
−

m∑

ℓ=1

B2ℓ

2ℓ
2−2ℓj +Rj

)
+

1∫

0

f(t)−D

t
dt+

1

2

(
g(1)− g(0)

)
2−j +

m∑

ℓ=1

B2ℓ

(2ℓ)!

(
g(2ℓ−1)(1)− g(2ℓ−1)(0)

)
2−2ℓj+ (19)

C0j2
−j log 2 +

2m∑

r=0

Cr

( ⌊ r
2
⌋∑

ℓ=1

B2ℓ

2ℓ

(
r

2ℓ− 1

) 2ℓ−2∑

t=0

1

r − t
2−2ℓj + j2−j(r+1)Br+1

r + 1
log 2−

2−j(r+1)ζ ′(−r)− (−1)r
m∑

ℓ=⌊ r+2

2
⌋

r!(2ℓ− r − 2)!

(2ℓ− 1)!

B2ℓ

2ℓ
2−2ℓj

)
+ R̃j

with

|R̃j| ≤ 2−(2m+1)j‖P2m+1‖∞

(
D

2m+ 1
+

1

(2m+ 1)!
‖g(2m+1)‖1 +

2m−1∑

r=0

Cr

r!(2m− r − 1)!

(2m+ 1)!

)

+ C2m

(
|ζ ′(−2m)|2−(2m+1)j + |B2m+2|2

−2j(m+1) +
‖P2m+3‖

2m+ 1
2−j(2m+3)

)
;
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here we have used that

1∫

0

f(t)−D

t
dt =

1∫

0

g(t) dt−

2m∑

r=0

Cr

(r + 1)2
.

For the function

f(t) = Φ(t) =
(3− t)(1 + t+ t2)

3(1− t)2
+

2t log t

(1− t)3

we have D = 1 and Cr = (r + 1)(r + 2), and
1∫
0

f(t)−1
t

dt = −11
6
.

For a numerical approximation of (12) we split summation at J and replace the infinite
part of the sum by the asymptotic estimate (19). For J = 10 and m = 10 this gives an
error estimate of 2.152 · 10−45. Thus we have

S1 = 0.75657 97214 59537 81423 01968 71433 28464 81778 24250 446 . . .

In a similar way we can treat the sum

S2 =
∑

j≥0

∑

1≤k<2j

1

k
Ψ
( k
2j

)

In this case D = 0 and
1∫
0

Ψ(x)
x
dx = 0. For J = 8 and m = 10 we obtain an error estimate

of 2.0765 · 10−48. Thus we have

S2 = 0.43942 55733 00328 10923 54579 37094 93117 34110 28053 . . .

7. Concluding remarks

The method for the numerical computation of Mellin integrals as described in section 6
can be easily generalized to integrals of the form

c+i∞∫

c−i∞

f(s)
ζ(1− s)

As − 1
ds for A > 1,

where f(s) is a meromorphic function in the whole complex plane satisfying the following
properties:

• f(s) = O(|s|−1−ε) for some positive ε and | arg(−s)| < π

• f(s) has no poles left of a line ℜs = σ0
• the sum over the residues Res f(s)xs converges for 0 < x < 1.
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If A is not an integer one has to use a slightly changed version of the Euler-MacLaurin
summation formula:

∑

1≤k<An

g

(
k

An

)
= An

1∫

0

g(x) dx−
1

2
g(0) + ({An} −

1

2
)g(1)+

m∑

ℓ=1

B2ℓ

(2ℓ)!

(
g(2ℓ−1)(1)− g(2ℓ−1)(0)

)
A−(2ℓ−1)n+

1

(2m+ 1)!

1∫

0

P2m+1({A
nx})g(2m+1)(x) dx.

Again singularities of g have to be subtracted as shown in section 6.
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