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A bstract

Recently,ithasbeen recognized thatphasetransitionsplay an im portantrolein the

probabilistic analysis ofcom binatorialoptim ization problem s.However,there are

in factm any other relations that lead to close ties between com puterscience and

statisticalphysics.Thisreview aim satpresenting the toolsand conceptsdesigned

by physicists to dealwith optim ization or decision problem s in an accessible lan-

guageforcom puterscientistsand m athem aticians,with no prerequisitesin physics.

W e�rstintroducesom eelem entary m ethodsofstatisticalm echanicsand then pro-

gressively coverthetoolsappropriatefordisordered system s.In each case,weapply

these m ethods to study the phase transitions or the statisticalproperties ofthe

optim alsolutions in various com binatorialproblem s.W e cover in detailthe Ran-

dom G raph,the Satis�ability,and theTraveling Salesm an problem s.Referencesto

the physics literature on optim ization are provided.W e also give our perspective

regarding theinterdisciplinary contribution ofphysicsto com puterscience.
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1 Introduction

Attheheartofstatisticalphysics,discretem athem atics,and theoreticalcom -

puterscience,liem athem atically sim ilarcounting and optim ization problem s.

Thissituation leadsto a transgression ofboundariesso thatprogressin one

disciplinecan bene�ttheothers.An old exam pleofthisisthework ofKaste-

leyn (a physicist) who introduced a m ethod for counting perfect m atchings

over planar graphs (a discrete m athem atics problem ).Our beliefis that a

sim ilar cross-fertilization ofm ethods and m odels should arise in the study

ofcom binatorialproblem s over random structures.Such problem s have at-

tracted the attention ofa large com m unity ofresearcher in the lastdecade,

buta transgression ofboundarieshasonly justbegun.One ofthe m any po-

tentialspin-o�softhiskind ofcross-fertilization would betheuseofcom puter

scienceand graph theoreticalm ethodsto tackleunsolved problem sin thesta-

tisticalphysicsof\com plex" (disordered)system s.Butwealso hopethatthe

bene�tscan go theotherway,i.e.,thattherecentdevelopm entsin statistical

physics m ay be ofuse to the othertwo com m unities;such isourm otivation

forthisarticle.

This review doesnotassum e any knowledge in physics,and thus we expect

itto be accessible to m athem aticiansand com puterscientists eagerto learn

the m ain ideasand toolsofstatisticalphysicswhen applied to random com -

binatorics.W ehavechosen to illustratethese\physical" approacheson three

problem s:the Random Graph,the Satis�ability,and the Traveling Salesm an

problem s.Thisparticularfocusshould help theinterested readerexplore the

statisticalphysicsliterature on decision and optim ization problem s.Further-

m ore,wehopetom akethecasethatthesem ethods,developed duringthelast

twenty yearsin thecontextofthesocalled spin glasstheory[1,2],m ayprovide

new conceptsand resultsin the study ofphase transitions,and average case

com putationalcom plexity,in com puterscience problem s.Som e exam ples of

thiskind ofm ethodologicaltransfercan also be found in three otherpapers

ofthisTCS specialissue,dealing with statisticalm echanics analysesofver-

tex covering on random graphs[3],ofnum berpartitioning [4]and oflearning

theory in arti�cialneuralnetworks[5].

Random com binatorics becam e a centralpartofgraph theory following the

pioneeringworkby Erd�osand R�enyi.Theirstudy ofclustersin random graphs

(percolation forphysicists)showed theexistenceofzero-onelaws(phasetran-

sitions in the term inology ofphysics).M ore recently,such phenom ena have

played a fundam entalrole when tackling average{case com plexity.Indeed,

num ericalevidence suggests that the onset ofintractability in random NP-

com pleteproblem scan beputin relation with theappearanceofphasetran-

sitions analogous to the percolation transition.Interestingly,the concept of

random structuresispresentin m ostnaturalsciences,includingbiology,chem -

2



istry,orphysics.Butin the lasttwo decades,the theoreticalfram ework de-

veloped in physics has lead to new analyticaland num ericaltools that can

beshared with them orem athem aticaldisciplines.Thepotentialconnections

between discrete m athem atics,theoreticalcom puter science and statistical

physicsbecom eparticularly obviouswhen oneconsidersthetypicalproperties

ofrandom system s.In such cases,percolation,zero-one laws,orphase tran-

sitionsaresim ply di�erentnam esdescribing thesam ephenom ena within the

di�erentdisciplines.Itseem sto usthatm uch can begained by exploring the

com plem entary natureofthedi�erentparadigm sin m athem aticsand physics.

In whatfollows,we shalltry to m ake thishappen by giving a thorough sta-

tisticalm echanics analysis ofthree prototype problem s,nam ely percolation

in random graphs,satis�ability in random K-Satis�ability,and optim ization

via theTraveling Salesm an Problem .Thereview ispreceded by a generaldis-

cussion ofsom e basic concepts and tools ofstatisticalm echanics.W e have

also included sim ple exercises to help the interested reader becom e fam iliar

with them ethodology;hopefully he(she)willbeabletoadaptitto thestudy

ofm any otherproblem s,e.g.,m atching,num berpartitioning [4],etc...W hen

appropriate,we com pare theresultsofstatisticalphysicsto those ofdiscrete

m athem aticsand com puterscience.

From astatisticalm echanicsperspective,aphasetransition isnothingbutthe

onset ofnon-trivialm acroscopic (collective) behavior in a system com posed

ofa large num ber of\elem ents" that follow sim ple m icroscopic laws.The

analogy with random graphs is straightforward.There the elem ents are the

edges ofthe graph which are added at random at each tim e step and the

m acroscopicphenom enon istheappearanceofa connected com ponentofthe

graph containing a �nite fraction ofallthe vertices,in the lim it ofa very

large num ber ofvertices.If a system has a phase transition,it can be in

oneofseveral\phases",depending on thevaluesofsom econtrolparam eters.

Each phase ischaracterized by a di�erent m icroscopic organization.Central

tothischaracterization istheidenti�cation ofan orderparam eter(usually the

expectation valueofa m icroscopicquantity)which discrim inatesbetween the

di�erentphases.Once again the analogy with random graphsisappropriate.

An order param eter ofthe percolation transition is the fraction ofvertices

belongingtothegiantconnected com ponent.Such afraction iszerobelow the

percolation transition,thatis,when theconnectivity ofthe random graph is

too sm all,and becom esstrictly positivebeyond thepercolation threshold.

W hilein percolation itisproven thattheorderparam eterisindeed thefrac-

tion ofverticesbelongingtothein�nitegiantcom ponent,in m orecom plicated

system s the determ ination ofan orderparam eterisgenerally an open prob-

lem .Though notrigourous,statisticalm echanics provides num erousspeci�c

m ethodsforidentifying and studyingorderparam eters,and weshallillustrate

thison theK-Satis�ability problem .Thisstep isusefulofcourseforproviding

a good intuitive view ofthe system ’sbehavior,butm ore im portantly italso
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givesinform ation on them icroscopicstructureofthephases,inform ation that

can be used both in deriving analyticalresultsand in interpreting num erical

sim ulations.

Theway physicistsand m athem aticiansproceed isquitedi�erent.Theoretical

physicistsgenerally donotprovetheorem s,rathertheyattem pttounderstand

problem sby obtaining exactand approxim ateresultsbased on reasonablehy-

potheses.In practice,these hypotheses are \validated" a posteriorithrough

com parison with experim ents or num ericalsim ulations,and through consis-

tency with theoverallbody ofknowledgein physics.In thissense,theoretical

physics m ust be distinguished from m athem aticalphysics whose scope is to

m ake rigorousstatem ents.Ofcourse,exactsolutionsplay an im portantrole

in statisticalphysicsin thatthey representlim iting caseswhereanalyticalor

num ericaltechniquescan bechecked,butthey arenotthem ain focusofthis

discipline.

Forthe sake ofbrevity we leftoutfrom this review som e very relevant and

closelyconnected topicssuch asexactenum eration m ethods[6]orapplications

ofcom putersciencealgorithm stothestudy oftwodim ensionalcom plex phys-

icalsystem s[7,8].Furtherm orewedo notclaim to presenta com pletepicture

ofwhathasbeen done by physicistson decision and optim ization problem s.

Rather,we hope thatwhatwe do presentwillenable readersfrom the m ore

m athem aticaldisciplinestounderstand in detailthem ajorityofwhathasbeen

doneby physicistsusing them ethodsofstatisticalm echanics.

2 Elem ents ofStatisticalPhysics

In this section,the reader willbe introduced to the basic notions ofstatis-

ticalm echanics.W e start by illustrating on various exam ples the existence

ofphasesand phase transitions,ubiquitousin physicsand m ore surprisingly

in other �elds ofscience too.The concepts ofm icroscopic and m acroscopic

levels ofdescription naturally appear and allow for a rapid presentation of

the foundations of statisticalm echanics.W e then expose in greater detail

the com binatorialinterpretation ofstatisticalm echanicsand introduce som e

key vocabulary and de�nitions.An accurate investigation ofthe properties

oftheso-called Ising m odelon thecom pletegraph K N exem pli�estheabove

conceptsand calculation techniques.In ordertobridgethegap with optim iza-

tion problem s,we then turn to the crucialissue ofrandom ness and present

appropriate analyticaltechniques to dealwith random structures,e.g.,the

celebrated replica m ethod.

This section has been elaborated for a non physicist readers and we stress

thatno a prioriknowledgeofstatisticalm echanicsisrequired.Exerciseshave
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been included to illustratekey notionsand should help the readerto acquire

a deeperunderstanding ofconceptsand techniques.Solutionsaresketched in

Appendix A.Excellentpresentationsofstatisticalm echanicscan befound in

textbookse.g.[9{11]forreaderswanting furtherdetails.

2.1 Phasesand transitions

M any physical com pounds can exist in nature as distinct \states", called

phases,depending on the valuesofcontrolparam eters,such astem perature,

pressure,...The change ofphase happensvery abruptly atsom e precise val-

uesoftheparam etersand iscalled transition.W elistbelow a few well-known

exam ples from condensed m atter physics as wellas two cases com ing from

biology and com puterscience.

2.1.1 Liquid-gastransition.

Atatm ospheric pressure waterboilsata \critical" tem perature Tc = 100oC.

W hen thetem peratureT islowerthan Tc,waterisaliquid whileaboveTc itis

agas.Atthecriticaltem peratureTc,acoexistencebetween theliquid and gas

phasesispossible:thefractionofliquid waterdependsonlyonthetotalvolum e

occupied by both phases.Thecoexistenceofthetwo phasesatcriticality isan

essentialfeatureoftheliquid-gastransition.Transitionssharing thisproperty

arecalled �rstorderphasetransitionsform athem aticalreasonsexposed later.

2.1.2 Ferrom agnetic-param agnetictransition.

Itiswell-known thatm agnetsattractnailsm ade outofiron.The m agnetic

�eld produced by the m agnetinducessom e strong internalm agnetization in

the nailresulting in an attractive force.M aterials behaving as iron are re-

ferred to asferrom agnetic.However,theattractiveforcedisappearswhen the

tem perature ofthe nailisraised above Tc = 770oC.The nailthen entersthe

param agneticphasewherethenetm agnetization vanishes.Thereisno phase

coexistence atthe criticaltem perature;the transition issaid to be ofsecond

order.

The ferrom agnetic-param agnetic transition tem perature Tc varies consider-

ably with the m aterialunder consideration.For instance,Tc = 1115oC for

cobalt,Tc = 454oC fornickeland Tc = 585oC form agnetite(Fe3O 4).However,

rem arkably,itturns outthatsom e otherquantities { the criticalexponents

related tothe(drastic)changesofphysicalpropertiesatorclosetothetransi-

tion {areequalforalargeclassofm aterials!Thediscovery ofsuch universality
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wasa breakthrough and led to very deep theoreticaldevelopm entsin m odern

physics.Universality ischaracteristic ofsecond orderphasetransitions.

2.1.3 Conductor-superconductortransition.

Good conductors such as copper are used to m ake electric wires because of

theirweak resistancetoelectriccurrentsatroom tem perature.Asthetem per-

atureislowered,electricalresistancegenerally decreasessm oothly ascollisions

between electrons and vibrationsofthe m etallic crystalbecom e weaker and

weaker.In 1911,Kam m erling Onnesobserved thattheelectricalresistanceof

asam pleofm ercury fellabruptly down tozeroastem peraturepassed through

Tc ’ 4:2oK (0oK being the absolute zero ofthe Kelvin scale.) This change

ofstate,between a norm alconductor(�niteresistance)and a superconductor

(zero resistance)isa truephasetransition:a very sm allvariation oftem pera-

tureatTc isenough to changeresistanceby fouror�veordersofm agnitude!

2.1.4 DNA denaturation transition.

In physiologicalconditions,DNA hasthedoublehelix structurediscovered by

W atson and Crick in 1953.The two strandscarry com plem entary sequences

ofA,T,G orC basesand areintertwined,form ing eitherA-T orG-C pairs.

Basesinapairareattachedtogetherbyhydrogen bonds.Asthetem peratureis

raised orionicconditionsareappropriately m odi�ed,bondsweaken and break

up.The strandsm ay then separateso thatthedouble helix structure islost:

the DNA is denatured.This transition is abrupt on repeated hom ogeneous

DNA sequences[12].

Recent m icrom anipulation experim ents on individualDNA m olecules have

shown thatdenaturation can alsobeobtained through am echanicalaction on

DNA.W hen im posingasu�cienttorquetothem oleculetounwind thedouble

helix,the latter opens up and DNA denaturates.At a �xed criticaltorque,

denaturated and doublehelix regionsm ay coexistalongthesam em olecule[13]

so thistransition islikea liquid-gasone.

2.1.5 Transition in the random K-Satis�ability problem .

Com puterscientistsdiscovered som eyearsagothattherandom K-Satis�ability

problem exhibits a threshold phenom enon as the ratio � ofthe num ber of

clauses(M )overthenum berofBoolean variables(N )crossesa criticalvalue

�c(K )depending on the num berofliteralsperclause K .W hen � issm aller

than the threshold �c(K ),a random ly drawn form ula isalm ostsurely satis-

�ablewhile,abovethreshold,itisunsatis�able with probability reaching one

in theN ! 1 lim it.
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ForK = 2,thethreshold isknown exactly:�c(2)= 1.ForK � 3,thereisno

rigorousproofoftheexistenceofaphasetransition sofarbutm anytheoretical

and num ericalresultsstrongly supportit,seearticlesby Achlioptas& Franco

and Dubois& Kirousisin the present issue.Currentbestestim atesindicate

that the threshold ofrandom 3-SAT is located at �c(3) ’ 4:25.Statistical

physicsstudiesshow thattheorderofthephasetransition dependson K ,the

transition beingcontinuousfor2-SAT and of�rstorderfor3-SAT (and higher

valuesofK ).

2.1.6 M acroscopic vs.m icroscopic descriptions.

W hatcan beinferred from theaboveexam ples?First,a(physical)system m ay

befound in totally di�erentphaseswith very di�erentm acroscopicproperties

although itsintrinsiccom position ata m icroscopiclevel(m olecules,m agnetic

spins,basepairs,clauses,...)isthesam e.However,from a physical,m echani-

cal,electrical,biological,com putational,...pointofview,essentialproperties

ofthissystem changecom pletely from a phaseto another.Second,theabrupt

change ofphase follows from very slight m odi�cations ofa controlparam e-

tere.g.tem perature,torque,ratio ofclauses pervariable ...abouta critical

value.Thirdly,criticalexponents,thatcharacterize quantitatively second or-

derphasetransitions,areuniversal,thatis,insensitive to m any detailsofthe

system sunderstudy.Lastofall,transitionsappearforlargesystem sonly.

Theabovepointsraisesom efundam entalquestions:how can them ain features

ofa system at a m acroscopic level,de�ning a phase,change abruptly and

how are these features related to the m icroscopic structure ofthe system ?

Statisticalphysicsfocuseson thesequestions.

2.2 Foundationsofstatisticalm echanicsandrelationshipwithcom binatorics.

2.2.1 Needsfora statisticaldescription.

Statisticalphysicsaim satpredictingquantitativelythem acroscopicbehaviour

ofasystem (andin particularitsphases)from theknowledgeofitsm icroscopic

com ponentsand theirinteractions.W hatdowem ean byinteraction?Consider

forinstance a liquid m ade ofN sm allparticles (idealized representations of

atom sorm olecules)occupying positionsofcoordinates~ri in Euclidean space

where labeliruns from 1 to N .Particle num ber iis subject to a force ~fi

(interaction)dueto thepresenceofneighboring particles;thisforcegenerally

dependsoftherelativepositionsoftheseparticles.Todeterm inethepositions

oftheparticlesatany latertim et,wem ustintegratetheequationsofm otion
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given by Newton’sfundam entallaw ofm echanics,

m i

d2~ri

dt2
= ~fi(f~rjg); (i= 1;:::;N ); (1)

wherem i isthem assofparticlei.Solving theseequationscannotbedonein

practice.The forces ~fi are indeed highly non linearfunctionsofthe particle

positions~rj.W ethereforewind up with a setofcom plicated coupled di�eren-

tialequationswhosenum berN ,oforder� 1023,isgiganticand notam enable

to analyticaltreatm ent.

This im possibility,added to the intuitive feeling thatunderstanding m acro-

scopicpropertiescannotrequiretheexactknowledgeofallm icroscopictrajec-

toriesofparticleshasbeen circum vented by a totally di�erentapproach.The

basicidea isto describethesystem ofparticlesin a probabilisticway in order

to deducem acroscopicfeaturesasem ergentstatisticalproperties.

2.2.2 Probability distribution overthe setofcon�gurations.

Theim plem entation ofthisideahasrequired theintroduction ofrevolutionary

concepts at the end ofthe ninteenth century by Boltzm ann and followers,

and in particular,the ideasofergodicity and therm odynam icalequilibrium .

W e shallnot attem pt here to provide an exposition ofthese concepts.The

interested reader can consult textbooks e.g.[9{11].As far as com binatorial

aspectsofstatisticalm echanicsareconcerned,itissu�cientto startfrom the

following postulate.

A con�guration C ofthe system ,thatis,the speci�cation ofthe N particle

positions f~rjg,has a probability p(C) to be realized at any tim e when the

system isin equilibrium .In otherwords,the system willbe in con�guration

C with probability p(C).Thelatterdependson tem peratureT and equals

p(C)=
1

Z
exp

�

�
1

T
E (C)

�

: (2)

In theaboveexpression,E istheenergyand isareal-valued function,overthe

setofcon�gurations.Thepartition function Z ensuresthecorrectnorm aliza-

tion oftheprobability distribution p,

Z =
X

C

exp

�

�
1

T
E (C)

�

: (3)

Notethatwehaveused a discretesum overcon�gurationsC in (3)instead of

an integraloverparticlepositions~rj.Thisnotation hasbeen chosen since all
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the partition functionswe shallm eetin the course ofstudying optim ization

problem sarerelated to �nite(i.e.discrete)setsofcon�gurations.

Considertwo lim iting casesof(2):

� in�nite tem perature T = 1 :the probability p(C) becom es independent

ofC.Allcon�gurations are thus equiprobable.The system is in a fully

\disordered" phase,likea gasora param agnet.

� zero tem perature T = 0:the probability p(C)isconcentrated on the m in-

im um ofthe energy function E ,called the ground state.This m inim um

correspondsto a con�guration where allparticlesare atm echanically sta-

ble positions,that is,occupy positions ri carefully optim ized so that all

forcesfi vanish.Often,these strong constraintsde�ne regularpackingsof

particlesand thesystem achievesa perfectcrystallineand \ordered" state.

W hen varying the tem perature,interm ediate situations can be reached.W e

now exam inesom esim pleexam ples.

2.2.3 Casesofone and two spins.

W e now consider the case ofa single abstract particle that can sit at two

di�erent positions only.This sim ple system can be recast asfollows.Letus

im aginean arrow capableofpointing in theup ordown directionsonly.This

arrow isusually called aspin and thedirection isdenoted by abinary variable

�,equalto +1 ifthespin isup,to � 1 ifthespin isdown.

In thissingle particlesystem ,there areonly two possible con�gurationsC =

f+1g and C = f� 1g and wechoosefortheenergy function E (�)= � �.Note

thatadditiveconstantsin E havenoe�ecton (2)and m ultiplicativeconstants

can be absorbed in the tem perature T.The partition function can be easily

com puted from (3)and readsZ = 2cosh� where� = 1=T denotestheinverse

tem perature.Theprobabilitiesthatthespinpointsupordownarerespectively

p+ = exp(�)=Z and p� = exp(� �)=Z.Atin�nite tem perature (� = 0),the

spin is indi�erently up or down:p(+1) = p(� 1) = 1=2.Conversely,atzero

tem perature,itonly pointsupwards:p(+1)= 1;p(� 1)= 0.C = f+1g isthe

con�guration ofm inim um energy.

Theaveragevalueofthespin,called m agnetization isgiven by

m = h�iT =
X

�= � 1

� p(�)= tanh(�) : (4)

Thesym bolh� iT denotestheaverageovertheprobabilitydistribution p.Notice

that,when the tem perature is lowered from T = 1 down to T = 0,the

m agnetization increases sm oothly from m = 0 up to m = 1.There is no
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abrupt change (singularity or non analyticity) in m as a function of� and

thereforeno phasetransition.

Exercise 1:Considertwo spins�1 and �2 with energy function

E (�1;�2)= � �1�2 : (5)

Calculatethe partition function,the m agnetization ofeach spin aswellasthe

average value ofthe energy.Repeatthese calculationsfor

E (�1;�2)= � �1 � �2 : (6)

How isthe latterchoice related to the single spin case?

2.2.4 Com binatorialm eaning ofthe partition function.

W ehave so farintroduced statisticalm echanicsin probabilistic term s.There

existsalsoacloserelationship with com binatoricsthrough theenum eration of

con�gurationsata given energy;wenow show thisrelationship.

Theaveragevalueoftheenergy m ay becom puted directly from thede�nition

hE iT =
X

C

p(C)E (C) ; (7)

orfrom thepartition function Z via thefollowing identity

hE iT = �
d

d�
lnZ ; (8)

thatcan easily derived from (3).The identity (8)can be extended to higher

m om entsoftheenergy.Forinstance,thevarianceofE can becom puted from

thesecond derivativeofthepartition function

hE
2
iT � hE i

2

T =
d2

d�2
lnZ : (9)

Such equalitiessuggestthatZ isthegenerating function ofthecon�guration

energies.To provethisstatem ent,letusrewrite(3)as

Z =
X

C

exp(� � E (C))
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=
X

E

N (E ) exp(� � E ) ; (10)

whereN (E )isthenum berofcon�gurationsC having energiesE (C)precisely

equalto E .Ifx = exp(� �),Z(x) is sim ply the generating function ofthe

coe�cientsN (E )asusually de�ned in com binatorics.

The quantity Ŝ(E ) = lnN (E ) is called the entropy associated with the en-

ergy E .In general,calculating Ŝ(E )isa very hard task.Usually,itism uch

m ore convenientto de�ne the average entropy hSiT attem perature T asthe

contribution to thepartition function which isnotdirectly dueto energy,

hSiT = �
1

T

�

F(T)� hE iT

�

; (11)

where

F(T)= � T lnZ(T) (12)

iscalled thefree-energy ofthesystem .

In general,the above de�nitions for the energy and tem perature dependent

entropiesdo notcoincide.However,asexplained in nextSection,in thelarge

size lim ithSiT equals Ŝ(E )provided thatthe energy E issetto itstherm al

averageE = hE iT.

Theentropy isan increasing function oftem perature.Atzero tem perature,it

correspondsto thelogarithm ofthenum berofabsolutem inim a oftheenergy

function E (C).

Exercise 2:Prove thislaststatem ent.

2.2.5 Large size lim itand onsetofsingularity.

W e have notencountered any phase transition in the above exam plesofsys-

tem swith oneortwo spins.A necessary condition fortheexistenceofa tran-

sition in a system is indeed that the size ofthe latter goes to in�nity.The

m athem aticalreason issim ple:ifthenum berofterm sin thesum (3)is�nite,

the partition function Z,the free-energy F,the average energy,...are ana-

lytic functionsofthe inverse tem perature � and so do nothave singularities

at�nitetem perature.

M ost analyticalstudies are therefore devoted to the understanding of the

em ergenceofsingularitiesin thefree-energy when thesizeofthesystem goes
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to in�nity,theso-called therm odynam ic lim it.

An im portantfeatureofthetherm odynam iclim itistheconcentration ofm ea-

sure forobservables e.g.energy orentropy.Such quantities do not
uctuate

m uch around theirm ean values.M oreprecisely,ifwecallN thesize,i.e.the

num berofspins,ofthesystem ,them om entsoftheenergy usually scaleas

hE iT = O (N )

hE
2
iT � hE i

2

T = O (N ) ; (13)

and,thusthe energy ofa con�guration iswith high probability equalto the

average value up to O (
p
N ) 
uctuations.Such a result also applies to the

entropy,and hSiT = Ŝ(hE iT)up to O (
p
N )term s.M easure concentration in

thetherm odynam iclim itisa very im portantand usefulproperty,see[14].

2.3 Spin m odelon the com plete graph.

W eshallnow study a system ofN spins,called theIsing m odel,exhibiting a

phase transition in the lim itN ! 1 .W e considerthe com plete graph K N ;

each vertex islabelled by an integernum beri= 1;:::;N and carriesa binary

spin �i.Theenergy function ofa con�guration C = f�1;:::;�N g isgiven by

E (�1;:::;�N )= �
1

N

X

i< j

�i�j � h
X

i

�i : (14)

2.3.1 Rem arkson the energy function.

The �rst term in (14) is called the interaction term .The sum runs over all

pairsofspins,thatisoveralledgesofK N .The m inussign ensuresthatthe

m inim um ofenergy isreached when allspinspointin thesam edirection.This

direction depends on the second term of(14)and,m ore precisely,upon the

sign ofthe\m agnetic�eld" h.Ifthelatterispositive(respectively negative),

theground stateisobtained when allspinsareup (resp.down).

In the absence of�eld (h = 0),we know the two ground states.The energy

and entropy atzero tem peraturecan becom puted from (14)and (11),

hE iT= 0= �
1

2
(N � 1) ; (15)

hSiT= 0= ln2 : (16)
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Noticethattheground stateenergy isO (N )dueto thepresenceofthefactor

1=N in (14)whereastheentropy isO (1).

At in�nite tem perature,allcon�gurations are equiprobable.The partition

function issim ply equalto the totalnum berofcon�gurations:Z T= 1 = 2N ,

leading to

hE iT= 1 = 0 ; (17)

hSiT= 1 = N ln2 : (18)

W hen the tem perature is �nite,a com prom ise is realized in (10) between

energy and entropy:the con�gurationswith low energies E have the largest

probabilitiesbutthem ostprobableenergyalsodependson theentropy,i.e.on

the size ofthe coe�cientsN (E ).Tem perature tunesthe relative im portance

of these two opposite e�ects.The phase transition studied in this section

separatestwo regim es:

� a high tem peraturephasewhereentropy e�ectsaredom inant:spinscon�g-

urationsaredisordered and spinsdo notpointin any priviledged direction

(forh = 0).Theaveragem agnetization m vanishes.

� a low tem perature phase where energy e�ectsdom inate:spinshave a ten-

dency to align with each other,resulting in ordered con�gurationswith a

non zero m agnetization m = h�iiT 6= 0.

Letusstressthatthe energy and the entropy m usthave the sam e ordersof

m agnitude(=O (N ))toallow forsuch acom prom iseand thusfortheexistence

ofa phasetransition at�nitestrictly positivetem perature.

2.3.2 The m agnetization isthe orderparam eter.

W e startby de�ning the m agnetization ofa con�guration C = f�1;:::;�N g

as

m (C)=
1

N

NX

i= 1

�i : (19)

The calculation ofthe partition function relieson the following rem ark.The

energyfunction(14)dependsonthecon�gurationC throughitsm agnetization

m (C)only.M oreprecisely,

E (C)= � N

�
1

2
m (C)2 + h m (C)

�

+
1

2
: (20)
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Fig.1.Entropy s(m ) ofthe Ising m odelon the com plete graph as a function of

m agnetization m .

In thefollowing,weshallalso need theentropy at�xed m agnetization S(m ).

Con�gurationswith a �xed m agnetization m haveN + spinsup and N � spins

down with

N + = N

�
1+ m

2

�

;

N � = N

�
1� m

2

�

: (21)

Thenum berofsuchcon�gurationsisthereforegivenbythebinom ialcoe�cient

e
S(m ) =

N !

N + !N � !
: (22)

In thelargeN lim it,Stirling’sform ula givesaccessto theasym ptoticexpres-

sion oftheentropy density,s(m )= S(m )=N ,at�xed m agnetization,

s(m )= �

�
1� m

2

�

ln

�
1� m

2

�

�

�
1+ m

2

�

ln

�
1+ m

2

�

; (23)

Figure 1 displayss(m )asa function ofm .The m axim um isreached atzero

m agnetization (s(0)= ln2)and theentropy vanisheson theboundariesm =

� 1.

LetusstressthatS(m )de�ned in (23)istheentropy atgiven m agnetization

and di�ers a priorifrom the energy and tem perature dependent entropies,

Ŝ(E )and hSiT,de�ned above.However,in thetherm odynam iclim it,allquan-

titiesareequalprovided thatm and E coincide with theirtherm alaverages,
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hm iT and hE iT.

The average value hm iT ofthe m agnetization willbe shown to vanish in the

high tem peraturephaseand to bedi�erentfrom zero in thelow tem perature

phase.The m agnetization isan orderparam eter:itsvalue (zero ornon-zero)

indicatesin which phasethesystem is.

2.3.3 Calculation ofthe free-energy.

Thepartition function Z reads

Z =
X

�1;:::;�N = � 1

exp[� � E (�1;:::;�N )]

=
X

m = � 1;� 1+
2

N
;:::;1�

2

N
;1

exp
h

� N �f̂(m )
i

; (24)

where

f̂(m )= �
1

2
m

2
� h m � T s(m ) ; (25)

up to O (1=N )term s.Forthem om ent,weshalltakeh = 0.

In thelim itofan in�nitenum berN ofspins,thefree-energy m aybecom puted

by m eansofthesaddle-point(Laplace)m ethod.W elook forthesaddle-point

m agnetization m � (thatdependsupon tem peratureT)m inim izing f̂(m )(25).

Thelatterisplotted in Figure2 forthreedi�erenttem peratures.

Itcan beseen graphically thatthem inim um off̂ islocated atm � = 0 when

thetem peratureislargerthan Tc = 1 whilethereexisttwo oppositem inim a,

m = � m�(T) < 0,m = m �(T) > 0 below this criticaltem perature.The

optim um m agnetization issolution ofthesaddle-pointequation,

m
� = tanh(� m

�) ; (26)

whilethefree-energy isgiven by

f(T)= lim
N ! 1

�
T

N
lnZ = f̂(m �) : (27)

The average energy and entropy per spin (divided by N ) can be com puted

from (27,8,11),
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Fig.2.Free-energy function f̂(m ) ofthe Ising m odelon the com plete graph as a

function ofthe m agnetization m in zero m agnetic �eld h and for three di�erent

tem peratures.a:high tem perature T = 1:2,b:criticaltem perature T = 1,c:low

tem peratureT = 0:8.

heiT = �
1

2
(m �)2 ; (28)

hsiT = s(m �) : (29)
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2.3.4 Phase transition and sym m etry breaking.

In the absence ofa m agnetic �eld,the energy (14) is an even function of

the spins:the probability of two opposite con�gurations f�1;:::;�N g and

f� �1;:::;� �N gareequal.Asaconsequence,thetherm alaverageh�iT ofany

spin vanishes.Thisresultistrueforany N and so,in thelargeN lim it,

lim
N ! 1

lim
h! 0

h�iT = 0 : (30)

Itisthusnecessary to unveilthe m eaning ofthe saddle-pointm agnetization

m � arising in thecom putation ofthepartition function.

To do so,werepeatthepreviouscalculation ofthefree-energy in presence of

a m agnetic�eld h > 0.Them agnetization isnow di�erentfrom zero.Athigh

tem perature T > Tc,thism agnetization decreases asthe m agnetic �eld h is

lowered and vanisheswhen h = 0,

lim
h! 0+

lim
N ! 1

h�iT = 0 (T > Tc) : (31)

Therefore,athigh tem perature,theinversion oflim itsbetween (30)and (31)

hasno e�ecton the�nalresult.

The situation drastically changes at low tem perature.W hen T < Tc,the

degeneracy between the two m inim a off islifted by the m agnetic �eld.Due

to the �eld,a contribution � h m m ustbe added to the free-energy (25)and

favoursthem inim um inm � overthatin� m�.Thecontributiontothepartition

function (24)com ing from thesecond m inim um isexponentially sm allerthan

thecontribution duetotheglobalm inim um in m � byafactorexp(� 2N �hm�).

Theprobabilitym easureon spinscon�gurationsisthereforefullyconcentrated

around theglobalm inim um with positivem agnetization and

lim
h! 0+

lim
N ! 1

h�iT = m
� (T < Tc) : (32)

From (30)and (32),them eaning ofthephase transition isnow clear.Above

the criticaltem perature,a sm allperturbation ofthe system (e.g.a term in

the energy function pushing spinsup),isirrelevant:asthe perturbation dis-

appears(h ! 0),so do itse�ects(m � ! 0),see (31).Conversely,below the

criticaltem perature,a sm allperturbation isenough to triggerstrong e�ects:

spinspointup (with aspontaneousm agnetization m � > 0)even aftertheper-

turbation hasdisappeared (h = 0),see (32).Atlow tem perature,two phases

with opposite m agnetizations m � and � m� coexist.Adding an in�nitesim al

�eld h favours and selects one ofthem .In m ore m athem aticalterm s,the

m agnetization m isa non-analyticand discontinuousfunction ofh ath = 0.
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So,thephasetransition hereappearsto beintim ately related tothenotion of

sym m etrybreaking.In thecaseoftheIsingm odel,theprobability distribution

overcon�gurationsissym m etrical,thatis,leftunchanged underthereversal

ofspins� ! � �.A high tem perature,thissym m etry also holdsforaverage

quantities:h�iT = 0.At low tem perature,the reversalsym m etry is broken

since,in presenceofan in�nitesim alperturbation,h�iT = m � 6= 0.Theinitial

sym m etryofthesystem im pliesonlythatthetwopossiblephasesofthesystem

haveoppositem agnetizationsm � and � m�.

In the presentcase,the sym m etry ofthe system waseasy to identify,and to

break!W e shallsee that m ore abstract and com plex sym m etries m ay arise

in other problem s,e.g.the random graph and K-Satis�ability.The under-

standingofphasetransitionsvery often willrely on thebreakingofassociated

sym m etries.

Exercise 3:How doesequation (26)becom em odi�edwhen thereisa non-zero

m agnetic �eld? Calculate explicitely the free-energy in presenceofa m agnetic

�eld and check the correctnessofthe above statem ents.

2.3.5 Vicinity ofthe transition and criticalexponents.

To com plete the present analysis,we now investigate the properties ofthe

Ising m odelclosetothecriticaltem peratureTc = 1and de�neT = 1+ � with

j�j� 1.Thespontaneousm agnetization readsfrom (26),

m
�(�)=

�
0 if� � 0 ,
p
� 3� if� � 0 .

(33)

Thusthem agnetizationgrowsasapoweroftheshiftedtem perature�:m�(�)�

(� �)� with � = 1=2.�,notto be confused with the inverse tem perature,is

called a criticalexponentsince itcharacterizesthe powerlaw behaviourofa

physicalquantity,herethem agnetization,closeto criticality.Such exponents

areuniversalin thatthey arelargely independentofthe\details" ofthede�-

nition ofthem odel.W eshallcom eback to thispointin thesectionsdevoted

to therandom graph and theK-Satis�ability m odels.

Anotherexponentofinterestisrelated tothe�nitesizee�ectatthetransition.

Sofar,wehavecalculatedtheaveragevaluesofvariousquantitiesinthein�nite

size lim it N ! 1 .W e have in particular shown the existence ofa critical

tem peratureseparating a phasewherethesum ofthespinsison averagezero

(� > 0) from a phase where the sum ofthe spins acquires an O (N ) m ean

(� < 0).At the transition point (� = 0),we know that the sum ofspins

cannotbeoforderN ;instead wehavea scaling in N � with � < 1.
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W hatisthe value of�? From expression (24),letusexpand the free-energy

function f̂(m )(25)in powersofthem agnetization m = O (N �� 1),

f(m )� f(0)=
�

2
m

2 +
1

12
m

4 + O (m 6
;� m

4) ; (34)

with f(0) = � T ln2.Above the criticaltem perature,� > 0,the average

m agnetization is expected to vanish.Due to the presence ofthe quadratic

leading term in (34),the 
uctuations ofm are ofthe order ofN � 1=2.The

sum ofthespins,N m ,hasa distribution whose width growsasN 1=2,giving

� = 1=2.

Atthecriticaltem perature,thepartition function readsfrom (24),

Z ’ 2N
Z

dm e
� N m 4=12

: (35)

The average m agnetization thusvanishesasexpected and 
uctuationsareof

theorderofN � 1=4.Thesum ofthespins,N m ,thushasa distribution whose

width growsasN 3=4,giving � = 3=4.

Thesizeofthecriticalregion (in tem perature)isde�ned asthelargestvalue

�m ax ofthe shifted tem perature � leaving unchanged the orderofm agnitude

ofthe 
uctuations ofthe m agnetization m .A new criticalexponent � that

m onitorsthisshiftisintroduced:�m ax � N� 1=�.Dem andingthatterm son the

r.h.s.of(34)beofthesam eorderin N ,we�nd � = 2.

2.4 Random nessand the replica m ethod.

TheaboveanalysisoftheIsingm odelhasbeen usefultoillustratesom eclassic

analyticaltechniquesand toclarify theconceptofphasetransitions.However,

m ostoptim ization ordecision problem sencountered in com putersciencecon-

tain another essentialingredient we have not discussed so far,nam ely ran-

dom ness.To avoid any confusion,letusstressthatrandom nessin thiscase,

e.g.a Boolean form ula random ly drawn from a well-de�ned distribution,and

called quenched disorder in physics,m ust be clearly distinguished from the

probabilistic form ulation ofstatisticalm echanics related to the existence of

therm aldisorder,see(2).Asalready stressed,asfarascom binatorialaspects

ofstatisticalm echanicsareconcerned,wecan startfrom thede�nition (10)of

thepartition function and interpretitasa generating function,forgetting the

probabilistic origin.On the contrary,quenched disorder cannot be om itted.

W e are then leftwith com binatorialproblem sde�ned on random structures,

that is,with partition functions where the weights them selves are random

variables.
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2.4.1 Distribution of\quenched" disorder.

W estartwith a sim plecase:

Exercise 4:Considertwo spins�1 and �2 with energy function

E (�1;�2)= � J �1 �2 ; (36)

where J is a realvariable called coupling.Calculate the partition function,

the m agnetization ofeach spin as wellas the average value ofthe energy at

given (quenched) J.Assum e now that the coupling J is a random variable

with m easure �(J)on a �nite support[J� ;J+ ].W rite down the expressionsof

the m ean over J ofthe m agnetization and energy.W hatis the value ofthe

average ground state energy?

Them eaning oftheword \quenched" isclearfrom theaboveexam ple.Spins

arealwaysdistributed accordingto(2)buttheenergyfunction E now depends

on random ly drawn variablese.g.thecouplingJ.Averagequantities(overthe

probability distribution p)m ustbecom puted keeping theserandom variables

�xed (or quenched) and thus are random variables them selves that willbe

averaged overJ lateron.To distinguish both kindsofaverageswe hereafter

useanoverbartodenotetheaverageoverthequenched random variableswhile

bracketsstillindicatea therm alaverageusing p.

M odelswith quenched random nessareoften very di�culttosolve.Oneofthe

reasonsisthattheirphysicalbehaviourism ore com plex due to thepresence

offrustration.

2.4.2 Notion offrustration.

Frustration isbestintroduced through thefollowing sim pleexam ple.

Exercise 5:Considerthree spins�1,�2 and �3 with energy function

E (�1;�2;�3)= � �1�2 � �1�3 � �2�3 : (37)

Calculatethe partition function,the m agnetization ofeach spin aswellasthe

average value ofthe energy.W hatare the ground state energy and entropy?

Repeatthe calculation and answerthe sam e questionsfor

E (�1;�2;�3)= � �1�2 � �1�3 + �2�3 : (38)
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Note the change ofthe lastsign on the r.h.s.of(38).

Thepresence ofquenched disorderwith both negativeand positivecouplings

generatesfrustration,thatiscon
ictingterm sintheenergyfunction.A fam ous

exam ple istheSherrington-Kirkpatrick (SK)m odel,a random version ofthe

Ising m odelon thecom pletegraph whoseenergy function reads

E SK (�1;:::;�N )= �
1

p
N

X

i< j

Jij�i�j ; (39)

where the quenched couplingsJij are independentrandom norm alvariables.

In the SK m odel,contrarily to the Ising m odel,the productofthe couplings

Jij along the loopsofthe com plete graph K N m ay be negative.The ground

stateisno longergiven by the\allspinsup" con�guration,norby any sim ple

prescription and m ustbe soughtforam ong the setof2N possible con�gura-

tions.Finding theground stateenergy foran arbitrary setofcouplingsJij is

a hard com binatorialoptim ization task which in thiscasebelongsto theclass

ofNP-hard problem s[15,16].

2.4.3 Therm odynam ic lim itand self-averaging quantities.

Though physicalquantitiesdepend a priorion quenched couplings,som esim -

pli�cations m ay take place in the large size lim itN ! 1 .M any quantities

ofinterest m ay exhibit less and less 
uctuations around their m ean values

and becom e self-averaging.In otherwords,thedistributionsofsom e random

variablesbecom ehighly concentrated asN grows.Typicalexam plesofhighly

concentrated quantitiesarethe(free-)energy,theentropy,them agnetization,

...whereasthepartition function isgenerally notself-averaging.

Self-averaging propertiesareparticularly relevantwhen analyzing a problem .

Indeed,forthesequantities,weonly havetocom putetheiraveragevalues,not

theirfullprobability distributions.W eshallencounternum erousexam plesof

concentrated random variableslaterin thisarticle.

Exercise 6:Show that the partition function ofthe SK m odelis not self-

averaging by calculating its�rsttwo m om ents.

2.4.4 Replica m ethod.

W econsidera genericm odelwith N spins�i and an energy function E (C;J)

depending on a setofrandom couplingsJ.Furtherm ore we assum e thatthe

free-energy F(J)ofthism odelisself-averaging and would liketo com puteits
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quenched averaged value F(J)or,equivalently from (12),the averaged loga-

rithm ofthepartition function lnZ(J).Though wellposed,thiscom putation

isgenerally avery hard task from theanalyticalpointofview.An originalbut

non rigorousm ethod,thereplica approach,wasinvented by Kacin thesixties

to perform such calculations.Thestarting pointofthereplica approach isthe

following expansion

Z(J)n = 1+ n lnZ(J)+ O (n2) ; (40)

valid forany set ofcouplings J and sm allrealn.The identity (40)m ay be

averaged overcouplingsand givesthem ean free-energy from theaveraged nth

powerofthepartition function

F(J)= � T lim
n! 0

 
Z(J)n � 1

n

!

: (41)

Ifwerestrictto integern,thenth m om entofthepartition function Z can be

rewritten as

Z(J)n =

"
X

C

exp

�

�
1

T
E (C;J)

�#n

=
X

C 1;:::;C n

exp

 

�
1

T

nX

a= 1

E (C a;J)

!

: (42)

This last expression m akes transparent the principle ofthe replica m ethod.

W e have n copies,orreplicas,ofthe initialproblem .The random couplings

disappearoncetheaverageoverthequenched couplingshasbeen carried out.

Finally,we m ustcom pute the partition function ofan abstractsystem ofN

vectorialspins~�i= (�1i;:::;�
n
i)with thenon random energy function

E eff(f~�ig)= � T ln

2

4exp

 

�
1

T

nX

a= 1

E (C a;J)

! 3

5 : (43)

This new partition function can be estim ated analytically in som e cases by

m eans ofthe saddle-point m ethod just as we did for the Ising m odel.The

resultm ay bewritten form ally as

Z(J)n = exp

�

� N ~f(n)

�

; (44)

to leading orderin N .On generalgrounds,there isno reason to expectthe

partition function to behighly concentrated.Thus, ~f(n)isa non linearfunc-

tion of its integer argum ent n satisfying ~f(0) = 0. The core idea of the

22



replica approach is to continue analytically ~f to the set ofrealn and ob-

tain F(J)= TN d~f=dn evaluated atn = 0.The existence and uniquenessof

theanalyticcontinuation isgenerally ensured for�nitesizesN duetothem o-

m enttheorem .In m ostproblem sindeed onesucceedsin boundingjZ(J)jfrom

abovebya(Jindependent)constantC.Them om entsofZ grow onlyexponen-

tially with n and theirknowledge allowsfora com plete reconstruction ofthe

probability distribution ofZ(J).However this argum ent breaks down when

the saddle-pointm ethod isem ployed and the upperbound C = exp(O (N ))

becom esin�nite.

Though there is generally no rigorous schem e for the analytic continuation

when N ! 1 ,physicists have developped in the past twenty years m any

em piricalrules to use the replica m ethod and obtain precise and som etim es

exact results for the averaged free-energy.W e shallsee in the case ofthe

K-Satis�ability problem how the replica approach can be applied and how

very peculiar phase transitions,related to the abstract \replica" sym m etry

breaking,arepresent.

Them athem atician orcom puterscientistreaderofthisbriefpresentation m ay

feeluneasy and distrustfulofthereplica m ethod because oftheuncontrolled

analyticcontinuation.Tohelp him /herloosesom einhibitions,he/sheisasked

to considerthefollowing warm ing up exercise:

Exercise 7:ConsiderNewton’sbinom ialexpression for(1+ x)n with integer

n and perform an analytic continuation to realn.Take the n ! 0 lim itand

show thatthisleadsto the seriesexpansion in x ofln(1+ x).

3 R andom G raphs

In thissection,weshow how thestatisticalm echanicsconceptsand techniques

exposed in the previous section allow to reproduce som e fam ous results of

Erd�osand R�enyion random graphs[17].

3.1 Generalities

Firstletusde�netherandom graphsused.Considerthecom pletegraph K N

overN vertices.W ede�neG N ;N L
asthesetofgraphsobtained by taking only

N L = 
 N =2 am ong the
�
N

2

�

edges ofK N in allpossible di�erent ways.A

random graph isa random ly chosen elem entofG N ;N L
with the 
atm easure.

Otherrandom graphscan begenerated from thecom pletegraph K N through

a random deletion processoftheedgeswith probability 1� 
=N .In thelarge
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N lim it,both fam iliesofrandom graphssharecom m on propertiesand weshall

m ention explicitely theprecisefam ily weuseonly when necessary.

3.1.1 Connected com ponents.

W ecall\clusters" theconnected com ponentsofagiven graph G;the\size" of

aclusteristhenum berofverticesitcontains.An isolated vertex isaclusterof

sizeunity.Thenum berofconnected com ponentsofG isdenoted by C(G)and

weshallindicateitsnorm alized fraction byc(G)= C

N
.Ifcissm all,therandom

graph G hasfew big clusterswhereasforcapproaching unity therearem any

clusters ofsm allsize.Percolation theory is concerned with the study ofthe

relationship between theprobabilitypoftwoverticesbeingconnected with the

typicalvalueofcin theN ! 1 lim it.Thescopeofthissection istoshow how

such a relationship can be exploited by the study ofa statisticalm echanics

m odel,the so called Potts m odel,after a suitable analytic continuation.As

a historicalnote,let us m ention thatanalytic continuations have played an

enorm ousrole in physicsthislastcentury,leading often to unexpected deep

results,im possibleorvery di�cultto obtain by otherm eans.

3.1.2 Generating function forclusters.

LetP(G)betheprobabilityofdrawingarandom graphG throughthedeletion

processfrom thecom pletegraph K N .Sincetheedgedeletionsarestatistically

independent,thisprobability dependson the num ber ofedgesN L only,and

factorizesas

P(G)= pN L(G )(1 � p)
N (N �1)

2
� N L(G ) ; (45)

where

1� p= 1�



N
(46)

isthe probability ofedge deletion.W e wantto study the probability density

�(c)ofgenerating a random graph with cclusters,

�(c)=
X

G

P(G)�(c� c(G)) ; (47)

where� indicatestheDiracdistribution.

W ecan introducea generating function oftheclusterprobability by
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Y (q)=

1Z

0

dc�(c)qN c

=

1Z

0

dcq
N c

X

G � K N

P(G)�(c� c(G))

=
X

G � K N

P(G)qC (G ) =
X

G � K N

p
L(G )(1� p)

N (N �1)

2
� L(G )

q
C (G )

; (48)

with q being a form al(eventually real)param eter.

3.1.3 Large size lim it.

In thelargesizelim it,�(c)isexpected tobehighly concentrated around som e

value c(
) equalto the typicalfraction ofclusters per vertex and depend-

ing only the average degree ofvalency 
.Random graphswhose c(G)di�ers

enough from c(
)willbeexponentially rarein N .Therefore,thequantity

!(c)= lim
N ! 1

1

N
log�(c) (49)

should vanish forc= c(
)and bestrictly negativeotherwise.In thefollowing,

we shallcom pute !(c) and thus obtain inform ation not only on the typical

num berofclustersbutalso on thelargedeviations(rareevents).

De�ning thelogarithm ~f(q)oftheclustergenerating function as

~f(q)= lim
N ! 1

1

N
logY (q) ; (50)

weobtain from a saddle-pointcalculation on c,see(48,49),

~f(q)= m ax
0� c� 1

�

c lnq+ !(c)

�

: (51)

In otherwords, ~f and ! aresim ply conjugated Legendretransform s.Itturns

outthata directcom putation of ~f iseasierand thusprefered.

3.2 Statisticalm echanicsofthe random graph.

Hereafter,we proceed to com pute the propertiesofrandom graphsby using

a m apping to the so-called Pottsm odel.Som e know resultscan be rederived

by thestatisticalm echanicsapproach,and additionalpredictionsarem ade.
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3.2.1 Presentation ofthe Pottsm odel.

ThePottsm odel[18]isde�ned in term sofan energy function which depends

on N spin variables�i,oneforeach vertex ofthecom pletegraph K N ,which

takeq distinctvalues�i= 0;1;:::;q� 1.Theenergy function reads

E [f�ig]= �
X

i< j

�(�i;�j) ; (52)

where�(a;b)istheKroneckerdeltafunction:�(a;b)= 1ifa = band�(a;b)= 0

ifa 6= b.Thepartition function ofthePottsm odelis

ZP otts =
X

f�i= 0;:::;q� 1g

exp[�
X

i< j

�(�i;�j)] (53)

where � istheinverse tem perature and the sum m ation runsoverallqN spin

con�gurations.

In orderto identify them apping between thestatisticalm echanicsfeaturesof

the Pottsm odeland the percolation problem in random graphswe com pare

the expansion ofZP otts to the de�nition ofthe clustergenerating function of

therandom graphs.

3.2.2 Expansion ofthe Pottspartition function.

FollowingKasteleyn and Fortuin [19],westartby rewriting ZP otts asadichro-

m aticpolynom ial.Upon posing

v = e
�
� 1 ; (54)

onecan easily check that(53)can berecastin theform

ZP otts =
X

f�ig

Y

i< j

[1+ v�(�i;�j)] : (55)

W hen �i and �j take the sam e value there appears a factor (1+ v) in the

product (corresponding to a term e� in (53));on the contrary,whenever �i
and �j aredi�erenttheproductrem ainsunaltered.Theexpansion oftheabove

productreads

ZP otts =
X

f�ig

[1+ v
X

i< j

�(�i;�j)

+ v
2

X

i< j;k< l=(i;j)6= (k;l)

�(�i;�j)�(�k;�l)+ � � � ]: (56)
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W eobtain 2
N (N �1)

2 term seach ofwhich com posed by two factors,the�rstone

given by v raised to a powerequalto thenum berof�scom posing thesecond

factor.Itfollowsthateach term correspondsto a possible subsetofedgeson

K N ,each edgeweighted by a factorv.There isa one{to{onecorrespondence

between each term ofthesum and thesub{graphsG ofK N .Theedgestructure

ofeach sub{graph isencoded in theproductofthe�s.Thisfactallowsusto

rewritethepartition function asa sum oversub{graphs

ZP otts =
X

f�ig

X

G � K N

[vL(G )
L(G )
Y

k= 0

�(�ik;�jk)] (57)

where L(G) is the num ber ofedges in the sub{graph G and ik;jk are the

verticesconnected by thek-th edgeofthesub{graph.W em ay now exchange

theorderofthesum m ationsand perform thesum overthespin con�gurations.

Given a sub{graph G with L linksand C clusters(isolated verticesincluded),

thesum overspinscon�gurationswillgivezero unlessallthe�sbelonging to

a clusterofG havethesam evalue(cf.the� functions).In such a cluster,one

can setthe�sto any oftheq di�erentvaluesand hencethe�nalform ofthe

partition function reads

ZP otts =
X

G � K N

v
L(G )

q
C (G )

: (58)

3.2.3 Connection with the clustergenerating function

Ifwenow m akethefollowing identi�cation

p= 1� e
� � = v=(1+ v) ; (59)

wecan rewritethepartition function as

ZP otts=
X

G � K N

�
p

1� p

�L(G )

q
C (G )

= (1� p)�
N (N �1)

2

X

G � K N

p
L(G )(1� p)

N (N �1)

2
� L(G )

q
C (G )

: (60)

Com puting theprefactoron ther.h.s.of(60),wehave

ZP otts = e
N 


2 Y (q) ; (61)

forterm sexponentialin N .Y istheclustergenerating function ofthegraph

(48).ThelargeN behaviouroftheclusterprobability !(c)isthereforerelated
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to thePottsfree{energy,

fP otts(q)= � lim
N ! 1

1

� N
lnZP otts ; (62)

through

�



2
� fP otts(q)= m ax

0� c� 1
(c lnq+ !(c)) : (63)

W eareinterested in �ndingthevaluec�(q)which m axim izesther.h.s.in (63);

since

d!(c)

dc

�
�
�
�
c�(q)

= � lnq (64)

itfollowsthat! takesitsm axim um value forq = 1.Di�erentiating eq.(63)

with respectto q,wehave

�
dfP otts

dq
=

d

dq
(c lnq+ !(c))=

@

@c
(c lnq+ !(c))

@c

@q
+
c

q
; (65)

which,in virtueofeq.(64)becom es:

c
�(q)= � q

dfP otts

dq
(q) : (66)

Itisnow clearthatthe typicalfraction ofclusterspersite,c�(q= 1),can be

obtained,atagiven connectivity 
,by com puting thePottsfree-energy in the

vicinity ofq= 1.SincethePottsm odelisoriginally de�ned forintegervalues

ofq only,an analytic continuation to realvalues ofq is necessary.W e now

explain how to perform thiscontinuation.

3.2.4 Free-energy calculation.

Asin the case ofthe Ising m odelofsection II,a carefulexam ination ofthe

energy function (52)showsthatthe latterdependson thespin con�guration

only through the fractions x(�;f�ig) ofvariables �i in the �-th state (� =

0;1;� � � ;q� 1)[20],

x(�;f�ig)=
1

N

NX

i= 1

�(�i;�); (� = 0;1;:::;q� 1) : (67)
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Ofcourse,
P

� x(�;f�ig) = 1.Note that in the Ising case (q = 2) the two

fractionsx(0)and x(1)can be param etrized by a unique param etere.g.the

m agnetization m = (x(1)� x(0))=2.

Using thesefractions,theenergy (52)m ay berewritten as

E [f�ig]= �
N 2

2

q� 1X

�= 0

[x(�;f�ig)]
2 +

N

2
: (68)

Notethatthelastterm on ther.h.s.of(68)can beneglected with respectto

the�rstterm whoseorderofm agnitudeisO (N 2).

Thepartition function (53)atinverse tem perature� = 
=N now becom es

ZP otts=
X

f�i= 0;1;:::q� 1g

exp

0

@ �



2
N

q� 1X

�= 0

[x(�;f�ig)]
2

1

A

=

(R )
X

fx� = 0;1=N ;:::;1g

exp

0

@



2
N

q� 1X

�= 0

[x(�)]2

1

A
N !

�
q� 1

�= 0[N x(�)]!

=

1 (R )Z

0

�
q� 1

�= 1 dx(�) exp(� N f[fx(�)g]) (69)

to the leading order in N .The subscript (R)indicates that the sum orthe

integralm ust be restricted to the norm alized subspace
P q� 1

�= 0x(�) = 1.The

\free-energy" density functionalf appearing in (69)is

f[fx(�)g]=

q� 1X

�= 0

�

�



2
[x(�)]2 + x(�)lnx(�)

�

: (70)

In the lim itoflarge N ,the integralin (69)m ay be evaluated by the saddle-

pointm ethod.ThePottsfree-energy (62)then reads

fP otts(q)= m in
fx(�)g

f[fx�g] (71)

and theproblem becom esthatofanalyzing them inim a off.Given theinitial

form ulation oftheproblem ,each possiblevalueof� am ong 0;:::;q� 1 plays

the sam e role;indeed f isinvariantunderthe perm utation sym m etry ofthe

di�erent q values.However,we should keep in m ind that such a sym m etry

could bebroken by them inim um (seesection 2).W eshallseethatdepending

on the value ofthe connectivity 
,the perm utation sym m etry m ay or m ay

notbe broken,leading to a phase transition in the problem which coincides

with thebirth a giantcom ponentin theassociated random graph.
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3.2.5 Sym m etric saddle-point.

Consider�rstthesym m etric extrem um off,

x
sym (�)=

1

q
; 8� = 0;:::;q� 1: (72)

W ehave

f
sym

P otts(q)= � lnq�



2q
: (73)

Taking theLegendretransform ofthisfree-energy,see(63,66),wegetforthe

logarithm oftheclusterdistribution density

!
sym (c)= �




2
� (1� c)(1+ ln
 � ln[2(1� c)]) : (74)

!sym (c)ism axim aland nullatcsym (
)= 1�



2
,a resultthatcannotbetrue

for connectivities larger than two and m ust break down som ewhere below.

Com parison with the rigorous derivation in random graph theory indicates

thatthe sym m etric resultisexact aslong as
 � 
c = 1 and isfalse above

the percolation threshold 
c.The failure ofthe sym m etric extrem um in the

presence ofa giantcom ponentprovestheonsetofsym m etry breaking.

Tounderstand them echanism responsibleforthesym m etry breaking,welook

for the localstability ofthe sym m etric saddle-point (72) and com pute the

eigenvaluesoftheHessian m atrix

M �;� =
@2

@x(�)x(�)
f[fx(�g)]

�
�
�
�
sym ;(R )

; (75)

restricted to the norm alized subspace.The sim ple algebraic structure ofM

allowsan exact com putation ofitsq� 1 eigenvalues fora generic integerq.

W e �nd a non degenerate eigenvalue �0 = q(q� 
) and another eigenvalue

�1 = q� 
 with m ultiplicty q� 2.Theanalyticcontinuation oftheeigenvalues

to realq ! 1 lead to the single value � = 1� 
 which changes sign atthe

percolation threshold 
c.Therefore,thesym m etricsaddle-pointisnota local

m inim um off above
c,showing thata m orecom plicated saddle-pointhasto

befound.

3.2.6 Sym m etry broken saddle-point.

Thesim plestwaytobreakthesym m etryoftheproblem istolookforsolutions

in which one am ong the q values appears m ore frequently than the others.
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Thereforewelook fora saddle-pointoftheform

x(0)=
1

q
[1+ (1� q)s]

x(�)=
1

q
[1� s]; (� = 1;:::;q� 1): (76)

The sym m etric case can be recovered in this enlarged subspace ofsolutions

by setting s= 0.The free-energy ofthePottsm odelisobtained by plugging

thefractions(76)into (70).In thelim itq! 1 ofinterest,

f[fx�g]= �



2
+ (q� 1)fP otts(s;
)+ O ((q� 1)2) (77)

with

fP otts(s;
)=



2
(1�

1

2
s
2)� 1+ s+ (1� s)ln(1� s) (78)

M inim ization offP otts(s;
)with respectto theorderparam eters showsthat

for
 � 1 the sym m etric solution s= 0 isrecovered,whereasfor
 > 1 there

existsa non vanishing optim alvalues�(
)ofs thatissolution oftheim plicit

equation

1� s
� = exp(� 
 s

�) : (79)

The stability analysis (which we willnotgive here) shows thatthe solution

isstable forany valueof
.The interpretation ofs�(
)isstraightforward:s�

isthefraction ofverticesbelonging to thegiantcluster.Theaveragefraction

ofconnected com ponents c(
) equals � fP otts(s
�(
);
),see (66),in perfect

agreem entwith exactresultsby Erd�osand Renyi.

3.3 Discussion.

Furtherresultson thepropertiesofrandom graphscan beextracted from the

previoustypeofcalculation.W eshallexam inetwo ofthem .
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3.3.1 Scaling atthe percolation point.

Given the interpretation ofs�(
)forany largebut�nite valueofN ,we m ay

de�netheprobability ofexistence ofa clustercontaining N s sitesasfollows

P(s;N )’
exp(N f(s;
))

exp(N f(s�;
))
(80)

In thein�nitesizelim itthisleadsto theexpected result

lim
N ! 1

P(s;N )= �(s� s
�(
)) (81)

In order to describe in detailhow sharp (in N ) the transition is at 
 = 1,

we need to consider corrections to the saddle point solutions by m aking an

expansion ofthe free-energy fP otts(s;
 = 1) in the order param eter s.At

threshold,wehaves�(1)= 0 and fP otts(s;1)= � s3=6+ O (s4)and therefore

P(s;N )’ exp(� N s
3
=6) (82)

In orderto keep the probability �nite atthe criticalpointthe only possible

scaling fors iss= O (N � 1=3)which leadsto a sizeofthegiantcom ponentat

criticality N � N� 1=3 = N 2=3,in agreem entwith theErd�os-R�enyiresults.

3.3.2 Large deviations.

TheknowledgeofthePottsfree-energyforanyvalueofqallowsonetocom pute

itsLegendre transform ,!(c).The com putation doesnotshow any di�culty

and wedonotreproducetheresultshere[21].Phasetransitionsarealsofound

to take place forrare events(graphsthatdo notdom inate the clusterprob-

ability distribution).Notice that we consider here random graphs obtained

by deleting edgesfrom K N with a �xed probability.Large deviationsresults

indeed depend strongly on theprocessofgenerating graphs.

Asa typicalexam pleofwhatcan befound using statisticalm echanics,letus

m ention thissim pleresult

!(c= 1)= �



2
; (83)

forallconnectivities
.Theaboveidentity m eansthattheprobability thata

random graph hasN � o(N )connected com ponentsdecreasesasexp(� 
N =2)

when N getslarge.Thisresultm aybeeasilyunderstood.Considerforinstance

graphswith 
N edgesm adeofa com pletegraph on
p
2
N verticesplusN �
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p
2
N isolated vertices.The fraction ofconnected com ponentsin thisgraph

isc= 1� O (1=
p
N )! 1.Thenum berofsuch graphsissim ply thenum berof

choicesof
p
2
N verticesam ongN ones.Takingintoaccounttheedgedeletion

probability 1� p= 1� 
=N ,oneeasily recovers(83).

3.3.3 Conclusion.

Therandom graph problem isanicestartingpointtotestideasand techniques

from statisticalm echanics.First,rigorousresultsareknown and can be con-

fronted to theoutputsofthecalculation.Secondly,analyticalcalculationsare

nottoo di�cultand can beexploited easily.

As its m ain focus,this section aim ed at exem plifying the strategy used in

m ore com plicated,e.g.K-Satis�ability,problem s.The procedure ofanalytic

continuation,which isatthe rootofthe replica approach,appearsnicely in

the com putation ofthe Potts free-energy and isshown to give exactresults

(thoughinanonrigorousway).Thepoweroftheapproachisim pressive.M any

quantitiescan becom puted and rathersubtlee�ectssuch aslargedeviations

areeasily obtained in a uniquefram ework.

At the sam e tim e,the m ain weakness ofthe statisticalm echanics approach

isalso visible.M ostinteresting e�ectsareobtained when an underlying sym -

m etry isbroken.Butthestructureofthebroken saddle-pointsubspace isfar

from obvious,in contrastto theIsing caseoftheprevioussection.Thereisat

�rstsightsom ekind ofarbitrarinessin thesearch ofasaddle-pointoftheform

of(76).In theabsenceofa well-established and rigorousprocedure,thesym -

m etry breaking schem esto beused m ustsatisfy atleastbasicself-consistency

checks(plausibilityofresults,localstability,...).In addition,theoreticalphysi-

cistshavedeveloped variousschem esthatareknown tobee�cientforvarious

classesofproblem sbut(failinothercases).A kind ofstandard lore,ofprecious

help to solve new problem s,existsand isstillwaiting for�rm m athem atical

foundations.

4 R andom K -satis�ability problem

In what follows we shalldescribe the m ain steps ofthe replica approach to

thestatisticalm echanicsanalysisoftheSatis�ability problem .Theinterested

readerm ay �nd additionaldetailsconcerning thecalculationsin severalpub-

lished papers[22{28]and in thereferencestherein.

Thesatisfaction ofconstrained Boolean form ulaeisa key issuein com plexity

theory.M any com putationalproblem sare known to be NP-com plete [15,29]
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through apolynom ialm appingontotheK-Satis�ability(SAT)problem ,which

in turn wasthe�rstproblem shown to beNP-com pleteby Cook in 1971 [30].

Recently [31],therehasbeen m uch interestin arandom version oftheK-SAT

problem de�ned as follows.Consider N Boolean variables xi,i= 1;:::;N .

Calla clauseC thelogicalOR ofK random ly chosen variables,each ofthem

being negated or left unchanged with equalprobabilities.Then repeat this

processby drawing independently M random clausesC‘,‘= 1;:::;M .The

logicalAND ofallthese clauses is a \form ula",referred to as F.It is said

to besatis�able ifthere existsa logicalassignm entofthexsevaluating F to

true,and unsatis�ableotherwise.

Num erical experim ents have concentrated on the study of the probability

PN (�;K )thata random ly chosen F having M = �N clausesbe satis�able.

For large sizes,a rem arkable behaviour arises:PN seem s to reach unity for

� < �c(K )and vanishesfor� > �c(K )when N ! 1 [32,31].Such an abrupt

threshold behaviour,separatingaSAT phasefrom an UNSAT one,hasindeed

been rigorously con�rm ed for 2-SAT,which is in P,with �c(2)= 1 [33,34].

ForlargerK � 3,K-SAT isNP-com plete and m uch less is known.The ex-

istence ofa sharp transition hasnotbeen rigorously proved butestim atesof

the thresholds have been found :�c(3) ’ 4:3 [35].M oreover,som e rigorous

lower and upper bounds to �c(3) (ifit exists),�l:b: = 3:14 and �u:b: = 4:51

respectively havebeen established (seethereview articlesdedicated to upper

and lowerboundscontained in thisTCS specialissue).

The interest in random K-SAT arises partly from the following fact:it has

been observed num erically that hard random instances are generated when

the problem sare critically constrained,i.e.,close to the SAT/UNSAT phase

boundary [32,31].The study ofsuch hard instances represents a theoretical

challenge towards an understanding ofcom plexity and the analysis ofexact

algorithm s.M oreover,hard random instancesare also a test-bed forthe op-

tim ization ofheuristic(incom plete)search procedures,which arewidely used

in practice.

Statisticalm echanics provides new intuition on the nature ofthe solutions

ofrandom K-SAT (or M AX-K-SAT) through the introduction ofan order

param eterwhich describesthegeom etricalstructureofthespaceofsolutions.

In addition,itgivesalso a globalpictureofthedynam icaloperation ofsearch

proceduresand thecom putationalcom plexity ofK-SAT solving.

4.1 K-SAT energy and the partition function.

To apply the statisticalphysics approach exem pli�ed on the random graph

problem ,onehasto identify theenergy function corresponding to theK-SAT
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problem .

The logicalvaluesofan xi can berepresented by a binary variable Si,called

a spin,through the one-to-one m apping Si = � 1 (respectively +1) ifxi is

false (resp.true).The random clauses can then be encoded into an M � N

m atrix C‘i in the following way :C‘i = � 1 (respectively +1) ifthe clause

C‘ includes xi (resp.xi),C‘i = 0 otherwise.It can be checked easily that
P

N
i= 1C‘iSi equalsthe num berofwrong literalsin clause ‘.Considernow the

cost-function E [C ;S]de�ned asthe num berofclausesthatare notsatis�ed

by thelogicalassignm entcorresponding to con�guration S.

E [C ;S]=
MX

‘= 1

�

 
NX

i= 1

C‘iSi+ K

!

; (84)

where �(j)= 1 ifj= 0,zero otherwise,denotesthe Kroneckerfunction.The

m inim um (or ground state -GS) E [C ]ofE [C ;S],is the lowest num ber of

violated clausesthatcan be achieved by the bestpossible logicalassignm ent

[23].E [C ]isa random variable thatbecom eshighly concentrated around its

averagevalueE G S � E [C ]in thelargesizelim it[36].Thelatterisaccessible
through theknowledgeoftheaveraged logarithm ofthegenerating function

Z[C ]=
X

S

exp(� E [C ;S]=T) (85)

since

E G S = � T logZ[C ]+ O (T2) ; (86)

when theauxiliary param eterT issentto zero.Being them inim alnum berof

violated clauses,E G S equalszero in the satregion and isstrictly positive in

theunsatphase.TheknowledgeofE G S asafunction of� thereforedeterm ines

thethreshold ratio �c(K ).

4.2 The average overthe disorder.

Thecalculation oftheaveragevalueofthelogarithm ofthepartition function

in (86)isan awkward one.To circum ventthisdi�culty,we com pute the n th

m om entofZ forinteger-valued n and perform an analyticcontinuation toreal

n to exploittheidentity Z[C ]n = 1+ nlogZ[C ]+ O (n2).The nth m om entof

Z isobtained by replicating n tim esthe sum overthe spin con�gurationsS
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and averaging overtheclausedistribution [23]

Z[C ]n =
X

S1;S2;:::;Sn

exp

 

�

nX

a= 1

E [C ;Sa]=T

!

; (87)

which in turn m ay beviewed asa generating function in thevariablee� 1=T.

In ordertocom putetheexpectation valuesthatappearin eq.(87),onenotices

thateach individualterm

z[fSag]= exp

 

�
1

T

nX

a= 1

E [C ;Sa]

!

(88)

factorisesoverthesetsofdi�erentclausesduetotheabsenceofanycorrelation

in theirprobability distribution.Itfollows

z[fSag]= (�K [fS
a
g])

M
; (89)

whereeach factorisde�ned by

�K [fS
a
g]= exp

"

�
1

T

nX

a= 1

�

 
NX

i= 1

CiS
a
i + K

! #

; (90)

with thebardenoting theuniform averageoverthesetof2K
�
N

K

�

vectorsofN

com ponentsCi= 0;� 1 and ofsquared norm equalto K .

Resorting to theidentity,

�

 
NX

i= 1

CiS
a
i + K

!

=
Y

i=C i6= 0

� (Sai + Ci) ; (91)

onem ay carry outtheaverageoverin disorderin eq.(90)to obtain

�K [fS
a
g]=

1

2K

X

C 1;:::;C K = � 1

1

N K

NX

i1;:::;iK = 1

exp

(

�
1

T

nX

a= 1

KY

‘= 1

�
h

S
a
i‘
+ C‘

i
)

(92)

up to negligibleO (1=N )contributions.

The averaged term in the r.h.s.of(87) depends on the n � N spin values

only through the 2n occupation fractionsx(~�)labeled by the vectors~� with
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n binary com ponents;x(~�)equalsthenum ber(divided by N )oflabelsisuch

thatSa
i = �a,8a = 1;:::;n.Itfollowsthat�K [fSag]= �K [x]where

�K [x]=
1

2K

X

C 1;:::;C K = � 1

X

~�1;:::;~�K

x(� C1 ~�1):::x(� CK ~�K )� (93)

exp

(

�
1

T

nX

a= 1

KY

‘= 1

� [�a‘ � 1]

)

:

Toleadingorderin N (e.g.,byresortingtoasaddlepointintegration),the�nal

expression ofthenth m om entofZ can bewritten asZ[C ]n ’ exp(� N fopt=T)

wherefoptistheoptim um (in factthem inim um forintegern)overallpossible

xsofthefunctional[23]

f[x]= e[x]+
1

T

X

~�

x(~�)logx(~�) ; (94)

with

e[x]= � ln

2

4
X

~�1;:::;~�K

x(~�1):::x(~�K ) exp

 

�
1

T

nX

a= 1

KY

‘= 1

�[�a‘ � 1]

! 3

5 : (95)

Note the sim ilaritiesbetween equations(94)and (70).W hile in the random

graph orPottsm odelcase� took on q values,theK-SAT m odelrequiresthe

introduction of2n vectors ~�.In both cases,an analytic continuation ofthe

free-energy to non integervaluesofq orn hasto beperform ed.Finally,note

thatthe optim um off ful�llsx(~�)= x(� ~�)due to the uniform distribution

ofthedisorderC.

4.3 Orderparam eterand replica-sym m etric saddle-pointequations.

The optim ization conditions over f[x]provide 2n coupled equations for the

xs.Noticethatf isa sym m etricfunctional,invariantunderany perm utation

ofthereplicasa,asisevidentfrom equation (87).An extrem um m ay thusbe

soughtin the so-called replica sym m etric (RS)subspace ofdim ension n + 1

wherex(~�)isleftunchanged undertheaction ofthesym m etricgroup.In the

lim itofinterest,T ! 0,and within theRS subspace,theoccupation fractions

m ay beconveniently expressed asthem om entsofa probability density P(m )
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overtherange� 1� m � 1 [23],

x(�1;�2;:::;�n)=

1Z

� 1

dm P(m )

nY

a= 1

�
1+ m �a

2

�

: (96)

P(m ) is not uniquely de�ned by (96) for integer values ofn but acquires

som e precise m eaning in the n ! 0 lim it.Itisthe probability density ofthe

expectation valuesofthespin variablesoverthesetofground states.Consider

a form ula F and allthe spin con�gurations S(j),j = 1;:::;Q realizing the

m inim um E [C ]ofthecost-function E [C ;S],thatisthesolutionsoftheM AX-
SAT problem de�ned by F.Then de�ne the average m agnetizations ofthe

spins

m i=
1

Q

QX

j= 1

S
(j)

i ; (97)

overthesetofoptim alcon�gurations.CallH (C ;m )thehistogram ofthem is

and H (m )itsquenched average,i.e.,theaverageofH (C ;m )overtherandom
choices ofthe form ulae F.H (m ) is a probability density over the interval

� 1 � m � 1 giving inform ation on the distribution ofthe variablesinduced

by the constraint ofsatisfying allthe clauses.In the absence ofclauses,all

assignm ents are solutions and allm agnetizations vanish:H (m )= �(m )and

variablesarenotconstrained.Oppositely,variablesthatalwaystakethesam e

value in allsolutions,ifany,have m agnetizationsequalto +1 (or� 1):such

variablesaretotally constrained by theclauses.

Asdiscussed in ref.[23],iftheRS solution istheglobaloptim um of(94)then

H (m )equalsthe above m entioned P(m )in the lim itoflarge sizesN ! 1 .

Therefore,the orderparam eterarising in the replica calculation re
ects the

\m icroscopic" structureofthesolutionsoftheK-SAT problem .

Atthisstageoftheanalysisitispossibletoperform theanalyticcontinuation

n ! 0sinceallthefunctionalshavebeen expressed in term ofthegenericnum -

berofreplicasn.Such a processleadsto a self-consistentfunctionalequation

fortheorderparam eterP(m ),which reads

P(m )=
1

1� m2

1Z

� 1

du cos

�
u

2
ln

�
1+ m

1� m

��

�

exp

2

4� �K + �K

1Z

� 1

K � 1Y

‘= 1

dm ‘P(m ‘)cos

�
u

2
lnA (K � 1)

�
3

5 (98)
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with

A (K � 1) � A(K � 1)(fm ‘g;�)= 1+ (e� � � 1)

K � 1Y

‘= 1

�
1+ m ‘

2

�

; (99)

and � � 1=T.Thecorresponding replica sym m etricfree{energy density reads

� � fopt(�;T)= ln2+ �(1� K )

1Z

� 1

KY

‘= 1

dm ‘P(m ‘)lnA (K )

+
�K

2

1Z

� 1

K � 1Y

‘= 1

dm ‘P(m ‘)lnA (K � 1)

�
1

2

1Z

� 1

dm P(m )ln(1� m
2) : (100)

Itcan be checked thatequation (98)isrecovered when optim izing the free-

energy functional(100)overall(even)probability densitiesP(m )on the in-

terval[-1,1].

4.4 The sim ple case ofK=1.

Before entering in the analysis ofthe saddle-point equations for generalK ,

itisworth considering the sim ple K = 1 case which can be solved eitherby

a directcom binatorialm ethod orwithin the statisticalm echanics approach.

Though random 1-SAT doesnotpresentany criticalbehaviour(for�nite�),

itsstudy allowsan intuitiveunderstanding ofthem eaning and correctnessof

thestatisticalm echanicsapproach.

ForK = 1,asam pleofM clausescan bede�ned com pletely by givingdirectly

the num bersti and fi ofclausesim posing thata certain Boolean variable Si
m ustbe true orfalse respectively.The partition function corresponding to a

given sam plereads

Z[ft;fg]=

NY

i= 1

(e� �ti + e
� �fi) ; (101)

and theaverageoverthedisordergives

1

N
lnZ[ft;fg]=

1

N

X

fti;fig

M !
Q N
i= 1(ti!fi!)

lnZ[ft;fg]
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= ln2�
��

2
+

1X

l= � 1

e
� �
Il(�) ln

 

cosh

 
�l

2

! !

; (102)

whereIldenotesthel
th m odi�ed Besselfunction.Thezero tem peraturelim it

givestheground stateenergy density

eG S(�)=
�

2
[1� e

� �
I0(�)� e

� �
I1(�)] (103)

and theground stateentropy density

sG S(�)= e
� �
I0(�) ln2 : (104)

Forany � > 0,the ground{state energy density ispositive and therefore the

overallBoolean form ulaisfalsewith probabilityone.Also,theentropy density

is�nite,i.e.,the num berofm inim a ofthe energy forany � isexponentially

large.Such a resultcan beunderstood by noticing thatthereexista fraction

ofunconstrained variablese� �I0(�)which are subjectto equalbutopposite

constraintsti= fi.

Theaboveresultsarerecovered inthestatisticalm echanicsfram ework,thereby

showing thattheRS Ansatzisexactforall� and � when K = 1.

Thesolution ofthesaddle-pointequation (98)can befound forany tem pera-

tureT leading to theexpression

P(m )=

1X

‘= � 1

e
� �
I‘(�)�

 

m � tanh

 
�‘

2

! !

: (105)

In thelim itofinterest� ! 1 ,thisform ula reads

P(m )= e
� �
I0(�)�(m )+

1

2
(1� e

� �
I0(�))(�(m � 1)+ �(m + 1)) :(106)

Asshown in �gure 3,the fraction ofunconstrained variablesissim ply asso-

ciated with the unfrozen spins and thus gives the weight ofthe �{function

at m = 0.On the contrary,the non-zero value ofthe fraction ofviolated

clauses,proportionalto the ground-state energy density,is due to the pres-

enceofcom pletely frozen (overconstrained)spinsofm agnetizationsm = � 1.

Such a featurerem ainsvalid forany K .
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Fig.3.Energy density (bold line) and entropy density (thin line) versus � in a

random 1-SAT form ula,in the lim itN ! 1 .

4.5 Satphase:structure ofthe space ofsolutions.

W estartbyconsideringthesatphase.An interestingquantity tolookatisthe

typicalnum berofsolutionsoftherandom K-SAT problem ;thisquantity can

be obtained from the ground state entropy density sG S(�)given by eq.(100)

in the� ! 1 lim it.

In the absence ofany clauses,allassignm ents are solutions:sG S(� = 0) =

ln2.W e have com puted the Taylor expansion ofsG S(�) in the vicinity of

� = 0,up to the seventh order in �.Results are shown in Figure 4.It is

found thatsG S(�c = 1)= :38 and sG S(� = 4:2)= :1 for2-SAT and 3-SAT

respectively:justbelow threshold,solutionsareexponentially num erous.This

resultiscon�rm ed by rigorouswork [37].

M oreinvolved calculations,includingreplicasym m etry breaking(RSB)e�ects

[28],haveshown thatthevalueoftheentropy isinsensitiveto RSB in thesat

phase.Therefore the RS calculation providesa quite precise estim ate ofthe

entropy (believed to be exact atlow � ratios,see Talagrand’s paperin this

volum efora discussion).

Recentanalyticalcalculationsfor3-SAT [28](also con�rm ed by num ericalin-

vestigations)indicatethattheRS theory breaksdown atade�niteratio�R SB

below �c,wherethesolutionsstartto beorganized into distinctclusters.The

m eaning ofthisstatem entisasfollows.Think ofthe space ofspinscon�gu-

rationsastheN -dim ensionalhypercube.Optim alassignm entsarea subsetof
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Fig.4.RS estim ate for the entropy density in random 2-SAT and 3-SAT below

their thresholds.RSB corrections due to clustering are absent in 2-SAT and very

sm all(within few a percent) in 3-SAT. The dots represent the results of exact

enum erationsin sm allsystem s(N ranging from 20 to 30,see ref.[22])

thesetof2N verticeson thehypercube.Replicasym m etry am ountstoassum -

ing thatany pairofverticesarea.s.separated by thesam eHam m ing distance

d,de�ned asthefraction ofdistinctspinsin thecorresponding con�gurations.

In other words,solutions are gathered in a single cluster,ofdiam eter dN .

RSB variationalcalculations[28]show thatthissim plifying assum ption isnot

generallytruein thewholesatphaseand thatanotherscenariom aytakeplace

closeto threshold:

� Below �R SB the space ofsolutions is replica sym m etric.There exist one

clusterofsolutionscharacterized by asingleprobability distribution oflocal

m agnetizations.The Ham m ing distance d is a decreasing function of�,

starting atd(0)= 1=2.

� At �R SB ’ 4:0,the space ofsolutions breaks into a large num ber (poly-

nom ialin N ) ofdi�erent clusters.Each cluster contains an exponential

num ber ofsolutions.The typicalHam m ing distance d0 between solutions

belonging to di�erent clusters is close to 0:3 and rem ains nearly constant

(itisslightly decreasing)up to �c,indicating thatthecentersoftheseclus-

tersdo notm oveon thehypercubewhen m oreand m oreclausesareadded.

W ithin each cluster,solutionstend to becom em oreand m oresim ilar,with

a rapidly decreasing intra-clusterHam m ing distanced1.

Figure 5 providesa qualitative representation ofthe clustering process.The

factthattheHam m ing distancecan taketwo valuesatm ostisadirectconse-

quenceoftheRSB Ansatz.In reality,thedistancedistribution could bem ore

com plicated.Thekey pointisthatstatisticalm echanicscalculationsstrongly

supporttheidea thatthespaceofsolutionshasa highly organized structure,

even in thesatphase.
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d is the typicalHam m ing distance between solutions.The splitting ofthe curves

at� ’ 4 correspondsto clustering.There appeartwo characteristic distances,one

within each clusterand one between solutionsbelonging to di�erentclusters.

Recently,the exact solution ofthe balanced version ofrandom K-SAT [38]

hasprovided a concreteexam plein which theappearanceofclustering before

thesat/unsattransition can bestudied both analyticaland num erically.Note

thatthisphenom enon isstrongly rem iniscentofwhathappensin som eform al

m ulti-layerneuralnetworksm odels[5].

4.6 Unsatphase:the backbone and the orderofthe phase transition.

In the unsat phase,it is expected that O (N ) variables becom e totally con-

strained,i.e.takeonthesam evalueinallthegroundstates.Such ahypothesis,

which ofcourse needsto be veri�ed a posteriori,correspondsto a structural

change in the probability distribution P(m ) which develops Dirac peaks at

m = � 1.

In the lim itofinterest(T ! 0),to describe the accum ulation ofthe m agne-

tization on thebordersofitsdom ain (m 2 [� 1;1]),weintroducetherescaled

variable z,im plicitly de�ned by the relation m = tanh(z=T),see equation

(106).Calling R(z)the probability density ofthe zs,the saddle-pointequa-

tionsread

R(z)=

1Z

� 1

du

2�
cos(uz)exp

�

�
�K

2K � 1
+ �K � (107)

1Z

0

K � 1Y

‘= 1

dz‘R(z‘)cos(u m in(1;z1;:::;zK � 1))

3

5 :

Thecorresponding ground stateenergy density reads,see(100),
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eG S(�)= �(1� K )

1Z

0

KY

‘= 1

dz‘R(z‘)m in(1;z1;:::;zK )

+
�K

2

1Z

0

K � 1Y

‘= 1

dz‘R(z‘)m in(1;z1;:::;zK � 1)�

1Z

0

dzR(z)z : (108)

Itiseasytoseethatthesaddle{pointequation (107)isin factaself{consistent

identity forR(z)in the range z 2 [0;1]only.Outside thisinterval,equation

(107)ism erely a de�nition ofthefunctionalorderparam eterR.

Asdiscussed in detailin ref.[23],equations(107)adm itan in�nite sequence

ofm oreand m orestructured exactsolutionsoftheform

R(z)=

1X

l= � 1

r‘ �

 

z�
‘

q

!

; (109)

having exactly q peaks in the interval[0;1[,whose centers are z‘ =
‘

q
,‘ =

0;:::;q� 1.Thecorresponding energy density reads,from (109)and (108),

eG S =
�(1� K )
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Though there m ight be continuous solutions to (107),it is hoped that the

energy ofground state can be arbitrarily wellapproxim ated by the above

largeq solutions.

Thelocation ofthesat/unsatthreshold can beobtained forany K by looking

atthevalueof� beyond which theground stateenergy becom espositive.For

2� SAT the exactresult�c(2)= 1 isrecovered whereasforK > 2 the RS

energy becom espositiveatavalueof� (e.g.,�c(3)’ 4:6asshown in �gure6)

which issightly higherthan thevalueestim ated by num ericalsim ulations.

4.6.1 A hintatreplica sym m etry breaking.

The RS theory provides an upper bound forthe thresholds forany K > 2,

whereas the exact values can be obtained only by adopting a m ore general

44



0

0.02

0.04

0.06

0.08

0.1

4 4.5 5 5.5 6 6.5 7

E
ne

rg
y 

de
ns

ity

α

3-SAT   RS ground state energy density

Fig.6.RS estim atefortheground stateenergy density,�.e.,thenum berofviolated

clausesdivided by N in random 3-SAT.Theprediction isgiven asa function of�,

forq� 1 and in the lim itN ! 1 .Seeref.[23]fordetails.

functionalform forthesolution ofthesaddle-pointequationswhich explicitly

breaksthe sym m etry between replicas(see ref.[27]fora precise discussion).

Such an issueisindeed a relevant,and largely open,problem in thestatistical

physicsofrandom system s[39{46].

The generalstructure ofthe functionalorderparam eterwhich describes so-

lutionsthatbreak the perm utationalsym m etry am ong replicasconsistsofa

distribution ofprobability densities:each Boolean variable
uctuatesfrom one

clusterofsolutionstoanother,leading toa sitedependentprobability density

oflocalBoolean m agnetizations.The distribution overalldi�erentvariables

then providesaprobabilitydistribution ofprobabilitydistributions.Theabove

schem e can in principle be iterated,leading to m ore and m ore re�ned levels

ofclustering ofsolutions.Such a scenario would correspond to the so-called

continuous RSB schem e [1].However the �rst step solution could su�ce to

capture the exact solution ofrandom K-SAT,as happens in other sim ilar

random system s[1].

4.6.2 Abruptvs.sm ooth phase transition.

Ofparticularinterestarethefully constrained variables{ theso called back-

bonecom ponent{,thatisthexissuch thatm i= � 1.W ithin theRS Ansatz,

the fraction offully constrained variables
(�;K )can be directly com puted

45



0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
alpha = M/N

K = 2

K = 3
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and 3-SAT.Thecurves[25]areobtained by com pleteenum erationsin sm allsystem s

(up to N = 500 variables for 2-SAT and N = 30 for 3-SAT) averaged over m any

sam ples.

from thesaddle-pointequations.Clearly,
(�;K )vanishesin theSAT region

otherwise the addition of�N new clausesto F would lead to a contradiction

with a �niteprobability forany � > 0.Two kindsofscenariihavebeen found

when entering the unsatphase.For2-SAT,
(�;2)sm oothly increasesabove

the threshold �c(2)= 1.For3-SAT (and m ore generally K � 3),
(�;3)ex-

hibitsadiscontinuousjum p toa�nitevalue
c slightly abovethethreshold.A

�nitefraction ofvariablesbecom esuddenlyoverconstrained when crossingthe

threshold!Num ericalresultson the growth ofthe backbone orderparam eter

aregiven in �gure7.

4.6.3 The random 2+p-SAT m odel.

The sat/unsat transition is accom panied by a sm ooth (respectively abrupt)

changein thebackbonecom ponentand thereforein thestructureofthesolu-

tionsofthe 2-SAT (resp.3-SAT)problem .A betterway to understand how

such a change takes place isto considera m ixed m odel,which continuously

interpolatesbetween 2-SAT and 3-SAT.The so-called 2+ p-SAT m odel[25]

includesa fraction p (resp.1� p)ofclausesoflength two (resp.three).2-SAT

isrecovered forp = 0 and 3-SAT when p = 1.The RS theory predictsthat,

atthe sat/unsattransition,the appearance ofthe backbone com ponent be-

com esabruptwhen p> p0 ’ 0:4 (see�gure8).On thecontrary,when p< p0,

the transition issm ooth asin the 2-SAT case.Such a scenario is consistent

with both rigorousresults(seethepaperby Achlioptasetal.in thisvolum e)

based on the probabilistic analysis ofsim ple algorithm and with variational

calculations[28]which includeRSB e�ects.
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Fig.8.�c(p) versus p in random 2+ p-SAT.Up to p0 ’ :4 �c(p) = 1=(1 � p),in

agreem ent with rigorous results.For p > p0 the transition becom es discontinuous

in the backbone orderparam eter and the RS theory providesan upperbound for

�c(p) which is within a few percentofthe results ofnum ericalsim ulations (dots)

[25,26].

An additionalargum entin favoroftheabovepictureisgiven by theanalysis

ofthe �nite-size e�ectson P N (�;K )and the em ergence ofsom e universality

for p < p0.(The de�nition ofPN was given when we began discussing the

properties of K-SAT.) A detailed account of these �ndings m ay be found

in [25,26].For p < p0 the size ofthe criticalwindow where the transition

takesplaceisobserved to rem ain constantand closeto thevalueexpected for

2-SAT.Thecriticalbehaviouristhesam easforthepercolation transition in

random graphs(see also ref.[47]).Forp > p0 the size ofthe window shrinks

followingsom enon-universalexponentstoward itsstatisticallowerbound [48]

butnum ericaldatadonotallow foranypreciseestim ate.Thebalanced version

of2+p-SAT canbestudiedexactlyandboththephasediagram andthecritical

exponentsturn outto behavevery sim ilarly to theonesof2+ p-SAT [49].

Asweshallconcludein thenextsection,theknowledgeofthephasediagram

ofthe2+p-SAT m odelisvery precioustounderstand thecom putationalcom -

plexity of3-SAT solving.

47



4.7 Com putationalcom plexity and dynam ics.

Num ericalexperim ents have shown that the typicalsolving tim e ofsearch

algorithm sdisplaysan easy-hard-easypattern asafunction of� with apeakof

com plexity closeto thethreshold.Sincecom putationalcom plexity isstrongly

a�ected by thepresenceofaphasetransition,itisappropriatetoask whether

the nature ofthis phase transition plays an im portant role too.The peak

in the search cost seem s indeed to scale polynom ially with N (even using

Davis-Putnam -like procedures) forthe 2-SAT problem ,where the transition

iscontinuous,and exponentially with N in the3-SAT case,forwhich thebirth

ofthebackboneisknown to bediscontinuous.

Precisenum ericalsim ulations[25,26]on thecom putationalcom plexity ofsolv-

ing critical2+p-SAT instances supportthe view thatthe crossover between

polynom ialand exponentialscalingstakesplaceatp0,thevery valueofp sep-

arating continuousfrom discontinuoustransitions.Though investigated 2+p-

SAT instances are allcriticaland the problem itselfisNP-com plete forany

p > 0,it is only when the phase transition is abrupt that hardness shows

up (including the fastestknown random ized search algorithm ssuch aswalk-

sat[50]).

To understand why search algorithm srequirepolynom ialorexponentialcom -

putationale�orts,statisticalstudies ofthe solutions cannot be su�cient.A

fulldynam icalstudy ofhow search proceduresoperatehasto becarried out.

Such studieshad already been initiated by m athem aticiansin theeasy region,

where search treeareparticularly sim ple and alm ostno backtracking occurs.

Franco and Chao [51]have in particularanalyzed the operation ofDP algo-

rithm swith di�erentkindsofheuristicsand have shown thatatsm allvalues

of� thetypicalcom plexity islinearin N .

Recently,thewholerangeofvaluesof�,includingthehard phase,hasbeen in-

vestigated,usingdynam icalstatisticalm echanicstools[52].Duringthesearch

process,thesearch treebuiltby DP growswith tim eand thisgrowth process

can beanalyzed quantitatively.Thekey idea isthat,undertheaction ofDP,

3-SAT instancesareturned into m ixed 2+p-SAT instances(som eclausesare

sim pli�ed into clausesoflength two,otheraresatis�ed and elim inated).The

param eters p and � ofthe instance under consideration dynam ically evolve

undertheaction ofDP.Theirevolution can betraced back asa trajectory in

thephasediagram ofthe2+p-SAT m odelof�gure8.Depending on whether

trajectoriescrossornotthesat/unsatboundary,easy orhard resolutionstake

place,and the location ofcrossingscan beused to quantitatively predictthe

scaling oftheresolution tim es[52].
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5 T he traveling salesm an problem and the cavity m ethod

In Section 3,we derived partition functions using statisticalphysics repre-

sentationsbased on analytic continuations.Furtherm ore,we used the saddle

pointm ethod on these partition functionsand thatallowed usto reproduce

a num berofexactresults.Then we m oved on in Section 4 and applied these

m ethodsto m odelswith quenched disorder.However,because ofthe greater

com plexity ofsuch m odels,we resorted to an additionaltoolofstatistical

physics:the replica m ethod.Though thiskind ofapproach isnon-rigourous,

itisbelieved thatitprovidesnew exactresultsforanum berofdi�erentprob-

lem s,in particularin optim ization.

The replica m ethod isnotthe only technicaltoolthatphysicistshave devel-

oped in the pastyears.Anotherapproach,called the cavity m ethod,willbe

exposed in the presentSection.The cavity approach gives,atthe end ofthe

com putation,thesam esresultsasthereplicaapproach.Yettheassum ptionsit

reliesupon turn outtobem uch m oreintuitiveand itsform alism isclosertoa

probabilistictheory form ulation.Becauseofthis,itcan beused toprovesom e

oftheresultsderived from statisticalm echanics;see[53,54]forrecentprogress

in thisdirection.In the restofthissection,we show how thiscavity m ethod

can beused to \solve" a caseoftheTraveling Salesm an Problem (TSP).

TheTSP isprobably theworld’sm oststudied optim ization problem .Asusu-

ally form ulated for a weighted graph,one considers allHam iltonian cycles

or\tours" (closed circuitsvisiting each vertex once and only once)and asks

forthe shortestone.The totallength isgiven by the sum ofthe weights or

\lengths" oftheedgesm aking up thetour.SincetheHam iltonian cycleprob-

lem isNP-com plete,certainlytheTSP isvery di�cult.However,in m ostcases

considered,the graph iscom plete (there isan edge foreach pairofvertices),

so thedi�culty liesin determ ining theshortesttour.W ithoutfurtherrestric-

tionson thenatureofthegraph,theTSP isNP-hard [15].Onespeaksofthe

asym m etric TSP when the edgeson the graph are oriented,and ofthe sym -

m etric TSP forthe usual(unoriented) case.Both types are frequently used

m odelsin scheduling and routingproblem s,though theindustrialapplications

tend to m oveaway from thesim pleform ulationsconsidered in academ ia.The

sym m etric TSPsare furtherdivided into \m etric" and non-m etric according

to whetherornotthetriangleinequality fortheedgelengthsissatis�ed.The

so-called Euclidean TSP isprobably thebestknown TSP and itism etric;the

vertices are points (cities,orsites) in the plane,and the length ofthe edge

connecting citiesiand j isgiven by the Euclidean distance between iand j.

Even within this restricted class ofweighted graphs,the problem of�nding

theoptim um tourrem ainsNP-hard [15].

The TSP has been at the forefront ofm any past and recent developm ents
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in com plexity.Forinstance,pretty m uch allgeneralpurpose algorithm ic ap-

proacheshavebeen �rstpresented and tested fortheTSP.Thistradition be-

ginsback in 1959 when Beardwood etal.[55]published tourlengthsobtained

from hand-drawn solutions!Later,the idea ofoptim ization by localsearch

wasintroduced in the contextoftheTSP by Lin [56],and sim ulated anneal-

ing [57,58]was�rsttested on TSPsalso.The listcontinueswith branch and

bound [59],untiltoday’sstate ofthe artalgorithm sbased on cutting planes

(branch and cut)[60],allowing one to solve problem s with severalthousand

cities [61].M any physicists have worked on these kinds ofalgorithm ic ques-

tionsfrom apracticalpointofview;in m ostcasestheiralgorithm sincorporate

conceptssuch astem perature,m ean �eld,and renorm alization,thatarestan-

dard in statisticalphysics,leading to som e ofthe m oste�ective m ethodsof

heuristicresolution [62].Itm ightbeargued thattheseapproachescan alsobe

used toim provetheheuristicdecision rulesattheheartofexactm ethods(for

instancein branching strategies),butm orework hasto bedoneto determ ine

whetherthisisindeed thecase.

Thewidespread academ icuseoftheTSP also extendsto otherissuesin com -

plexity.Forinstance,therehasbeen m uch recentprogressin approxim ability

ofthe TSP [63].However statisticalphysics hasnothing to say aboutworst

casebehavior;instead itisrelevantfordescribing thetypicalbehaviorarising

in astatisticalfram eworkand tendstofocuson self-averagingproperties.Thus

wearelead toconsiderTSPswheretheedgelengthsbetween verticesarecho-

sen random ly according toa given probability distribution;thecorresponding

problem iscalled thestochasticTSP.

5.1 The stochastic TSP.

Statisticalphysicists as wellas probabilists are not interested per-se in any

particular instance ofthe TSP,rather they seek \generic" properties.This

m ightbethetypicalcom putationalcom plexity orthetypicallength ofTSPs

with N cities.Itisthen necessary to considerthestochastic TSP where each

instance(thespeci�cation oftheweighted graph)istaken atrandom from an

ensem bleofinstances;thisde�nesour\quenched disorder".Although onem ay

be interested in m any di�erentensem bles,only a few have been the subject

ofthorough investigation.Perhaps the m ost studied stochastic TSP is the

Euclidean onewherethecitiesarerandom lydistributed inagivenregionofthe

plane[55].Thisisa\random point"ensem ble.Anotherensem blethathasbeen

m uch considered consistsinhavingtheedgelengthsallbeindependentrandom

variables,corresponding to a \random distance" ensem ble.(Thisterm inology

ism isleading:theproblem isnotm etricasthetriangleinequality isgenerally

notsatis�ed.)Random distanceensem bleshavebeen considered forboth the

sym m etric [64]and theasym m etric[65]TSP.
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For any ofthese ensem bles,one can ask for the behavior ofthe optim um

tour length,or consider properties ofthe tour itself.M ost work by proba-

bilistshasfocused on the�rstaspect(see[14]fora review),starting with the

sem inalwork ofBeardwood,Halton,and Ham m ersley [55](hereafterreferred

to asBHH).Those authorsconsidered the Euclidean ensem ble where points

are random ly (and independently) distributed in a bounded region 
 ofd-

dim ensionalEuclidean spaceaccordingtotheprobability density �(X ).Given
anottoosingular�,BHH proved thattheoptim um tourlength,LE ,becom es

peaked atlargeN ,and thatwith probability oneasN ! 1

LE

N 1� 1=d
! �(d)

Z




�
1� 1=d(X )dX (111)

Here � isa constant,independent of�,depending only on the dim ension of

space.Som ecom m entsarein order.The�rstisthattherelative
uctuations

ofthe tourlength aboutitsm ean tend to zero asN ! 1 ,allowing one to

m eaningfully de�ne a \typical" orgeneric tourlength atlarge N .Thisfun-

dam entalproperty wasinitially proven using sub-additivity propertiesofthe

tourlength,butfrom a m orem odern perspective,itfollowsfrom considering

the passage from N to N + 1 cities,corresponding to a m artingale process

(see [66]).The second pointisthatthe N dependence ofthistypicallength

issuch thatthe rescaled length LE =N
1� 1=d convergesin probability atlarge

N .In thelanguageofstatisticalphysics,thisquantity isjusttheground state

energy density ofthe system where one increases the volum e linearly with

N so thatthe m ean density ofpointsis N -independent.In generalsuch an

energy density isexpected to beself-averaging,i.e.,have a wellde�ned large

N lim it,independent ofthe sequence ofrandom ly generated sam ples (with

probability one)asin Eq.(111).In som eproblem s,theself-averaging property

can bederived,whileitwillsim ply beassum ed to hold when using thecavity

approach.

Another com m ent is that given Eq.(111),the essence ofthe problem is the

sam e for any �(X );it is thus com m on practice to form ulate the Euclidean

TSP using N pointslaid down independently in a unitsquare (orhypercube

ifd > 2),thedistribution being uniform .

There has been m uch work [14]on obtaining bounds and various estim ates

ofthe constants �(d),but no exact results are known for d > 1.However,

Rhee[67]hasproved that

�(d)
p
d
!

1
p
2e�

as d ! 1 (112)

From thepointofview ofa statisticalphysicsanalysis,thedi�culty in com -
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puting �(d)arisesfrom the correlationsam ong the pointto pointdistances.

Indeed,in theEuclidean ensem ble,therearedN random variablesassociated

with therandom positionsofthepoints,and N (N � 1)=2distances;thesedis-

tancesarethushighly redundant(and a fortioricorrelated).W hen thesedis-

tancesareinstead taken to berandom and independent,the\cavity" m ethod

ofstatisticalphysicsallowsonetoperform thecalculation ofthecorresponding

�.Becauseofthis,wewillfocuson thatquenched disorderensem ble.

In the \independentedge-lengthsensem ble" (asopposed to the independent

pointsensem ble),itisthe distancesoredge lengthsbetween pointsthatare

independentrandom variables.Letdij bethe\distance" between pointsiand

j(theproblem isnotm etric,butweneverthelessfollow thestandard nom en-

clature and referto dij asa distance).In the m oststudied case,dij istaken

from a uniform distribution in [0;1].From a physicist’sperspective,itisnat-

uralto stay \close" to the Euclidean random pointensem ble [64]by taking

the distribution ofdij to be that oftwo points random ly distributed in the

unitsquare (hypercube when d > 2).The independent points and indepen-

dent edge-lengths ensem bles then have the sam e distribution for individual

distances,and in theshortdistanceand largeN lim itthey also havethesam e

distribution forpairsofdistances.Them ain di�erencebetween theensem bles

thusariseswhen considering three orm ore distances;in the Euclidean case,

thesehavecorrelationsasshown forinstanceby thetriangleinequality.

The m inim um tourlength in these random edge-lengths m odels isexpected

to be self-averaging;the m ethodsofRhee and Talagrand [66]show thatthe

distribution ofTSP tourlengthsbecom espeaked atlargeN in thiscase,but

currently thereisno proofoftheexistenceofa lim itasin theEuclidean case.

Nevertheless,thisseem stobejustatechnicaldi�culty,and itisexpected that

therescaled tourlength indeed hasa lim itatlargeN ;wethusde�ne�(d)in

analogy to theexpression in Eq.(111)with theunderstanding thatthe�sare

di�erentin theindependentpointsand independentedge-lengthsensem bles.

5.2 A statisticalphysicsrepresentation.

Following the notation ofSection 2,we introduce the generating orpartition

function

Z(T)=
X

�

exp(�
L(�)

T
) (113)

where � isa perm utation ofthe verticesand determ inesuniquely a tour.In

e�ectwehaveidenti�ed con�gurationswith tours,thatiswith perm utations;

furtherm ore,the energy ofa con�guration is sim ply the length ofits tour.
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This construction am ounts to introducing a probability e� L(�)=T=Z for each

tour.W hen T = 1 ,alltoursare equally probable,while when T ! 0 only

theshortesttour(s)survive.Asbefore,T isthetem perature,and theaverages

h:iT using thisprobability distribution are the therm alaverages.From them

onecan extractm ostquantitiesofinterest.Forinstance

< L > T= �
1

Z

dZ

d(1=T)
(114)

givesthem ean tourlength attem peratureT.W ethen havefortheTSP tour

length:Lm in = lim T! 0 < L > T.

The generating function Z requires perform ing a sum over allperm utations

and is a di�cult object to treat.To circum vent this di�culty,a di�erent

representation is used.W e �rst introduce what is called a \spin" S,having
now m -com ponents,S�,� = 1;:::;m .These com ponentsare realand satisfy

theconstraint
P

�(S
�)2 = m .Such a spin can beidenti�ed with a pointon a

spherein m -dim ensionalEuclidean space.Notethatwhen m = 1,werecover

thekindsofspinsconsidered in theprevioussections.Now forourstatistical

physicsrepresentation oftheTSP,a spin Si isassociated to each vertex Vi of
the graph,i= 1;:::;N .De�ne R ij = e� dij=T and introduce a new generating

function

G(T;m ;!)=

Z

dS1dS2:::dSN exp(!
X

i< j

R ijSi� Sj) (115)

In thisexpression,� istheusualscalarproduct,and dS isassociated with the

uniform m easureon thespherein dim ension m .W ehavenorm alized itsothat
R
dS = 1;then

R
dSS�S� = ��;�.The claim isnow thattheinitialgenerating

function Z isequivalentto using an analyticcontinuation ofG in m :

lim
m ! 0
!! 1

G � 1

m !N
�

X

�

exp(�
L(�)

T
) (116)

Com paring to thePottsm odelofSection 3,weseethatm isanalogousto the

Pottsparam eterq:the partition function isde�ned forintegervaluesofthe

param eter,and then hasto beanalytically continued to realvalues.

Thederivation ofequation (116)isbased on showingtheequality ofboth sides

when perform ing a powerseriesin 1=T.Firstexpand the exponentialin the

integral:

G =

Z

dS1dS2:::dSN

2

41+ !
X

i< j

R ij(Si� Sj)+
!2

2!
� � �

3

5 (117)
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Now integrateterm byterm ;eachresultingcontributioncanbeassociatedwith

asubgraph (butwhereedgescan appearm ultipletim es)whoseweightisgiven

in term sofitsedgesand itscycles.(Note thateach vertex m ustbe covered

an even num ber oftim es because the integrand is even under Si ! � Si.)
Each edge E ij appearing in the subgraph contributesa m ultiplicative factor

R ij to itstotalweight.A furtherfactorcom esfrom the loops(cycles)ofthe

subgraph.It is not di�cult to see that each such loop leads to a factor m

in the totalweightbecause ofthe integration overthe m -dim ensionalspins.

Thus asm ! 0 only subgraphs having a single loop survive in G and then

vertices cannot belong to m ore than two edges.Finally,when ! ! 1 ,the

loopswith them ostverticesdom inate,leading to tours.Thusifwe�rsttake

m ! 0 and then ! ! 1 ,the expansion ofG � 1 reducesto a sum overall

the toursofthe graph.Furtherm ore,the weightofeach tourisproportional

to theproductoftheR ij belonging to thetour,so thatonerecoversthetotal

weightm !N exp(� L=T)whereL isthetourlength.In conclusion,Eq.(116)is

justi�ed to allordersin 1=T,and thusforany �niteN itholdsasan identity.

W hether one uses Z or G � 1 does not m atter as they di�er only by an

irrelevant m ultiplicative factor (we assum e m and 1=! in�nitesim al).From

G � 1,one can com pute the optim um tour and not just the optim um tour

length;indeed,at�nitetem perature,theprobability thata tourcontainsthe

edgeE ij isgiven by them ean occupation ofthatedge.De�ning nij = 1 ifthe

edgeisused by thetourand nij = 0 otherwise,theprobability ofoccupation

is

hnijiT = !R ijhSi� SjiT (118)

where from now on h:iT m eans therm alaverage using either Z or G � 1;

the one thatisused should be clearfrom the observable considered.Now if

we take in Eq.118 the lim it T ! 0,we �nd those edges that are occupied

and thusthe optim altour(assum ing itisunique).Note also thatEq.(118)

hasa sim ple justi�cation:hSi� SjiT hasa num eratorwhose expansion gives

m !N � 1=R ij tim estheweighted sum overalltourscontainingtheedgeij,while

thedenom inatorism !N tim estheweighted sum overalltours.The identity

Eq.(118)then followsim m ediately.

5.3 The cavity equations.

The partition function G � 1 gives the \statisticalphysics" ofthe TSP for

any given graph.Using thisform alizm to determ ineanalytically theoptim um

tour in a generalcase seem s an im possible task.Nevertheless,G is a good

starting point for following the passage from N to N + 1 vertices as in a

m artingale process,and the derivation ofa recursion in N is the heart of
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Fig.9.(N + 1)th spin and itsordered neighbors.

the cavity m ethod.The term cavity com esfrom the factthatthe system at

N + 1 iscom pared to theoneatN by rem oving the(N + 1)th spin,thereby

creating a cavity.In �gure 9,we have represented in counter-clockwise order

thenearest,next-nearest,etc...neighborsofsiteN + 1 which isatthecenter

ofthe cavity.Because the totalnum ber ofspins willbe som etim es N and

som etim es N + 1,we indicate the num ber via a subscript on G.Thus for

instanceG N � 1 isto beused when considering quantitiesforthesystem with

N spins.Now for every quantity associated with the system having N + 1

spins,ifwe integrate explicitly over spin N + 1,we are left with quantities

de�ned in the system having only N spins.Consider forinstance G N + 1 � 1

itself.W hen expanding the exponentials depending on SN + 1,we obtain:(i)

term slinearin SN + 1 thatintegrateto zero;(ii)term squadraticin SN + 1 that

upon integration giveproductsSi� Sj;(iii)higherpowersin SN + 1 thatdo not

contributeasm ! 0.A sim plecalculation leadsto theidentity

G N + 1 � 1

G N � 1
= !

2
X

1� j< k� N

R j;N + 1R k;N + 1hSj � Ski
0

T =
ZN + 1

ZN

(119)

whereh:i
0

T isa\cavityaverage",tobetaken in thesystem havingonlythe�rst

N spins,spin N + 1 being absent.Note thatZN and ZN + 1 are the partition

functionsofEq.113when thereareN and N + 1vertices;also,itiseasy tosee

thatoneneed notrestrictthe sum to j6= k because theterm j= k vanishes

asm ! 0.

Straightforward calculationsin thissam espiritlead torelationsbetween ther-

m alexpectation valuesusingN + 1spinsand thoseusingN spins.Forinstance

hSN + 1iT (G N + 1 � 1)=

NX

j= 1

!R j;N + 1hSji
0

T (G N � 1) (120)
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Sim ilarly,onehasforthetwo-spin average:

hSN + 1 � SiiT (G N + 1 � 1)=
X

j6= i

!R j;N + 1 hSi� Sji
0

T (G N � 1) (121)

M oregenerally,thenum eratorin any observabledepending on spin N + 1has

a sim ple expression in term softhe num eratorsofobservablesin the absence

ofthatspin.Furtherm ore,one can use Eq.119 to elim inate allreference to

G N and G N + 1 in these relations.The conclusion is that ifwe know how to

com putethepropertiesofsystem swith N spins,wecan then deducethoseof

system swith N + 1 spins;thecavity m ethod isthusa recursion on N forall

thepropertiesofsuch a system .

5.4 The factorization approxim ation.

Unfortunately,theserecursion equationscannotbesolved,butletusapproxi-

m atethem by neglecting certain correlations.Clearly,SN + 1 isstrongly corre-

lated with itsnearestneighborsbecausethecorresponding Rsareim portant.

M oregenerally,two spinswhose joining edgelength isshort(arenearneigh-

bors) willbe strongly correlated because short tours willoften occupy that

edge.Thuswem ustand willtakeinto accountthecorrelationsbetween SN + 1

and itsnearneighbors.However,we willneglectherethe correlationsam ong

theseneighborsthem selves,so thatin theabsenceofSN + 1,theirjointproba-

bility distribution factorizes,so thatin particular

hSi� Sji
0

T = hSii
0

T � hSji
0

T (122)

Thisproperty im pliesthatreplica sym m etry isnotbroken,and thisisindeed

believed to bethecasefortheTSP.Factorization m akesthecavity approach

particularly tractable,asweshallsoon see.(In system swherereplica sym m e-

try is broken,itis necessary to �nd ways to param etrize these correlations;

thisisquitecom plex and notwellresolved,even within thestatisticalphysics

approach.)

A second pointconcernsthe m eaning ofhSN + 1iT.G N + 1 isrotationally sym -

m etric;there is no preferred direction,so the therm alaverage ofany spin

vanishes.Note however that we have seen a sim ilar situation before in the

context ofthe Ising m odel(c.f.Section 2).Here as before,the interactions

tend to align the spins.Thus,when the tem perature is low enough,we ex-

pectto havea spontaneousm agnetization when N ! 1 .To m akethism ore

explicit,we can introduce a sm allm agnetic �eld,i.e.,an interaction term of

thetype� h � Si foreach spin;wethen takethelim itN ! 1 and only after

take h ! 0.Thism agnetic �eld breaksthe rotationalsym m etry,and so the
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system has a preferred direction,even after the �eld has been rem oved.By

convention,weshalltakethisdirection to bealong the�rstaxis.

Given these two rem arks,we can use the exact equations (120) and (121)

to obtain the cavity equations assum ing factorization.Denoting by S1 the

com ponentalong the�rstaxisofS,onehas

hS
1

N + 1
iT =

P N
j= 1R j;N + 1hS

1
ji

0

T

!
P

1� j< k� N R j;N + 1R k;N + 1 hS
1
ji

0

T hS1
ki

0

T

(123)

Sim ilarly,onehasforthetwo-spin average(seeEq.118):

hni;N + 1iT = R i;N + 1hS
1

ii
0

T

P

j6= iR j;N + 1 hS
1
ji

0

T
P

1� j< k� N R j;N + 1R k;N + 1hS
1
ji

0

T hS1
ki

0

T

(124)

These are the standard cavity recurrence equations,�rstderived by M �ezard

and Parisi[68].W ealso notethatin thisfactorization approxim ation,onehas

hSN + 1 � SiiT = hS1
N + 1

iThS
1
ii

0

T

5.5 The N ! 1 and T ! 0 lim its.

Thelaststep ofthecavity m ethod istoassum ethattherecurrenceequations,

when considered in thedisorderensem ble,giveriseto a stationary stochastic

process when N ! 1 .Consider for instance the individualm agnetizations

hSiiT;they are random variablesbecause the dij them selves are.Ifwe want

them to have a lim iting distribution at large N ,(i.e.,in physicalterm s,to

have a therm odynam ic lim it),we have to rescale the dij by N 1=d orequiva-

lently setT = ~TN � 1=d with ~T �xed.(Note thatin the case ofthe Euclidean

TSP,the rescaling oflengthscan be interpreted astaking the lim itN ! 1

whilekeeping thedensity ofpoints�xed,thatisby increasing thesizeofthe

volum e 
 linearly with N .)The im portant pointisthatthe \environm ent"

seen by thespinsm usthavelim itingstatisticalpropertiesasN ! 1 ,and this

translatesto having N -independentstatisticsforthedistancesofa spin to its

nearneighbors.Then itisassum ed thatthe probability density ofthe hS1
iiT

converges to a lim iting distribution P1 when N ! 1 .The cavity m ethod

isthus a kind ofbootstrap approach where P1 isassum ed to exist and itis

determ ined by itsstationarity property underthecavity recurrence.

Thatsuch astationarylim itexistscan bem otivatedbythelargeN behaviorof

thetourlength in thestochasticTSP.In fact,itisexpected thatallquantities

associated with any�xed num berofedgeswillconvergein thetherm odynam ic

lim it,so itshould bepossibleto look at2,3,ork edgeconstructs.Atpresent
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though,because ofthetechnicaldi�culty,only thesingleedgecom putations

have been carried out.Fortunately,that is enough for getting the value of

�,and allows one to obtain the so called link-length distribution,i.e.,the

distribution oftheedgelengthsappearing in theoptim altours.

Equation (123) with the condition ofstationarity ofthe stochastic process

leadsto a com plicated im plicitequation forP1 .Fortunately,in thezero tem -

perature lim it(which iswhere we recoverthe usualstochastic TSP),the re-

currence relationsare m uch sim pler.Following Krauth and M �ezard [69],one

de�nes�i forany vertex i(i= 1;:::;N )via:

hS
1

ii
0

=
exp(�i=~T)

!1=2
(125)

One also de�nes�N + 1 analogously using hS
1
N + 1

i.Now re-orderthe indicesof

the�rstN verticesso that

N
1=d
d1;N + 1 � �1 � N

1=d
d2;N + 1 � �2 � :::� N

1=d
dN ;N + 1 � �N (126)

Then thezero-tem peraturelim itofEq.123 leadsto

�N + 1 = d2;N + 1N
1=d

� �2 (127)

while Eq.124 showsthattheoptim um tourusestheedgesconnecting N + 1

to vertices1 and 2,i.e.,n1;N + 1 = n2;N + 1 = 1,allothersareequalto zero.

Ifwehavea stationary stochasticprocess,Eq.(127)leadsto a self-consistent

equation fortheprobability density P ofthe�s.W ealso seethattherandom

variables �i = N 1=ddi;N + 1 � �i (i = 1;:::;N ) play a fundam entalrole.By

hypothesis,they areuncorrelated:thedi;N + 1 becausewearedealing with the

independent edge-lengths ensem ble, and the �i because we have explicitly

neglected the correlationsbetween the spinsin the absence ofSN + 1.Denote

by �(�)the probability density ofthese random variables;�(�)isuniquely

determ ined in term sofP,assum ingthedistribution ofdi;N + 1 given.From here

on,takeforsim plicity theseedgelengthstobeuniform ily distributed in [0;1].

(Thiscorrespondsto the1-dim ensionalcased = 1;wereferthereaderto [69]

form oregeneraldistributions.)Therelation between � and P then becom es

�(x)=
1

N

NZ

0

P(l� �)dl (128)

Now a self-consistentequation forP isobtained by using the factthat�N + 1
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isthesecond sm allestoftheN di�erent�s:

P(�)= N (N � 1)�(�)(

+ 1Z

� 1

�(u)du)(

+ 1Z

�

�(u)du)N � 2 (129)

In thelargeN lim it,thisintegralnon-linearim plicitequation sim pli�esto

P(�)=
dG(�)

d�
G(�)e� G (�) where G(�)=

+ 1Z

0

uP(u� �)du (130)

Plugging theexpression forP into thislastequation leadsto

G(�)=

+ 1Z

� �

[1+ G(t)]e� G (t) dt (131)

Thiscannotbesolved analytically,butcan easily betreated num erically,and

onecan obtain m achineprecision resultsforG and thusP withouttoo m uch

e�ort.

Assum ing G and P have been com puted,one can �nd in a sim ilar way the

distribution ofd1;N + 1 and d2;N + 1.Forinstance,thedistribution oftherescaled

distanceN d1;N + 1 = ~l1 isgiven by

P1(~l1)=

+ 1Z

� 1

P(~l1 � �)e� G (�)d� (132)

This,along with the analogousdistribution ford2;N + 1,givesthe distribution

ofedgelengthsin theoptim um tour,and thusalso them ean tourlength,i.e.,

when d = 1,thevalueof�.Krauth and M �ezard [69]showed thatthisconstant

could bewritten in term sofG alone,

� =
1

2

+ 1Z

� 1

G(t)[1+ G(t)]e� G (t)dt (133)

and theyfound � = 2:041...(Notethatwhen d = 1,assuggested byEq.(111),

the tourlength becom esindependentofN .Thiscan be understood qualita-

tively by observing thateach vertex can connectto oneofitsnearneighbors

thatisata distanceO (1=N ).)
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5.6 \Exact" solution in the independentedge-lengthsensem ble.

As described,the cavity m ethod involves an uncontrollable approxim ation

associated with ignoringcertain correlations.Itisnaturaltoaskwhetherthose

correlationsm ightin factbeabsentin certain ensem bles.A sim plecaseiswhen

the graph considered isa Cayley tree with the root(corresponding to vertex

N + 1)rem oved.Then thedi�erentneighborsofSN + 1 areuncoupled and have

no correlations at all.Unfortunately,this type ofgraph willnot do for the

TSP asithasno Ham iltonian cycles,butitcan do forotherproblem sclose

to theTSP such asthem inim um m atching problem .

So let us consider instead the structure ofindependentedge-lengths graphs.

Locally their properties ressem ble those ofCayley trees,so that with som e

luck the previous reasoning can hold for these types ofgraphs as N ! 1 .

Although the correlations that were neglected in the cavity calculation will

always be present at �nite N in the independent edge-lengths m odel,they

haveevery reason to go to zero asN ! 1 .Thejusti�cation isthattheclose

neighborsofvertex N + 1are\in�nitely" farfrom one-anotherwhen N ! 1 .

In the languageoftours(ratherthan spins),thism eansthatthe probability

forthe tourto have an edge connecting two ofthe �nite orderneighborsof

vertex N + 1 should go to zero at large N .Clearly this is not the case in

theEuclidean stochasticTSP becauseofthetriangleinequality:theneighbor

ofa neighborisitselfa neighbor.Butin theindependentedge-length m odel,

theneighborsrepresented in �gure9 are\faraway" from one-anotherwith a

probability tending towards1 asN ! 1 .Thiskind ofrandom \geom etry" is

then expected to lead to uncorrelated spinsam ong the�nite orderneighbors

ofSN + 1 and so thecavity calculation m ay becom eexactasN ! 1 .

Although itisnotclearyetthatthe correlationsgo away asN ! 1 in the

independentedge-lengthsensem ble,the reasoning above issupported by ex-

tensive sim ulationalresults.In these kinds oftests,one generates weighted

graphsin theensem ble ofinterest,determ inestheoptim um tourfordi�erent

sizes N ,and then estim ates the statisticalproperties in the large N lim it.

Allsuch sim ulationalstudiesto datehavecon�rm ed thevalidity ofthecavity

m ethod.Both theassum ptionsofno replica sym m etry breaking [70]and the

predictions for � and P(d1;N + 1) have been validated [69,71,70]in that way.

Although these testshave lim ited precision in the contextofthe TSP,m ore

stringent tests [72,73]have been perform ed on m atching problem s.For in-

stance,usingthecavity and replicam ethods,M �ezard and Parisipredicted [68]

thatthe length ofa m inim um m atching ofN pointswould have the largeN

lim it �2=12 when the dij are uniform ily distributed in [0;1].The num erical

sim ulationscon�rm thisvalueatthelevelof0:05% .

The consensus isthusthatthe cavity m ethod givesexactresultsatlarge N
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for allindependent edge-lengths disorder ensem bles.But for the physicist,

thisisnotthe only interestofthe cavity m ethod:even asan approxim ation,

itisusefulforunderstanding the e�ects ofquenched disorder.Forinstance,

one can ask [69]how bad is the factorization approxim ation when applied

to the Euclidean TSP in d = 2.Forthat,we com pare Krauth and M �ezard’s

cavity prediction �(2)= 0:7251:::to the bestestim ate from num ericalsim u-

lations[74,71]0:7120� 0:0004.W eseethatin facttheprediction isquantita-

tively good,and itturnsoutthatthisapproxim ation becom eseven betteras

thedim ension ofspaced isincreased.

5.7 Rem arkson the cavity approach and replica sym m etry breaking.

In som erespects,thecavity m ethod iscom plem entary to thereplica m ethod,

butboth becom eunwieldy when replicasym m etry isbroken.In thecaseofthe

TSP,itturnsoutthatonlythecavity m ethod hasallowed acom pletesolution,

but that m odelhas no replica sym m etry breaking.W hen replica sym m etry

breakingdoesarise,thesituation isfarm orecom plex,and todateonlym odels

de�ned on graphswith in�niteconnectivity havebeen solved exactly (though

notrigorously).Nevertheless,recentprogress[75]in using thecavity m ethod

m ay soon lead to \exact" solutionsofotherm odelssuch asK-SAT in spiteof

thepresence ofreplica sym m etry breaking.

6 R elated topics and conclusion.

6.1 Otheroptim ization problem sinvestigated in physics.

Thisarticlehasfocused on presentingstatisticalphysicstoolsin thecontextof

a few well-known problem s.Butm any otherrandom com binatorialproblem s

have been considered by physicists,often using nearly identicaltechniques

to the ones we have presented.For the reader interested in having a m ore

com pleteview ofsuch work,wegivehereapartiallistofproblem sand pointers

to thelitterature.

Graph bipartitioning.

Given a graph G,partition itsN verticesinto two setsofequalsize.Thecost

ofthe partition is the num ber ofedges connecting vertices in di�erent sets.

Thegraph bipartitioning (orgraph bisection)problem consistsin �nding the

m inim um costpartition.
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Thisproblem isreadily reform ulated in thephysicslanguageofspins:to each

vertex iattach a spin Si and setitto +1 ifthevertex isassigned to the�rst

setand � 1ifitisassigned tothesecond set.CallingGij theadjacency m atrix

ofthegraph G,thenum berofedges\crossing" thepartition can beidenti�ed

with an energy:

E =
1

2

X

i< j

G ij(1� SiSj) : (134)

Sincethepartition isassum ed balanced,theglobalm agnetization M =
P

iSi

isconstrained tobezero.In physicsstudies,researchersenforcethisconstraint

in a softway by adding �M 2=2 to theenergy E ,where� isa positiveparam -

eter.Asa result,spinsinteractthrough e�ective couplingsJij = (G ij � �)=2

thatcan be positive ornegative.The corresponding energy function isthen

seen to be a spin glass Ham iltonian,sim ilar to the Sherrington{Kirpatrick

m odelexposed in Section 2.4.2.The �rstauthorsto noticethisidenti�cation

were Fu and Anderson[76,77].They then applied the Parisisolution ofthe

Sherrington{Kirpatrick m odelto givethelargeN valueofthem inim um cost

partition when G has connectivities growing linearly with N .These results

generalizeto weighted graphsstraightforwardly.

W eighted m inim um bipartite m atching.

LetI and J betwosetscontaining N pointseach.W eassum egiven an N � N

m atrix of\distances" dij de�ned foreach pairi2 I;j2 J.Forany com plete

m atching (a one-to-one m ap ora pairing between I and J,m ore com m only

known asa bipartitem atching),itscostisde�ned asthesum ofthedistances

between paired points.In them inim um weighted bipartitem atching problem

oneisto�nd thecom pletem atchingoflowestcost.Naturally,onecan consider

a stochasticversion wheretheentriesofthedistancem atrix areindependent

random variables,drawn from aprobability distribution p(d).Thisproblem is

closein itstechnicalaspectsto thestochasticTSP,and likethenon-bipartite

caseithasbeen \solved" both via thereplica and thecavity m ethods[68,78].

In thespecialcasewherep(d)istheuniform distribution in [0;1],M �ezard and

Parisihav com puted thelargeN lim itofthetypicalcostto be�2=6.In fact,

in a realtour de force,they also obtained the form ofthe 1=N correction to

this lim it.M ore recently,Parisiconsidered the specialcase p(d) = exp(� d)

and conjectured [79]that for any N the m ean m inim um cost is given by
P

k= 1;:::;N 1=k
2.Allcurrentevidence,both num ericaland analyticalforsm all

N values[80],indicatesthatthisform ula at�niteN could beexact.
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Num berpartitioning.

Thisproblem can be m otivated by the need to divide an estate between two

inheritorsin a fairway.Itisusually form ulated asfollows.Letfx1;x2;:::;xN g

be N realnum bers in [0;1]and consider a partition ofthe xi into two (un-

balanced)sets.The\unfairness"ofapartition isthesum ofthex’sin the�rst

setm inusthesum ofthex’sin thesecond.Thenum berpartitioning problem

consists in determ ining the partition that m inim izes the absolute value of

the unfairness.W hen the xi are independentrandom num bers,itispossible

to derive som e statisticalpropertiesofthe m inim um .W e referthe readerto

M ertens’detailed review in thepresentissue[4]ofhisrecentwork.

Vertex cover

Very recently,A.Hartm ann and M .W eigtstudied them inim um sizeofvertex

coverings ofrandom graphs.Phase transitions take place,accom panied by

drastic changes ofthe com putationalcom plexity of�nding optim alvertex

coveringsusing branch{and{bound algorithm s.See the article in the present

volum e[3].

NeuralNetworks.

To a largeextent,learning and generalization propertiesofform alneuralnet-

worksare optim ization problem s.These propertieshave been the subjectof

intense studiesby statisticalphysicistsin thelast�fteen years.A quite com -

pletereview oftheseworksand resultsareexposed in thearticleby A.Engel

in thisvolum e[5].

6.2 Furtherstatisticalproperties.

Statisticalphysics concepts and techniques are powerfultoolsto investigate

the properties ofground states,that is the solutions ofcom binatorialopti-

m ization problem s.So far,wehaveconcentrated on thelargesize(large\N ")

lim itoftheseproblem s,butonecan alsoconsider�niteN .In addition,itm ay

beofinterestto know thepropertiesofthenear-optim um solutions.

Finite-size correctionsand scaling.

M ean-�eld m odelscan be solved through saddle-pointcalculationsin the in-

�nitesizelim itonly.Clearly,optim ization problem susually dealwith a �nite

num ber ofvariables.It is therefore crucialto achieve a quantitative under-
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standing ofthe�nitesizecorrectionsto beexpected,e.g.,on theground state

energy.

Farfrom phase transitions,correctionsto the saddle-pointvalue can usually

be com puted in a system atic way using perturbation theory.An exam ple of

such acalculation todeterm ine�nite-sizecorrectionshasbeen m entioned pre-

viously (seethebipartitem atching problem discussed in Section 6.1).Forany

quantity or\observable" associated with theoptim um solution ofa problem ,

one can ask how its disorder-average depends on the system size.Sim ilarly,


uctuations,which disappearin thein�nitevolum elim it,generally m atterfor

�nite sizes.Both e�ects are well-known in the statisticalphysics ofsystem s

withoutdisordered interactionsand havebeen thesubjectofm any theoretical

studies[81,82].

Closeto transition points,thehandling of�nite-sizecorrectionsism uch m ore

involved.Few resultsareavalaiblefordisorderedsystem s[83].Generallyspeak-

ing,the transition region is characterized by a window,the width ofwhich

scalesassom e negative powerofthesystem size,shrinking to zero in the in-

�nite size lim it.W e have already discussed the criticalscaling properties of

som esystem sin Sections2.3.5 and 3.3.1.No sim ilartheoreticalstudy ofcrit-

icalexponentshasbeen perform ed so farforcom plex optim ization problem s,

e.g.K-SAT;only num ericaldata or bounds on the exponents are currently

available.

Finite-dim ensionalenergy landscapesand robustness.

Realisticphysicalsystem sand certain optim ization problem ssuch astheTrav-

eling Salesm an Problem livein a �nite-dim ensionalworld.Thus,although we

considered in Section 3 a percolation m odelon a random graph,the physics

oftheproblem isusually m odeled using a latticein two orthree-dim ensional

space,edgesjoining vertices only ifthey are close in Euclidean space.M od-

elsbased on random graphsareconsidered to describe physicalsystem sonly

when thedim ension goesto 1 .

Finite-dim ensionality m ay havedram aticconsequenceson som epropertiesof

the m odels;for instance it is known that the criticalexponents depend on

thedim ension oftheem bedding space.M orecrucially,in low dim ensions,the

correct order param eter could be quite di�erent from what it is in in�nite

dim ension.This issue is particularly acute in the physics com m unity in the

case ofspin glasses:so far,no consensus has been reached concerning the

correctdescription ofthesesystem sin dim ension 3.Two m ain theoriesexist:

� Parisi’shierarchicalpicture.Thissophisticated theory com esfrom extend-

ing m ean-�eld theory to �nite dim ensionalspaces.Itstatesthatlow lying

con�gurations,i.e.having an energy slightly largerthan the ground state,
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m ay be very far away,in the con�guration space,from the ground state.

Theseexcited con�gurationsareorganized inacom plexhierarchicalfashion,

in factan ultram etricstructure.

� Thedropletpicture.Conversely,thedropletpictureisbased on sim plescal-

ing argum ents inspired from ferrom agnetic system s and claim s that low-

lying con�gurationsstand closeto theground state.Higherand higheren-

ergy excitationswillbe obtained when 
ipping m ore and m ore spinsfrom

theground state.

A detailed presentation ofthe theories can be found in [2].Knowing which

pictureisactually correctcould havedeep consequencesfordynam icalissues

(seethenextparagraph),and also fortherobustnessoftheground state.For

instance,itcan beim portantfrom apracticalpointofview toknow how m uch

a perturbation orm odi�cation oftheenergy function a�ectstheground state

properties.Consider in particularthe problem ofim age reconstruction.Can

a sm allchange in the data m odify m acroscopically the reconstructed im age?

W ithin the dropletpicture,the answerwould be generally no,while Parisi’s

theory would supporttheview thatdisordered system soften havenon-robust

ground states.

6.3 Perspectives.

The study ofthe statisticalproperties ofdisordered system s has witnessed

m ajoradvancesin the lasttwo decades,butthe m ostrecenttrend hasbeen

towardstrans-disciplinary applications.Although itisdi�cultto guesswhat

new directions willem erge,there has been a clear and growing interest in

using statisticalphysicstoolsforinvestigating problem sattheheartofcom -

puterscience.In thisreview,weillustrated thisfordecision and optim ization

problem s,but m any other problem s should follow.Looking at the m ost re-

centwork,weseeem erging e�ortsto extend thesem ethodstounderstand the

statisticalpropertiesofthecorrespondingalgorithm s,be-they exactorheuris-

tic.Let us �rst sketch these issues and then m ention som e further possible

directions.

Typicalcase com putationalcom plexity.

Thenotion oftypicalcasecom putationalcom plexity isappealing,and statis-

ticalphysicstoolsm ay help oneunderstand how thatkind ofclassi�cation of

decision problem sm ay bereached.Butclearlythem ethodsneeded todosogo

m uch beyond whatwehavepresented:partition functionsand analogoustools

describethesolutionsofaproblem ,nothow longitcan taketo�nd them .Nev-

ertheless,aswem entioned in Section 4.7 in thecontextoftheDavis-Putnam
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treesearch,physicalargum entscan shed new lighton how algorithm ssuch as

branch and bound behave neara phase transition.Thusthese m ethodsm ay

telluswhatisthetypicalcom putationalcom plexity ofan instancechosen at

random in an ensem ble,given a particulartree search algorithm .Extending

thisclassi�cation toobtain an algorithm -independentde�nition oftypicalcase

com putationalcom plexity m ay follow,butso faritrem ainslargely open.

Long tim e (stationary)lim itofstochastic search algorithm s.

Considerheuristic algorithm sthatare based on stochastic search.Exam ples

are sim ulated annealing,G-W alk,ordeterm inistic lim itsofthese such aslo-

calsearch.These kinds ofalgorithm s de�ne random walks,i.e.,stochastic

dynam ics on a discrete space ofsolutions (boolean assignm ents for K-SAT,

tours for the TSP,etc...) and these dynam ics are \local":just a few vari-

ables are changed at each tim e step.Assum e for sim plicity that the initial

position ofthewalk ischosen atrandom .Atlong tim es,thesearch settlesin

a steady state where the distribution ofenergiesbecom esstationary,thatis

tim e-independent.(The energy at any given tim e is a random variable,de-

pending on the starting point ofthe search and also on allthe steps ofthe

walk up to that tim e.The energy thus has a distribution when considering

allinitialpositions and allpossible walks.) An obvious question is whether

thisdistribution becom espeaked in thelargesizelim it.Indeed,in m ostcases,

onecan show thattheenergy ofa random solution isself-averaging;notethat

thiscorrespondssim ply to theself-averaging property ofthetherm odynam ic

energyatin�nitetem perature.In fact,fortheproblem swehavefocused upon,

the energy is expected to be self-averaging atalltem peratures.By a notso

bold extrapolation,onem ay conjecturethatany localstochasticsearch algo-

rithm leads to self-averaging energies in the long tim e lim it.(Naturally,we

also haveto assum ethatthealgorithm sdo nothavetoo m uch m em ory;using

a sim ulated annealing with tem peratures changing periodically in tim e will

not do!) There is num ericalevidence [84]in favor ofthis conjecture,and it

m ay be possible to use statisticalphysicsm ethodsto prove itin som e lim it-

ing cases.One can also ask whatisthe lim iting shape ofthe distribution of

energies.Thisisa di�cultquestion,butitm ay beeasierin thiscontextthan

when considering theoptim um .

Dynam icsofstochastic search algorithm s.

Isthe self-averaging behaviorjustm entioned restricted to long tim es? Since

theinitialenergiesarethoseofrandom solutionsand arethusself-averaging,

itisquitenaturalto generalizetheconjectureto alltim es:\theenergy atany

given tim eofa localstochasticsearch algorithm isself-averaging".
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Quitea bitofintuition aboutthisissuecan beobtained by considering what

happensby analogy with aphysicalsystem relaxing towardsequilibrium .The

m ain characteristicofthedynam icsin aphysicalsystem istheproperty called

detailed balance;thiscondition puts very stringent restrictions on the tran-

sition probabilities.Butwithin thisspeci�c fram ework,there hasbeen m uch

progressrecently in describing thetim edependenceofthedynam icalprocess.

In particular,the conjecture introduced above iscon�rm ed in the contextof

m ean �eld p-spin glassm odels.Theexactsolution ofthesem odelshasled to

new resultson entropyproduction whilethephenom enon of\ageing"hasbeen

explained theoretically.Clearly an im portant goalis to extend these results

to arbitrary stochastic dynam icswithoutthe hypothesisofdetailed balance.

Butperhapsone ofthe m ostrem arquable resultscom ing from these studies

(see for instance the contribution ofBouchaud et al.in[2]) is a relation be-

tween therelaxation during thesedynam icsand thee�ectsofa perturbation:

the prediction,called the generalized 
uctuation-dissipation relation,seem s

num erically to bequitegeneraland itwould beofm ajorinterestto testitin

thecontextofm oregeneralstochasticdynam ics.

Furtherdirections.

W ewillbebriefand justgivealistofwhatweconsidertobeprom isingtopics.

First,justasthenotion ofcom putationalcom plexity hasto begeneralized to

a typicalcase description,the analogousgeneralization ofapproxim ability is

ofinterest.In itsstochastic ortypicalextension,an algorithm providesan �

typicalcaseapproxim ation toaproblem ifwith probability tending towards1

in the largesize lim it,itsoutputiswithin � ofthe actualsolution.Naturally

resultsthathold in theworsecasealsohold stochastically,butonem ayexpect

new propertiesto hold in thisgeneralized fram ework.Second,therehasbeen

an upsurgeofinterestin physicsforcom binatoricproblem s,using techniques

from �eld theory and quantum gravity.The problem s range from coloring

graphsto enum erating m eanders.Although the initialproblem hasno disor-

der,the approaches use identities relating system s with disorder to system s

withoutdisorderthatare asyetstillin the conjectoralstage.Third,isthere

a relation between replica sym m etry breaking and typicalcase com plexity?

Forth,willthestatisticalphysicsapproachesin arti�cialneuralnetworksand

learning lead to new developm ents in arti�cialintelligence? Fifth,an active

subjectofstudy in decision science concerns\beliefpropagation" algorithm s

which areextensionsofthecavity m ethod.Can theseextensionslead to bet-

ter understanding ofphysicalsystem s,and inversely,willthe use ofphysics

concepts such astem perature,m ean �eld,scaling,and universality continue

to lead to im proved algorithm sin practice?
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A A nsw ers to Exercises

A.1 Exercise 1:System with two spinsand statisticalindependence.

Thepartition function (3)attem peratureT = 1=� reads

Z(T)=
X

�1;�2= � 1

exp

�

�
1

T
E (�1;�2)

�

=
X

�1;�2= � 1

exp(��1�2))

= 4cosh� : (A.1)

The m agnetization m (T) and the average value ofthe energy hE iT can be

com puted from theknowledge ofZ,see(8).Oneobtains

m (T)= h�1iT = 0 ; (A.2)

and

hE iT = � tanh(�) : (A.3)

The m agnetization vanishes since any con�guration f�1;�2g has the sam e

statisticalweightasitsopposite,f� �1;� �2g.

Thesecalculationscanberepeatedforthesecondchoiceoftheenergyfunction,

E (�1;�2)= � �1 � �2,with thefollowing results:

Z(T)= (2 cosh�)2

m (T)= tanh�

hE iT = � 2 tanh(�) : (A.4)

W e see thatthe partition function isthe square orthe single spin partition

function.The m agnetization and the energy (once divided by the num berof

spins)areequalto theonesofa singlespin,seeexpression (4).

This coincidence is a direct consequence of the additivity property of the

energy.M oreprecisely,whenevertheenergy ofa system can bewritten asthe

sum oftwo (orm ore)energiesofdisjointsubsystem s,i.e.,involving disjoint

con�guration variables,the partition function is sim ply the product ofthe

subsystem spartition functions.Such disjointsubsystem sdo notinteractand

arestatistically independent.
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A.2 Exercise 2:Zero tem perature energy and entropy.

Letussuppose thatthe con�gurationsC form a discrete set.LetuscallE 0

the sm allestenergy and N 0 the num berofcon�gurationshaving thisenergy.

Sim ilarly wecallE 1 theim m ediately highervalueofenergy,with degeneracy

N 1.Thisprocesscan berepeated form oreand m oreexcited energies.Atthe

end,con�gurations are sorted according to their energies with E 0 < E 1 <

E 2 < :::.

From thede�nition (3)ofthepartition function,wewrite

Z =
X

j� 0

N j e
� � Ej

= e
� � E0

�

N 0 + N 1 e
� � G 1 + N 2 e

� � G 2 + :::

�

; (A.5)

whereG j = E j� E0 isthegap between thej
th excited energy and them inim al

one.By construction,allgapsG j are strictly positive (j � 1).Thus,in the

sm alltem perature(large�)lim it,weobtain

Z(T)= N 0 e
� � E0

�

1+ O

�

e
� � G 1

��

; (A.6)

from which wededucethefree-energy,

F(T)= � T lnZ(T)= E0 � T lnN0 + O

�
1

�
e
� � G 1

�

: (A.7)

From the de�nition ofentropy (11),it appears that the zero tem perature

entropy hSiT= 0 issim ply the logarithm ofthe num berofabsolute m inim a of

theenergy function E (C).

A.3 Exercise 3:Spinson the com plete graph in the presence ofa �eld.

The calculationsareim m ediate from (25).The only di�erence isthat,in the

presence ofa sm allbut non zero �eld h,the two m inim a ofthe free-energy

shown on �gure 2 are now at two di�erent heights.One ofthe two m inim a

(with the opposite sign ofh)isexponentially suppressed with respectto the

other.
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A.4 Exercise 4:Quenched average.

Using theresultsofExercise2,wewritethepartition function,m agnetization

and theaveragevalueoftheenergy,

Z(T;J)= 4 cosh(�J)

m (T;J)= 0

hE iT(J)= � J tanh(�J) : (A.8)

Allthesestatisticalquantitiesdepend on thequenched coupling J.

W e now average over the coupling J,with distribution �(J)on the support

[J� ;J+ ].W eobtain forthequenched averagem agnetization and energy,

m (T)= 0

hE iT = �

J+Z

J�

dJ �(J)J tanh(�J) : (A.9)

In the zero tem perature lim it,the spins align (respectively anti-align) onto

each otherifthecoupling J ispositive(resp.negative).Theresulting ground

stateenergy equalsjJj.Averaging overthequenched coupling,weobtain

hE iT= 0 = �

J+Z

J�

dJ �(J)jJj : (A.10)

A.5 Exercise 5:Frustrated triangle ofspins.

Both energiesareeven functionsofthespins;them agnetization isthusalways

equalto zero.

W e�rstconsidertheenergy function

E (�1;�2;�3)= � �1�2 � �1�3 � �2�3 : (A.11)

Thepartition function and theaveragevalueoftheenergy read respectively,

Z(T)= 2e3� + 6e� �

hE iT =
� 3+ 3e� 4�

1+ 3e� 4�
: (A.12)
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In thezero tem peraturelim it,theground stateenergy and entropy aregiven

by

hE iT= 0= � 3

hSiT= 0= ln2 : (A.13)

There are indeed two con�gurationswith m inim alenergy;alltheirspinsare

aligned in thesam edirection.

W enow considertheenergy function

E (�1;�2;�3)= � �1�2 � �1�3 + �2�3 : (A.14)

The partition function and the average value ofthe energy now read respec-

tively,

Z(T)= 6e� + 2e� 3�

hE iT =
� 3+ 3e� 4�

3+ e� 4�
: (A.15)

In thezero tem peraturelim it,theground stateenergy and entropy aregiven

by

hE iT= 0= � 1

hE iT= 0= ln6 : (A.16)

Asaresultoffrustration,thegroundstateenergyishigherthanintheprevious

case,aswellasthenum berofground states.Notealso thatthegap between

thelowestand second lowestenergy levelshasbecom esm aller.

A.6 Exercise 6:Partition function ofthe Sherrington-Kirkpatrick m odel.

Thepartition function oftheSherrington-Kirkpatrick (SK)m odelreads

Z(J)=
X

�i= � 1

exp

0

@
�
p
N

X

i< j

Jij�i�j

1

A ; (A.17)

where thequenched couplingsJ = fJij;1 � i< j� N g arerandom ly drawn

from theGaussian distribution

P(J)=
Y

1� i< j� N

1
p
2�

exp

�

�
1

2
J
2

ij

�

: (A.18)
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To com pute the average value ofthe partition function,we �rstaverage the

couplingsoutand only then calculatethesum overthespins

Z(J)=

Z

dJ P(J)Z(J)

=
X

�i= � 1

exp

0

@
�2

2N

X

i< j

(�i�j)
2

1

A

= 2N exp

 
�2

4
(N � 1)

!

; (A.19)

W e now calculate the second m om entofthe partition function by rewriting

thesquared sum astheproductoftwo independentsum s,seeExercise 1,

Z(J)2=

Z

dJ P(J)Z(J)2

=

Z

dJ P(J)
X

�i= � 1

X

�i= � 1

exp

0

@
�
p
N

X

i< j

Jij(�i�j + �i�j)

1

A

=
X

�i= � 1

X

�i= � 1

exp

0

@
�2

2N

X

i< j

(�i�j + �i�j)
2

1

A

=

�

Z(J)

�2

Y ; (A.20)

whereY equals

Y =
1

4N

X

�i= � 1

X

�i= � 1

exp

0

@
�2

N

X

i< j

�i�j�i�j

1

A

=
1

4N
exp

 

�
�2

2

!
X

�i= � 1

X

�i= � 1

exp

0

@
�2

2N

"
X

i

�i�i

#2
1

A : (A.21)

The calculation proceeds as in the case ofthe spin m odelon the com plete

graph,seesection 2.3.W ede�neforeach con�guration C = f�i;�ig ofthe2N

spins,theoverlap function

q(C)=
1

N

NX

i= 1

�i�i : (A.22)

Thee�ectiveenergyfunction appearinginthelastterm ofthepseudopartition

function Y (A.21)dependson thecon�guration through q(C)only.Following

the steps ofsection 2.3,a saddle-point calculation leads to the asym ptotic
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behaviourofY ,

Y = exp
�

� N �
2
�
� + o(N )

�

; (A.23)

where �� isthe m inim um overq ofthe \free-energy" functionalf̂(q)de�ned

in (25)with T2 instead ofT.Theresultsofsection 2.3 teach usthatthereis

a \critical" tem perature Tc = 1 such that�� = 0 fortem peraturesabove Tc
and �� < 0 when T < Tc.

Above Tc,thepartition function doesnot
uctuate too m uch around the av-

erage value Z(J);the partition function is itselfself-averaging and the free-

energy perspin sim ply equalsf(T)= � T ln2� 1=(4T),see thepaperby M .

Talagrand in thesam evolum e.Atlow tem peratures,below Tc,thesecond m o-

m entofZ(J)isexponentially largerthan thesquared average;therearehuge


uctuations and the partition function is not self-averaging.It is therefore

m uch m orecom plicated to calculatethevalueofthefree-energy.

A.7 Exercise 7:A toy replica calculation.

W ewanttocom putetheseriesexpansion ofln(1+ x)startingfrom theidentity

(forsm allrealn)

(1+ x)n = 1+ n ln(1+ x)+ O (n2) ; (A.24)

and theseriesexpansion of(1+ x)n forintegern.To do so,weuseNewton’s

binom ialform ula

(1+ x)n =

nX

k= 0

n!

k!(n � k)!
x
k

; (A.25)

valid for positive integers n.n play two roles in form ula (A.25).First,it is

theupperbound ofthesum overk.Secondly,n appearsin thecom binatorial

factorin thesum .Factorialsm ay becontinued analytically to realvaluesofn

using Euler’sGam m afunction.As�(z)haspolesatnegativeintegervaluesof

theargum entz,wem ay extend thesum in expression (A.25)tointegervalues

ofk largerthan n withoutchanging the�nalresult,

(1+ x)n =

1X

k= 0

n!

k!(n � k)!
x
k

: (A.26)
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Letusfocusnow on thecom binatorialfactor

C(n;k)=
n!

k!(n � k)!
=
n(n � 1)(n � 2):::(n � k+ 1)

k!
: (A.27)

Fork = 0,wehaveC(n;0)= 1 foralln.W hen k � 1,ther.h.s.of(A.27)isa

polynom ialofn and can be im m ediately continued to realn.In the sm alln

lim it,weobtain

C(n;k)= n
(� 1)(� 2):::(� k)

k!
+ o(n)= n

(� 1)k� 1

k
+ o(n) (k � 1):(A.28)

Finally,wewritethesm alln continuation ofequation (A.25)as

(1+ x)n = 1+ n

1X

k= 1

(� 1)k� 1

k
x
k + o(n) : (A.29)

Com paring equation (A.24)and (A.29),weobtain thecorrectresult

ln(1+ x)=

1X

k= 1

(� 1)k� 1

k
x
k

: (A.30)

The above calculation isa sim ple application ofthe replica trick.Obviously,

thecalculation ofthefree-energyofdisordered m odels,e.g.theK-Satis�ability

ortheTSP m odels,arem uch m oreinvolved from a technicalpointofview.
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