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Abstract

Streams are acyclic directed subgraphs of the logical $ow graph of a proof representing
bundles of paths with the same origin and the same end. The notion of stream is used to
describe the evolution of proofs during cut-elimination in purely algebraic terms. The algebraic
and combinatorial properties of $ow graphs emerging from our analysis serve to elucidate logical
phenomena. However, the full logical signi)cance of the combinatorics, e.g. the absence of certain
patterns within $ow graphs, remains unclear. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analytical method which divides proofs into blocks, analyses them separately
and puts them together again, proved its failure: by “cutting up” it destroys what it
seeks to understand, that is the dynamics within proofs [8]. This important point has
been understood and emphazised by J.-Y. Girard who, in 1987, introduced proof nets
to study proofs as global entities and to study the way that formulas interact in a proof
through logical connectives. In 1991, another notion of graph associated to proofs has
been introduced by S. Buss [1] for di@erent purposes (namely, as a tool to show the
undecidability of k-provability) and has been employed in [2, 3, 5] to study dynamics
in proofs. This graph, called logical )ow graph, traces the $ow of occurrences of
formulas in a proof.
It would be of much interest to characterize combinatorial patterns that might appear

in proofs within di@erent logical systems. As a )rst step in this direction, in Theorem 5
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(Section 4) we exhibit a speci)c cyclic pattern that is necessarily missing from logical
$ow graphs. This type of cycles is probably prohibited by the consistency of the
logic, but the full signi)cance of this remains unclear. Also, the combinatorics and
the complexity of the evolution of logical $ow graphs of proofs under cut-elimination
are particularly complicated and intruiging. An overview can be found in [8] and a
combinatorial analysis is developed in [4]. These diEculties constitute the main reason
for looking at simpler but well-de)ned subgraphs of logical $ow graphs and try to
study their properties and behavior in proofs.
We shall concentrate on streams (de)ned in Section 3). A stream represents a bun-

dle of paths traversing occurrences of the same atomic formula in a proof and hav-
ing the same origin and the same target. A proof is usually constituted by several
streams. They interact with each other because of logical rules and share common
paths because of contractions. There are cases where a bundle of paths needs to be
exponentially large in size like in the propositional cut-free proofs of the pigeon-
hole principle for instance (this is a consequence of [14] and a formal argument
is found in [6]), and the study of streams becomes relevant for the study of
complexity of the sequent calculus proofs (see Theorem 35 and Remark
38).
Our interest lies on the topological properties of streams. We shall be concerned

only with a rough description of logical paths in a stream. This description will be
based on axioms, cuts and contraction rules occurring in the proof. Rules introducing
logical connectives will not play any role. This simpli)ed treatment of logical paths
allows for a description of proofs as strings (Section 6), and for a natural algebraic
manipulation of proofs (Sections 7 and 8). When logical $ow graphs contain cycles,
this description leads to precise relations between proofs and )nitely presented groups
[7]. Here, we will only look at subgraphs of the logical $ow graph which are acyclic
and we shall develop a theory which relates algebraic strings to streams. We prove
that any stream can be described by an algebraic string, and that for any string there
is always a proof with a logical $ow graph which is a stream described by the string
(Section 6). Usually, several strings can describe the same stream, but there are two
kinds of strings, one representing the most compact description of the stream, and the
other representing the most explicit description, that are unique and hence useful for
our analysis (see Sections 6 and 6.2).
In Section 8 we show that the transformation of streams during the procedure

of cut-elimination (Section 2.2) can be simulated by a )nite set of rewriting rules
(Theorem 32). The notion of stream, though simple, is shown to be very powerful
at the computational level: Example 33 illustrates how, at times, a purely algebraic
manipulation of streams can completely describe the proof transformation. Theorem 34
pinpoints how weak formulas in a proof in$uence the complexity of streams during
cut-elimination. Theorem 35 says that a growth in complexity is either already “ex-
plicit” in a proof (i.e. a proof contains a stream with large arithmetical value; this
notion is de)ned in Section 7) or it is due to purely global e@ects induced by local
rules of transformation.
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To conclude, let us mention that our algebraic analysis of proofs seems adequate
to approach the problem of the introduction of cuts in proofs, an important topic in
proof theory and automated deduction. It seems plausible that a theory of the $ow of
information in a proof might lead to develop methods for the introduction of cuts in
proofs.
We wish to thank an anonymous referee for his=her insightful comments.

2. Basic notions and notation

In this section we brie$y recall known concepts. The reader might like to consult
[13, 19], and also [9], for a more extensive introduction.

2.1. Formal proofs

Formal proofs are described in the sequent calculus LK . The system LK is constituted
by axioms which are sequents of the form

A; �→ �; A

where A is any formula and �; � are any multisets of formulas, by logical rules for
the introduction of logical connectives

@: left
�→ �; A
@A; �→ �

@: right
A; �→ �
�→ �;@A

∧: right �1 → �1; A �2 → �2; B
�1; �2 → �1; �2; A ∧ B ∧: left A; B; �→ �

A ∧ B; �→ �

∨: left A; �1 → �1 B; �2 → �2

A ∨ B; �1; �2 → �1; �2
∨: right �→ �; A; B

�→ �; A ∨ B

⊃: left
�1 → �1; A B; �2 → �2

A ⊃ B; �1; �2 → �1; �2
⊃: right

A; �→ �; B
�→ �; A ⊃ B

∃: right �→ �; A(t)
�→ �;∃xA(x) ∃: left A(a); �→ �

∃xA(x); �→ �

∀: right �→ �; A(a)
�→ �;∀xA(x) ∀: left A(t); �→ �

∀xA(x); �→ �

where, in the ∃ : left and ∀ : right inferences the free variable b is called the eigen-
variable and must not appear in the lower sequent. The variable x must be freely
substitutable into A for all four quanti)er inferences.
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Finally, there are a few rules in LK that do not explicitly involve connectives. They
are called structural rules:

Cut
�1 →�1; A A; �2 →�2

�1; �2 →�1; �2

Contraction
�→�; A; A
�→�; A

A; A; �→�
A; �→�

In our notation, a rule is always denoted by a bar. The sequent(s) above the bar
is called antecedent of the rule and the sequent below the bar is called consequent.
The pair of formulas A in the upper sequent of the contraction rule are called
contraction formulas. In logical and structural rules, the formulas A (B) in the up-
per sequent(s) are referred to as auxiliary formulas and the one obtained by the
application of a rule is called main formula. Notice that the cut-rule has no main
formula. In axioms and rules, the formulas in �; � are called side formulas. In an
axiom A; �→�; A, the two formulas A are called distinguished formulas. A formula
A in � which has been introduced as a side formula in some axiom is called weak
formula.
We shall extend LK with the rule

F-rule
�1 →�1; F(s) �2 →�2; F(t)
�1; �2 →�1; �2; F(s · t)

where F is a unary predicate and · is a binary function. The F-rule is added to LK
because it allows to speak more directly about computations. It was considered already
in [4, 5, 9, 10].
In the following we will frequently use the notion of occurrence of a formula in a

proof as compared to the formula itself which may occur many times. A formula B
occurs positively (negatively) in a formula A if it appears under the scope of an even
(odd) number, possibly 0, of negations. A formula B occurs positively (negatively)
in a sequent if it occurs positively (negatively) in some formula of the consequent
of the sequent, or it occurs negatively (positively) in some formula of the antecedent
of the sequent. While counting the number of nested negations for a formula, one
should take into account negations “hidden” in front of the antecedent of implica-
tions. Notice that A⊃B is equivalent to @A ∨ B and that A appears negatively in
A⊃B.
A formal proof is a binary tree of sequents, where each occurrence of a sequent in

a proof can be used at most once as premise of a rule. The root of the tree is labelled
by the theorem, its leaves are labelled by axioms and its internal nodes are labelled by
sequents derived from one or two sequents (which label the antecedents of the node
in the tree) through the rules of LK and the F-rule.
The height of a rule R in a proof � is de)ned over the proof-tree describing �.

It is the distance between the node of the proof-tree labelled by the consequent of R
and the root of the proof-tree.



A. Carbone / Theoretical Computer Science 288 (2002) 45–83 49

At times we shall consider proofs � which are reduced in the sense of [4], i.e. there
are no super$uous redundancies in the proof which have been built with the help of
weak occurrences. More formally, no binary rule or contraction rule is applied to a
weak formula, no unary logical rule is applied to two weak formulas and no occurrence
in cut-formulas is weak. In [4] it is shown that given any proof, we can always )nd
a reduced proof of the same end-sequent which has a number of lines and symbols
bounded by the ones of the original proof.

2.2. Cut-elimination

In 1934 Gentzen [11] proved the following result:

Any proof in LK can be e9ectively transformed into a proof which never uses
the cut-rule. This works for both propositional and predicate logic.

The statement holds for the extension of LK with the F-rule as well.
This is a fundamental result in proof theory, and in [8] the reader can )nd a presen-

tation of its motivations and consequences. The computational aspects of the theorem
have been largely investigated but we are still far from an understanding of the dy-
namical process which can occur within proofs [2, 3, 5]. After the elimination of cuts,
the resulting proof may have to be much larger than the proof with cuts. For propo-
sitional proofs, this expansion might be exponential and for proofs with quanti)ers, it
can be multi-exponential, i.e. an exponential tower of 2’s. For the bounds, the reader
can consult [16–18, 20].
The contraction rule plays a key role in this expansion. While it may seem harmless

enough, it can be very powerful in connection with the cut rule. Imagine that you have
some piece of information which is represented by a formula A which you can prove,
but that in your reasoning you actually need to use this piece of information twice.
By using a contraction rule (on the left hand side of the sequent arrow) and a cut
you can code your argument in such a way that you only need to verify A once.
On the other hand, a cut-free proof represents ‘direct’ reasoning, where lemmas are
not allowed, and in practice this forces one to duplicate the proof of A (see [8] for
more details).
Thus the cut rule provides a mechanism by which the contraction rule can have the

e@ect of a “duplication” rule.
Let us look more closely at how the procedure introduced by Gentzen works. There

are distinguished cases and di@erent recipes that we need to follow depending on the
structure of the cut formula and whether it came from a contraction. The idea is to
push the cuts up towards the axioms and eliminate them afterwards.
Let us begin by considering the case of a cut applied over a formula which comes

directly from an axiom, either as a distinguished occurrence or as a weak occurrence.
Consider )rst the situation where the cut formula comes from a distinguished occurrence
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in an axiom, as in the following:

�1; A→ A; �1

�∗
A; �2 → �2

�1; A; �2 → �1; �2

(1)

In this case we can remove the axiom from the proof and simply add the weak
occurrences in �1 and �1 to the subproof �∗ without trouble, thereby obtaining
a new proof of the sequent �1; A; �2 →�1; �2 in which the last cut has been
eliminated.
Suppose instead that we have a cut over a formula which comes from a weak

occurrence in an axiom, as in the following situation:

�1; A→ A; �1; C
�0

C; �2 → �2

�1; A; �2 → A; �1; �2

(2)

To eliminate the cut one can simply eliminate the subproof �0, take out the (weak)
occurrence of C in the axiom, and add �2 and �2 to the axiom as weak occurrences.
In other words, the sequent

�1; �2; A→ A; �1; �2 (3)

is itself an axiom already. By doing this one removes a possibly large part of the proof.
If the two cut-formulas have been introduced by logical rules the procedure will sub-

stitute the cut with two new ones of smaller logical complexity. The idea is illustrated
in the following proof:

�′
1

�1 → �1; A; B
�1 → �1; A ∨ B

�′
2

A; �2 → �2

�′
3

B; �3 → �3

A ∨ B; �2;3 → �2;3

�1;2;3 → �1;2;3
...�

(4)

where the cut-elimination procedure will reduce the complexity of A ∨ B as follows:

�′
1

�1 → �1; A; B
�′

2
A; �2 → �2

�1;2 → �1;2; B
�′

3
B; �3 → �3

�1;2;3 → �1;2;3
...�

(5)

The other connectives are treated similarly. In case the cut formula is quanti)ed the
procedure proceeds in a similar manner. The following proof

�1
�1 → �1; A(t)

�1 → �1;∃x:A(x)

�2
A(a); �2 → �2

∃x:A(x); �2 → �2

�1; �2 → �1; �2

(6)
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will be transformed into

�1
�1 → �1; A(t)

�′
2

A(t); �2 → �2

�1; �2 → �1; �2

(7)

where the proof �′
2 is obtained by substituting all occurrences of the eigenvariable a

in �2 with the term t.
We now consider the case of contractions. The following diagram shows the basic

problem:

�1
�1 → �1; A

�2

A1; A2; �2 → �2

A; �2 → �2

�1; �2 → �1; �2

(8)

That is, A1 and A2 denote two occurrences of the same formula A, and they are
contracted into a single occurrence before the cut is applied. (The contraction could
just as well be on the left, and this would be treated in the same way.) To push the
cut above the contraction one duplicates the subproof �1 as indicated below:

�1
�1 → �1; A

�1
�1 → �1; A

�2

A1; A2; �2 → �2

A2; �1; �2 → �1; �2

�1; �1; �2 → �1; �1; �2.... contractions
�1; �2 → �1; �2

(9)

The steps of transformation we described are essentially all what one needs. To make
them to work though, one needs to change the order of the rules in a proof. In the
cases considered above, the cut rule was applied to formulas which were main formulas,
i.e. their principal connective was introduced by the immediate preceding rule. This
con)guration is in general not there and one needs to change the order of the rules in
the proof by pushing cuts upwards until a pair of cut formulas which are main formulas
has been reached; this can always be done as the following diagrams illustrate:

�1
�1 → �1; C

�2
A; C; �2 → �2

�3
B; �3 → �3

C; A ∨ B; �2; �3 → �2; �3

A ∨ B; �1; �2; �3 → �1; �2; �3

(10)

which will be transformed into

�1
�1 → �1; C

�2
C; A; �2 → �2

A; �1; �2 → �1; �2

�3
B; �3 → �3

A ∨ B; �1; �2; �3 → �1; �2; �3

(11)
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One might be interested to permute cuts and in this case the procedure transforms the
diagram

�3

�3 → �3; D1

�1

D2; �1 → �1; C1
�2

C2; �2 → �2

D2; �1; �2 → �1; �2

�1; �2; �3 → �1; �2; �3

(12)

into the following one:

�3

�3 → �3; D1
�1

D2; �1 → �1; C1

�1; �3 → �1; �3; C1
�2

C2; �2 → �2

�1; �2; �3 → �1; �2; �3

(13)

or vice versa.
It is important to point out a fundamental feature of cut-elimination: there is no

canonical way to do it. In the passage from (4) to (5) we could have chosen to cut
)rst B and then A instead of the other way around. In the passage from (8) to (9),
if both appearances of the cut formula A in (8) were obtained from contractions, then
we would have a choice as to which subproof duplicate )rst (either �1 or �2). In
principle, we can have procedures of cut-elimination which go on forever. Of course,
the point of the theorem is that one can always )nd a way to eliminate cuts in a )nite
number of steps. One can even make deterministic procedures by imposing conditions
on the manner in which the transformations are carried out. See [12].
In essence, the principle of the procedure is to push the cuts up higher in the proof

while being careful about the notion of “progress”. In fact, we typically increase the
number of cuts at each stage of the process as well as the number of contractions.
In the case of contractions we have made progress in the sense that we reduced the
number of contractions above the cut-formula, even though we may increase the total
number of contractions by adding them below the cut. In the case of conjunctions we
reduced the complexity of the cut-formula. It is not hard to exhaust the possibilities,
but a complete proof requires a tedious veri)cation of cases and we shall not provide
it. See [13, 19].
Besides the method of cut-elimination proposed by Gentzen, everal others methods

have been proposed in the literature but we shall not discuss them here. The ideas and
results presented in this paper will be formulated for Gentzen’s procedure. Extensions
and adaptations to di@erent logical frameworks are conceivable.

2.3. Logical )ow graphs

As described in [2], one can associate to a given proof a logical $ow graph by
tracing the $ow of atomic occurrences in it. (The notion of logical $ow graph was
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)rst introduced by Buss in [1] and a similar notion is due to Girard and appeared in
[12]. Here we restrict Buss’ notion to atomic formulas.) We give the formal de)nition
later and we start by illustrating the idea with an example. Consider the two formal
proofs below formalized in the language of propositional logic and the sequences of
edges that one can trace through them

Each step of deduction manipulates formulas following a logically justi)ed rule, and
precise links between the formulas involved in the logical step are traced (the arrows
indicated in the )gures above represent some of these links). Formulas in a proof
correspond to nodes in the graph and logical links induced by rules and axioms corre-
spond to edges. As a side e@ect di@erent occurrences of a formula in a proof might be
logically linked even if their position in the proof is apparently very far apart. Between
any two logically linked occurrences there is a path. The graph that we obtain is in
general disconnected and each connected component corresponds to a di@erent atomic
formula in the proof.
The structure of the proof on the left is interesting because it shows that paths in a

proof can get together through contraction of formulas, and the structure on the right
shows that cyclic paths might be formed.
Let us now detail the formal de)nition of logical )ow graph.
For each axiom, we trace an edge, called axiom-edge, from any negative atomic

occurrence in the distinguished formula of the antecedent to the corresponding positive
atomic occurrence in the distinguished formula of the consequent. We also trace an edge
from any negative atomic occurrence of the distinguished formula in the consequent of
the axiom to the corresponding positive atomic occurrence in the distinguished formula
of its antecedent.
For each rule, we trace an edge between any positive occurrence of a formula B in

the upper sequent(s) of the rule and the corresponding occurrence of B in the lower
sequent of the rule. Similarly, we trace an edge between any negative occurrence of a
formula B in the lower sequent of the rule and the corresponding occurrence of B in
the upper sequent(s) of the rule. (For quanti)ers rules, the formula that corresponds to
A(a) or A(t) is A(x).)
If the rule is a contraction, then there are two edges going to (coming from) the

negative (positive) occurrences of B in the contraction formulas and coming from
(going to) the relative occurrence of B in the main formula.
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In the case of a cut rule applied to sequents �1 →�1; A and A; �2 →�2, edges,
called cut-edges, are traced between the two cut-formulas A as follows: for any sub-
formula B of A occurring positively (negatively) in �1 →�1; A, there is an edge
going from (coming to) it to (from) the correspondent occurrence of B in A of
A; �2 →�2.

This concludes the de)nition of the edges of the graph. We say that the logical )ow
graph of a proof � is the directed graph which we can read o@ the proof, whose
nodes are labelled by the occurrences of formulas in �, and whose edges are the links
induced by the rules of �, as de)ned above.
The orientation on the edges of a logical $ow graph is induced by natural considera-

tions on the validity of the rules of inference which we shall not discuss here (see [2]).
In the following we will not really exploit the direction of the paths. We will use di-
rections only to establish that a path starts and ends somewhere. We might speak of a
path going up or down, and of an edge being horizontal, in case the edge appears in
an axiom or between cut-formulas.
In the sequel, we call bridge any maximal oriented path that starts from a nega-

tive occurrence, ends in a positive occurrence and does not traverse cut-edges. The
maximality condition implies that both the starting and ending occurrences of a bridge
should lie either in a cut-formula or in the end-sequent of the proof. Two bridges are
nested when they share the input node and the output node. (Nested bridges are formed
by means of contractions.)
To conclude we shall introduce some terminology that concerns oriented graphs with

nodes of degree at most 3. (We count here, both incoming and outcoming edges.)
Logical $ow graphs are graphs of this kind.
A node of a graph is a branching point if it has exactly three edges attached to

it. We say that a node is a focusing branching point if there are two edges ori-
ented towards it. A node is a defocusing branching point if the two edges are ori-
ented away from it. A node is an input vertex if there are no edges in the graph
which are oriented towards it. A node is an output vertex if there are no edges
in the graph which are oriented away from it. Input and output nodes are called
extremal.
By a focal pair we mean an ordered pair (u; w) of vertices in the graph for which

there is a pair of distinct paths from u to w. We also require that these paths arrive at
w along di@erent edges $owing into w.
Two graphs have the same topological structure if they can both be reduced to the

same graph by collapsing each edge between pairs of points of degree at most 2 to a
vertex. Such a graph will be called topologically minimal graph.
The notions of bridge, focal pairs, topological structure, focusing and defocusing

point, input and output vertices have been introduced in [4, 10] where the reader can
)nd properties and intuition. Here, let us just say that in a proof, branching points
of the logical $ow graph correspond to formulas obtained by contraction or by F-
rule. Also, extremal points correspond either to weak occurrences or to occurrences of
formulas in the end-sequent.
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3. Streams

A stream is an acyclic directed graph with one input vertex v and one output vertex w.
The pair [v; w] is called base of the stream. All other vertices in the stream are not extremal.
If G is a directed graph, then a stream in G is a subgraph of G which is a stream.

A full stream in G based on [v; w] is a stream in G such that all directed paths lying
in G between v and w belong to the stream.
A substream of a stream is a subgraph of the stream that is a stream based on a

pair [v; w], where v; w are nodes of the stream. A substream might have the same base
of the stream, but this is not required.
A stream of a proof � is a stream in the logical $ow graph G of � such that the

input and output vertices are extremes of G. A stream of a proof � is based on a pair
of formulas [A; B], where each formula A and B lies either in the end-sequent of � or
it is a weak occurrence in an axiom of �.
The logical $ow graph of the proof on the right hand side of the picture in Section 2.3

is a stream based on the two occurrences C in the end-sequent. The bridge along the
formula P in the proof on the left, is also a stream. There are streams of proofs whose
base does not lie in the end-sequent. Two examples are given below

A→ A
→@A; A B→ B; A
B→ B; A ∧@A; A B→ B;@A
B; B→ B; B; A ∧@A; A ∧@A

B→ B; A ∧@A

A→ A
A;@A→
A ∧@A→

B→ B

A→ A; B
B→ B C → C
B; C → B ∧ C

A; C → B ∧ C; A
A ∧ C → B ∧ C; A

A ∧ C → (B ∧ C) ∨ A

where the proof on the left displays a cycle that passes through occurrences of A, and
where no A appears in the end-sequent (this example is taken from [6]). In the proof
on the right, the path passing through the occurrences of B is a stream of the proof.
It originates in a weak occurrence and it ends-up in the end-sequent.
The simplest forms of streams in a cut-free proof are either directed paths connecting

a weak occurrence in an axiom to some formula in the end-sequent, or they are bridges.
But usually, streams in cut-free proofs look roughly as in the picture below
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where one sees (in the )gure on the left-hand side) a tree of defocusing points (on
the left) and a tree of focusing points (on the right) combined together through axiom
edges. Nodes and edges are not explicitly denoted in the )gure. Instead, oriented paths
from the input vertex to the output vertex of the stream are drawn. These paths corre-
spond to bridges, the bifurcation points correspond to the presence of contractions or
F-rules in a proof, the horizontal lines correspond to axiom-edges through which each
path has to pass. The paths are oriented from left to right, and all bifurcation points
on the left hand side of the axiom-edges correspond to contractions on negative occur-
rences and the bifurcation points on the right correspond to contractions on positive
occurrences or applications of F-rules. On the right-hand side of the )gure, the same
graph is illustrated in a more convenient form for our future discussion. Axiom-edges
have been substituted by circles. We shall be free from now on to illustrate streams
by stretching them in this way.
If the proof contains cuts, a stream might or might not contain cut-edges. If it does not

contain cut-edges then its shape is one of those discussed for cut-free proofs. If it does
contain cut-edges then its shape might be quite complicated. For instance, it might contain
arbitrarily long chains of focal pairs {(wi; wi+1)}ni=0 as illustrated by the following )gure:

where (wi; wi+1) is a focal pair, for i=0; : : : ; n, each edge passing through a circle
represents a bridge, and each horizontal edge (linking a focusing point to a defocusing
one) corresponds to a cut-edge in the proof. (See [4] for lower and upper bounds on
proof complexity based on the presence of focal pairs in proofs.)
In general, the paths of a stream lying in a logical $ow graph of a proof with cuts

have to satisfy the following two properties:
1. if a defocusing point is followed by a focusing point, then there is an axiom-edge

lying between them,
2. if a focusing point is followed by a defocusing point, then there is a cut-edge lying

between them.
An example of stream for a proof with cuts is illustrated below
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where one can recognize three substreams associated to cut-free proofs. The shape of
these substreams is similar to the one illustrated in the )rst picture of the section where
a tree of defocusing points is followed by a tree of focusing ones.
The following property of streams illustrates their regularity.

Proposition 1. The number of focusing points in a stream is the same as the number
of its defocusing points.

Proof. The claim follows from a simple fact. Let P be an acyclic directed graph which
is connected, contains one input vertex, n focusing points and m defocusing ones. Then,
P has m − n + 1 output nodes. This is easily proved by induction on the values of
n; m by noticing that a defocusing node induces the number of distinct output nodes
to increase by 1, and a focusing node induces the number of distinct output nodes to
decrease by 1. From this we conclude that if P is a stream, then m = n, since P has
exactly one input vertex and one output vertex.

Remark 2. If a proof contains cuts, then its logical $ow graph might contain cyclic
paths [2]. Given a logical $ow graph G of a proof and a pair of formulas A; B ly-
ing in the end-sequent of the proof, there might be no full stream in G based on
[A; B], even if there is some path linking A to B in G. This is because G might con-
tain some cyclic directed path from A to B, and streams, by de)nition, are acyclic
graphs.

Notice that there are provable formulas whose proofs have “small” size only when
cycles appear in their logical $ow graph. The use of quanti)ers in these proofs allows
for the codi)cation of term substitution through cyclic paths and for a multi-exponential
compression of the size of the proof [5]. In the context of propositional logic, the
situation is di@erent. In fact, any propositional proof with a cyclic logical $ow graph
can be transformed into a proof with acyclic logical $ow graph by a polynomial
expansion of the size [6]. The reader interested in cycles in proofs can refer to [3, 4, 7]
for an analysis of their combinatorics and complexity.

4. Clusters and interaction of streams in proofs

A logical $ow graph of a proof is a union of connected components. There might
be many of them, and each component corresponds to a distinguished atomic formula
in the proof. For instance, the proof on the left-hand side in Section 2.3 displays two
connected components; one corresponds to the atomic formula C and the other to P.
The proof on the right-hand side displays only one connected component.
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Theorem 3. Each connected component C of a logical )ow graph G is a directed
graph which has input nodes as well as output nodes. In particular; for any cycle in
C there is a path in G that starts at an input node of G; ends at an output node of
G and passes through C.

The last part of the theorem emphasizes that there are no “isolated” parts in a logical
$ow graph of a proof. Namely, for any node x of the graph, there is a path that starts
from some input node of G and ends in x, and there is a path that starts in x and ends
in some output node of G.
To show the statement, let us add some terminology. We say that a loop is a cycle

which does not pass over the same edge twice. We say that a loop meets another
loop (or equivalently that two loops are nested) if they have one vertex in common.
A cluster of nested loops is a maximal connected subgraph of a cyclic graph which
has no input node, no output node, and where there is a directed path from any point
to any other point. A loop in a logical $ow graph has a way in if one of its vertices
is a focusing point. A loop has a way out if one of its vertices is a defocusing point.
Also, a cluster has a way in if one of its vertices is a focusing point with an incoming
edge that does not belong to the cluster. We call this focusing point a way-in-node.
A cluster has a way out if one of its vertices is a defocusing point with an outgoing
edge that does not belong to the cluster. We call such a point way-out-node.

The following result holds

Theorem 4 (Carbone [4, Theorem 54]). Any loop in a logical )ow graph has a way
in and a way out.

To show Theorem 3 we shall prove a generalization of Theorem 4.

Theorem 5. Any cluster in a logical )ow graph has a way in and a way out.

Proof. Let � be a proof. We want to prove that connected components in the logical
$ow graph of � cannot be loops, nor nested loops, nor they contain a cluster with
incoming edges and no outgoing ones, nor they contain a cluster with outgoing edges
and no incoming ones. These possibilities are illustrated in the following picture:
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where the )gures in the )rst row represent single loops, which are either the connected
component itself (on the left), or a part of a larger component that is connected to the
loop only by incoming edges or only by outgoing ones (these two cases correspond to
the last two )gures on the right). The )gures in the second row illustrate analogous
situations for clusters. The )gure on the left represents a cluster with no input and
output nodes, and the last two )gures illustrate clusters as part of a larger component.
The clusters are connected to the rest of the component only by incoming edges or
only by outgoing ones.
Let us suppose that the logical $ow graph of � contains one of the connected

components illustrated above. Call it K .
If the cluster in K is formed by only one loop we apply Theorem 4 and we obtain a

contradiction. If the cluster has several loops as in the shapes illustrated in the second
row of the picture above, the situation is more subtle. In fact, each loop has incoming
edges and outgoing ones, but these edges might belong to some other loop and we
cannot apply Theorem 4 to derive the claim.
Let us suppose that the cluster in K has no way out. The case where the cluster has

no way in is treated similarly, and the case where there are no ways in nor ways out
is a subcase of the one we treat.
We apply the procedure of cut-elimination to � but only on cut-formulas that are

not weak occurrences in some axiom. The result of such a process will be a proof
�′ where cuts (if any) are all applied to weak formulas, and whose logical $ow
graph is acyclic. The procedure will transform a proof �i into a proof �i+1 where
i = 1; : : : ; n, �1 is � and �n is �′. The important property of such a transformation
is that the topology of the logical $ow graphs of the �i’s changes only when con-
tractions are resolved (going from �i to �i+1), that is when subproofs are duplicated.
(This is discussed in [4].) This means that any connected component Ki of the logi-
cal $ow graph of �i might be transformed into a connected component Ki+1 in �i+1,
where the topology of Ki+1 might be di@erent from the topology of Ki. In particu-
lar, the topological structure of the cluster K might evolve during the process of cut-
elimination.
We want to prove that for all j, where 1 6 j 6 n, there is a cluster in �j with

no ways out. This is in contradiction with the fact that the logical $ow graph of �′

(= �n) is acyclic.
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Our analysis will proceed with an explicit checking of the way that paths (in the
logical $ow graph of �i) split and duplicate during the transformation from �i to �i+1.
As explained in [4], the duplication of a subproof of �i corresponds to the duplication
of a subgraph of the logical $ow graph of �i. In particular, a path passing through �i
can be duplicated in one of the following )ve ways:

where black dots represent extremal nodes in the component, and where edges are not
explicitly indicated in the picture. Each one of the )ve situations (i.e. A–E) represents
the path before (on the left of the arrow) and after (on the right) duplication. The dotted
boxes that are placed around portions of paths illustrate the part to be duplicated (on
the left) and the part that has been duplicated (on the right).
Case D moves the position of focusing points in the graph, and case C might create

new nested loops (as well as new nested bridges). This means that the number of loops
in a cluster might augment. Also, new input and output nodes of the component can
be created as in A and B. This implies that the number of extremes in a connected
component, which are linked by a directed path to the cluster, might augment. Also,
the number of ways in and ways out to a cluster might augment by duplication. An
important point, is that this number can augment if it is non-zero. If there is no way in
the cluster, then no way in can be created by duplication, and the same holds for ways
out. This follows from the fact that duplication does not allow neither the identi)cation
of two distinct nodes of the logical $ow graph nor the identi)cation of a sequence of
edges. Since no input and output nodes of a connected component can be identi)ed
by duplication, two distinct paths of the logical $ow graph cannot be glued one after
the other.
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The duplication induced by E allows cycles to split and the number of cycles in the
cluster to decrease eventually. The basic cases are illustrated in the )gure below

where, in the upper row, we suppose that two loops of the cluster share a common part
and we see that the duplication induces either the formation of two distinct loops or
the constitution of a single loop. In the lower row we consider the case of two nested
loops with a way in. After duplication the result is a single loop where the path going
in is extended. Also, the absence of ways out is preserved in both the cases illustrated
in the picture.
We can conclude that duplication can transform a cluster with no way out into a

cluster with no way out. (To be precise, this follows by combining the above with
Proposition 18 in [4] saying that, if the cluster is a single loop, then duplication cannot
disrupt the cycle.) In particular, the process of cut-elimination that we are considering,
transforms a logical $ow graph containing a cluster with no way out into a logical $ow
graph containing a cluster with no way out. This implies that the cluster contained in
K can be reduced by duplication to a cluster with no way out and with a possibly
smaller number of cycles, but it cannot be eliminated.
Since our procedure of cut-elimination transforms � into a proof �′ with an acyclic

logical $ow graph, then we are in contradiction with the hypothesis that there is a
cluster in the logical $ow graph of � with no way out.
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Proof (Theorem 3): Each connected component K of the logical $ow graph of a proof
� is a directed graph because it is, by de)nition, a subgraph of the logical $ow graph.
When no cycles appear in K , then the statement is obvious.
If K is cyclic, then let C be a cycle in K and let H be the cluster in K that contains

C. By Theorem 5, there is a way in and a way out in H . Also, by de)nition of cluster,
either there is an acyclic path that starts from an input node of K and goes to the way-
in-node of H (without passing through other clusters of K), or there is an acyclic path
that starts from a way-out-node of some cluster in K (disjoint by H) and goes to the
way-in-node of H . If the )rst case holds, then we call p1 such a path. Otherwise,
since K is )nite, there is an input node x of K and a sequence of disjoint clusters in
K such that there is an acyclic path starting at x, passing through the clusters in the
sequence and ending in the way-in-node of H . (By de)nition of cluster, the path must
pass exactly once through the clusters in the sequence.) Call p1 this path.
With a similar argument, we can show that there is an acyclic path p2 from a

way-out-node of H to some output node of K .
The paths p1; p2 allow to conclude that there is a path in K that starts at an input

node of K , ends in an output node of K and passes through C. To )nd such a path it
is enough to extend p1 with a path in H that starts at the way-in-node of H , passes
through C, ends in the way-out-node of H and proceeds as p2.

The path that passes through the cycle C in the proof of Theorem 5 might be cyclic.
Take for instance the following )gure:

where C is the most external cycle in the picture. It is clear that there is no acyclic
path going from X to Y and passing through the loop C.
As mentioned in Remark 2 there might be no full stream associated to a pair of

formulas in the logical $ow graph of a proof. The following corollary ensures that
given a connected component of the graph and a cluster in it, there is always a stream
whose extremes are extremes for the graph, that shares edges with the cluster.

Corollary 6. Let K be a connected component in the logical )ow graph of a proof.
There is a stream; lying in K; whose extremes are input and output nodes of K .
In particular; given a cluster H in K; there is a stream passing through H whose
extremes are input and output nodes of K .

Proof. If K is acyclic, then the statement is obvious. If K is cyclic, let H be a cluster
in K , let x be a way-in-node in H , and let y be a way-out-node in H . Such nodes
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exist by Theorem 3. Consider an acyclic path in K that goes from an input node X of
K to x (such a path exist as noticed in the proof of Theorem 3), it passes through H
by taking the shortest way between x and y in H , and continues without forming any
cycle from y to an output node Y of K (again, a path from y to Y exists as noticed
in the proof of Theorem 3). This is an acyclic path from X to Y in K because the
path in H was chosen to be the shortest.
To derive the statement, it is enough to consider, as a stream in K , any stream that

contains the path that we just constructed. Notice that the path itself is a stream.

Coming back to our last example, notice that there is an acyclic path from X to Y
that shares edges with the cluster.
To conclude, let us observe that each connected component of the logical $ow graph

of a proof is usually constituted by several streams as illustrated by the graph on the
left

which contains two streams, the )rst has base [x; y1] and the second has base [x; y2]
(as illustrated on the right).
Di@erent connected components and streams occurring in a speci)c component de)ne

two di@erent types of interaction in a proof:
1. Distinct streams can share subgraphs (as in the )gure above) that can in$uence

one another. This interaction is analyzed in [4] through a combinatorial study of
cut-elimination.

2. Di@erent connected components belong to the same logical $ow graph because the
proof ties them together by means of logical connectives. The interaction between
distinguished connected components has been studied through the notion of proof-
net by Girard et al. and many others. Girard’s seminal paper [12] introduces the
reader to the area. We shall skip here the numerous references.

In this paper we shall not address any question concerning interaction with the excep-
tion of Section 8.

5. Strings and stream theory

In this section we introduce a language to represent a stream as a string formalized
in a language of three symbols b; ∗;+, where b is a constant, ∗ is the binary operation
of concatenation, and + is the binary operation of bifurcation. We will also need two
extra symbols ( ; ) to be used as separators. The language will be called S.
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De%nition 7. A string is a word in the language S satisfying one of the following
conditions:
(i) b is a string,
(ii) if w1; w2 are strings then w1 ∗ w2 is a string,
(iii) if w1; w2 are strings then w1 + w2 is a string.

Example 8. The string b corresponds to a stream which looks like a sequence of edges.
The diagrams below illustrate the behavior of the operations of concatenation ∗ and of
bifurcation + on streams

where to “concatenate two streams” means to align them one after the other, and to
“bifurcate two streams” means to align them one parallel to the other.
The topology of streams changes with the application of both operations since new

branching points are generated. Through concatenation we create sequences of focal
pairs and through bifurcation we create new focal pairs.

We de)ne an equational )rst order theory describing streams.

De%nition 9. Stream theory contains the following axioms:
A1 b ∗ w=w (left identity),
A1′ w ∗ b=w (right identity),
A2 (w ∗ w1) + (w ∗ w2)=w ∗ (w1 + w2) (left distributivity),
A2′ (w1 ∗ w) + (w2 ∗ w)= (w1 + w2) ∗ w (right distributivity),
A3 w1 + w2 =w2 + w1 (commutativity of +),
A4 w1 + (w2 + w3)= (w1 + w2) + w3 (associativity of +).

Axioms A1, A1′ tell us that no topological change is achieved by concatenating a
sequence of edges to a stream. Axioms A2, A2′ can be illustrated in terms of streams
as follows:
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By the point of view of the input vertex, the structure of the two graphs is identical.
Namely, the number of paths going from the input vertex to the output vertex remains
unchanged for both graphs. Axioms A3 and A4 guarantee that the topological structure
of a stream is preserved by commutativity and associativity of +.

De%nition 10. Stream theory is called associative when it is extended with the axiom
A5 w1 ∗ (w2 ∗ w3)= (w1 ∗ w2) ∗ w3 (associativity of ∗)
and it is called commutative when it is extended with the axiom
A6 w1 ∗ w2 =w2 ∗ w1 (commutativity of ∗).

One can think of A1–A6 as universally quanti)ed axioms over variables w; w1; w2; w3.
Stream theory is constituted by the theory of abelian additive semi-groups and by
a multiplicative part. The distributivity law holds. Notice also that the operation of
concatenation is not commutative in general and that in associative Stream theory we
do not distinguish substrings of the form (w1 ∗ w2) ∗ w3 and w1 ∗ (w2 ∗ w3).
Since the operation of bifurcation is associative, in the following we will drop

parenthesis when not necessary. For instance, the word (w1 +w2) +w3 will be written
w1 + w2 + w3. We will also use the shorthand notation wn instead of

w + w + · · ·+ w
︸ ︷︷ ︸

n times

and we will call n the multiplicity of w.

Proposition 11. The following properties are provable in Stream theory
1: w ∗ w1 + · · ·+ w ∗ wn=w ∗ (w1 + · · ·+ wn)
2: w1 ∗ w + · · ·+ wn ∗ w=(w1 + · · ·+ wn) ∗ w
3: w1 + · · ·+ wn=w*(1) + · · ·+ w*(n) for any permutation *.

Proof. To check the three properties it is a routine. Note that they correspond to
axioms A2, A2′, A3. They are derived from their corresponding axiom with the help
of A4.

In any stream structure there are in)nitely many non-equivalent strings. Namely, for
any two positive integers n; m, we have bn �= bm. Therefore the cardinality of a stream
structure is at least countable.

Proposition 12 (Normalization). Let w be a string. There is a unique integer k ¿ 1
such that w= bk is provable in Stream theory.

Proof. Let the height h(w) of a string w be de)ned as follows: h(b)= 1; h(w1 ∗ w2)
= h(w1 + w2)= max{h(w1); h(w2)}+ 1.
By induction on the height of the string w we show that there is a k such that w is

equivalent to bk .
If w is b then k =1.
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If w is of the form w1 ∗w2 then by induction hypothesis, w1 is equivalent to bm and
w2 is equivalent to bl. Therefore w1 ∗ w2 is equivalent to bm ∗ bl. On the other hand,
by Property 2 in Proposition 11 and axiom A1 one derives

bm ∗ bl = b ∗ bl + · · ·+ b ∗ bl
︸ ︷︷ ︸

m times

= bl + · · ·+ bl
︸ ︷︷ ︸

m times

= bm·l:

If w is of the form w1+w2 then by induction hypothesis w1; w2 are equivalent to bm; bl

respectively. Therefore w1 + w2 is equivalent to bm + bl and hence to bm+l by axiom
A6.

Proposition 13 (Cancellation modulo torsion). The following properties are provable:
1: b ∗ w1 = b ∗ w2 ⇒w1 =w2 (left cancellation);
2: w1 ∗ b=w2 ∗ b⇒w1 =w2 (right cancellation);
3: w ∗ w1 =w ∗ w2 ⇒wn1 =w

n
2 where bn=w;

4: w1 ∗ w=w2 ∗ w⇒wn1 =w
n
2 where bn=w.

Proof. Properties 1; 2 are derived using axioms A1, A1′. To derive property 3 we
apply Proposition 12 to the string w and observe that there is a positive integer n
such that w is equivalent to bn. Hence w ∗w1 = bn ∗w1 and w ∗w2 = bn ∗w2. By right
distributivity (i.e. axiom A2), bn ∗w1 = (b∗w1+ · · ·+b∗w1) (where the right-hand side
contains n strings of the form b ∗w1) and analogously bn ∗w2 = (b ∗w2 + · · ·+ b ∗w2).
Hence w1 + · · ·+w1 =w2 + · · ·+w2 by axiom A1, i.e. wn1 =w

n
2 . Similarly, one shows

property 4. In this case axioms A1′ and A2′ should be used instead.

6. Strings and streams of proofs

Before proceeding we would like to pose for a moment and give some justi)ca-
tion for our analysis. In Section 2.3, formalized proofs are mapped into the space of
graphs with nodes of degree at most 3. The image of such a map contains graphs
(maybe cyclic) which are rather special. They satisfy the properties described in The-
orems 3 and 5, for instance. Also, the topology of the graphs in the image induces
an equivalence relation in the space of proofs. Namely, if we call l the map from
proofs to logical $ow graphs of proofs, and i the map from graphs to topologically
minimal graphs, then the map il de)nes an equivalence relation on the space of proofs
as follows:

�1 ≡ �2 i@ il(�1) ∼ il(�2);

where �1; �2 are proofs and ∼ denotes the isomorphism between graphs. The quotient
space induced by the equivalence relation ≡ seems not very useful to investigate the
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combinatorics and complexity of cut-elimination. This is the reason to look at special
subgraphs of the logical $ow graphs, the streams, and try to analyze whether the
complexity of cut-elimination on streams is related to their topological structure. The
basic advantage in using the notion of stream resides on the possibility of associating to
it a one-dimensional representation, that is a string, which can be manipulated in purely
algebraic terms. The process of cut-elimination, seen as a process of manipulation of
streams, can be described in purely algebraic terms also.
We shall start this section by describing how, given a stream of a proof, one de)nes

a string associated to it. It turns out that several strings might be associated to the
same stream (they will all be equivalent in the sense of Stream theory), and that both
compact strings and explicit strings (to be de)ned later) uniquely identify a stream.
To associate a string to a stream in a proof, we think of the logical $ow graph of the

proof as being embedded in the plane, we read bridges and directed paths connecting
weak formulas to occurrences lying either in the end-sequent or in a cut-formula, as
the constant b, we read a cut-edge as performing the operation of concatenation ∗, and
we express the nesting of bridges through the operation of bifurcation +.

De%nition 14. A decomposition of an acyclic directed graph P is a set of streams
{P1; : : : ; Pn} lying on P such that
(i) each directed path in P belongs to exactly one of the streams Pj,
(ii) the input node of Pj is an input node of P,
(iii) the output node of Pj is an output node of P.

If P is a graph lying in the logical $ow graph of a proof �, then the notation P ��′

represents the restriction of P to the logical $ow graph of a subproof �′ of �.

De%nition 15. Let � be a proof whose last rule is applied to the subproofs �1; �2.
(If the rule is unary, then consider �1 only.) A stream P is called an extension of
P1; : : : ; Pn if P is a stream of � and {P1; : : : ; Pn} is a decomposition of P ��1 ; P ��2 .

In De)nition 15, if the last rule of � is a cut, then the number of streams n can
be arbitrarily large. In fact, a stream P might pass through the cut-formulas, back and
forth, several times.

De%nition 16. Let P be a stream of a proof �. A string associated to a stream P
is built by induction on the height of the subproofs �′ of � in such a way that the
following conditions are satis)ed:
(i) if �′ does not contain cuts, let {P1; : : : ; Pn} be a decomposition of P ��′ . Each

string associated to Pi is bm, where m is the number of distinguished directed
paths lying in Pi,

(ii) if the last rule of �′ is not a cut and it is applied to �1; �2 (if the rule is unary,
then consider �1 only), let {P1; : : : ; Pn} be the decomposition of P ��1 and P ��2 .
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Then the decomposition of P ��′ is {P′
1 ; : : : ; P

′
l } where

(a) P′
i is an extension of Pj and the string associated to P′

i is wj, where wj is the
string associated to Pj, or

(b) P′
i is a stream obtained by the union of streams P′

j1 ; : : : ; P
′
jk which are extensions

of Pj1 ; : : : ; Pjk ∈{P1; : : : ; Pn} and are based on the same pair [vi; wi]. The string
associated to P′

i is wj1 + · · ·+wjk , where wjr is the string associated to Pjr , for
r=1; : : : ; k,

(iii) if the last rule of �′ is a cut applied to subproofs �1; �2 and {P1; : : : ; Pn} is a
decomposition of P ��1 and P ��2 , then the decomposition of P ��′ is {P′

1 ; : : : ; P
′
l },

where the P′
i ’s are all possible extensions of the streams in {P1; : : : ; Pn} such

that
(a) P′

i is an extension of Pj1 ; : : : ; Pjk and the string associated to P′
i is wj1 ∗ · · · ∗wjk

(possibly k =1), where wjr is the string associated to Pjr , for r=1; : : : ; k, or
(b) P′

i is a stream obtained by the union of streams P′
j1 ; : : : ; P

′
jk where each P′

jr
is an extension of Pjr ;1; : : : ; Pjr ; l ∈{P1; : : : ; Pn} and all the P′

jr are based on the
same pair [vj; wj]. The string associated to P′

i is w′
j1 + · · · + w′

jk where w′
jr is

wjr ;1 ∗ · · · ∗ wjr ; l, and wjr ; s is the string associated to Pjr ; s for s=1; : : : ; l.

Let us now give a couple of examples to illustrate how streams of proofs can be
read as strings.

Example 17. Consider the following stream of a proof

where a path starts on the left-hand side of the picture, goes up until it reaches a
branching point. Two distinguished paths depart from this branching point, they pass
through two axioms in the proof and they rejoin into another branching point to pass
through a cut-edge, form a new bridge, pass through a second cut-edge, go up into
a new subproof, split once more, join once more and end-up into the right-hand side
of the picture. The structure of this proof can be described with di@erent strings. For
instance, the strings (b2 ∗ b) ∗ b2, (b ∗ b) ∗ b2 + (b ∗ b) ∗ b2 and (b ∗ b) ∗ b+(b ∗ b) ∗ b+
(b ∗ b) ∗ b + (b ∗ b) ∗ b are descriptions of the above structure. One can easily check
that the three strings are equivalent in Stream theory. In fact, the )rst and the second
string are equivalent by A2′ and the second is equivalent to the third by A2.
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Example 18. Consider two streams of proofs having the following form:

where the height of a cut in the proof is re$ected by the position of horizontal cut-
edges in the graph. We read the stream on the left as (b ∗ b) ∗ b and the stream on the
right as b ∗ (b ∗ b). The parenthesis denote the height of a cut in a proof. In this way
the string (b ∗ b) ∗ b represents a cut between a subproof containing a stream b ∗ b and
a second subproof containing a bridge. The representation of b ∗ (b ∗ b) is symmetric.

De%nition 19. A string associated to a stream in a proof � is compact if it is de-
termined as described in De)nition 16, where we require that the streams Pi lying in
decompositions {P1; : : : ; Pn} relative to subproofs �′ of � have distinct bases [vi; wi],
for i=1; : : : ; n, i.e. vi �= vj or wi �=wj, for all i �= j.

Proposition 20. Given a stream of a proof; there is a unique compact string associated
to it (up to commutativity of +).

Proof. The statement follows directly from the fact that, for all subproofs �′ of �,
there is only one stream P′ (up to commutativity of +) which is de)ned as P ��′ on
a pair [v′; w′].

In Example 17, the string (b2∗b)∗b2 is compact. Compact strings are a succinct way
to represents streams. All other representations have larger complexity, that is a larger
number of symbols. Consider, for instance, a string of the form w1 + w2 + · · · + wn
describing a stream P of a proof based on [v; w]. If each wi describes a simple path
in P based on [v; w], then wi is of the form b ∗ b ∗ b : : : b ∗ b. In this case we say that
the string w1 +w2 + · · ·+wn describes the stream P explicitly: all paths are described
one by one. This description is the most expensive in terms of the number of symbols
and we refer to it as explicit representation, or explicit string.

Proposition 21. Let � be a cut-free proof. All the streams of � are described by
strings of the form bn; where n is bounded by the number of axiom-edges of �.

Proof. Either a stream of � is a directed path connecting a weak occurrence in an
axiom with an occurrence of a formula in the end-sequent of �, or it is constituted
by several nested bridges. In the )rst case, the string is b and the claim follows
since a proof has always at least one axiom. In the second case, the claim follows
from De)nition 16 (assertion 1) and the following observation. Each path belonging
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to a stream passes through an axiom-edge by de)nition. Suppose that more than one
path belonging to the same stream passes through the same axiom. These paths will
pass through the pair of distinguished formulas of the axiom and, in particular, through
distinct atomic occurrences. Therefore there should be a moment along the proof, where
the occurrences need to identify (since a stream has one input vertex and one output
vertex.) But the identi)cation is impossible because of the subformula property which
holds for cut-free proofs.

Remark 22. The cut-free proof of F(2) → F(22
n
) which can be easily constructed

from axioms of the form F(t) → F(t), the F-rule, and contractions on the left, is an
example of proof where the number n in Proposition 21 corresponds exactly to the
number of axioms in the proof. The logical $ow graph of this proof is a stream based
on [F(2); F(22

n
)]. Since distinguished formulas in axioms are atomic and all of them

are linked to the end-sequent, then the number of axioms in the proof must coincide
with the number of paths of the stream.

Remark 23. In proofs we can only compose and bifurcate bridges having the same
orientation. This justi)es the fact that stream structures are not de)ned to have a group
on their additive part but simply an additive semi-group.

6.1. From strings to streams

We have seen that there are maps from the space of streams to the space of strings
that associate to a stream, in a unique way, a string. An example is given by the map
that associates compact strings, and another example is the map that associates explicit
strings. There are also well-de)ned maps from strings to streams of proofs.

Theorem 24. For each string there is a proof whose logical )ow graph is the stream
described by the string.

Proof. Let w be a string. We shall build a proof �w whose end-sequent is F(x)
→F(t(x)), for some term t(x), and whose logical $ow graph is a stream associated to
w. The construction is done by induction on the complexity of the substrings.
If w is b then �w is an axiom of the form F(x)→F(x).
If w is w1 ∗ w2 then by induction we know �w1 and �w2 . The end-sequents of �w1

and �w2 are F(x)→F(f(x)) and F(x)→F(g(x)), for some term f(x) and g(x). By
substituting the occurrences of the variable x in �w2 with the term f(x) we obtain a
proof �′

w2
with end-sequent F(f(x))→F(g(f(x))), the same logical structure as �w2

and the same logical graph. (This is straightforward to check.) Then, we combine with
a cut on the formula F(f(x)) the proofs �w1 and �

′
w2

and obtain a proof of the sequent
F(x)→F(g(f(x))) whose associated string is w1 ∗ w2 (by De)nition 16).
If w is w1 + w2 then by induction we know �w1 and �w2 . Their end-sequents are

of the form F(x)→F(f(x)) and F(x)→F(g(x)), for some term f(x) and g(x). We
apply the F-rule to �w1 and �w2 to obtain a proof of F(x); F(x)→F(f(x) ∗ g(x)).
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By applying a contraction to the occurrences F(x) on the left, we obtain the sequent
F(x)→F(f(x) · g(x)) and a proof with associated string w1 + w2 (by De)nition 16).

Remark 25. The construction proposed in the proof of Theorem 24 associates a proof
to a given string, where the logical $ow graph of the proof is a stream described by
the string. In fact, the derivation constructed in the proof of the theorem is by no
means the only one that could be given. To illustrate this point, we give an example
that we shall use later in our discussion. Take the following transformation of streams
due to the procedure of cut-elimination (the existence of such transformations is proved
in [4])

where one can see that the topology of the stream is preserved by the transformation.
The )gure corresponds to the resolution of a contraction during Gentzen’s procedure,
namely it corresponds to the transformation from (8) to (9) described in Section 2.2.
The stream on the left is associated to a proof where a contraction lies just above the cut
(i.e. the branching point lying above the horizontal edge) as in (8). The transformation
from (8) to (9) moves this contraction before the pair of new cuts as in (9). In the
picture on the right, we see the stream in (9), where the branching point lies below
the two horizontal edges introduced by the transformation.
The second contraction, which lies just above the output node w, is applied much

after the cut rule and it is not involved in the transformation. The streams, before and
after cut-elimination, are described by the same string b ∗ b+ b ∗ b, by De)nition 16.
Notice also that this is the only possible string describing the streams above. (The fact
that the height of the second contraction is smaller than the height of the cut rule,
plays a crucial role here.)

Remark 26. The proof � constructed in Theorem 24 is formalized in the extension of
the propositional sequent calculus with F-rules. Notice that there are no weak occur-
rences in � and that cuts are only on atomic formulas. In particular, the proof � is
reduced. One might be unhappy with the presence of F-rules in � and might like to
look for proofs in pure propositional logic. To )nd proofs containing a required stream
is not diEcult once we allow an arbitrary use of weak occurrences in �. To )nd a
propositional proof � which is also reduced is, on the other hand, a very diEcult task
and it is not at all clear whether there is a uniform algorithm that given a stream,
returns a reduced propositional proof which contains it.
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6.2. Strings and topology of streams

Usually, proofs having streams with the same topological structure, might have dif-
ferent compact and explicit strings associated to them. Take, for instance, the following
transformation of streams due to the procedure of cut-elimination [4]:

where the proof on the left is described by the compact string b∗b2 and by the explicit
string (b∗b)2. For the proof on the right, the string (b∗b)2 is both compact and explicit.
Also, consider the following pair of streams:

where the proof on the left is described as above, and the one on the right is described
by the compact string b ∗ (b ∗ b2) and by the explicit string (b ∗ b ∗ b)2.

We say that a stream P in � is minimal if for any subproof �′ of � whose
end-sequent is combined with some cut-rule, the graph P ��′ does not contain nei-
ther simple bridges nor directed paths to or from weak occurrences, as connected
components.

Proposition 27. Let G1; G2 be two minimal streams. If G1 and G2 have the same
topological structure then they are described by the same explicit strings.

Proof. Let G1 be a stream based on [v; w] and G2 be a stream based on [x; y]. By
de)nition an explicit string for a stream is a bifurcation of strings which are concate-
nations of b’s and describe simple paths in the stream. Since G1; G2 have the same
topological structure, the number of paths between v; w and x; y must be the same, say
n. In particular, the two streams are minimal by hypothesis and therefore they have
the same number of cut-edges lying along each path. This is enough to conclude that
if w1 + · · · + wn is an explicit string of G1 then w1 + · · · + wn must also be a string
of G2. Moreover, this string is unique up to commutativity of +.
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7. Arithmetical value of strings and complexity

If a proof contains cuts, then the compact description of its streams might be much
shorter than the explicit ones. Let us illustrate this point with a concrete example where
the presence of a chain of focal pairs in a stream is described by a compact string of
size n, and by an explicit string of size 2n.

Example 28. We suppose that the binary function · is the arithmetical multiplication;
and we look at a proof of F(2)→F(22

n
). (This example is taken from [4].) There

is no use of quanti)ers and the formalization takes place on the propositional part of
predicate logic. Our basic building block is given by

F(22
j−1

) → F(22
j
); (14)

which can be proved for each j in only a few steps. (One starts with two copies of
the axiom F(22

j
)→F(22

j
) and combines them with the F-rule to get

F(22
j
); F(22

j
) → F(22

j+1
):

Then one applies a contraction to the two occurrences of F(22
j
) on the left and derives

the sequent.) We can then combine a sequence of these proofs together using cuts to
get a proof of F(2)→F(22

n
) in O(n) steps.

The logical $ow graph for the proof of F(2)→F(22
n
) looks roughly as follows:

where the notation �j, 1 6 j 6 n refers to the proofs of F(2)→F(22
n
). The logical

$ow graph of each �j contains two branches, one for the contraction of two occurrences
of F(22

j−1
) on the left, and another for the use of the F-rule on the right. Along the

graph we notice a chain of n pairs of branches which gives rise to an exponential
number of paths starting at F(2) and ending in F(22

n
). There are no cycles in the proof

and the logical $ow graph of this proof is a stream. The compact string associated to
it is b2 ∗ b2 ∗ · · · ∗ b2, where each of the n factors b2 corresponds to a focal pair in the
graph. The explicit string is b2

n
.

Can we detect a chain of focal pairs lying in a stream by reading its associated
string? To answer, let us introduce some more notation. A string can always be seen as
a concatenation of strings either of the form b or w1+w2+· · ·+wn, where w1; w2; : : : ; wn
are strings and n¿1. For instance, take the string w of the form (b∗ (b2 +b∗b3))∗b3.
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We say that b, b2 + b ∗ b3 and b3 are concatenated to each other and we call them
factors of w. A factor of the form w1 +w2 + · · ·+wn is called non-trivial. The number
of non-trivial factors of w is the index of w.

Proposition 29. Let P be a stream based on [v; w] and lying in the logical )ow graph
of a proof �. Let w be the string representing P. If w contains a substring of index
n then there is a chain of n focal pairs in the logical )ow graph of �.

Proof. Let P be a stream and w be the string associated to it. By De)nition 16, any
substring w′ of w describes a stream lying in some subproof �′ of �. If w′ has index
n then w′ is of the form w1 ∗ · · · ∗ wm, where wi1 ; : : : ; win are non-trivial factors, for
ij ∈{1; 2; : : : ; m} and j=1; : : : ; n. By De)nition 16, the substrings w1; : : : ; wm correspond
to streams lying in subproofs �i linked through cuts, and based on pairs [Ai; Bi], where
the atomic formula Ai is Bi+1 (in �′ the occurrences Ai; Bi+1 are linked by a cut-edge).
In particular, the substrings wij are of the form

wij;1 + · · ·+ wij;mij for mij ¿ 1:

By De)nition 16, wij;1; : : : ; wij ;mij are strings associated to streams based on the same
pair [A; B]. Therefore, there is at least a focal pair lying in the subproof �ij (because
mij¿1). This means that in �′ we have a chain of focal pairs which is de)ned by the
cut-edges connecting the subproofs �1; : : : ; �m and the focal pairs in the �ij ’s.

As illustrated in Example 28, a chain of n focal pairs lying in a stream gives rise
to at least 2n distinct paths. In Proposition 30, we show that the number of paths in a
stream can be computed precisely by means of an arithmetical interpretation of strings.
We say that the arithmetical value t(w) associated to a string w is de)ned as follows:
t(b) is 1, t(w1 ∗ w2) is t(w1) ∗ t(w2) and t(w1 + w2) is t(w1) + t(w2).

Proposition 30. Let w be a string associated to a stream P. Then the number of
directed paths from the input vertex to the output vertex of P is t(w).

Proof. This follows in a straightforward way from the interpretation between streams
and strings described in Example 8.

Proposition 31. Let w be a string and w′ be a substring of w. Then any substi-
tution of w′ with a string w′′ where t(w′)= t(w′′); gives a string w∗ such that
t(w∗)= t(w).

Proof. The arithmetical term t(w) (once considered in its syntactical form) con-
tains the arithmetical subterm t(w′). If we substitute the occurrence of t(w′) with
t(w′′) we shall obtain the arithmetical term t(w∗) whose value is t(w) since
t(w′)= t(w′′).
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8. Strings and cut-elimination

How does a stream of a proof evolve through the procedure of cut-elimination?
A more general version of this question was addressed in [2, 4] where the combinato-
rial operation of “duplication” on directed graphs was introduced and used to analyze
the combinatorics of the transformations induced by cut-elimination. Here we would
like to show that the evolution of streams can be analyzed through simple algebraic
manipulations. We give a number of rewriting rules and show that these rules describe
the transformation.
The set of rewriting rules that we want to consider contains the computational

rules:
R1 b ∗ w→w,
R1′ w ∗ b→w,
R2 w ∗ (w1 + · · ·+ wn)→w ∗ w1 + · · ·+ w ∗ wn,
R2′ (w1 + · · ·+ wn) ∗ w→w1 ∗ w + · · ·+ wn ∗ w,
R3 w1 + · · ·+ wn→w*(1) + · · ·+ w*(n) for any permutation *,
R5 w1 ∗ (w2 ∗ w3)→ (w1 ∗ w2) ∗ w3,
R5′ (w1 ∗ w2) ∗ w3 →w1 ∗ (w2 ∗ w3),
which follow from the axioms A1–A3 and A5. Axiom A4 does not have a counter-
part here because from now on we shall consider only compact strings associated to
proofs. This justi)es the absence of a rule R4. It also contains the local structural rule
R6 w→w + w
which represents the possibility to duplicate the same substrings, and the global
structural rules
R71 (w1 + w2) ∗ w3 ∗ (w4 + w5)→ (w1 ∗ w3 ∗ w4) + (w2 ∗ w3 ∗ w5),
R72 w1 ∗ w3 ∗ (w4 + w5)→w1 ∗ w3 ∗ w4,
R73 w1 ∗ w3 ∗ (w4 + w5)→w1 ∗ w3 ∗ w5

which cancel some of the substrings. It is clear that local and global structural rules al-
low a string to grow and shrink. Theorem 32 shows how the process of cut-elimination
induces streams to shrink and grow. Notice that if w is a string transformed by R6
into w′ then t(w)¡t(w′). If w is transformed in w′ by R7i, for i=1; : : : ; 3, then
t(w′)¡t(w). On the other hand, if any of the rules R1–R5 are used then
t(w)= t(w′).

Before stating Theorem 32, we need to introduce some more de)nitions. A reduc-
tion is a sequence of applications of rewriting rules that transforms a string w into a
string w′. An application of a rewriting rule s→ t to w replaces an occurrence of the
substring s in w with the substring t. A reduction of a string is called <nal if it leads
to a string of the form bn, for some n.
We say that a path in the logical $ow graph of a proof is disrupted by a step

of cut-elimination when given two nodes of the path, after the transformation there
is no more path between them. A stream is disrupted when one of its paths is
disrupted. This notion was introduced in [2] where the reader can )nd concrete
examples.
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Theorem 32. Let � be a proof and let w be the compact string associated to some
stream of �. For any process of elimination of cuts which gives a cut-free proof with
n axioms; either there is a reduction of w to a string bm (where m6 n) through the
rules R1–R7; or the stream is disrupted by some step of elimination of cuts either on
weak occurrences or on contractions.

Proof. The proof consists of checking that at each stage of the procedure of cut-
elimination, the deformation of streams in the proof is regulated by the set of rules
R1–R7. Namely, if w is a compact string associated to a stream P in �, and if �′

is the proof obtained by transforming � through a step of elimination of cuts, then
there is a compact string associated to a stream P′ in �′ which is obtained from w
after rewriting one or several of its substrings with the rules R1–R7. The stream P′

is the deformation of the stream P in � induced by the manipulation of the proof
�. Since paths of the logical $ow graph of � might split after manipulation, it might
happen that the stream P is disrupted and that P′ does not exist. This is a well-
de)ned possibility and we shall discuss it later in the proof. In case P is transformed
into P′, notice that several paths of P might be involved in the transformation of
the same cut, and this implies that several substrings of w will be simultaneously
a@ected.
In the analysis of the steps of cut-elimination we shall follow the presentation of

Section 2.2. We shall divide this analysis into two distinct cases; )rst we treat the
case of a stream P that passes through the cut-formulas A and second, we look at
the case of P that passes through the side formulas of the antecedents of the cut-
rule.
Suppose to be in the )rst case. If A is atomic, then notice that only one path

of the stream P passes through A. If A is not atomic, then a directed path be-
longing to the stream might pass through the same cut-formula several times and
di@erent portions of the same path might behave di@erently. Moreover, several
distinct paths of the stream might pass through A. Their behavior will be captured
by a simultaneous applications of rules R1–R7 to substrings of w which describe
di@erent portions of the stream involved in the transformation. These aspects of
the transformation will be clearer while proceeding with our step-by-step
analysis.
Let us start by considering the elimination of a cut when one of the cut-formulas

is a distinguished occurrence in an axiom as in (1). There might be several paths
of the stream P that pass through the distinguished occurrences and each of these
paths will be denoted b (in the string w) because of compactness. This is shown
by an easy chasing of De)nition 16. If the axiom appears on the left (as it is the
case in display (1)), then we use R1 to replace substrings b ∗w′ in w by w′. If
the axiom appears on the right, then R1′ allows to replace substrings of the form
w′ ∗ b in w by w′. The string that we obtain is compact. Let us illustrate this
case with a concrete example. Consider the stream P illustrated by the )gure on
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the left

The stream P is constituted by two paths that depart from a common input vertex, they
pass through the cut-formula A and go towards �1, they move along �1 and )nally
they recombine into a common output vertex. The compact string associated to P is
(b ∗w1) + (b ∗w2), where w1; w2 correspond to substreams in �1. After manipulation,
P is transformed into the stream P′ illustrated on the right, which has compact string
w1 + w2. To pass from (b ∗w1) + (b ∗w2) to w1 + w2, one applies R1 twice to the
substrings b ∗w1 and b ∗w2.
If both cut-formulas are main formulas of two logical rules, we have to distinguish

the case where both rules have one single antecedent (that is, the case of quanti)er rules
and negation rule) from the case where one of the logical rules has two antecedents.
In the )rst case, no rule, among R1–R7, need to be applied. The second case is more
complicated and we suppose, without loss of generality, that the cut-formulas are of
the form A ∨ B as in (4) to (5). Two situations might arise.
First, suppose that there is a substream lying in the stream that passes through both

A and B and that it is described by a substring (wA ∗wAB) ∗wB, where wA represents
a substream passing through A in �′

2, wAB describes a substream passing through both
A and B in �′

1, and wB describes a substream passing through B in �′
3. After cut-

elimination, the proof turns either into (5) or into a proof that looks like (5) where
the cut on B is performed before the cut on A. If the cut on A precedes the cut on B,
then no rewriting rule is applied and the substream in (5) is described by the string
(wA ∗wAB) ∗wB; if the cut on B precedes the cut on A, then R5 is applied and the
string that describes the substream becomes wA ∗ (wAB ∗wB).
Second, suppose that there are paths of the stream that pass through exactly one of

the disjuncts. In this case the paths will be simply stretched and no change in their
associated strings will take place.
These are the only two possible situations that might occur and the treatment of the

transformations on other logical connectives is similar. Of course, a path might pass
through A and B several times, or wAB might describe a stream passing through A and
B on a cut-formula on the right (in case the logical connective is ∧ for instance), or
the initial substream might be described by wA ∗ (wAB ∗wB). It is easy to imagine all
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combinations. The main point is that the treatment speci)ed above adapts easily to all
other variants. In particular, rule R5′ might be used instead of R5.

If a cut is applied to a formula A obtained from a contraction on two occurrences
A1; A2 as in (8), then the procedure of cut-elimination yields a duplication of the
subproof �1 as in (9) and this creates quite intriguing situations.
We start to handle the simplest case. Suppose that there is a substream SP of P lying

in �1 with exactly one of its extremes that occurs in the cut-formula A. Then, SP either
passes through the side formulas in �1; �1 or ends-up into some weak formula in �1.
Let w3 be the string describing it. The stream P connects SP with the rest of the stream
lying in �2 through a cut-edge which splits into two paths, one passing through A1

and the other passing through A2. Let w1; w2 be substrings describing the portion of P
lying in P2 that originates in A1; A2 respectively. The topology we have just described
is represented by a substring of w of the form w3 ∗ (w1 +w2). After duplication of the
subproof the substring will be transformed into the substring (w3 ∗w1) + (w3 ∗w2) and
this is done by applying rules R2;R2′.
This transformation is illustrated, in a concrete way, in the picture of Remark 25,

where a stream P is drawn on the left. The substrings w1; w2; w3 represent bridges in P
and the topological structure of P (described abstractly by w3 ∗ (w1+w2)) is represented,
in this example, by the string b ∗ (b+ b). After the transformation, the stream P′ (on
the right hand side of the picture in Remark 25) is represented by (b ∗ b) + (b ∗ b).
Algebraically, this string is obtained by applying R2 to b ∗ (b+ b).
Suppose now that both the extremes of the substream SP in �1 lie in the cut-

formula A. This case is the most intriguing. As before, let w3 be the substring describ-
ing SP. After passing through two cut-edges, the stream P will go up to the contraction
formulas A1; A2, where four paths will depart as illustrated in the )gure below:

It might be that not all of the four paths belong to P and because of this we shall
handle di@erent cases. We suppose )rst that all four paths belong to P: two of them
come from its input vertex, and are represented by the strings w1; w4, and the other two
go towards its output vertex, and are represented by the strings w2; w5. We illustrate
the transformation of this portion of P as follows:



A. Carbone / Theoretical Computer Science 288 (2002) 45–83 79

where we think of the streams as being stretched. Algebraically, the transformation
is described by rule R71, where the paths w1 ∗w3 ∗w2 and w4 ∗w3 ∗w5 are lost. If
w1; w4; w5 belong to the stream, the transformation is described by R72 or R73. Any
other combination of three paths is handled similarly. If only w1; w5 or w4; w2 belong
to the stream, then the substring is unaltered. If the paths w1; w2 or w4; w5 belong to the
stream, then the stream will be disrupted and the second part of the statement holds.
This concludes the treatment of the contraction rule. (To be precise, since the operation
of bifurcation + is commutative, we might need to use R3 to rearrange the order of
the substrings of the form w1 + · · ·+wk for handling properly the contraction case.)
If two cuts are permuted as in (12) to (13), we suppose )rst that the stream passes

through both pairs of cut-formulas C1; C2 and D1; D2. By De)nition 16, the substream
P2 of P that lies in �2 and passes through C2 might be described in one of the fol-
lowing two ways: either by a compact string of the form w1 ∗ · · · ∗wn, or by a compact
string of the form (w1;1 ∗ · · · ∗w1; n1 ) + · · ·+(wk;1 ∗ · · · ∗wk;nk ). Let w′ be a substring
associated to a substream P1 lying in �1, passing through C1; D1; D2 and connected by
a cut-edge to P2. In the )rst case, w will contain a substring of the form w′ ∗ (w1 ∗· · ·
∗wn); then, we apply R2 and obtain (w′ ∗w1) ∗ (w2 ∗ · · · ∗wn). In the second case, w
will contain a substring of the form w′ ∗ ((w1;1 ∗ · · · ∗w1; n1 ) + · · ·+(wk;1 ∗ · · · ∗wk;nk ));
then, we apply R5 and obtain (w′ ∗w1;1 ∗ · · · ∗w1; n1 ) + · · ·+(w′ ∗wk;1 ∗ · · · ∗wk;nk ).
In the symmetric case, when two cuts are permuted as in (13) to (12), then rule

R2′ has to be applied instead of R2. If two cuts are permuted and the stream passes
through exactly one of the cut-formulas, then no rule is applied.
If a cut is pushed upwards (through logical rules or a contraction) as in (10) to (11),

then it might happen that a contraction is pushed below the cut. This might imply that
a branching point of the stream (maybe several of them) will be pushed below a cut-
edge and therefore that the compact description of the stream might change. The new
compact description is obtained with the application of rules R2 and R2′.

In all cases treated above, the stream P passes through the cut-formulas simpli)ed
by the step of the procedure. The paths of P that pass through the side formulas of
the antecedents of a cut, are stretched and no modi)cation of the substrings associated
to them is needed. The only exception is the contraction case (from (8) to (9)), where
a substream passing through the side formulas of the subproof �1, might be duplicated
with the duplication of �1. In this case, rule R6 is used. This is illustrated in the
following picture (discussed in [4])
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To conclude we consider the case of a cut-formula which is weak in an axiom, as
in (2). The procedure of cut-elimination will induce a disruption of the structure of
the proof due to the removal of the subproof �0. In case the stream passes through
�0, then the stream will be disrupted and the second part of the statement holds.
Let us notice that all along the proof one needs to verify that the string associated

to the proof �′ is compact. This is a straightforward veri)cation and we leave it to
the reader.
To conclude, if the stream has not been disrupted then from Proposition 21 it follows

that w has been reduced to a string bm where m is smaller than the number of axioms
in �.

Example 33. Consider the proof of the sequent F(2)→F(22
n
) given in Example 28

and described by the compact string b2 ∗ b2 ∗ b2 · · · b2 ∗ b2, where the terms b2 are
exactly n. We can calculate the exponential expansion of this proof after cut-elimination
through a purely algebraic manipulation of strings as we shall show for n=4, namely
for the string b2 ∗ b2 ∗ b2 ∗ b2. For an arbitrary n the approach is similar. By applying
R4 to the substrings b2 ∗ b2 we get (b2 ∗ b+b2 ∗ b) ∗ (b2 ∗ b+b2 ∗ b); we apply R3 to all
substrings b2 ∗ b to get ((b ∗ b+b ∗ b)+(b ∗ b+b ∗ b)) ∗ ((b ∗ b+b ∗ b)+(b ∗ b+b ∗ b))
and by R1 we obtain ((b+ b) + (b+ b)) ∗ ((b+ b) + (b+ b)), or in short b4 ∗ b4. By
applying again R4, R3 and R1 we get

(b4 ∗ b2 + b4 ∗ b2)→ ((b4 ∗ b+ b4 ∗ b) + (b4 ∗ b+ b4 ∗ b))

→ (((b2 ∗ b+ b2 ∗ b) + (b2 ∗ b+ b2 ∗ b))

+ ((b2 ∗ b+ b2 ∗ b) + (b2 ∗ b+ b2 ∗ b)))

→ ((((b ∗ b+ b ∗ b) + (b ∗ b+ b ∗ b))

+ ((b ∗ b+ b ∗ b) + (b ∗ b+ b ∗ b)))

+ (((b ∗ b+ b ∗ b) + (b ∗ b+ b ∗ b))
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+ ((b ∗ b+ b ∗ b) + (b ∗ b+ b ∗ b))))

→ b16:

Note that b16 is the minimum expected value for a cut-free proof computing F(22
4
)

from F(2). In fact the minimal tree of computation of F(22
4
) has 24 − 1 branching

points corresponding to 24 − 1 multiplications, and it uses 24 (= 16) times
F(2).

Theorem 34. Let � be a proof of F(x1); : : : ; F(xr)→F(f(x1; : : : ; xr)); with atomic
cuts and no weak formulas. Let wi be the full compact string based on [F(xi);
F(f(x1; : : : ; xr))]; for i=1; : : : ; r. Then; all procedures of cut-elimination transforming
� into �′ and wi into w′

i ; for i=1; : : : ; r; are simulated by R1–R5 and w′
i is b

ni where
ni= t(wi).

Proof. The proof � has a very simple structure. Here are some properties:
1. The proof � contains no logical rules and all formulas appearing in � are atomic.

This is because cuts are de)ned on atomic formulas and formulas in the end-sequent
are atomic.

2. For any sequent in �, exactly one formula lies on the right-hand side of the sequent.
This follows from 1.

3. There are no contractions on the right in �. This is because there are no weak
formulas and no logical rule can be applied on negative formulas in �.

Properties 1–3 imply some properties of the $ow graph of �:
(a) No path passes twice through the same cut-formula, since cut-formulas are atomic.
(b) No path passes twice through the side formulas of a sequent used in a cut-

rule. This is because at any stage of the procedure, the sequents have the form
F(s1); : : : ; F(sk)→F(g(s1; : : : ; sk)), and contractions are on the left only. Therefore,
if the cut-formula in the sequent is a positive occurrence of the form F(g(s1; : : : ;
sk)), then all side formulas are negative occurrences and no path can start and end
in them; if the cut-formula is a negative occurrence F(sj), for some j=1; : : : ; k,
then there might be several paths passing through the side formulas (in fact, all of
them should pass through the formula on the right of the sequent) but the proof
where F(sj) occurs cannot be duplicated because contractions can be applied only
to negative formulas.

Properties (a) and (b) ensure that the rewriting rules R6 and R7 are not used by the
simulation. In particular R1–R5 are rewriting rules of the form p→ q where t(p)= t(q).
This implies that the )nal string w′

i are of the form bni where ni= t(wi).

Theorem 35. Let � be a proof of the sequent S such that the number of symbols in
S is n. If any cut-free proof �′ of S has at least 2T(n) lines then
1: either there is a stream w in � such that t(w) is 2T(n);
2: or any process of cut-elimination from � to �′ is simulated by R6.
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Proof. If �′ has at least 2T(n) lines then there is a stream bk in it where k is 2T(n).
This means that bk has been obtained from a string w in � with or without the help
of R6. If R6 has not been used then the arithmetical value t(w) is at least k since
rules R1–R5 and R7 cannot augment it.

Remark 36. Rule R6 has a global e@ect. In fact, it does not concern the cut-formulas
involved in the step of elimination of cuts, but the structure of the proof itself. It
corresponds to the existence of a path in the proof which passes twice through the side
formulas of a subproof that is duplicated by the procedure of cut-elimination.

Even if a proof might be such that no path passes twice through the side formulas
of a sequent applied to a cut-rule, during cut-elimination this property might be lost.
It is easy to check that permutation of cuts, contraction and resolution of cut-formulas
which are main formulas of logical rules, might produce a proof which falsi)es this
property. Once the property is violated, rule R6 might play a role in the transformation.

Problem 37. To decide whether w1 and w2 can be reduced to the same string bk , for
some k, by using rules R1–R5, can be done in polynomial time. In fact w1 and w2 can
be polynomially reduced to some bk1 ; bk2 for some )xed k1; k2, and it is suEcient to
check whether the values k1 and k2 are the same or not. If we allow the rules R1–R7,
does the question become NP-complete?

Remark 38. All theorems in this paper are proved for predicate logic. In contrast, the
exponential values of Theorem 35 (see also Example 33) suggest that the analysis
of cut-elimination based on streams concerns propositional logic more than predicate
logic. The multi-exponential bounds that can be reached in the context of predicate
logic are a consequence of the interaction of streams. This line of investigation is
wide open and needs new ideas as well as new combinatorial tools for the study of
interaction. The reader might like to consult [5, 7] for an analysis of proofs in the
presence of cycles and multi-exponential bounds.
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