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Abstract

We study the problem of detecting all occurrences of (primitive) tandem repeats and tandem
arrays in a string. We .rst give a simple time- and space-optimal algorithm to .nd all tandem
repeats, and then modify it to become a time and space-optimal algorithm for .nding only the
primitive tandem repeats. Both of these algorithms are then extended to handle tandem arrays.
The contribution of this paper is both pedagogical and practical, giving simple algorithms and
implementations based on a su'x tree, using only standard tree traversal techniques. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Su'x trees are a fundamental data structure supporting a wide variety of e'cient
string searching algorithms. Their “myriad virtues” are well known [1], and more than
30 non-trivial applications have been collected [6, 12]. Although alternative algorithms
based on other data structures exist for many of these applications, it is remarkable that
this single data structure allows so many e'cient—and often surprisingly simple and
elegant—solutions to so many string searching and matching problems. In particular,
su'x trees are well known to allow e'cient and simple solutions to many problems
concerning the identi.cation and location of repeated substrings, where the substrings
are either not required to be contiguous, or where the substrings form the two halves
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of a palindrome (see [12] for a description of several of such problems). For example,
the simple method described in [12] to enumerate occurrences of all maximal pairs of
repeated substrings in time proportional to their number, has been independently found
by several people [15, 21, 28].

Despite the enormous versatility of su'x trees and their natural application to prob-
lems concerning non-contiguous repeats and palindromes, problems concerning con-
tiguous repeated substrings have not previously had simple, natural solutions based on
su'x trees. This is both surprising and disappointing, making it more di'cult to teach
e'cient algorithms for a wide range of string problems, and complicating the long-
term project (at U.C. Davis) of building practical, easily understood software for many
diJerent string tasks, based around a single resident data structure, the su'x tree. Such
tools are being developed for applications in bio-sequence analysis.

In this paper we are primarily concerned with .nding, in a long string, embedded
substrings of the form �k , where � is any (unspeci.ed) substring and k is at least
two. Such a substring �k is called a “tandem array”. When k is two, �k is also called
a “tandem repeat”. Note that in these de.nitions, all copies of � must be identical
and this will be implied by our use of “tandem repeat” and “tandem array” unless
stated otherwise. There is a large and current literature on studying and .nding tan-
dem repeats and tandem arrays in three .elds: computer science, mathematics, and
biology. A tandem repeat is also called a “square” in some computer science and
mathematics literature, and is also called a “direct repeat” in biological literature. The
computer science literature on tandem repeats and arrays spans almost two decades
[4, 2, 23, 24, 1, 5, 7, 19, 13, 18, 16, 17]. There is also a large literature on approximate
(non-identical) tandem repeats, and some of those papers (for example [22]) also dis-
cuss the problem of tandem repeats. Moreover, algorithmic issues of .nding tandem
repeats are discussed in depth in two current textbooks [6, 12] and reasons for interest
in tandem repeats in biology are discussed in [12]. We know of two computer compa-
nies that use tandem repeat .nders for certain web-related tasks. As for mathematical
results, there is an extensive discussion of square-free strings, but deep and current
results about strings containing tandem repeats have also been obtained, and appear
for example in [7, 29, 14, 11, 9, 10]. In the biological literature, algorithms for .nding
identical repeats were discussed early on in [26], and more recently, a system for .nd-
ing identical (but not speci.cally tandem) repeats in DNA and protein sequences was
developed [20], and other algorithms for .nding tandem repeats in biosequences (as
well as related problems) were discussed in [32]. There is extensive interest in many
types of repeats in molecular biology with an enormous literature. Overwhelmingly,
that literature concerns interspersed repeats, or approximate (non-identical) tandem re-
peats, but many papers do concern (identical) tandem repeats. For example, tandem
repeats are discussed in [31]: “There are sequence designs that promote evolution. One
such design suitable for fast adaptation is the tandem repetition of identical sequences,
so that their copy numbers in the repeat arrays would modulate (tune) the expression
of nearby genes”. As another example, an analysis of the adenovirus type 8 genome [3]
.nds “Two sets of tandem repeats, one with .ve identical 33 bp repeats and the other
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with more than ten identical 135bp repeats”. Note that the use of “tandem repeat” here
is what we call “tandem array”. Additional examples of complex (identical) tandem
repeats can be found in the biological literature.

The existing algorithmic literature contains methods for locating tandem repeats and
arrays [4, 23, 24, 22] that are not based on su'x trees, although the method in [22] uses
a su'x tree to solve certain subproblems. There are also two technically impressive
papers, [19] and [2], which present time- and space-optimal methods using su'x trees
for problems concerning tandem repeats. The methods in both of those papers are
quite complex (in algorithmic detail, needed auxiliary data structures, embellishments
required for optimal space use, or time and correctness proofs). The .rst of those
papers concerns problems not addressed here, while the second paper does concern
the same problems addressed here. The second paper processes a su'x tree from the
bottom up and requires considerable auxiliary data structures.

In this paper we present simple, time- and space-optimal algorithms for problems of
locating tandem repeats and arrays in a string S. Our methods only use standard tree
traversal techniques, assuming the su'x tree for S is available. Our methods process a
single su'x tree top down with only the addition of an array the size of the input string.
These simple methods have both pedagogical and practical value. The algorithms are
based on the fact that su'x trees allow the e'cient location of what we call branching
occurrences of tandem repeats in a string. Once these occurrences are found, almost
all other repetitive structures of interest can be determined with little additional eJort.
Hence our various algorithms are not only simple, they are all derivatives of a single,
basic algorithm. The earlier, conference version of this paper appeared in [30].

In Section 2 we introduce our terminology and state basic facts about the repeated
substrings we will search for. In Section 3 we present the basic algorithm and three
extensions. In Section 4 we sketch a bound on the number of occurrences of primitive
tandem arrays. Section 5 concludes with an open question.

2. Strings, su�x trees, and tandem arrays

2.1. Terminology and basic facts

We assume a .nite alphabet � of a .xed size. Throughout this paper, a; b; c; x; y
denote single characters from �; S; w; �; �; 
; � denote strings from �∗.

We .x attention to a string S of length n= |S|; for convenience, we assume S ends
with a character ‘$’ not occurring elsewhere in S. For 16i6j6n, S[i::j] denotes the
substring of S beginning with the ith and ending with the jth character of S; we say
there is an occurrence of S[i::j] at position i in S. When the substring consists of only
one letter we simply write S[i] rather than S[i::i].

A string w is a tandem array if it can be written as w= �k for some k¿2; otherwise
w is called primitive. An occurrence of a tandem array w= �k = S[i::i + k|�| − 1] is
represented by a triple (i; �; k). Such an occurrence is called right-maximal if there is
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Fig. 1. Occurrences of branching and non-branching tandem repeats (i; aw; 2); when x= a, the occurrence is
non-branching, when x �= a, the occurrence is branching.

Fig. 2. Chain of non-branching tandem repeats.

no additional occurrence of � immediately after w in S; it is called left-maximal if
there is no additional occurrence of � immediately preceding w in S. A tandem repeat
(in the literature also called a square) is a tandem array w= �k with k = 2.

An occurrence (i; �; 2) of a tandem repeat is branching if and only if the character
in S immediately to the right end of this occurrence, S[i+ 2|�|], diJers from S[i+ |�|]
(which must equal S[i], the .rst character of the repeat). Fig. 1 illustrates this de.nition.

String aw is called the left-rotation of string wa.
Branching repeats and left-rotations are the keys to the algorithms presented in this

paper. A .rst indication of their importance is contained in the following fact.

Lemma 1. Any non-branching occurrence (i; aw; 2) of a tandem repeat is the left-
rotation of another tandem repeat; (i + 1; wa; 2); starting one place to its right. The
tandem repeat (i + 1; wa; 2) may or may not be branching.

By repeatedly applying Lemma 1, it follows that every tandem repeat is either
branching, or it is contained in a chain of tandem repeats created by successive left-
rotations starting from a branching tandem repeat. (Recall that string S ends with a
termination symbol $.) Furthermore, if (i+1; wa; 2) is an occurrence of a tandem repeat
(branching or not), then we can test in constant time if there is a tandem repeat of
the same length starting at position i: simply test if S[i] = a. Hence, starting from a
branching tandem repeat (i + 1; wa; 2), the chain of tandem repeats with (i + 1; wa; 2)
at its right end can be determined in time proportional to the length of the chain (see
Fig. 2).

The basic algorithm we will present in Section 3, .rst .nds branching repeats, and
then generates any desired non-branching repeats from the branching repeats. To pre-
pare for that algorithm, we need to connect su'x trees with tandem repeats.

2.2. Su5x trees and tandem repeats

We assume that the reader is familiar with the basic de.nitions of a su'x tree.
E'cient, linear time methods are known to construct a su'x tree, e.g. [34, 27, 33, 8].
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Fig. 3. Su'x tree of string Mississippi with leaf-lists.

We denote by T (S) the su'x tree of S, i.e., the compacted trie of all the suf-
.xes of S. Throughout this paper, u and v denote nodes of T (S). L(v) denotes the
path-label of node v in T (S), i.e., the concatenation of the edge labels along the
path from the root to v. D(v) = |L(v)| is the string-depth of v. Nodes of degree one
are leaves, all other nodes except the root are internal nodes. The root is neither
a leaf nor an internal node. Leaf v of T (S) is labeled with index i if and only if
L(v) = S[i::n]. We de.ne a leaf-list of node v as a list of the leaf-labels in the subtree
below v. We denote such a list by LL(v). Fig. 3 shows an example of a su'x tree with
leaf-lists.

The following key fact about the relationship of tandem repeats and su'x trees
follows easily from the de.nitions, and can be found (explicitly or implicitly) in
[4, 2, 19, 12].

Lemma 2. Consider two positions i and j of S; 16i¡j6n; let l= j − i. Then the
following assertions are equivalent:
(a) There is an occurrence of a tandem repeat of length 2l starting at position i

in S;
(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v)¿l.

Lemma 2 is easily extended to characterize branching tandem repeats.

Lemma 3. Consider two positions i and j of S; 16i¡j6n; let l= j − i. Then the
following assertions are equivalent:
(a) There is an occurrence of a branching tandem repeat of length 2l starting at

position i in S;
(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) = l;

but do not appear in the same leaf-list of any node with depth greater than l.
Equivalently; they do not appear together in the leaf-list of any single child of v.
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3. Algorithms

We will .nd all occurrences of branching tandem repeats in O(n log n) time, all
occurrences of tandem repeats in O(n log n+ z) time, where z is the number of occur-
rences, and all occurrences of primitive tandem repeats in O(n log n) time. All methods
require just O(n) space. With respect to worst case analysis, these bounds are time-
and space-optimal. All occurrences of tandem arrays of repeats (primitive or not) will
be found in linear space, and in time equal or less than these bounds.

The basic algorithm and its variations are based on dividing the occurrences of
tandem repeats in S into the two disjoint sets, the branching and non-branching oc-
currences. The branching occurrences of tandem repeats are found .rst, and then the
non-branching occurrences are reported by successive left-rotations as suggested by
Lemma 1.

3.1. The basic algorithm

Given Lemma 3, all occurrences of branching tandem repeats can be found in the
following direct way:

Basic Algorithm: All nodes of T (S) begin unmarked. Step 1 is repeated until all
nodes are marked.

1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b for
node v.

2a. Collect the leaf-list, LL(v), of v.
2b. For each leaf-label i in LL(v), test whether leaf-label j= i +D(v) is in LL(v). If

so, test whether S[i] �= S[i+ 2D(v)]. There is a branching tandem repeat of length
2D(v) starting at position i if and only if both tests return true. (The .rst test
determines if L(v)2 is a tandem repeat, and the second test determines if it is
branching.)

The leaf-list of v is collected via any linear time traversal of the subtree rooted at v.
Assuming (as is standard) a representation of the su'x tree that allows the algorithm
to move from a node to a child in constant time, that traversal takes time proportional
to the size of LL(v).

Given a leaf-label i in that leaf-list, we can test in constant time if j= i+D(v) is also
in LL(v), provided we have preprocessed the su'x tree in the following standard way:
During a depth-.rst traversal of the su'x tree (starting at the root), assign successive
numbers (called dfs numbers) to the leaves in the order that they are encountered,
and record these numbers in an array DFS, indexed by the original leaf numbers. 3

Additionally, when the depth-.rst traversal .rst visits an internal node v, record at v
the next dfs number which will be given to a leaf, and when the depth-.rst traversal
backs up from v, record at v the most recent dfs number assigned (see Fig. 4). It

3 As a side remark for those who know about su'x arrays [25], note that the array DFS is the inverse
of the su'x array of S.
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Fig. 4. Su'x tree of string Mississippi with dfs numbers at internal nodes.

is easy to establish that all the leaves with labels in LL(v) are assigned dfs numbers
(inclusively) between the two dfs numbers recorded at v. Hence to determine if a leaf-
label j= i + D(v) is in LL(v) just check if DFS[ j] is between the two dfs numbers
recorded at v.

The above basic algorithm .nds all occurrences of branching tandem repeats in time
proportional to the total size of all the leaf-lists. That total size is O(n2). However, a
simple modi.cation leads to the desired time bound O(n log n).

3.2. Speeding up the basic algorithm

The nodes of T (S) can be divided in two classes, small nodes and big nodes. For
each node v, the child of v whose leaf-list is largest over all the children of v (breaking
ties arbitrarily), denoted v′, is a big node. All other children of v are small nodes. The
root of T (S) is neither a small nor a big node. Let LL′(v) denote the leaf-list of v
minus the leaf-list of v′, i.e., LL′(v) =LL(v) − LL(v′). By Lemma 3 (part b), if a
branching tandem repeat starting at position i is detected by the basic algorithm during
an examination of node v, then positions i and j= i + D(v) must be in the leaf-lists
of two distinct children of v. Hence if one of those positions is in the leaf-list of v′,
the other position must be in LL′(v). Therefore, we need execute step 2b of the basic
algorithm only for each position in LL′(v), provided we look both forward from that
position (as in the above basic algorithm) and backward from it (as we will do below).
These ideas are formalized in the following optimized basic algorithm.

Optimized basic algorithm: All nodes of T (S) begin unmarked. Step 1 is repeated
until all nodes are marked.

1. Select an unmarked internal node v. Mark v and execute steps 2a, 2b and 2c for
node v.

2a. Collect the list LL′(v) for v.
2b. For each leaf-label i in LL′(v), test whether leaf-label j= i+D(v) is in LL(v), the

leaf-list of v. If so, test whether S[i] �= S[i+ 2D(v)]. There is a branching tandem
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repeat of length 2D(v) starting at that position i if and only if both tests return
true.

2c. For each leaf-label j in LL′(v), test whether leaf-label i= j−D(v) is in LL(v). If
so, test whether S[i] �= S[i+ 2D(v)]. There is a branching tandem repeat of length
2D(v) starting at that position i if and only if both tests return true.

Clearly, LL′(v) can be found by a traversal from v that never visits v′, and that
traversal takes time proportional to the size of LL′(v). Moreover, from the dfs numbers
at each node, the size of that node’s leaf-list can be obtained (it is simply the diJerence
of the dfs numbers plus one), so that the child of any node v with the largest leaf-list
can be easily identi.ed when needed. Hence the time for the optimized algorithm is
proportional to

∑
v |LL′(v)|. It is a well-known fact that this sum is at most n log2 n

[4]. To see this, note that
∑

v |LL′(v)|=
∑

u small |LL(u)|. Clearly, |LL(u)|6 1
2 |LL(ũ)|

where ũ is the closest small node that is an ancestor of u or the root if there is no
such small node. Therefore, any leaf-label i can be in at most log2 n leaf-lists of small
nodes, so

∑
u small |LL(u)|6n log2 n. In summary,

Theorem 1. All the branching tandem repeats are found in O(n log n) time and O(n)
space by the optimized basic algorithm.

There are additional obvious ways to improve the running time of the algorithm in
practice (such as combining traversals from the internal nodes). But for simplicity of
exposition, and because these improvements do not reduce the worst case running time,
we omit a discussion of them.

3.3. Finding all occurrences of tandem repeats

From the set of branching occurrences of tandem repeats, the non-branching occur-
rences are obtained by a simple enumeration procedure, based on Lemma 1. In detail,
the following is executed at each occurrence of a branching tandem repeat discovered
by the optimized basic algorithm.

Starting with an occurrence (i; wa; 2) of a branching tandem repeat, test if S[i−1] = a.
If they are equal, (i − 1; aw; 2) is reported as a non-branching tandem repeat. This
process, called the rotation procedure, is continued to the left until an inequality is
observed, at which point the procedure stops. It is obvious that the additional time
used by the rotation procedure is proportional to the total number, z, of occurrences
of tandem repeats in S.

All comparisons performed in this extension are done directly on the string S so
that compared to Theorem 1 no additional space is needed. Hence,

Theorem 2. All occurrences of tandem repeats are found in O(n log n + z) time and
O(n) space.

The same time and space bounds were also obtained for this problem, without the
use of su'x trees, in [23, 24, 22].
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3.4. Primitive tandem repeats

A tandem repeat �� is called a primitive tandem repeat if string � is primitive,
i.e., � cannot itself be expressed as the repeat of some substring. It is well known
(see the discussion in Section 4) that there can be at most O(n log n) occurrences of
primitive tandem repeats in a string of length n. We will sketch a new proof of this
fact in Section 4. Because the size of the output is smaller, and because any tandem
repeat can be expressed as an array of primitive tandem repeats, it is often desirable
to only report primitive tandem repeats. Prior algorithms which .nd all occurrences of
primitive tandem repeats in O(n log n) time and linear space appear in [4, 2].

We extend the basic algorithm of the previous section to report only the primitive
tandem repeats. We begin by stating a general property of primitive strings.

Lemma 4. A string wa is primitive if and only if its left-rotation aw is primitive.

Proof. If aw is non-primitive, then aw= �k for some � and k¿1. That means that
each of the .rst |�|(k − 1) characters in wa is equal to the character |�| places to its
right. In particular, character |�| + 1 in aw is a. Therefore, wa= �k where � consists
of the last k − 1 characters of � followed by character a. Hence wa is non-primitive.

The converse, that when wa is non-primitive, then aw is also non-primitive, is proved
in essentially the same way.

The algorithmic importance of Lemma 4 is that if (i + 1; wa; 2) is an occurrence
of a primitive tandem repeat, and (i; aw; 2) is also an occurrence of a tandem repeat,
then (i; aw; 2) is an occurrence of a primitive tandem repeat. Therefore, when the
(optimized) basic algorithm identi.es a branching tandem repeat associated with a
node v, the tandem repeats generated by the rotation procedure at node v will either
all be primitive, or will all be non-primitive. So to exclude all and only the non-
primitive tandem repeats, it su'ces to exclude every branching tandem repeat which
is not primitive. Since branching tandem repeats are identi.ed only at nodes, it su'ces
to identify every node u whose path-label L(u) = �k for some k ¿ 2, where � is
primitive. Clearly, such a string � will be the path-label of some ancestor node v of
u. Moreover, the basic algorithm will identify the primitive branching tandem repeat
L(v)2 = �2 at node v. We will show next that, at that point in its execution, the basic
algorithm can be extended to e'ciently locate and for exclusion mark all nodes below
node v whose path-labels are L(v)k = �k for k ¿ 2. That extension will also identify
some other nodes that may be marked for exclusion.

To exclude all non-primitive tandem repeats (but no primitive tandem repeats) we
.rst modify the (optimized) basic algorithm to process the nodes in a top-down order,
so that no node is selected in step 1 until all of its ancestors have been selected. This
ensures that a node with path-label � will be selected before a node with path-label �k

for k ¿ 2.
Second, we combine the rotation procedure with the (optimized) basic algorithm,

so that when a branching primitive tandem repeat L(v)2 = �2 is found at a node v,
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the algorithm next executes a rotation procedure from each branching occurrence of
�2. Each such execution rotates left through each character in a chain of consecutive
�’s. As a side-eJect of this computation, the algorithm can determine (in essentially no
extra time) the largest value of k (call it kv) such that �k is a substring of S. Once kv is
determined, the algorithm walks from v to the end of the path labeled �kv in the su'x
tree. That path exists (and will extend from v) since �kv is a substring in S. Moreover,
since the path labeled � ends at a node (v), each string �k , for k¡kv, will also end
at a node. During the walk, the algorithm marks each node whose path-label is �k ,
meaning that node will not be selected in step 1 of the basic algorithm. (Recognizing
that the node has that label is a trivial exercise.) Note that the number of steps in the
walk from v is bounded by the number of left-rotations done in the rotation procedure
that discovers kv.

Clearly, any node corresponding to a branching non-primitive tandem repeat will
become marked in such a way, and hence will never be selected in step 1. Therefore
the algorithm, as modi.ed above, will enumerate all and only occurrences of primitive
tandem repeats. The number of steps in all the extra walks is bounded by the number
of left-rotations, and each left-rotation identi.es a distinct occurrence of a primitive
tandem repeat. Hence, the time for the algorithm is O(n log n + z), where z is the
number of occurrences of primitive tandem repeats. However, z is O(n log n) in any
string of length n. Hence,

Theorem 3. The method described above $nds all occurrences of primitive tandem
repeats in O(n log n) time and O(n) space.

The time for the extra walks can be further reduced by using the skip=count trick
that is known from su'x tree construction methods. That reduces the number of steps
for a walk from the number of characters on the walk to the number of nodes on the
walk, but, in this application, does not improve the worst case running time.

3.5. Primitive tandem arrays

Finally we extend the algorithm to locate all right-maximal occurrences of primitive
tandem arrays. The idea is, for each branching primitive tandem repeat (i; �; 2) observed
at a node v with L(v) = �, successively test for k = 1; 2; : : : if the leaf with label i−k|�|
is also in the subtree below v. Each successful test corresponds to a branching tandem
array (i − k|�|; �; k + 2). (Here it is not necessary to test explicitly if the tandem
array is branching: From the fact that tandem repeat (i; �; 2) is branching, it follows
immediately that all tandem arrays we .nd this way are also branching.) Once the test
fails, the procedure stops.

To also .nd the non-branching occurrences, the rotation procedure is applied to each
of the branching occurrences (i − k|�|; �; k + 2). If we stop the rotations after |�| − 1
steps, all and only the right-maximal occurrences of primitive tandem arrays will be
obtained; otherwise all occurrences of primitive tandem arrays are obtained, and there
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may be as many as n(n− 1)=2 of these. Hence in the latter case the procedure runs in
time O(n log n+ z) where z is the output size.

The procedure can also easily be extended to .nd only those primitive tandem arrays
which are simultaneously left- and right-maximal if for each of the chains of right-
maximal primitive tandem repeats, only the last one (when the rotation procedure stops)
is reported. This procedure takes time O(n log n) as well.

4. The number of occurrences of primitive tandem repeats

In this section we sketch a proof that there can be at most O(n log n) occurrences of
primitive tandem repeats in a string of length n. This fact is well established [4, 5, 7]
(in fact, it is known [29] that the number of occurrences of primitive tandem repeats
is bounded by 1:45(n+ 1) log2 n− 3:3n+ 5:87). We present here the O(n log n) bound
to make the paper self-contained, and because the proof given here is simpler than
previously published proofs.

We say two leaf-labels i and j in the leaf-list LL(v) of some node v are adjacent in
LL(v) if there is no leaf-label strictly between i and j that is also in LL(v). The key
fact we need is the following:

Lemma 5. Assume i¡j= i+ l; and that there is an occurrence of a primitive tandem
repeat of length 2l starting at position i in S. Then (a) i and j both occur in the
leaf-list LL(v) of some internal node v in T (S) with depth D(v) ¿ l; and (b) i and
j are adjacent in LL(v).

Condition (a) simply repeats the necessary condition from Lemma 2 for an occur-
rence of a tandem repeat of length 2l starting at position i. Condition (b) distinguishes
a primitive from a non-primitive tandem repeat. The key to proving this lemma is to
show that if condition (a) is satis.ed, and yet i and j are not adjacent in LL(v), then
the tandem repeat of length 2l starting at i is not primitive.

Proof (of Lemma 5). Let �� be a tandem repeat of length 2l beginning at position i,
and let j= i + l. Assume condition (a) is satis.ed but (b) is not. That means there is
another leaf-label k in LL(v) strictly between i and j. So a copy of � occurs starting at
position k¡i+ l. That copy of � can be expressed as a su'x, �, of � (from the copy
starting at i) followed by a pre.x, 
, of � (from the copy starting at j). It follows that
�= �
= 
�, and by a well-known fact (Lemma 3:2:1 in [12]), � can be expressed as
�q for some substring �, and q¿1. Therefore, � is not primitive.

A pair (i; j) is said to be an adjacent pair if there is some node v such that i and j
are adjacent in LL(v).

By Lemma 5, each occurrence of a primitive tandem repeat is associated with some
adjacent pair. But each adjacent pair (i; j) is associated with at most one occurrence
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Fig. 5. Scenario where (i; j) is an adjacent pair in LL(v′) but not in LL(v). Note that for illustration purposes
(and contrary to Fig. 3) leaf-lists are shown in sorted order here.

of a primitive tandem repeat, because that repeat is of length 2(j − i) and starts at i.
Hence we can bound the number of occurrences of primitive tandem repeats in S by
the total number of distinct adjacent pairs in all the leaf-lists of T (S). For any internal
node u, let N (u) be the number of adjacent pairs that are in the leaf-list of u but not in
the leaf-list of the parent of u. Any adjacent pair is adjacent in the leaf-lists of nodes
that form a descending path in T (S) (maybe only a single node in length), so the total
number of distinct adjacent pairs is

∑
u N (u).

Consider an internal node v′ and its parent node v. Assume leaf-labels i and j are
adjacent in LL(v′) but are not adjacent in LL(v) (see Fig. 5). That means that in LL(v)
there is some leaf-label k strictly between i and j, and that k is not in LL(v′). So k
must be contained in the leaf-list of some other child ṽ of v. We call such a k a witness
for (i; j). Let (p; q) be another adjacent pair in LL(v′). Clearly, k is not between p
and q in LL(v), so k can not be a witness for any other pair in LL(v′). Therefore, the
value of N (v′) can not be larger than the number of entries in the lists LL(ṽ) summed
over all children ṽ of v other than v′, so N (v′) 6

∑
ṽ �=v′ |LL(ṽ)|= |LL(v) − LL(v′)|.

Now for any internal node v, de.ne (as in Section 3.2) v′ to be the child of v with
the largest leaf-list. It follows that

∑
u N (u), and the total number of occurrences of

primitive tandem repeats, is bounded by
∑

v(N (v′) +
∑

ṽ �=v′ |LL(ṽ)|) 6 2
∑

v |LL(v) −
LL(v′)|= 2

∑
v |LL′(v)|. That sum is bounded by O(n log n) following the discussion in

Section 3.2.

5. Summary and an open question

The time and space bounds for the methods presented here have been obtained earlier.
Therefore, the contribution of this paper is the simplicity of the algorithms, which use
only standard traversals of a su'x tree. The success of this eJort must therefore be
gauged by comparing the methods in this paper with earlier methods (particularly those
in [2]) that use su'x trees to .nd contiguous repeated substrings.

We leave it as an open question whether the use of branching tandem repeats also
allows linear-time solutions for related problems which are solvable within that time
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bound (e.g. the problem of .nding the shortest tandem repeat beginning at each posi-
tion of a string, cf. [19]). A positive indication is that the number of occurrences of
branching tandem repeats in a string of length n is bounded by n, as shown in [18,
Theorem 3].

Moreover, the number of branching tandem repeats is identical to the number of
chains of tandem repeats in a string, as shown in Lemma 1. Hence, they give a linear-
space encoding for all occurrences of tandem repeats in a string, a question posed by
Iliopoulos et al. [14]. (Another linear-space encoding, namely the end-locations of all
the strings which occur as tandem repeats in the su'x tree, is introduced in [13].)

The C source code of an implementation of the algorithms presented in this pa-
per (and many more) is available from http://www.cs.ucdavis.edu/~ gusfield/

strmat.html.
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