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1 Introduction

At the heart of statistical physics, discrete m athem atics, and theoretical com -
puter science, lie m athem atically sim ilar counting and optin ization problam s.
T his situation lads to a transgression of boundaries so that progress in one
discipline can bene t the others.An old exam pl of this is the work ofK aste-
leyn (@ physicist) who introduced a m ethod for counting perfect m atchings
over planar graphs (a discrete m athem atics problem ). O ur belief is that a
sin ilar cross-fertilization of m ethods and m odels should arise In the study
of com binatorial problem s over random structures. Such problm s have at—
tracted the attention of a large comm uniy of ressarcher In the last decade,
but a transgression of boundaries has only just begun. O ne of the m any po—
tential spin-o s ofthiskind of cross-fertilization would be the use of com puter
science and graph theoreticalm ethods to tadkle unsolved problem s in the sta—
tistical physics of \com plex" (disordered) system s. But we also hope that the
bene ts can go the otherway, ie., that the recent developm ents in statistical
physics m ay be of use to the other two com m unities; such is our m otivation
for this article.

This review does not assum e any know ledge In physics, and thus we expect
it to be accessible to m athem aticians and com puter scientists eager to leam
the m ain ideas and tools of statistical physics when applied to random com —
binatorics. W e have chosen to illustrate these \physical" approaches on three
procblem s: the Random G raph, the Satis ability, and the Traveling Salesn an
problam s. T his particular focus should help the interested reader explore the
statistical physics literature on decision and optin ization problem s. Further-
m ore, we hope to m ake the case that these m ethods, developed during the last
twenty years in the context ofthe so called spin glasstheory [1,2], m ay provide
new concepts and resuls in the study of phase transitions, and average case
com putational com plexiy, In com puter science problam s. Som e exam ples of
this kind of m ethodological transfer can also be found in three other papers
of this TCS special issue, dealing w ith statistical m echanics analyses of ver—
tex covering on random graphs [3], of num ber partitioning 4] and of lraming
theory In arti cial neuralnetworks [B].

Random combinatorics becam e a central part of graph theory follow ng the
pioneering work by E rdos and R enyi. T heir study of clusters in random graphs
(percolation for physicists) showed the existence of zero-one law s (phase tran—
sitions In the tem inology of physics). M ore recently, such phenom ena have
plyed a fundam ental rolke when tackling average{case com plexity. Indeed,
num erical evidence suggests that the onset of intractability ln random NP -
com plte problem s can be put in relhtion w ith the appearance of phase tran—
sitions analogous to the percolation transition. Interestingly, the conospt of
random structures ispresent in m ost natural sciences, including biology, chem —



istry, or physics. But in the last two decades, the theoretical fram ework de—
veloped in physics has lead to new analytical and num erical tools that can

be shared w ith the m ore m athem atical disciplines. T he potential connections
between discrete m athem atics, theoretical com puter science and statistical
physics becom e particularly obvious when one considers the typicalproperties
of random system s. In such cases, percolation, zero-one law s, or phase tran—
sitions are sin ply di erent nam es describing the sam e phenom ena w ithin the

di erent disciplines. Tt seam s to us that m uch can be gained by exploring the

com plem entary nature ofthe di erent paradigm s In m athem atics and physics.

In what follow s, we shall try to m ake this happen by giving a thorough sta—
tistical m echanics analysis of three prototype problam s, nam ely percolation
In random graphs, satis ability in random K -Satis ability, and optim ization

via the Traveling Salean an P roblam . The review is preceded by a generaldis—
cussion of som e basic concepts and tools of statistical m echanics. W e have
also nclided sin ple exercises to help the interested reader becom e fam iliar
w ith them ethodology; hopefullly he (she) w illbe abl to adapt it to the study
ofm any other problm s, eg., m atching, num ber partitioning #], etc... W hen
approprate, we com pare the results of statistical physics to those of discrete
m athem atics and com puter science.

From a statisticalm echanics perspective, a phase transition isnothing but the
onset of non-trivial m acroscopic (collective) behavior In a system com posed
of a large number of \elem ents" that follow sinple m icroscopic laws. The
analogy w ith random graphs is straightforward. T here the elem ents are the
edges of the graph which are added at random at each tine step and the
m acrosoopic phenom enon is the appearance of a connected com ponent of the
graph containing a nie fraction of all the vertices, in the 1m it of a very
large number of vertices. If a system has a phase transition, it can be inn
one of several \phases", depending on the values of som e control param eters.
E ach phase is characterized by a di erent m icroscopic organization. Central
to this characterization isthe identi cation ofan order param eter (usually the
expectation value of a m icroscopic quantity) which discrin nates between the
di erent phases. O nce agamn the analogy w ith random graphs is approprate.
An orxder param eter of the percolation transition is the fraction of vertices
belonging to the giant connected com ponent. Such a fraction is zero below the
percolation transition, that is, when the connectivity of the random graph is
too am all, and beocom es strictly positive beyond the percolation threshold.

W hilke in percolation it is proven that the order param eter is indeed the frac—
tion ofvertices belonging to the In nite giant com ponent, in m ore com plicated
system s the determm ination of an order param eter is generally an open prob—
Jem . Though not rigourous, statistical m echanics provides num erous speci ¢
m ethods for identifying and studying order param eters, and we shall ilustrate
this on the K -Satis ability problem . T his step isussfil of course for providing
a good Intuitive view of the system ’s behavior, but m ore in portantly it also



gives Inform ation on them icroscopic structure ofthe phases, Inform ation that
can be usad both In deriving analytical results and In interpreting num erical
sin ulations.

T he way physicists and m atham aticians proceed is quite di erent. T heoretical
physicists generally do not prove theoram s, rather they attem pt to understand
problem sby cbtaining exact and approxin ate results based on reasonable hy—
potheses. In practice, these hypotheses are \validated" a posteriori through
com parison with experim ents or num erical sin ulations, and through consis—
tency w ith the overallbody of know ledge in physics. In this sense, theoretical
physics m ust be distinguished from m athem atical physics whose scope is to
m ake rigorous statem ents. O £ course, exact solutions play an in portant rok
In statistical physics In that they represent lim ting cases w here analytical or
num erical technigques can be checked, but they are not the m ain focus of this
discipline.

For the sake of brevity we lft out from this review som e very relevant and
clos=ly connected topics such as exact enum eration m ethods [6] or applications
of com puter science algorithm s to the study oftwo din ensional com plex phys—
ical system s [7,8]. Furthem ore we do not clain to present a com pkte picture
of what has been done by physicists on decision and optin ization problem s.
R ather, we hope that what we do present w ill enable readers from the m ore
m athem aticaldisciplines to understand in detailthem a prity ofwhat hasbeen
done by physicists using the m ethods of statisticalm echanics.

2 Elem ents of Statistical P hysics

In this section, the reader w ill be Introduced to the basic notions of statis—
tical m echanics. W e start by illustrating on various exam ples the existence
of phases and phase transitions, ubiquitous In physics and m ore surprisingly
In other elds of science too. The concepts of m icroscopic and m acroscopic
levels of description naturally appear and allow for a rapid presentation of
the foundations of statistical m echanics. W e then expose In greater detail
the com binatoral interpretation of statistical m echanics and introduce som e
key vocabulary and de nitions. An accurate Investigation of the properties
of the socalled Ising m odel on the com plete graph Ky exem pli es the above
concepts and calculation techniques. In order to bridge the gap w ith optim iza-
tion problm s, we then tum to the crucial issue of random ness and present
approprate analytical technigques to deal with random structures, eg., the
cekbrated replica m ethod.

This section has been elhborated for a non physicist readers and we stress
that no a priori know ledge of statisticalm echanics is required. E xercises have



been included to illustrate key notions and should help the reader to acquire
a desper understanding of concspts and techniques. Solutions are sketched In
Appendix A . Excellent presentations of statisticalm echanics can be found in
textbooks eg.P{11] for readers wanting further details.

2.1 Phases and transitions

M any physical com pounds can exist In nature as distinct \states", called
phases, depending on the values of control param eters, such as tem perature,
pressure, ... The change of phase happens very abruptly at som e precise val-
ues of the param eters and is called transition.W e list below a few welkknown
exam ples from condensed m atter physics as well as two cases com ing from

biology and com puter science.

2.1.1 Liguid-gas transition.

At atm ospheric pressure water boils at a \critical" tem perature T, = 100°C .
W hen the tem perature T is lowerthan T, water isa liquid whik above T, it is
a gas.At the critical tem perature T, a coexistence between the liquid and gas
phases ispossible: the fraction of liquid water depends only on the totalvolum e
occupied by both phases. T he coexistence of the tw o phases at criticality is an
essential feature of the liquid-gas transition . T ransitions sharing this property
are called rst order phase transitions form athem atical reasons exposed later.

212 Ferrom agneticparam agnetic transition .

It is wellknown that m agnets attract nails m ade out of iron. T he m agnetic

eld produced by the m agnet induces som e strong Intemalm agnetization in
the nail resulting In an attractive force. M aterials behaving as iron are re—
ferred to as ferrom agnetic. H ow ever, the attractive foroe disappears when the
tem perature of the nail is raised above T, = 770°C . The nail then enters the
param agnetic phase w here the net m agnetization vanishes. T here is no phase
coexistence at the critical tem perature; the transition is said to be of second
order.

The ferrom agneticparam agnetic transition tem perature T. varies consider-
ably with the m aterial under consideration. For instance, T, = 1115°C for
cobalt, T, = 454°C fornickeland T, = 585°C form agnetite Fes04).H owever,
rem arkably, it tums out that som e other quantities { the critical exponents
related to the (drastic) changes ofphysical properties at or close to the transi-
tion { are equalfora large class ofm aterials! T he discovery of such universality



was a breakthrough and led to very deep theoretical developm ents In m odem
physics. Universality is characteristic of second order phase transitions.

2.1.3 Conductor-superconductor transition .

G ood conductors such as copper are used to m ake electric w ires because of
theirweak resistance to electric currents at room tem perature. A sthe tem per-
ature is Jow ered, electrical resistance generally decreases an oothly as collisions
between elctrons and vibrations of the m etallic crystal becom e weaker and
weaker. In 1911, K am m erling O nnes observed that the electrical resistance of
a sam pl ofm ercury fellabruptly down to zero as tem perature passed through
T. " 42°K (0°K being the absolute zero of the Kelvin scale.) This change
of state, between a nom al conductor ( nite resistance) and a superconductor
(zero resistance) is a true phase transition: a very an all variation of tem pera—
ture at T. is enough to change resistance by four or ve orders ofm agnimude!

214 DNA denaturation transition.

In physiological conditions, D NA has the doublk helix structure discovered by
W atson and Crick In 1953. The two strands carry com plem entary sequences
ofA,T,G orC bases and are intertw Ined, form Ing either A-T or G € pairs.
Bases in a pair are attached togetherby hydrogen bonds. A sthe tem perature is
raised or jonic conditions are appropriately m odi ed, bonds weaken and break
up. The strandsm ay then ssparate so that the doubl helix structure is lost:
the DNA is denatured. This transition is abrupt on repeated hom ogeneous
DNA sequences [12].

Reoent m icrom anijpulation experin ents on Individual DNA m olkcules have
show n that denaturation can also be cbtained through a m echanicalaction on
DNA .W hen In posing a su clent torque to them olecule to unw ind the double

helix, the latter opens up and DNA denaturates. At a xed critical torque,
denaturated and doubk helix regionsm ay coexist along the sam em olecule[13]
o this transition is lke a liquid-gas one.

2.1.5 Transition in the random K -Satis albility problem .

C om puter scientists discovered som e years ago that the random K -Satis ability
problem exhibits a threshold phenom enon as the ratio  of the num ber of
clauses M ) over the num ber of Boolan variables (N ) crosses a critical value
c K ) depending on the number of literalsper clause K .W hen is analler
than the threshold (K ), a random Iy drawn fomula is aln ost surely satis-
able while, above threshold, it is unsatis abl w ith probability reaching one
IntheN ! 1 Imit.



ForK = 2, the threshold isknown exactly: .@2)= l.ForK 3, there isno
rigorous proofofthe existence ofa phase transition so farbutm any theoretical
and num erical resuls strongly support it, see articlesby A chlioptas & Franoo
and D ubois & K irousis in the present issue. Current best estin ates indicate
that the threshold of random 3-SAT is located at .(@3) ' 425. Statistical
physics studies show that the order of the phase transition dependson K , the
transition being continuous for 2-SAT and of st order for 3-SAT (and higher
values ofK ).

2.1.6 M acroscopic vs. m icroscopic descriptions.

W hat can be inferred from the above exam ples? F irst, a (hysical) system m ay

be found in totally di erent phasesw ith very di erent m acroscopic properties

although its intrinsic com position at a m icroscopic level (m olecules, m agnetic
soins, base pairs, clauses, ...) is the sam e. H owever, from a physical, m echani-
cal, electrical, biological, com putational, ... point of view , essential properties
ofthis system change com plktely from a phase to another. Second, the abrupt
change of phase llow s from very slight m odi cations of a control param e-
ter eg. tam perature, torque, ratio of clauses per variabl ... about a crtical
value. Thirdly, critical exponents, that characterize quantitatively second or-
der phase transitions, are universal, that is, insensitive to m any details of the
system s under study. Last of all, transitions appear for large system s only.

T he above points raise som e fiindam entalquestions:how can them ain features
of a system at a m acroscopic kevel, de ning a phase, change abruptly and
how are these features related to the m icroscopic structure of the system ?
Statistical physics focuses on these questions.

22 Foundations of statisticalm echanics and relationship w ith com binatorics.

22.1 Neads for a statistical description.

Statisticalphysics ain sat predicting quantitatively them acroscopicbehaviour
ofa system (and In particular tsphases) from the know ledge of itsm icroscopic
com ponents and their interactions.W hat dowem ean by Interaction? C onsider
for instance a liquid m ade of N amn all particles (idealized representations of
atom s orm olecules) occupying positions of coordinates #; In Euclidean space
where label 1 runs from 1 to N . Particle number i is subfct to a force £
(Interaction) due to the presence of neighboring particls; this force generally
depends of the relative positions of these particles. To determ ne the positions
ofthe particlks at any later tin e t, we m ust Integrate the equations ofm otion



given by New ton’s findam ental law ofm echanics,

dzfi .
Mo = R d= 1;::5N); @)
where m ; is the m ass of particle i. Solving these equations cannot be done in
practice. The forces £} are ndeed highly non linear functions of the particlke
positions ;. W e therefore w ind up w ith a set of com plicated coupled di eren—

tialequations whose numberN , oforder  1#3, is gigantic and not am enable
to analytical treatm ent.

This In possbility, added to the intuitive feeling that understanding m acro-—
Soopic properties cannot require the exact know ledge ofallm icroscopic tra o
tordes of particles has been circum vented by a totally di erent approach. T he
basic idea is to describe the system ofparticles in a probabilistic way In order
to deduce m acroscopic features as em ergent statistical properties.

222 P rokability distribution over the set of con gurations.

T he In plam entation ofthis idea has required the introduction of revolutionary
concepts at the end of the ninteenth century by Boltzm ann and followers,
and In particular, the ideas of ergodicity and themm odynam ical equilibbrium .
W e shall not attem pt here to provide an exposition of these concepts. The
Interested reader can consult textbooks eg. P{11l]. As far as combiatorial
aspects of statisticalm echanics are concemed, it is su cient to start from the
follow ing postulate.

A con guration C of the system , that is, the speci cation of the N particke
positions fr;g, has a probability p(C ) to be realized at any tine when the
system is in equilbbrium . In other words, the system willbe in con guration
C wih probability p (C ). The latter depends on tem perature T and equals

1

1
p(C)—EeXp ¥E(C) : @)

In the above expression, E is the energy and is a realvalued function, over the
set of con gurations. T he partition function Z ensures the correct nom aliza—
tion of the probability distrdbution p,

X 1
Z = exp —EC) : 3)
c T

N ote that we have usad a discrete sum over con gurationsC in (3) Instead of
an integral over particle positions ;. T his notation has been chosen since all



the partition fiinctions we shallm est In the course of studying optin ization
problam s are related to nite (ie. discrete) sets of con gurations.

Consider two lim iting cases of 2):

In nite tempermture T = 1 : the probability p(C ) becom es ndependent
of C . A1l con gurations are thus equprobabl. The system is n a fully
\disordered" phase, like a gas or a param agnet.

zero tem perature T = 0: the probability p(C ) is concentrated on the m in—
Inum of the energy function E, called the ground state. This m inin um
corresoonds to a con guration where all particles are at m echanically sta—
bl positions, that is, occupy positions r; carefully optim ized so that all
forces f; vanish. O ften, these strong constraints de ne regular padkings of
particles and the system achieves a perfect crystalline and \ordered" state.

W hen varying the tem perature, interm ediate situations can be reached. W e
now exam Ine som e sin ple exam ples.

22.3 Casesofone and two spins.

W e now consider the case of a singlke abstract particke that can sit at two

di erent positions only. This sin ple systam can be recast as follow s. Let us

In agihe an arrow capable of pointing in the up or down directions only. This

arrow isusually called a spin and the direction is denoted by a binary varable
,equalto + 1 ifthe soin isup, to 1 ifthe soin isdown.

In this sihgle particle system , there are only two possbl con gurationsC =
f+lgand C = £ 1lgand we choose forthe energy function E ( ) = .Note
that addiive constants n E haveno e ect on (2) and m uliplicative constants
can be absorbed In the tem perature T . T he partition finction can be easily

com puted from (3) and readsZ = 2cosh where = 1=T denotesthe inverse
tem perature. T he probabilities that the spin pointsup ordow n are respectively
Py = exp( )=Z and p = exp( )=Z .At in nite temperature ( = 0), the

soin is Indi erently up ordown:p@H+ 1) = p( 1) = 1=2. Conversly, at zero
tem perature, it only points upwards:p+ 1) = 1;p( 1) = 0.C = f+ 1g isthe
con guration ofm ininum energy.

T he average value of the soin, called m agnetization is given by

m=nhi = p( )= tanh() : @)

The symbolh ridenotesthe average over the probability distribution p.N otice
that, when the tem perature is owered from T = 1 down to T = 0, the
m agnetization increases anoothly from m = O up tom = 1. There is no



abrupt change (singularity or non analyticity) In m as a function of and
therefore no phase transition.

E xercise 1:Consider two spins ; and , with energy function
E(q1; 2)= 12 ¢ (5)

C akulate the partition function, the m agnetization of each spin as wellas the
average value of the energy. Repeat these calculations for

E (17 2)= 1 2 6)

How is the atter choice related to the singke spin case?

224 Combinatorialm eaning of the partition function.

W e have so far introduced statistical m echanics in probabilistic tem s. T here
exists also a close relationship w ith com binatorics through the enum eration of
con gurations at a given energy; we now show this relationship.

T he average value of the energy m ay be com puted directly from the de nition
X

Ei = pC)EC) ; (7
C

or from the partition function Z via the follow ing identity
, d
E i = T hz ; @8)
that can easily derived from (3).The dentity (8) can be extended to higher

m om ents of the energy. For instance, the variance ofE can be com puted from
the second derivative of the partition finction

2 &
HE 2 iy hEﬁ=pJnZ : 9)

Such equalities suggest that Z is the generating function of the con guration
energies. To prove this statem ent, ket us rew rite (3) as

7 = exp ( E C))

10



= NE)exp( E) ; (10)

whereN (E ) isthe numberofcon gurationsC having energiesE (C ) precisely
equalto E . Ifx = exp( ), Z (x) is sinply the generating function of the
coe cientsN E ) asusually de ned in com binatorics.

T he quantity §(E ) = InN E) is called the entropy associated w ith the en-
ergy E . In general, calculating $E)isa very hard task. Usually, it ismuch
m ore convenient to de ne the average entropy hSir at tem perature T as the
contribution to the partition function which is not directly due to energy,

1
nSip = T F@T) Wi ; 11

where

FT)= Thz(T) 12)

is called the free—energy of the system .

In general, the above de nitions for the energy and tem perature dependent
entropies do not coincide. H owever, as explained in next Section, In the large
size lin i hSi; equals $ € ) provided that the energy E is set to its them al
average E = HE ir .

T he entropy is an increasing fiinction of tem perature. At zero tem perature, it
corresoonds to the logarithm ofthe number of absolute m inin a of the energy
function E C).

E xercise 2: P rove this Jast statem ent.

225 Large size lm it and onset of singularity.

W e have not encountered any phase transition in the above exam ples of sys-
tem s w ith one ortwo spins. A necessary condition for the existence of a tran—
sition in a system is indeed that the size of the latter goes to in niy. The
m athem atical reason is sim ple: ifthe number ofterm s in the sum (3) is nite,
the partition function Z , the freeenergy F , the average energy, ... are ana—
Iytic functions of the nverse tem perature  and so do not have sngularities
at nite tem perature.

M ost analytical studies are therefore devoted to the understanding of the
amn ergence of shgularities in the freeenergy when the size of the system goes

11



to In nity, the socalled them odynam ic 1im it.

An In portant feature of the them odynam ic 1im it is the concentration ofm ea—
sure for observables eg. energy or entropy. Such quantities do not uctuate
m uch around theirm ean values.M ore precisely, ifwe callN the size, ie. the
num ber of spins, of the system , the m om ents of the energy usually scale as

HE i =0 \N)
i, mi-owm) d3)

and, thus the energy oflg ‘con guration is w ith high probability equalto the
average value up to (3 ( N) uctj,latjcigs_. Such a resul also applies to the
entropy, and hSi; = S tE i) up to O ( N ) tem s.M easure concentration In
the them odynam ic 1im it is a very im portant and useful property, see [14].

2.3 Spin modelon the com pkte graph.

W e shallnow study a system ofN goins, called the Ising m odel, exhbiting a
phase transition n the ImEt N ! 1 .W e consider the com plkte graph Ky ;

2.3.1 Remarkson the energy function.

The rst term in (14) is called the Interaction termm . The sum runs over all
pairs of spins, that is over all edges of K iy . The m inus sign ensures that the
m ininum ofenergy is reached when all spins point in the sam e direction. T his
direction depends on the sscond temm of (14) and, m ore precisely, upon the
sign ofthe \m agnetic eld" h. Ifthe latter is positive (respectively negative),
the ground state is obtained when all spins are up (resp.down).

In the absence of eld (h = 0), we know the two ground states. T he energy
and entropy at zero tam perature can be com puted from (14) and (11),

HEir_o= —- N 1 15)
WSiz_o=h2 (16)

12



N otice that the ground state energy isO (N ) due to the presence of the factor
1=N In (14) whereas the entropy isO (1).

At In nie tem perature, all con gurations are equiprobable. The partition
flinction is sin ply equal to the total number of con gurations: Z.-, = 2V,
leading to

Eip_, =0 ; a7
Siz-; =N h2 : 18)

W hen the temperature is nite, a com prom ise is realized n (10) between
energy and entropy: the con gurations with low energies E have the largest
probabilitiesbut them ost probable energy also depends on the entropy, i.e.on
the size of the coe cients N € ). Tem perature tunes the relative Im portance
of these two opposite e ects. The phase transition studied In this section
Separates two regin es:

a high tem perature phase w here entropy e ects are dom lnant: soins con g—
urations are disordered and spins do not point in any privilkedged direction
(forh = 0).The average m agnetization m vanishes.

a low tem perature phase where energy e ects dom inate: spins have a ten—
dency to align w ith each other, resulting In ordered con gurations wih a
non zero m agnetization m = h ;ir € O.

Let us stress that the energy and the entropy m ust have the sam e orders of
m agniude 0 NN )) to allow for such a com prom ise and thus for the existence
of a phase transition at nite strictly positive tem perature.

2.32 The m agnetization is the order param eter.

as

62

mC)= i 19

1
N

T he calculation of the partition function relies on the follow ing rem ark. T he
energy function (14) dependson the con guration C through itsm agnetization
m (C) only.M ore precisly,

1 , 1
EC)= N —mC)P+hmC) + 20)

13
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Fig. 1. Entropy s ) of the Ising m odel on the com plete graph as a function of
m agnetization m .

In the follow ing, we shall also need the entropy at xed m agnetization S (m ).

Con gurationswith a xed m agnetization m have N , sopihsup and N soins
down with

1+ m
N, =N 5 ;
1 m
N =N 21)
2

T henum berofsuch con gurations istherefore given by thebinom ialcoe cient

N !
£l —— : @2)
N, N !

In the large N Iin it, Stirling’s formm ula gives access to the asym ptotic expres—
sion of the entropy density, sfm ) = S m )=N , at xed m agnetization,
1 m 1 m 1+m 1+m

n n ;o 23)
2 2 2 2

s) =

Figure 1 displays sfm ) as a function ofm . The m aximum is reached at zero
m agnetization (s(0) = In2) and the entropy vanishes on the boundariesm =
1.

Letus stressthat S fm ) de ned In (23) is the entropy at given m agnetization
and di ers a priori from the energy and tem perature dependent entropies,
$ E ) and hS iy , de ned above. H owever, in the them odynam ic lim i, allquan—
tities are equal provided that m and E coincide w ith their them al averages,

14



m iy and HE ir .

T he average value m iy of the m agnetization willbe shown to vanish in the
high tem perature phase and to be di erent from zero In the low tem perature
phase. T he m agnetization is an order param eter: is value (zero or non-zero)
indicates In which phase the system is.

233 Calkultion of the freeeneryy.

T he partition finction Z reads

Z = exp [ E (152225 n)]
1;:::;N7Xl h 5
= exp N fm) ; 24)
m= 1; 1+ Z;u51 5
where
1,
£m)= Sm hm T s) ; 25)

up to O (1=N ) tem s. For the m om ent, we shalltake h = 0.

In the lim it ofan In nitenumberN ofspins, the freeenergy m ay be com puted
by m eans of the saddlepoint (Laplace) m ethod.W e look for the saddlepoint
m agnetization m  (that depends upon tem perature T ) m inin izihg fm) @5).
The Jatter isplotted in Figure 2 for three di erent tem peratures.

Tt can be seen graphically that the m ininum of f is ocated atm = 0 when
the tem perature is larger than T, = 1 whilk there exist two opposite m inin a,
m = m (T) < O,bm = m (T) > 0 below this crtical tem perature. The
optin um m agnetization is solution of the saddlepoint equation,

m =tanh ( m ) : 26)

w hile the freeenergy is given by

T
£(T)= Im N—an=f(m ) : 7)

N!1

T he average energy and entropy per spin (divided by N ) can be com puted
from 27,8, 11),

15
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Fig. 2. Freeenergy function £ ) of the Ising m odel on the com plete graph as a
function of the m agnetization m In zero m agnetic eld h and for three di erent
tem peratures. a: high tamperature T = 12, b: critical tem perature T = 1, c: Iow
tem perature T = 08.

hei; = %cm Y ©8)
hsiz = s ) : 29)
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234 Phase transiton and symm etry breaking.

In the absence of a magnetic eld, the energy (14) is an even function of

f 15:::5;  ygarrequal.Asa consequence, the them alaverage h iy ofany
soin vanishes. This resul is true forany N and so, in the large N I i,
Iim Im h iy = 0 : (30)

N!1l h!o

Tt is thus necessary to unveil the m eaning of the saddlepoint m agnetization
m arising in the com putation of the partition function.

To do s0, we repeat the previous calculation of the freeenergy in presence of
amagnetic eld h > 0.Them agnetization isnow di erent from zero.At high

tem perature T > T, this m agnetization decreases as the m agnetic eld h is
Iowered and vanisheswhen h = 0,

Im lm hi=0 (T>T) : (1)
h! 0f N! 1

T herefore, at high tem perature, the inversion of lin itsbetween (30) and (31)
hasno e ect on the nalresul.

The situation drastically changes at low tem perature. W hen T < T, the
degeneracy between the two m Inin a of £ is lifted by the m agnetic eld.Due
to the eld, a contrbution h m must be added to the freeenergy (25) and
favoursthem mimum Inm overthatin m .The contrbution to the partition
function (24) com ing from the second m Inimum is exponentially sm aller than
the contrbution due to theglobalm ininum Inm by a factorexp( 2N hm ).
T he probability m easure on spins con gurations istherefore fiilly concentrated
around the globalm nin um w ith positive m agnetization and

Im lm hi=m T < T 32)

h! 0t N ! 1

From (30) and (32), the m eaning of the phase transition is now clar.Above
the critical tem perature, a an all perturbation of the system (eg.a term In
the energy flinction pushing spins up), is irrelevant: as the perturbation dis-
appears h! 0),sodoitseects m ! 0), se=e (31).Conversly, below the
critical tem perature, a an all perturbation is enough to trigger strong e ects:
soinspoint up W ith a spontaneousm agnetization m > 0) even after the per-
turbation has disappeared h = 0), see (32).At low tem perature, two phases
w ith opposite m agnetizationsm and m ooexist. Adding an in nitesin al
eld h favours and selects one of them . In m ore m athem atical temm s, the
m agnetization m is a non-analytic and discontinuous fiinction ofh at h = 0.
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So, the phase transition here appears to be Intin ately related to the notion of
sym m etry breaking. In the case ofthe Ising m odel, the probability distribution
over con gurations is sym m etrical, that is, left unchanged under the reversal
of spins ! .A high tem perature, this sym m etry also holds for average
quantities: h iy = 0.At low tem perature, the reversal symm etry is broken
since, In presence ofan In nitesim alperturbation, h ir = m 6 0.The niial
symm etry ofthe system in pliesonly that the two possble phases ofthe system
have opposite m agnetizationsm and m .

In the present case, the symm etry of the system was easy to identify, and to
break! W e shall see that m ore abstract and com plex symm etries m ay arise
In other problem s, eg. the random graph and K -Satis ability. The under-
standing of phase transitions very often w ill rely on the breaking of associated
sym m etries.

E xercise 3:How does equation (26) becom em odi ed when there is a non-zero
m agnetic eld? Caloulte explicitely the freeenergy in presence of a m agnetic
el and check the correctness of the albove statem ents.

2.3.5 Vicinity of the transition and critical exponents.

To com plte the present analysis, we now mnvestigate the properties of the
Ising m odel close to the crticaltem perature T.= landde neT = 1+ wih
j j 1.The soontaneous m agnetization reads from (26),

8 if o

mo()= P— 4 0

33)

T husthem agnetization grow sasa power ofthe shifted tem perature :m ( )

( ) with = 1=2. , not to be confiised w ith the inverse tem perature, is
called a critical exponent since it characterizes the power law behaviour of a
physical quantity, here the m agnetization, close to criticality. Such exponents
are universal In that they are lJargely independent of the \details" of the de —
nition ofthem odel. W e shall com e back to this point in the sections devoted
to the random graph and the K -Satis ability m odels.

A nother exponent of interest is related to the nite size e ect at the transition.

So far, we have calculated the average values of various quantities in the In nite

size Iimi N ! 1 .W e have in particular shown the existence of a crtical
tem perature separating a phase where the sum of the soins is on average zero

( > 0) from a phase where the sum of the spins acquires an O N ) m ean
( < 0).At the transition point ( = 0), we know that the sum of soins
cannot be of orderN ; Instead we havea scalng in N wih < 1.

18



W hat is the value of ? From expression (24), ket us expand the free-energy
function f(m ) @25) In powers of the m agnetization m = O y,

fm) f(0)=—m2+im4+o<m6- m*) ; (34)
2 12 ’ ’
wih £ Q) = T In2. Above the critical tem perature, > 0, the average

m agnetization is expected to vanish. D ue to the presence of the quadratic

lading temm in (34), the uctuations of m are of the order of N ™2, The

sum of the spins, N m , has a distribution whose w idth grow s as N 72, giving
= 1=2.

At the critical tem perature, the partition function reads from (24),
A
4 _
z' 2 dnelm™ : 35)

T he average m agnetization thus vanishes as expected and uctuations are of
the order of N **.The sum ofthe spins, N m , thus has a distrbbution whose
width grows asN , giving = 3=4.

T he size of the critical region (in tem perature) is de ned as the largest value

max Of the shiffed tem perature  leaving unchanged the order of m agnitude
of the uctuations of the m agnetization m . A new crtical exponent  that
m onitors this shift is introduced: ,.x N = .Dem anding that tem s on the
rhs.of 34) beofthesameorderin N ,we nd = 2.

2.4 Random ness and the replica m ethod.

T he above analysis ofthe Ising m odelhasbeen ussfulto illustrate som e classic
analytical technigques and to clarify the conospt of phase transitions. H ow ever,
m ost optin ization or decision problem s encountered in com puter science con—
tain another essential ingredient we have not discussed so far, nam ely ran—
dom ness. To avoid any confiision, ket us stress that random ness in this case,
eg.a Boolan form ula random ly drawn from a wellkde ned distribution, and
called quenched disorder in physics, m ust be clarly distinguished from the
probabilistic form ulation of statistical m echanics related to the existence of
therm aldisorder, see (2).A s already stressed, as far as com binatorial aspects
of statisticalm echanics are concemed, we can start from the de nition (10) of
the partition function and interpret it as a generating function, forgetting the
probabilistic origin. O n the contrary, quenched disorder cannot be om itted.
W e are then left with combinatorial problm s de ned on random structures,
that is, with partition fiinctions where the weights them selves are random
variables.
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24.1 D istrdoution of \quenched" disorder.

W e start with a sin ple case:

E xercise 4: Consider two spins ; and , with energy fiinction

E(172)= J 1 2 (36)

where J is a real variabke called coupling. Calulate the partition finction,
the m agnetization of each spin as well as the average value of the energy at
given (quenched) J. Assume now that the coupling J is a random variabk
withmeasure () on a nite support [J ;J; 1. W rite down the expressions of
the mean over J of the m agnetization and energy. W hat is the value of the
average ground state energy?

The m eaning of the word \quenched" is clear from the above exam ple. Spins
are alw ays distrdouted according to (2) but the energy finction E now depends
on random ly drawn variablseg. the coupling J . A verage quantities (over the
probability distribution p) m ust be com puted kesping these random variables

xed (or quenched) and thus are random varables them selves that will be
averaged over J later on. To distinguish both kinds of averages we hereafter
use an overbar to denote the average over the quenched random variablswhile
brackets still Indicate a them al average using p.

M odels w ith quenched random ness are often very di cult to solve. O ne ofthe

reasons is that their physical behaviour is m ore com plex due to the pressnce
of frustration.

24.2 Noton of frustration.

Frustration is best Introduced through the follow ing sin pl exam ple.

E xercise 5: Consider three soins 1, , and 3 with energy function

E (17 27 3)= 12 13 2 3 & (37)

C aloulate the partition function, the m agnetization ofeach spin as wellas the
average value of the energy. W hat are the ground state energy and entropy?

Repeat the calculation and answer the sam e questions for

E (17 25 3)= 12 13t 23 ¢ (38)
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N ote the change of the Jast sign on the rh.s. of (38).

T he presence of quenched disorder w ith both negative and positive couplings
generates frustration, that iscon icting tem s in the energy function.A fam ous
exam ple is the Sherrington-K irkpatrick (SK ) m odel, a random version of the
Ising m odel on the com plete graph whose energy function reads

1 X
Egk (17211 n) = PE— Jig 1 5 ; (39)

i< j

w here the quenched couplings J;; are independent random nomn al variables.
In the SK m odel, contrarily to the Ising m odel, the product of the couplings
Ji; along the loops of the com plete graph Ky m ay be negative. T he ground
state is no longer given by the \all spinsup" con guration, norby any sin ple
prescription and m ust be sought for am ong the set of 28 possble con gura—
tions. F inding the ground state energy for an arbitrary set of couplings Jy5 is
a hard com binatorial optin ization task which in this case belongs to the class
0f NP -hard problem s [15,16].

243 Them odynam ic Iim it and selfaveraging quantities.

T hough physical quantities depend a priorion quenched couplings, som e sin —
pli cations m ay take place In the large size Im it N ! 1 .M any quantities
of Interest m ay exhibit less and less uctuations around their m ean values
and becom e selfaveraging. In other words, the distrioutions of som e random
variables becom e highly concentrated asN grow s. T ypical exam ples ofhighly
concentrated quantities are the (free)energy, the entropy, the m agnetization,
... whereas the partition function is generally not sslfaveraging.

Selfaveraging properties are particularly relevant when analyzing a problm .
Indeed, forthese quantities, we only have to com pute their average values, not
their full probability distributions. W e shall encounter num erous exam ples of
concentrated random variables Jater In this article.

E xercise 6: Show that the partition function of the SK m odel is not self-
averaging by calculating its rst two m om ents.

244 Replica method.
W e consider a genericm odelw ih N soins ; and an energy function E (C;J)

depending on a st of random ocouplings J. Furthem ore we assum e that the
freeenergy F (J) ofthism odel is selfaveraging and would like to com pute is
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quenched averaged valie F (J) or, equivalently from (12), the averaged loga-—
rithm of the partition function nZ (J).Though well posad, this com putation
isgenerally a very hard task from the analyticalpoint ofview . An originalbut
non rigorousm ethod, the replica approach, was invented by K ac In the sixties
to perform such calculations. T he starting point of the replica approach is the
follow ing expansion

Z@"=1+nhzJ)+0m") ; (40)
valid for any set of couplings J and snall realn. The identity (40) m ay be

averaged over couplings and gives the m ean free-energy from the averaged n™
pow er of the partition finction

e i Z @J)" 1
FJ)= T Im ——— : 41)
n! 0 n

Ifwe restrict to integer n, the n® m om ent of the partition finction Z can be
rew ritten as

X
7 (J)"= exp —E C;J)
¢ !
X 1 x )
= exp = E C?%;J) : 42)
Cl;ucn T a=1

This last expression m akes transparent the principle of the replica m ethod.
W e have n oopies, or replicas, of the iniial problem . The random oouplings
disappear once the average over the quenched couplings hasbeen carried out.
F inally, we must com pute the partition function of an abstract system of N
vectorial spins ~; = ( iL;:::; 1) wih the non random energy fiinction

2 L3
X ’

E C2;J) > 43)

a=1

1
Eerr f~9)= T Infexp T

This new partition function can be estin ated analytically in som e cases by
m eans of the saddlepoint m ethod jist as we did for the Ising m odel. T he
result m ay be w ritten form ally as

Z (J)" = exp Nf@) (44)

to lading order in N . O n general grounds, there is no reason to expect the
partition finction to be highly concentrated. Thus, £(n) is a non linear func-
tion of is Integer argum ent n satisfying £(0) = 0. The ocore idea of the
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replica approach is to continue analytically £ to the set of real n and cb-
tain F—(J) = TN df=dn evaluated at n = 0. T he existence and unigqueness of
the analytic continuation is generally ensured for nite sizesN due to them o—
m ent theoram . In m ost problam s ndeed one sucoeeds In bounding ¥ (J) jfrom

above by a (J independent) constant C .Them om entsofZ grow only exponen—
tially w ith n and their know ledge allow s for a com plete reconstruction of the
probability distribution of Z (J). However this argum ent breaks down when
the saddlepoint m ethod is em ployed and the upper bound C = exp © N ))
becom es in nie.

Though there is generally no rigorous schem e for the analytic continuation
when N ! 1 , physicists have developped in the past twenty years m any
an pirical rules to use the replica m ethod and obtain precise and som etin es
exact results for the averaged freeenergy. W e shall see in the case of the
K -Satis ability problm how the replica approach can be applied and how
very peculiar phase transitions, related to the abstract \replica" symm etry
breaking, are present.

T hem athem atician or com puter scientist reader of this briefpresentation m ay
feel uneasy and distrustfiil of the replica m ethod because of the uncontrolled
analytic continuation. To help hin /her loose som e Inhibitions, he/she is asked
to consider the follow Ing wam ing up exercise:

E xercise 7: Consider N ewton’s binom ial expression for (1 + x)" with integer
n and perform an analytic continuation to realn. Take then ! O lim it and
show that this Jeads to the serdes expansion in x of In (1 + x).

3 Random G raphs

In this section, we show how the statisticalm echanics concspts and techniques
exposed In the previous section allow to reproduce som e fam ous results of
E rdos and Renyion random graphs[l7].

3.1 Generalities

F irst Jet us de ne the random graphs used. C onsider the com plete graph K y
overN vertices.W ede ne Gy yn, asthe set of graphs obtained by taking only
Ny = N =2 am ong the N2 edges of Ky In all possble di erent ways. A
random graph is a random Iy chosen elem ent of Gy i, wih the atmeasure.
O ther random graphs can be generated from the com plte graph K y through

a random delktion process of the edges w ith probability 1 =N .In the large
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N I i, both fam iliesof random graphs share com m on properties and we shall
m ention explicitely the precise fam ily we use only when necessary.

3.1.1 Connected com ponents.

W e call \clusters" the connected com ponents ofa given graph G ; the \size" of
a cluster is the num ber of vertices i contains. An isolated vertex isa cluster of
size unity. T he num ber of connected com ponents ofG isdenoted by C (G ) and
we shall indicate itsnom alized fraction by cG ) = ;— . Ifc is an all, the random
graph G has few big clusters whereas for ¢ approaching unity there are m any
clisters of am all size. Peroolation theory is concemed w ith the study of the
relationship between the probability p oftw o vertices being connected w ith the
typicalvalieofcin theN ! 1 I it.The scope ofthis section isto show how
such a relationship can be exploited by the study of a statistical m echanics
m odel, the so called Potts m odel, after a suitable analytic continuation. A s
a historical note, ket us m ention that analytic continuations have played an
enom ous rok In physics this last century, leading often to unexpected desp
results, in possible or very di cul to obtain by otherm eans.

312 Genermting function for clusters.

LetP (G ) betheprobability ofdraw ing a random graph G through the dektion
process from the com plete graph K y . Since the edge deletions are statistically
Independent, this probability depends on the num ber of edges N only, and
factorizes as

N N 1)

PG)=p"®a p 2z ¢ 45)

where

1 p=1 (46)

N

is the probability of edge deketion. W e want to study the probability density
(c) of generating a random graph w ith c clusters,

X
©= PG) € c@G)) ; @47)
G

where indicates the D irac distrdbution.

W e can introduce a generating function of the cluster probability by
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= dcd' © PG) ©€ c@))
0 G Ky
X X N©N 1)

P(G)qC(G): pL(G)(l p) > L(G)qC(G) ; 48)

G Ky G Ky

w ith gbeing a fom al (eventually real) param eter.

3.1.3 Large size lim it.
In the large size Iim i, (c¢) is expected to be highly concentrated around som e
value c( ) equal to the typical fraction of clusters per vertex and depend-

Ing only the average degree of valency .Random graphswhose c(G) di ers
enough from c( ) willbe exponentially rare in N . T herefore, the quantity

Q= 1n —bg © 49)

should vanish forc= c( ) and be strictly negative otherw ise. In the follow ing,
we shall compute ! () and thus obtain infomm ation not only on the typical
num ber of clusters but also on the large deviations (rare events).

D e ning the logarithm £'(q) of the cluster generating function as

1
fl@= In N—ng @ ; (0)

we obtain from a saddlepoint calculation on c, see (48,49),

@) = én?xl chg+ ! (© : (b1)

In otherwords, £ and ! are sin ply conjigated Legendre transfomm s. It tums
out that a direct com putation of £ is easier and thus prefered.

32 Statisticalm echanics of the random graph.

Hereafter, we proceed to com pute the properties of random graphs by using
a m apping to the socalled Pottsm odel. Scm € know results can be rederived
by the statistical m echanics approach, and additional predictions are m ade.
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3.2.1 Presentation of the Potts m odel.

The Pottsm odel[l8] is de ned in tem s of an energy fiinction which depends
on N soin variables ;, one for each vertex of the com plte graph K  , which
take g distinct values ;= 0;1;::59 1.The energy function reads

X
E [f i9]= (17 5) 7 (52)

i<

where (a;b) istheK roneckerdelta finction: (@;b) = 1ifa= band @;b)= 0
ifa & b. The partition fiinction ofthe Pottsm odel is

X X
Zpotts = exp [ (17 9)] (63)

f 3=0;:59 1g i< j

where is the inverse tem perature and the summ ation runs over alld’ spin
con gurations.

In order to identify the m apping between the statisticalm echanics features of
the Potts m odel and the percolation problm in random graphs we com pare
the expansion of Zp ,us to the de nition of the cluster generating function of
the random graphs.

322 Expansion of the P otts partition function.

Follow Ing K asteleyn and Fortuin [19], we start by rew riting Zp ons as a dichro—
m atic polynom ial. Upon posing

v=e 1; (64)

one can easily check that (53) can be recast n the form

X Y
Zpots = L+v (i 9] (55)
£ igi<]

W hen ; and ; take the same value there appears a factor (1 + v) in the
product (corresoonding to a tem e In (53)); on the contrary, whenever
and 5 aredi erent the product rem ainsunaltered. T he expansion ofthe above
product reads

X X
Zpots = L+ v (17 3)
fig j-<j
X
+ v (7 3) (ki D+ 1:

K jk< EF ()6 k1)
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N (N 1)

W eobtain 27 2 tem seach of which com posed by two factors, the rst one
given by v raised to a power equal to the number of s com posing the second
factor. It follow s that each term ocorresponds to a possible subset of edges on
Ky , each edge welghted by a factor v. T here is a one{to{one correspondence
between each term ofthe sum and the sub{graphsG ofK y .T he edge structure
of each sub{graph is encoded In the product ofthe s.This fact allow s us to
rew rite the partition function asa sum over sub{graphs

Zpotes = i~ ) (5.7 5)] 7)

where L (G) is the number of edges in the sub{graph G and i;j are the
vertices connected by the k-th edge of the sub{graph.W em ay now exchange
the order ofthe sum m ations and perform the sum overthe soin con gurations.
G ven a sub{graph G wih L lnksand C clusters (isolated vertices included),
the sum over soins con gurations w ill give zero unless allthe sbelonging to
a cluster of G have the sam e value (cf.the functions).In such a cluster, one
can st the sto any ofthe g di erent values and hence the nal form ofthe
partition function reads

X
ZPotts= vL(G)qC G) . (58)
G Ky

32.3 Connection with the cluster generating fiinction
Ifwe now m ake the follow ing identi cation

p=1 e =v=>0+v) ; 59)

we can rew rite the partition fiinction as

X L@G)
P £

Zp otts =

veon X "€ p)N &g CIf 6, 60)

G Ky

Il
—
'_\

T
N

N

C om puting the prefactor on the rh s. of (60), we have

Zorows=€7 Y @ ; 1)

for tem s exponential n N .Y is the cluster generating function of the graph
(48).The large N behaviour of the cluster probability ! (c) is therefore related
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to the Potts free{energy,

1
o otes @ = Iimn — InZpoys 7 (62)
N! 1 N
through
> Bows @ = Omg:lxl(c hg+ ! (@) : (63)

W e are Interested In  nding the value ¢ () which m axin izestherhs.in (63);
since

d! ©
dc ¢ @

- g (64)

it follow s that ! takes itsm axinum value forg= 1.D i erentiating eq. (63)
w ith respect to g, we have

dfP otts

dg

d @ @c ¢
= —Chg+t!©@)= —Cchgt ! QQ)—+ - ; (65)
dg Qc Cle S

which, In virtue of eq. (64) becom es:

df}? otts

dg

c@= g @ : (66)

Tt isnow clear that the typical fraction of clusters per site, ¢ (= 1), can be
obtained, at a given connectivity , by com puting the P otts freeenergy In the
vicinity ofg= 1. Since the Pottsm odel is originally de ned for Integer values
of g only, an analytic continuation to real values of g is necessary. W e now

explain how to perform this continuation.

324 Freeenemy calculation.

A s In the case of the Ising m odel of section TII, a carefiill exam ination of the
energy function (52) show s that the latter depends on the spin con guration
only through the fractions x( ;f ;g) of varables ; In the -th state ( =
0;1; ;7a 1) ROJ,

e

(7 )7

—

1
x( ;f9)= N 0;Ll;=5g 1) : ©67)

=1
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P
O f courss, x( ;£ ;9) = 1.Note that In the Ising case (@ = 2) the two
fractions x (0) and x (1) can be param etrized by a unique param eter eg. the
magnetization m = (1) x(0))=2.

U sing these fractions, the energy (52) m ay be rew ritten as

NER.S N
E[f igl= — [k(;fgf+ — : 68)
2 _, 2

N ote that the last term on the rh s. of (68) can be neglected w ith respect to
the rst tetm whose order ofm agnitude isO (N 2).

T he partition function (53) at Inverse tamperature = =N now becom es
0 1
X g1
Zp ots = exp® —N  K(;f g2
f ;=0;1;::g 1lg 2 =0
0 1
&) . ! ]2A N !
= exp® —~ N &() I
fx = 0;1=N ;::lg =0 q:ONX( )]'
1I7R)
= Il dx () exp (N EffEx( )g) (69)

to the lrading order In N . The subscript R) indicates Ehat the sum or the
Integral m ust be restricted to the nom alized subspace q=lox( )= 1.The
\free-energy" density functional f appearing in (69) is

%l
fiEx( )gl= E&i( )+ x()Ihx() : (70)

=0

In the Ilin it of arge N , the Integral in (69) m ay be evaluated by the saddle-
point m ethod. The Potts freeenergy (62) then reads

Hows @ = min £[Ex gl (71)
fx()g

and the problem beocom es that ofanalyzing them Inim a of £ .G ven the initial
form ulation of the problm , each possble value of among 0;:::; 1 plys
the sam e role; ndeed f is Invariant under the pem utation symm etry of the

di erent g values. However, we should keep in m ind that such a symm etry

could be broken by them Inimum (see section 2).W e shall see that depending

on the value of the connectivity , the pem utation symm etry may orm ay
not be broken, leading to a phase transition In the problm which coincides

w ith the birth a giant com ponent in the associated random graph.
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325 Symmetric saddepoint.

Consider rstthe symm etric extremum of f,

1
XY ( )= —; 8 =0;:::5;9 1: (72)
q
W e have
@ = g P (73)

Taking the Legendre transform of this free-energy, see (63,66), we get for the
logarithm of the cluster distrbution density

1 () = > @ oO@0+ h2@ o) : (74)

150 () ismaxmmaland nullat ™ ( )= 1 5 a result that cannot be true
for connectivities Jarger than two and must break down som ewhere below .
Com parison with the rigorous derivation in random graph theory indicates
that the symm etric result is exact as long as .= 1 and is false above
the percolation threshold .. The failure of the symm etric extremum in the
presence of a giant com ponent proves the onset of sym m etry breaking.

To understand them echanisn resgponsble forthe sym m etry breaking, we look
for the local stability of the symm etric saddlepoint (72) and com pute the
eigenvalues of the H essian m atrix

@2
.= ——fI[f ; 75
AT =)

restricted to the nom alized subspace. The sin pl algebraic structure of M
allow s an exact com putation of ts g 1 eigenvalues for a generic integer q.

W e nd a non degenerate eigenvaluie o = g ) and another eigenvalie
1=qg with multiplicty g 2.The analytic contihuation ofthe eigenvalies
torealg ! 1 lad to the shgke value =1 which changes sign at the

percolation threshold .. Therefore, the sym m etric saddlepoint isnot a local
mIhmmum off above ., showing that a m ore com plicated saddle-point has to
be found.

32.6 Symm etry broken saddle-point.

T he sin plest way to break the sym m etry ofthe problem isto look for solutions
In whith one am ong the g values appears m ore frequently than the others.

30



T herefore we look for a saddlepoint of the fomm

x( )=&[l sl; ( =1;x259 1): (76)

The symm etric case can be recovered in this enlarged subspace of solutions
by setting s = 0. The freeenergy of the Potts m odel is obtained by pligging
the fractions (76) Into (70). In the lm it gq! 1 of nterest,

fExgl= S+ @ DEasli )+0 (@ 1¥) (7)

w ith

Frous (55 )= —0( ésﬁ) 1+s+ 1 sh@d s (78)

2

M inin ization of fp s (S; ) with respect to the order param eter s show s that
for 1 the sym m etric solution s = 0 is recovered, whereas for > 1 there
exists a non vanishing optin alvalue s ( ) of s that is solution ofthe in plicit
equation

1 s=exp( s) : (79)
T he stability analysis Which we will not give here) show s that the solution
is stablk for any value of .The Interpretation ofs ( ) is straightforward: s
is the fraction of vertices belonging to the giant cluster. T he average fraction

of connected components c( ) equals fous (s ()7 ), see (66), n perfect
agream ent w ith exact results by E rdos and Renyi.

3.3 D iscussion.

Further results on the properties of random graphs can be extracted from the
previous type of calculation. W e shall exam ine two of them .
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33.1 Scaaling at the percolation point.

G ven the Interpretation of s ( ) for any lJarge but nite value of N , wem ay
de ne the probability of existence of a cluster containing N s sites as ollow s

P (SN )’ exp N £ (s; )) ©0)

expMN £(s; ))

In the In nite size 1m it this leads to the expected result

Im P(;N)= (s s()) (81)
N!1

In order to describe in detail how sharp (in N ) the transition isat = 1,
we need to consider corrections to the saddk point solutions by m aking an
expansion of the freeenergy frous (S5 = 1) In the order parameter s. At
threshold, wehave s (1) = 0 and fp ous (S;1) = S=6+ O (s*) and therefore

P (s;N)’ exp( N $=6) 82)

In order to keep the probability nite at the critical point the only possble
scaling fors iss= O N ') which Jeads to a size of the giant com ponent at
criticality N N 1= = N 2=, ;n agreem ent w ith the E rdosR enyi resuls.

332 Large deviations.

T he know ledge ofthe P otts free-energy forany value ofgallow s one to com pute
its Legendre transfom , ! (). The ocom putation does not show any di culty
and we do not reproduce the results here R1].P hase transitions are also found
to take place for rare events (graphs that do not dom inate the cluster prob—
ability distrloution). N otice that we consider here random graphs cbtained
by delkting edges from Ky wih a xed probability. Large deviations results
Indeed depend strongly on the process of generating graphs.

A s a typicalexam ple of what can be found using statisticalm echanics, ket us
m ention this sin ple result

'c=1)= ; ®3)

2
for all connectivities . The above identity m eans that the probability that a
random graph hasN o (N ) connected com ponents decreases as exp ( N =2)

when N getslarge.This resul m ay be easily understood. C onsider for instance
graphswih N edgesm ade ofa complte graph on”™ 2 N vertices plusN
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P 2 N il vertices. T he fraction of connected com ponents In this graph

isc=1 O (@=N)! 1.Thenumberofsuch graphs is sin ply the num ber of
dqojoesofp 2 N verticesam ongN ones. Taking into account the edge deletion
probabilty 1 p=1 =N , one easily recovers (83).

3.3.3 Conclusion.

The random graph problem isa nice starting point to test ideas and techniques
from statisticalm echanics. F irst, rigorous results are known and can be con—
fronted to the outputs of the calculation . Secondly, analytical calculations are
not too di cul and can be exploited easily.

As itsmain focus, this section ain ed at exem plifying the strategy used In
m ore com plicated, eg. K -Satis ability, problem s. T he procedure of analytic
continuation, which is at the root of the replica approach, appears nicely In
the com putation of the Potts freeenergy and is shown to give exact resuls
(though in a non rigorousway) . T he pow er ofthe approach is in pressive.M any
quantities can be com puted and rather subtle e ects such as lJarge deviations
are easily obtalned in a unigque fram ework.

At the sam e tin e, the m ain weakness of the statistical m echanics approach
is also visble. M ost interesting e ects are cbtained when an underlying sym —
m etry is broken.But the structure of the broken saddlepoint subspace is far
from obvious, In contrast to the Ising case of the previous section. There is at

rst sight som e kind of arbitrariness in the search ofa saddlepoint ofthe fom
of (76) . In the absence of a welkestablished and rigorous procedure, the sym —
m etry breaking schem es to be used m ust satisfy at least basic selfconsistency
checks (plausbility ofresuls, Jocalstability, ...) . In addition, theoreticalphysi-
cists have developed various schem es that are known to be e cient for various
classes ofproblem sbut (failin othercases) .A kind of standard lore, ofprecious
help to solve new problam s, exists and is still waiting for m m athem atical
foundations.

4 Random K -satis ability problem

In what ollow s we shall describe the m ain steps of the replica approach to
the statisticalm echanics analysis of the Satis ability problem . T he Interested
readerm ay nd additionaldetails conceming the calculations In several pub—
lished papers R2{28] and in the references therein.

T he satisfaction of constrained Boolkan form ulae is a key issue in com plexity
theory. M any com putational problem s are known to be NP -com plete [15,29]
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through a polynom ialm apping onto the K -Satis ability (SAT ) problem , which
In tum wasthe rstproblem shown to be NP -com plkte by Cook in 1971 [B0].

Recently [B1], there hasbeen m uch interest In a random version ofthe K-SAT

Calla chuse C the logical OR ofK random ly chosen variables, each of them
being negated or kft unchanged with equal probabilities. Then repeat this

Jogical AND of all these clauses is a \formula", referred to as F . Ik is said
to be satis ablk if there exists a logical assignm ent of the xs evaluating F to
true, and unsatis able otherw ise.

Num erical experin ents have concentrated on the study of the probability
Py ( ;K ) that a random Iy chosen FF havingM = N clauses be satis ablk.
For large sizes, a ram arkable behaviour arises: Py seam s to reach uniy for

< K)andvanishesfor > K )whenN ! 1 [32,31].Such an abrupt
threshold behaviour, ssparating a SAT phase from an UNSAT one, has Indeed
been rigorously con med for 2-SAT, which isih P, with @)= 1 [B3,34].
For larger K 3, K-SAT isNP-complkte and much lss is known. The ex—
istence of a sharp transition has not been rigorously proved but estin ates of
the thresholds have been found : @) 7 43 [B5]. M oreover, som e rigorous
lower and upper bounds to . (3) (@f it exists), 1. = 314 and 3. = 451
respectively have been established (see the review articles dedicated to upper
and lower bounds contained in this TCS special issue).

The iInterest in random K-SAT arises partly from the follow ing fact: it has
been observed num erically that hard random instances are generated when
the problem s are critically constrained, ie., close to the SAT /UNSAT phase
boundary [B2,31]. The study of such hard Instances represents a theoretical
challenge towards an understanding of com plexiy and the analysis of exact
algorithm s. M oreover, hard random instances are also a testbed for the op—
tin ization of heuristic (ncom plete) search procedures, which are w idely used
In practice.

Statistical m echanics provides new intuition on the nature of the solutions
of random K-SAT (rMAX-K-SAT) through the introduction of an order
param eter which describes the geom etrical structure of the space of solutions.
In addition, it gives also a globalpicture of the dynam ical operation of search
procedures and the com putational com plexity of K-SAT solving.

41 K-SAT enermy and the partition function.

To apply the statistical physics approach exem pli ed on the random graph
prcblem , one has to identify the energy function corresponding to the K-SAT
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procblem .

T he logical values of an x; can be represented by a binary variabl S;, called
a soin, through the oneto-one m apping S; = 1 (regpectively +1) if x is
fale (resp. true). The random clauses can then be encoded into an M N
matrix Cy In the llowing way :Cy = 1 (respectively + 1) if the clause
E(;\ Includes X; (resp. x3), Cy = 0 othemwise. It can be checked easily that

¥ | CuS; equals the num ber of w rong literals in clause ‘. Consider now the
cost-function E [C ;S ] de ned as the number of clauses that are not satis ed
by the logical assignm ent corresponding to con guration S.

H &
E C;S]: C\iSj_+ K ’ (84)

where (j)= 1 ifj= 0, zero othemw ise, denotes the K ronecker finction. T he
mininum (or ground state GS) E C ] of E C;S], is the lowest number of
viclated clauses that can be achieved by the best possible logical assignm ent
R3].E [C ]isa random variabl that becom es highly concentrated around its
average value E g g ﬁ] In the large size lim it 36]. The htter is accessble
through the know ledge of the averaged logarithm of the generating function
X
zEl= exp ( EC;SFT) 85)

S

since

Egs= T lgZ[l+0 @) ; (86)

when the auxiliary param eter T is sent to zero.Being the m inin al num ber of
viclated clauses, Eg s equals zero In the sat region and is strictly positive in
the unsat phase. T he know ledge ofE ¢ 5 asa function of therefore determ nes
the threshold ratio K ).

42 The average over the disorder.

T he calculation of the average value ofthe logarithm ofthe partition function
In (86) isan awkward one. To circum vent this di culyy, we com pute the n th
mom ent ofZ for ntegervalued n and perform an analytic continuation to real
n to exploit the dentity Z C P = 1+ nlgZ C ]+ O @?).The n® m om ent of
Z is obtained by replicating n tim es the sum over the spin con gurations S
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and averaging over the clause distrioution R3]

X X
ZEr= exp EC;seFT ; @7)

S1;52;:80 a=1

which in tum m ay be viewed as a generating finction in the variablk e 7.

In order to com pute the expectation values that appear In eg.(87), one notices
that each individual term

11X
z[fS%gl= exp T E [ ;S?] 88)

a=1

factorises over the sets ofdi erent clauses due to the absence ofany correlation
In their probability distribution. Ik follow s

z[fS°gl= (x ES*g)" ; 89)

w here each factor is de ned by

1% ’y ’
x [£S°gl= exp T CiS§+ K ; (90)

a=1 i=1

N

w ith the bar denoting the uniform average over the set of 2% x vectors ofN
com ponents C; = 0; 1 and of squared nom equalto K .
R esorting to the identity,
|
y ’ Y
CiS{+K = S+ Co (91)
=1 =C 360

1 X 1 A 1
[fsS?gl= — — — S2 + C (92)
K g oK N K &p T i :

Cr;:uCk= 1 I pepik =1 a=11'*=1

up to negligble O (1N ) contrbutions.

The averaged tetmm In the rhs. of (87) depends on then N spoin values
only through the 2" occupation fractions x (~) labeled by the vectors ~ with
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n binary com ponents; x (~) equals the num ber (divided by N ) of labels 1 such
that S§ = 9¢,8a= 1;::;n. &k Pllowsthat x [ES®gl= x Kk]where

To lradingorderin N (eg., by resorting to a saddle point integration), the nal
expression ofthen® moment ofZ can bewritten asZ C P ’ exp( N £5,=T)
where f; istheoptinum (in fact them ininum for integernn) over allpossble
xs of the functional R3]

1 X
fkl= ek]+ T x(~)logx (~) ; (94)

w ith

[ 115 : (95

N ote the sin ilarities between equations (94) and (70).W hik In the random
graph or Pottsm odel case  took on g values, the K-SAT m odel requires the
Introduction of 2" vectors ~ . In both cases, an analytic continuation of the
free-energy to non Integer values of g orn has to be perform ed. F inally, note
that the optimum of f ful Isx (~) = x( ~) due to the uniform distribution
ofthe disorder C .

4.3 O rder param eter and replica-sym m etric saddle-point equations.

The optin ization conditions over f k] provide 2" coupled equations for the
xs.Notice that £ is a sym m etric functional, nvariant under any perm utation
ofthe replicas a, as is evident from equation (87).An extremum m ay thusbe
sought in the socalled replica symm etric RS) subspace of dimension n + 1
where x (~) is left unchanged under the action of the sym m etric group. In the
Iim tof nterest, T ! 0, and w ithin the R S subspace, the occupation fractions
m ay be conveniently expressed as the m om ents of a probability density P (m )
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over the range 1 m 1 R3],

X( 17 273235 p)= dm P m) —_— : (96)

P (m) is not uniguely de ned by (96) for integer values of n but acquires
som e precise m eaning n then ! 0 lin it. It is the probability density of the
expectation values of the soin variables over the set of ground states. C onsider

mininum E [C ]ofthe cost-finction E [C ;S ], that isthe solutionsoftheM AX —
SAT problkm de ned by F . Then de ne the average m agnetizations of the
Sons

® .
1% 50, ©7)
0

=1

m;=

over the set of optim alcon gurations.CallH (C ;m ) the histogram ofthem ;s
and H n ) its quenched average, ie., the average of H (C ;m ) over the random
choices of the formulae F . H m ) is a probability density over the interval
1 m 1 giving Infom ation on the distrbution of the varables induced

by the constraint of satisfying all the clauses. In the absence of clauses, all
assignm ents are solutions and all m agnetizations vanish: H m ) = m ) and
variables are not constrained. O ppositely, variables that always take the sam e
value In all solutions, if any, have m agnetizations equalto +1 (or 1):such
variables are totally constrained by the clauses.

A sdiscussed in ref. 23], ifthe RS solution is the globaloptinum of (94) then
H ) equals the above mentioned P (m ) n the lim i of hrge sizesN ! 1 .
T herefore, the order param eter arising in the replica calculation re ects the
\m icrosoopic" structure of the solutions ofthe K -SAT problem .

At this stage of the analysis it ispossble to perform the analytic continuation
n ! 0 since allthe functionalshave been expressed in term ofthe generic num —
ber of replicas n. Such a process leads to a sselfconsistent functional equation
for the order param eter P m ), which reads

P ) 1 z 4 u]n 1+ m
= u cos —
1 m? ) 2 1 m
2 3
ZlKYl u
exp4 K+ K dm \P (m .) cos EhA(K T (98)

1 =1
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w ith

KY 1 l+m\
Ag 1y Ag pH(fm.g; )=1+ ( 1) > ; (99)
=1
and 1=T . T he corresponding replica sym m etric free{energy density reads
Zl.f(
Ft (iT)=h2+ (1 K) dm P m ) A g,
1 =1
K ZlKY 1
+ — dm P m.) A g 1
2 1
L=
1%
5 dmP m)h@ m?) : (100)

1

Tt can be checked that equation (98) is recovered when optin izing the free-
energy functional (100) over all (even) probability densities P m ) on the n—
terval H,1].

44 The sinpk case ofK=1.

Before entering In the analysis of the saddlepoint equations for general K ,
it is worth considering the sinpl K = 1 case which can be solved either by
a direct com binatorialm ethod or w ithin the statistical m echanics approadc.
Though random 1-SAT does not present any criticalbehaviour (for nie ),
its study allow s an intuitive understanding of the m eaning and correctness of
the statistical m echanics approadch.

ForK = 1,asamplk ofM clausescan bede ned com plktely by giving directly
the num bers t; and f; of clauses In posing that a certain Boolkan variable S;
m ust be true or false respectively. T he partition function corresponding to a
given sam ple reads

bl
7 [ffgl= €@ %+e B) ; (101)

=1
and the average over the disorder gives

X M !
o———— Iz [t fg]
fryifig 1 (G ifi)

lJnZ[ftf 1= !
N 9T X
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1
=h2 —+ e Li()Inh oosh > ; (102)
o1

where I, denotes the I m odi ed Bessel fiinction. T he zero tem perature lim it
gives the ground state energy density

eGs()=§D- e () e Li()] (103)

and the ground state entropy density

Sss()=e Io() h2 : (104)

Forany > 0, the ground{state energy density is positive and therefore the
overall Boolean form ula is false w ith probability one. A 1so, the entropy density
is nie, ie., the number of m Inin a of the energy orany is exponentially
large. Such a result can be understood by noticing that there exist a fraction
of unconstrained variables e Ip( ) which are sub fct to equal but opposite
constraints t; = f;.

T he above resu s are recovered In the statisticalm echanics fram ew ork, thereby
show ing that the RS Ansatz isexact forall and whenK = 1.

T he solution of the saddlepoint equation (98) can be found for any tem pera-
ture T lading to the expression

4 M
Pm)= e I.() m tanh? : (105)
=1
In the Iimitofinterest ! 1 ,this formula reads
1
Pm)=e Ip() (m)+§(l e Ip())( m I+ @+ 1)) :(106)

As shown in gure 3, the fraction of unconstrained varables is sin ply asso—
ciated w ith the unfrozen soins and thus gives the weight of the {function
atm = 0.0n the contrary, the non—zero value of the fraction of violated
clauses, proportional to the ground-state energy density, is due to the pres—
ence of com pltely frozen (over constrained) spins ofm agnetizationsm = 1.
Such a feature rem ains valid forany K .
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Fig. 3. Energy density (oold line) and entropy density (thin lne) versus 1n a
random 1-SAT formula, n thelmit N ! 1 .

45 Satphase: structure of the space of solutions.

W e start by considering the sat phase.A n Interesting quantity to look at isthe
typical num ber of solutions of the random K -SAT problem ; this quantity can
be cbtained from the ground state entropy density sgs ( ) given by eg.(100)
nthe ! 1 Ilimit.

In the absence of any clauses, all assignm ents are solutions: sgs ( = 0) =
In2. W e have com puted the Taylor expansion of sg5 ( ) In the vichiy of

0, up to the ssventh order In .Resuls are shown In Figure 4. It is
found that sgs ( c = 1) = B8 and sz ( = 42) = 1 for 2-SAT and 3-SAT
resoectively : just below threshold, solutions are exponentially num erous. T his
result is con m ed by rigorous work [B7].

M ore involved calculations, including replica sym m etry breaking (RSB ) e ects

28], have shown that the value of the entropy is insensitive to RSB In the sat
phase. Therefore the RS calculation provides a quite precise estin ate of the
entropy (elieved to be exact at low  ratios, see Talagrand’s paper in this
volum e for a discussion) .

R ecent analytical calculations for 3-SAT P8] (also con m ed by num erical in—
vestigations) Indicate that the R S theory breaksdown ata de nite ratio zgp

below ., where the solutions start to be organized into distinct clusters. The
m eaning of this statem ent is as follow s. Think of the space of spins con gu-—
rations as the N -din ensional hypercube. O ptin al assignm ents are a subset of
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Fig. 4. RS estim ate for the entropy density in random 2-SAT and 3-SAT below
their thresholds. RSB corrections due to clistering are absent n 2-SAT and very
anall wihinh few a percent) in 3-SAT . The dots represent the resuls of exact
enum erations n gn all system s N ranging from 20 to 30, see ref. R2])

the set of 2" vertices on the hypercube. R eplica sym m etry am ounts to assum —
ing that any pair of vertices are a s. separated by the sam e H am m ing distance
d, de ned as the fraction ofdistinct spins in the corresponding con gurations.
In other words, solutions are gathered in a single cluster, of diam eter dN .
RSB varational calculations 28] show that this sim plifying assum ption isnot
generally true in the whole sat phase and that another scenario m ay take place
close to threshold:

Below rgsp the space of solutions is replica symm etric. There exist one
cluster of solutions characterized by a single probability distribution of local
m agnetizations. The Hamm ing distance d is a decreasing function of ,
starting at d(0) = 1=2.

At ggp ' 40, the space of solutions breaks into a large number (oly—
nom ial in N ) of di erent clusters. Each cluster contains an exponential
num ber of solutions. The typical Hamm ing distance d, between solutions
belonging to di erent clusters is close to 03 and ram ains nearly constant
(it is slightly decreasing) up to ., indicating that the centers of these clus-
ters do not m ove on the hypercube when m ore and m ore clauses are added.
W ithin each cluster, solutions tend to becom e m ore and m ore sim ilar, w ith
a rapidly decreasing intra—cluster Ham m ing distance d; .

Figure 5 provides a qualitative representation of the clustering process. T he
fact that the H am m ing distance can take two values at m ost is a direct conse—
quence ofthe RSB Ansatz. In reality, the distance distrbution could bem ore
com plicated. T he key point is that statisticalm echanics calculations strongly
support the idea that the space of solutions has a highly organized structure,
even in the sat phase.
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Fig.5.VarationalR SB estin ate forthe clustering of solutionsbelow .for3 SAT.
d is the typical Ham m ing distance between solutions. T he splitting of the curves
at ' 4 corresponds to clustering. T here appear two characteristic distances, one
w ithin each cluster and one between solutions belonging to di erent clisters.

Reoently, the exact solution of the balanced version of random K-SAT [38]
has provided a concrete exam ple In which the appearance of clustering before
the sat/unsat transition can be studied both analytical and num erically. N ote
that this phenom enon is strongly rem iniscent ofwhat happens in som e form al
m ultidayer neural networks m odels [B].

4.6 Unsat phase: the backlone and the order of the phase transition.

In the unsat phase, i is expected that O (N ) variables becom e totally con—
strained, ie.take on the sam e value in allthe ground states. Such a hypothesis,
which of course needs to be veri ed a posteriori, corresponds to a structural
change In the probability distrdbbution P (m ) which develops D irac peaks at
m = 1.

In the Iim it of nterest (T ! 0), to describe the accum ulation of the m agne-
tization on thebordersofitsdomain m 2 [ 1;1]), we introduce the rescaled
variable z, In plicitly de ned by the relation m = tanh (z=T ), see equation
(106).Calling R (z) the probability density of the zs, the saddlepoint equa—
tions read

s
du
R (z)= > cos(uz) exp
1

K
2K 1

+ K (107)
4 KY 1
o =1

T he corresponding ground state energy density reads, see (100),
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dzR z)min@;z15::552 1) dzR (z)z : (108)

x B 7
2
o =1 0

Tt iseasy to see that the saddle{point equation (107) is in fact a self{ consistent

dentity forR (z) in the range z 2 [0;1] only. O utside this interval, equation
(107) ism erely a de niion of the functional order param eterR .

A s discussed In detail in ref. 23], equations (107) adm it an In nite ssquence
ofm ore and m ore structured exact solutions of the form
! \

R (z) = . z - ; (109)
= 1 d

having exactly g peaks in the interval 0;1[ whose centers are z. = é, V=
0;:::;9 1.The corresponding energy density reads, from (109) and (108),

2 0 1
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Though there m ight be continuous solutions to (107), it is hoped that the
energy of ground state can be arbitrarily well approxin ated by the above
large g solutions.

T he location ofthe sat/unsat threshold can be obtained forany K by looking
at thevalue of beyond which the ground state energy becom es positive. For
2 SAT the exact result Q) = 1 is recovered whereas for K > 2 the RS
energy becom espositive at a valuieof (g., (3)’ 46 asshown in gure 6)
which is sightly higher than the value estin ated by num erical sim ulations.

4.6.]1 A hint at replica symm etry breaking.
The RS theory provides an upper bound for the thresholds for any K > 2,

w hereas the exact values can be obtained only by adopting a m ore general
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Fig. 6.R S estin ate for the ground state energy density, £., the number of violated
clhuses divided by N In random 3-SAT . The prediction is given as a function of ,
for g land Inthelimi N ! 1 .See ref. R3] for details.

functional form for the solution of the saddlepoint equations which explicitly
breaks the symm etry between replicas (see ref. R7] for a precise discussion).
Such an issue is indeed a rkevant, and largely open, problem in the statistical
physics of random system s [39{46].

T he general structure of the fiinctional order param eter which describes so—
Iutions that break the pem utational sym m etry am ong replicas consists of a
distroution ofprobability densities: each Boolkan variable uctuates from one
cluster of solutions to another, lkading to a site dependent probability density
of lIocal Boolkan m agnetizations. T he distribution over all di erent variables
then provides a probability distrioution ofprobability distributions. T he above
schem e can In principle be iterated, leading to m ore and m ore re ned kvels
of clustering of solutions. Such a scenario would correspond to the so-called
continuous RSB scheme [l]. However the rst step solution could su ce to
capture the exact solution of random K-SAT, as happens in other sim ilar
random system s [1].

4,62 Abruptvs. an ooth phase transition.

O fparticular Interest are the fully constrained variables { the so called back-
Ione com ponent {, that is the x;s such thatm ; = 1.W ihin the RS Ansatz,
the fraction of fully constrained variabls ( ;K ) can be directly com puted
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Fig.7.Num erical estin ates of the value of the backbone order param eter in 2-SAT
and 3-SAT .T he cuxves R5] are obtained by com plete enum erations in sm all system s
(up to N = 500 variabls for 2-SAT and N = 30 for 3-SAT) averaged over m any
sam ples.

from the saddlepoint equations. C kearly, ( ;K ) vanishes in the SAT region
otherw ise the addition of N new clauses to F' would lad to a contradiction
wih a nite probability orany > 0.Two kinds of scenarii have been found
when entering the unsat phase. For 2-SAT, ( ;2) snoothly increases above
the threshold @) = 1.For 3-8SAT (and m ore generally K 3), (;3) ex—
hibits a discontinuous jump to a nitevalue . slightly above the threshold.A

nite fraction ofvariablesbeocom e suddenly over constrained w hen crossing the
threshold! Num erical results on the growth of the badkbone order param eter
aregiven in gure 7.

4.6.3 The random 2+ p-SAT model

The sat/unsat transition is acoom panied by a smooth (respectively abrupt)

change In the badckbone com ponent and therefore In the structure of the solu-
tions of the 2-SAT (resp.3-SAT) problm . A better way to understand how

such a change takes place is to consider a m ixed m odel, which continuously
Interpolates between 2-SAT and 3-SAT .The socalled 2+ p-SAT model R5]
Includes a fraction p (resp.1 p) ofclauses of length two (resp. three).2-SAT
is recovered forp = 0 and 3-SAT when p= 1.The RS theory predicts that,
at the sat/unsat transition, the appearance of the backbone com ponent be—
com esabruptwhenp> py /7 04 (see gure 8).0n the contrary, when p < pq,
the transition is an ooth as in the 2-SAT case. Such a scenario is consistent
w ith both rigorous resuls (see the paper by A chlioptas et al. in this volum e)

based on the probabilistic analysis of sin ple algorithm and w ith varational
calculations R8]which Include RSB e ects.
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Fig.8. . () versusp in random 2+p-SAT.Up topg ' 4 )= 1= p), In
agreem ent w ith rigorous resuls. For p > pg the transition becom es discontinuous
In the badckbone order param eter and the RS theory provides an upper bound for

c ) which iswithinh a few percent of the results of num erical sim ulations (dots)
25,26].

An additional argum ent in favor of the above picture is given by the analysis
ofthe niewsizee ectson Py ( ;K ) and the em ergence of som e universality
forp < py. (The de niion of Py was given when we began discussing the
properties of K-SAT . A detailked account of these ndings may be found
In R5,26]. Forp < py the size of the critical window where the transition
takes place is observed to ram ain constant and close to the value expected for
2-8AT . The critical behaviour is the sam e as for the percolation transition in
random graphs (see also ref. @B7]).Forp > pg the size of the w indow shrinks
follow Ing som e non-universal exponents toward is statistical lowerbound [48]
but num ericaldata do not allow forany precise estin ate. T he balanced version
of2+ p-SAT can be studied exactly and both thephase diagram and the critical
exponents tum out to behave very sim ilarly to the onesof2 + p-SAT [49].

A swe shall conclude In the next section, the know ledge of the phase diagram

ofthe 2+ p-SAT m odel is very precious to understand the com putational com -
plexity of 3-SAT solving.
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4.7 Computational com pkxity and dynam ics.

Num erical experin ents have shown that the typical solving tim e of search
algorithm sdisplays an easy-hard-easy pattem asa function of with apeak of
com plexity close to the threshold. Since com putational com plexiy is strongly
a ected by the presence of a phase transition, it is appropriate to ask whether
the nature of this phase transition plays an in portant role too. The peak
In the search cost seam s indeed to scale polynom ally with N (even using
D avisP utnam -lke procedures) for the 2-SAT problem , where the transition
is continuous, and exponentially w th N in the 3-SAT case, forwhich the birth
of the badkbone is known to be discontinuous.

P recise num erical sim ulations R5,26] on the com putational com plexity of sok—
Ing critical 2+ p-SAT Instances support the view that the crossover between
polynom ialand exponential scalings takes place at py, the very value ofp ssp—
arating continuous from discontinuous transitions. T hough nvestigated 2+ p—
SAT instances are all critical and the problem itself is NP -com plte for any
p > 0, it is only when the phase transition is abrupt that hardness shows
up (Icluding the fastest known random ized search algorithm s such as walk-—
sat [BO]).

To understand why search algorithm s require polynom ialor exponential com —
putational e orts, statistical studies of the solutions cannot be su cient. A
full dynam ical study of how search procedures operate has to be carried out.
Such studies had already been initiated by m athem aticians in the easy region,
where search tree are particularly sin ple and aln ost no backtracking occurs.
Franoco and Chao [Bl] have In particular analyzed the operation of DP algo-—
rithm s w ith di erent kinds of heuristics and have shown that at am all values
of the typical com plexity is lnear in N .

R ecently, the whole range ofvaluesof , including the hard phass, hasbeen in—
vestigated, using dynam ical statisticalm echanics tools [(2].D uring the search
process, the search tree built by DP grow s w ith tin e and this grow th process
can be analyzed quantitatively. T he key idea is that, under the action ofD P,
3-SAT Instances are tumed into m ixed 2+ p-SAT instances (som e clauses are
sin pli ed into clauses of length two, other are satis ed and elin inated). The
param eters p and  of the instance under consideration dynam ically evolve
under the action ofD P . T heir evolution can be traced back as a tractory In
the phase diagram of the 2+ p-SAT m odelof gure 8.D egpending on whether
tra gctordes cross or not the sat/unsat boundary, easy or hard resolutions take
place, and the location of crossings can be used to quantitatively predict the
scaling of the resolution tin es B2].
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5 The traveling salesm an problem and the cavity m ethod

In Section 3, we derived partition functions using statistical physics repre—
sentations based on analytic continuations. Furthem ore, we used the saddlke
point m ethod on these partition functions and that allowed us to reproduce
a num ber of exact results. Then we m oved on in Section 4 and applied these
m ethods to m odels w ith quenched disorder. H owever, because of the greater
com plexity of such m odels, we resorted to an additional tool of statistical
physics: the replica m ethod. Though this kind of approach is non-rigourous,
it isbelieved that it provides new exact results for a num ber ofdi erent prob—
Jem s, In particular in optim ization.

T he replica m ethod is not the only technical tool that physicists have devel-
oped in the past years. A nother approach, called the caviyy m ethod, will be
exposed In the present Section. T he cavity approach gives, at the end of the
com putation, the sam es results as the replica approadch.Y et the assum ptions it
relies upon tum out to bemuch m ore intuitive and its form alian iscloserto a
probabilistic theory form ulation.Because ofthis, it can be used to prove som e
ofthe results derived from statisticalm echanics; see [B3,54] for recent progress
In this direction. In the rest of this section, we show how this caviy m ethod
can be used to \solve" a case of the Traveling Salesm an Problm (TSP).

The TSP isprobably the world’sm ost studied optin ization problem . A susu-—
ally form ulated for a weighted graph, one considers all H am iltonian cycles
or \tours" (closed circuits visiting each vertex once and only once) and asks
for the shortest one. The total length is given by the sum of the weights or
\lengths" ofthe edgesm aking up the tour. Since the H am iltonian cycle prob-
Jlem isNP-com plete, certainly the T SP isvery di cult.H owever, in m ost cases

considered, the graph is com plete (there is an edge for each pair of vertices),
50 the di culty lies In detem Ining the shortest tour.W ithout further restric—

tions on the nature of the graph, the TSP isNP-hard [15]. O ne speaks of the
asymm etric T SP when the edges on the graph are ordented, and of the sym —
metric TSP for the usual (Unorented) case. Both types are frequently used
m odels in scheduling and routing problm s, though the industrial applications
tend tom ove away from the sim ple form ulations considered in academ ia.The
symm etric T SP s are further divided into \m etric" and non-m etric according
to whether or not the trianglk nequality for the edge lengths is satis ed. The
so—called Euclidean T SP is probably the best known T SP and it ism etric; the
vertices are points (cities, or sites) in the plane, and the length of the edge
connecting cities i and j is given by the Euclidean distance between iand j.
Even wihin this restricted class of weighted graphs, the problem of nding
the optinum tour rem ains NP -hard [15].

The TSP has been at the forefront of m any past and recent developm ents
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In com plexiy. For nstance, pretty m uch all general purpose algorithm ic ap—
proaches have been rst presented and tested for the T SP. T his tradition be-
gihsback in 1959 when Beardwood et al. [B5] published tour lengths ocbtained
from hand-drawn solutions! Later, the idea of optin ization by local search
was Introduced in the context ofthe TSP by Lin [56], and simulated anneal-
Ing B7,58]was st tested on TSP s also. The list continues w ith branch and
bound [(9], until today’s state of the art algorithm s based on cutting planes
(oranch and cut) [60], allow Ing one to solve problem s w ith several thousand
cities [61]. M any physicists have worked on these kinds of algorithm ic ques-
tions from a practicalpoint ofview ; In m ost cases their algorithm s Incorporate
concepts such as tem perature, mean eld, and renom alization, that are stan—
dard In statistical physics, leading to som e of the m ost e ective m ethods of
heuristic resolution [62]. It m ight be argued that these approaches can also be
used to in prove the heuristic decision rules at the heart ofexact m ethods (for
Instance in branching strategies), but m ore work has to be done to determm ine
w hether this is lndeed the case.

T he w idespread acadeam ic use ofthe T SP also extends to other issues In com —
plkxity. For instance, there has been m uch recent progress in approxin ability
of the TSP [63]. However statistical physics has nothing to say about worst
case behavior; Instead i is relevant for describing the typicalbehavior arising
In a statistical fram ew ork and tends to focus on sslfaveraging properties. T hus
we are lead to consider T SP s w here the edge lengths between vertices are cho-
sen random ly according to a given probability distribution; the corresponding
problem is called the stochastic T SP.

5.1 The stochastic TSP.

Statistical physicists as well as probabilists are not interested per-se In any
particular instance of the TSP, rather they seek \generic" properties. This
m Ight be the typical com putational com plexity or the typical length of TSP s
with N cities. It is then necessary to consider the stochastic T SP where each
Instance (the speci cation ofthe weighted graph) is taken at random from an
ensam ble of instances; thisde nes our \quenched disorder" . A though onem ay
be Interested In m any di erent ensambles, only a f&w have been the sub fct
of thorough Investigation. Perhaps the m ost studied stochastic TSP is the
E uclidean onew here the cities are random ly distributed in a given region ofthe
plane B5].Thisisa \random point" ensamble.A notherensem ble that hasbeen
m uch considered consists in having the edge lengths allbe Independent random
variables, corresponding to a \random distance" ensemble. (T his term nology
ism iskading: the problem isnotm etric as the trianglk nequality is generally
not satis ed.) Random distance ensam bles have been considered for both the
symm etric [64] and the asymm etric [65] T SP.
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For any of these ensambles, one can ask for the behavior of the optinum

tour length, or consider properties of the tour itself. M ost work by proba-—
bilists has focused on the rst asgpect (see [14] fora review ), starting w ith the
sem nalwork of Beardwood, H alton, and Hamm erskey [B5] thereafter referred
to as BHH). Those authors considered the Euclidean ensamble where points
are random Iy (@nd independently) distrbuted in a bounded region of d-
din ensional Euclidean space according to the probability density & ) .G Iven
anot too shgular ,BHH proved that the optin um tour length, Lg , becom es
peaked at large N , and that w ith probability oneasN ! 1

Z

Ly, @ ! T x)dx 111)

N1 1=d

Here is a constant, independent of , depending only on the din ension of
Soace. Som e comm ents are In order. The rst is that the relative uctuations

of the tour length about itsmean tend to zero asN ! 1 , allow ing one to

m eaningfully de ne a \typical" or generic tour length at large N . This fin—
dam ental property was initially proven using sub-additivity properties of the

tour length, but from a m ore m odem perspective, it ©llow s from considering

the passage from N to N + 1 cities, corresponding to a m artingal process

(see [66]). The s=cond point is that the N dependence of this typical length

is such that the rescaled length Ly =N ! ™¢ converges in probability at large

N . In the language of statistical physics, this quantity is just the ground state

energy density of the system where one increases the volum e lnearly with

N so that the m ean density of points is N -independent. In general such an

energy density is expected to be sslfaveraging, ie., have a wellde ned large

N Iin i, ndependent of the sequence of random ly generated sam ples (W ith

probability one) asin Eq.(111).In som e problam s, the selfaveraging property

can be derived, while it w ill sin ply be assum ed to hold when using the cavity

approach.

Another comm ent is that given Eq.(111), the essence of the problam is the
sam e for any (X ); it is thus comm on practice to form ulate the Euclidean
TSP using N points laid down independently In a uni square (or hypercube
ifd > 2), the distrbution being unifom .

There has been much work [14] on obtaining bounds and various estin ates
of the constants (d), but no exact results are known ford > 1. However,
Rhee [67] has proved that

@) 1
o= ! p— as d! 1 112)
d 2e

From the point of view of a statistical physics analysis, the di culyy in com —
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puting (d) arses from the correlations am ong the point to point distances.
Indeed, In the Euclidean ensamble, there are dN random variables associated
w ith the random positions ofthe points, and N N 1)=2 distances; these dis-
tances are thus highly redundant (and a fortiori correlated) . W hen these dis—
tances are instead taken to be random and independent, the \caviy" m ethod
of statisticalphysics allow s one to perform the calculation ofthe corresponding
.Because of this, we w ill focus on that quenched disorder ensemble.

In the \independent edgedengths ensamble" (as opposed to the independent
points ensam ble), it is the distances or edge lengths between points that are
independent random variables. Let d;; be the \distance" between points i and
j (the problam is not m etric, but we nevertheless follow the standard nom en—
clature and refer to di; as a distance). In the m ost studied case, d;y is taken
from a uniform distribbution n 0;1]. From a physicist’s perspective, it is nat-
ural to stay \clos=" to the Euclidean random point ensamble [64] by taking
the distrdbution of d;; to be that of two points random ly distributed in the
uni square ypercube when d > 2). The independent points and indepen-—
dent edgeJengths ensembles then have the sam e distrbution for ndividual
distances, and in the short distance and Jarge N 1im it they also have the sam e
distrbution for pairs of distances. Them ain di erence between the ensam bles
thus arises when considering three or m ore distances; in the Euclidean cass,
these have correlations as shown for instance by the trangle nequaliy.

The m ninum tour length in these random edge-lengths m odels is expected
to be slfaveraging; the m ethods of Rhee and Talagrand [66] show that the
distribution of T SP tour lengths becom es peaked at large N In this case, but
currently there is no proof of the existence of a 1im it as in the Euclidean case.
N evertheless, this seem sto be Just a technicaldi culy, and it isexpected that

the rescaled tour length indeed hasa lim it at arge N ;we thusde ne (d) In
analogy to the expression in Eq.(111) w ith the understanding that the sare
di erent in the ndependent points and independent edge—lengths ensam bles.

52 A statistical physics representation.

Follow ing the notation of Section 2, we Introduce the generating or partition
fiinction
X L()

exp ( T ) 113)

z (T)

where is a pem utation of the vertices and detemm ines uniquely a tour. In
e ect we have identi ed con gurations w ith tours, that is w ith pem utations;
furthem ore, the energy of a con guration is sin ply the length of its tour.
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T his construction am ounts to introducing a probability e ¥ =7 for each
tour.W hen T = 1 , all tours are equally probable, whie when T ! 0 only
the shortest tour(s) survive.A sbefore, T isthe tam perature, and the averages
hidy using this probability distribution are the them al averages. From them

one can extract m ost quantities of Interest. For instance

1
<L>r= - 114)

gives the m ean tour length at tem perature T .W e then have for the TSP tour
Jength:Lmjn= l"mT! o< L >r.

T he generating function Z requires perform ng a sum over all pem utations
and is a di cult ob¥ct to treat. To circum vent this di culty, a di erent
representation is used.W e rst ntroduce what is called a \spin" S, having
now m-components, S , = 1;:uym . These com ponents are real and satisfy
the constraint S )>=m .Such a spin can be identi ed wih a point on a
sohere In m -dim ensional Euclidean space. Note that when m = 1, we recover
the kinds of spins considered in the previous sections. Now for our statistical
physics representation ofthe TSP, a spin S; is associated to each vertex V; of
the graph, i= 1;:5N .DeneRy; = e 95=T and introduce a new generating
function
z X
G@T;m;!)= dS,dS, ::dSy exp (! RiS: 9 (115)

i<j

In thisexpression,  isthe usualscalar product, and dS is associated w ith the
niform m easure on the sphere In dim ension m .W e have nom alized it so that
dS = 1;then dSs S = , .Theclaimn isnow that the initial generating

function Z is equivalent to using an analytic continuation of G In m :

Iim © o L0 116
Ay exp( =) a16)

C om paring to the Pottsm odel of Section 3, we see that m is analogous to the
P otts param eter g: the partition function is de ned for integer values of the
param eter, and then has to be analytically continued to real values.

T he derivation ofequation (116) isbased on show ing the equality ofboth sides
when perform ing a power series in 1=T . F irst expand the exponential in the
Integral:

2 3
Z X 12
G = dS,dS, ::dSy 41+ ! ,Rij (S §+ ? S 117)

i< g
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Now Integrate temm by tem ; each resulting contribution can be associated w ith
a subgraph (ut where edges can appearm ultiple tin es) whose weight is given
iIn tem s of its edges and its cycles. (N ote that each vertex must be covered
an even num ber of tim es because the Integrand is even under S; ! S )
Each edge E ;5 appearing In the subgraph contrbutes a m ultiplicative factor
R to its totalweight. A further factor com es from the loops (cycles) of the
subgraph. It is not di cul to see that each such loop lads to a factorm
in the total weight because of the integration over the m -din ensional spins.
Thusasm ! 0 only subgraphs having a singke loop survive n G and then
vertices cannot belong to m ore than two edges. Finally, when ! ! 1 , the
Joops w ith the m ost vertices dom Inate, leading to tours. Thus ifwe rst take
m ! Oandthen ! ! 1 ,the expansion ofG 1 reduces to a sum over all
the tours of the graph. Furthem ore, the weight of each tour is proportional
to the product of the R ;3 belonging to the tour, so that one recovers the total
weightm !N exp( L=T) where L isthe tour length.In conclusion, Eq. (116) is
Justi ed to allorders in 1=T , and thus forany niteN i holdsasan dentity.

W hether one uses Z or G 1 does not m atter as they di er only by an
Irrelevant m ultiplicative factor wWe assume m and 1=! In nitesinal). From
G 1, one can com pute the optimum tour and not just the optimum tour
length; indeed, at nite tam perature, the probability that a tour contains the
edge E ;3 is given by them ean occupation ofthat edge.D e ning n;5 = 1 ifthe
edge is used by the tour and n;; = 0 othemw ise, the probability of occupation
is

where from now on hi; means them al average using either Z or G 1;
the one that is used should be clar from the observabl considered. Now if
we take In Eq. 118 the Imit T ! 0, we nd those edges that are occupied

and thus the optin al tour (@ssum ing it is unique). Note also that Eqg. (118)

has a sinple justi cation: hS;  §i; has a num erator whose expansion gives
m!Y =R ;3 tin esthe weighted sum over alltours containing the edge ij, while
the denom inator ism ! tin es the weighted sum over all tours. T he dentity

Eqg. (118) then follow s In m ediately.

5.3 The cavity equations.

The partition finction G 1 gives the \statistical physics" of the TSP for
any given graph.U sing this form alizm to detem ine analytically the optin um

tour In a general case seem s an In possbl task. Neverthelss, G is a good
starting point for follow Ing the passage from N to N + 1 vertices as in a
m artingale process, and the derivation of a recursion in N is the heart of
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the cavity m ethod. The tem caviy com es from the fact that the system at
N + 1 is compared to the one at N by rem oving the N + 1)th soin, thersby
creating a cavity. In gure 9, we have represented in counterclockw ise order
the nearest, next-nearest, etc... neighbors of ste N + 1 which is at the center
of the cavity. Because the total number of spins willbe sometines N and
sometines N + 1, we indicate the number via a subscript on G . Thus for
Instance Gy 1 isto be used when considering quantities for the system w ith
N soins. Now for every quantiy associated wih the system havihg N + 1
Foins, if we integrate explicitly over soln N + 1, we are keft wih quantities
de ned In the system having only N spins. Consider for instance Gy 4+ 1 1
itself. W hen expanding the exponentials depending on Sy +1, we obtain: (i)
term s linear In Sy ;; that Integrate to zero; (i) tem s quadratic in Sy 41 that
upon ntegration give products S; 4§ (iii) higher powers In Sy 41 that do not
contrbute asm ! 0.A sinpl calculation lads to the identity

Gn+1 1 X 0 Zy+1
— =17 Riyn+1Rxka+18Sy  8ip = 7
N

Gy 1

119)

1 i<k N

whereh:j; isa \cavity average", to be taken in the system having only the st
N soins, spin N + 1 being absent. Note that Zy and Zy +; are the partition
functionsofEqg.113 when thereareN and N + 1 vertices; also, it iseasy to see
that one need not restrict the sum to j € k because the tetmm = k vanishes
asm ! 0.

Straightforw ard calculations In this sam e spirit lead to relationsbetween ther-
m alexpectation valuesusing N + 1 spinsand thossusingN soins.For instance

PSys+1ir Gu+i 1= !RyneibSsip Gy 1) (120)



Sin ilarly, one has for the two-soIn average:

X
MWSy+1 & Gns: 1)= !Ryy,1bS; f Gy 1) (121)
j6 1

M ore generally, the num erator n any cbservabl depending on spin N + 1 has
a sin pl expression in tem s of the num erators of cbservables In the absence
of that spin. Furthem ore, one can use Eq. 119 to elim inate all reference to
Gy and Gy, In these relations. The conclusion is that if we know how to
com pute the properties of system swith N spins, we can then deduce those of
system swih N + 1 spins; the cavity m ethod is thus a recursion on N for all
the properties of such a system .

54 The factorization approxim ation.

U nfortunately, these recursion equations cannot be solved, but ket us approxi-
m ate them by neglecting certain correlations. C learly, Sy +1 is strongly corre-
lated w ith is nearest neighbors because the corresponding R s are in portant.
M ore generally, two spins whose pining edge length is short (@re near neigh—
bors) will be strongly correlated because short tours will often occupy that
edge. Thus we m ust and w ill take Into acoount the correlationsbetween Sy 4+ 1
and its near neighbors. H owever, we w ill neglect here the correlations am ong
these neighbors them selves, so that In the absence of Sy 4+ 1, their pint proba—
bility distrdbution factorizes, so that in particular

hS; = S, b, (122)

T his property in plies that replica sym m etry is not broken, and this is lndeed
believed to be the case for the T SP . Factorization m akes the caviy approach
particularly tractable, aswe shall soon see. (In system s where replica symm e~
try is broken, it is necessary to nd ways to param etrize these correlations;
this is quite com plex and not well resolved, even w ithin the statistical physics
approach.)

A second point concems the m eaning of hSy 4 13y . Gy 41 is rotationally sym —
m etric; there is no preferred direction, so the them al average of any spin
vanishes. Note however that we have seen a sim ilar situation before in the
context of the Ising m odel (c.f. Section 2). Here as before, the Interactions
tend to align the spins. Thus, when the tem perature is low enough, we ex—
pect to have a spontaneocus m agnetization when N ! 1 .Tom ake thism ore
explicit, we can Introduce a an allm agnetic eld, ie. an Interaction temm of
thetype h ;Yoreach spin;wethen takethelm it N ! 1 and only after
take h ! 0.Thismagnetic eld breaks the rotational symm etry, and so the
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system has a preferred direction, even after the eld has been rem oved. By
convention, we shall take this direction to be along the st axis.

G ven these two ram arks, we can use the exact equations (120) and (121)
to obtain the cavity equations assum ing factorization. D enoting by S! the
com ponent along the rst axis ofS, one has

RSt
\ = JN + 12425
PSy, dr = SRR ARk e (123)
. 1 3<x n Rymw+1Rkn+1 hgjlr hS i

Sin ilarly, one has for the two-spoin average (see Eqg. 118):

P

o:Roy .1 BSi
76 JN+1 le _ (124)

T 1.9
My +1ir = Ryg+10S7ip P = = 517 ISl
1 9<k N BN +18kn+10051 kAT

These are the standard caviy recurrence equations, rst derived by M ezard

and Parisi [68].W e also note that in this factorization approxin ation, one has
. .0

hSy 41 ar = hgl\lullrhgilr

55 TheN ! 1 andT ! 0 lim its.

T he Jast step ofthe cavity m ethod is to assum e that the recurrence equations,
when oconsidered in the disorder ensam ble, give rise to a stationary stochastic
process when N ! 1 . Consider for Instance the Individual m agnetizations
hS;ir ; they are random variables because the di; them selves are. If we want
them to have a lm iting distrbution at large N, (ie. In physical tem s, to
have a thermm odynam ic lin it), we have to rescale the di; by N '™ or equiva—
ntly set T = TN @ with T xed. (Note that in the case of the Euclidean
T SP, the rescaling of kengths can be interpreted astakingthe Im N ! 1
while keeping the density of points xed, that isby Increasing the size of the
volume lnearly with N .) The inportant point is that the \environm ent"
seen by the spinsm ust have 1im iting statisticalpropertiesasN ! 1 ,and this
translates to having N —-independent statistics for the distances of a soin to its
near neighbors. Then it is assum ed that the probability density of the I’SiliT
converges to a lim ting distribbution P; when N ! 1 . The caviy m ethod
is thus a kind of kootstrap approach where P; is assum ed to exist and it is
determ ined by its stationarity property under the cavity recurrence.

T hat such a stationary lin it exists can bem otivated by the largeN behaviorof
the tour length in the stochastic T SP . In fact, it is expected that allquantities
associated w ith any xed num ber ofedgesw ill converge in the them odynam ic
Iim it, so it should be possible to look at 2, 3, or k edge constructs. At present
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though, because of the technicaldi culy, only the single edge com putations
have been carried out. Fortunately, that is enough for getting the value of

, and allow s one to obtain the so callked link—length distrdoution, ie., the
distribution of the edge lengths appearing In the optin al tours.

Equation (123) wih the condition of stationarity of the stochastic process
Jeads to a com plicated in plicit equation forP, .Fortunately, In the zero tem -
perature lim it Which is where we recover the usual stochastic T SP ), the r=
currence relations are m uch sin pler. Follow Ing K rauth and M ezard [69], one
de nes ; forany vertex 1 (i= 1;:u3N ) via:

125)

One also de nes . analogously using S}, ,i.Now re-order the indices of
the rstN vertices so that

N 1:ddl;N +1 1 Nl:ddZ;N +1 2 2 N9 N1 N 126)

T hen the zero-tem perature lim it ofEq. 123 Jleads to

wi1= by N, a27)

whilke Eqg. 124 show s that the optin um tour uses the edges connecting N + 1
tovertices 1 and 2, ie, Nix+1 = Naxn+1 = 1, allothers are equal to zero.

Ifwe have a stationary stochastic process, Eq. (127) leads to a selfoonsistent
equation for the probability density P ofthe s.W e also see that the random
varisbles ; = N '™diy 4, i @= 1;u3N) ply a findam ental rok. By
hypothesis, they are uncorrelated: the d;y + 1 because we are dealing w ith the
Independent edge—dengths ensamble, and the ; because we have explicitly
neglected the correlations between the spins in the absence of Sy 41 . D enote
by () the probability density of these random variabls; ( ) is uniguely

determ ined In term s ofP , assum ing the distrdbbution ofd;y + 1 given.From here
on, take for sin plicity these edge lengths to be uniform iy distrdbuted In [0;11].
(T his corresponds to the 1-din ensional case d = 1; we refer the reader to [69]
form ore generaldistribbutions.) T he relation between and P then becom es

®) = P )dl (128)

1
N
0

Now a selfoonsistent equation for P is obtained by using the fact that .1
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is the second an allest ofthe N di erent s:

g1 y1
P()=N®N 1) ()( @)au) ( ()du) ¥ ? 129)
1

In the large N lim i, this integral non-linear in plicit equation sin pli es to

¥1

o6 () cl)
G()e where G ()= uP (U )du (130)

P ()= q

P lugging the expression for P into this Jast equation leads to

71
G()= L+ G@)le °® at (131)

T his cannot be solved analytically, but can easily be treated num erically, and
one can obtain m achine precision resuls for G and thus P w ithout too much
e ort.

Assum ng G and P have been com puted, one can nd in a sim ilar way the
distribution ofd; y + 1 and dyy + 1 - For nstance, the distribution of the rescaled
distance N dy i +1 = 1 isgiven by

71
P,EG)= P@ )e®d 132)

T his, along w ith the analogous distribution or d,y + 1, gives the distrbution
ofedge lengths in the optimum tour, and thus also them ean tour length, ie.,
whend= 1,thevaluieof .Krauth andM ezard [69] showed that this constant
could be written In term s ofG alone,

Zl
GO L+G e ®dat (133)

N

and they found = 2:041...Notethatwhen d= 1,assuggested by Eq. (111),
the tour length becom es ndependent of N . This can be understood qualita—
tively by observing that each vertex can connect to one of its near neighbors
that is at a distance O (1N ) .)
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5.6 \Exact" solution in the independent edge—lengths ensem blke.

A s described, the caviy method nvolres an uncontrollhble approxim ation
associated w ith ignoring certain correlations. It isnaturalto ask whetherthose
correlationsm ight in factbe absent in certain ensambles.A sin ple case iswhen
the graph considered is a Caylky tree w ith the root (corresponding to vertex
N + 1) ram oved. T hen the di erent neighbors ofSy ;1 are uncoupled and have
no ocorrelations at all. Unfortunately, this type of graph w ill not do for the
TSP as it has no Ham iltonian cycles, but it can do for other problem s close
to the TSP such asthem ininum m atching problem .

So lt us consider instead the structure of independent edge—lengths graphs.
Locally their properties ressem ble those of Caylky trees, so that wih some
luck the previous reasoning can hold for these types of graphsasN ! 1 .
A Tthough the correlations that were neglected In the cavity calculation will
always be present at nie N in the independent edgedengths m odel, they
have every reason to go to zero asN ! 1 .The justi cation is that the close
neighbors of vertex N + 1 are \in nitely" far from one-anotherwhen N ! 1 .
In the Janguage of tours (rather than spins), this m eans that the probabiliy
for the tour to have an edge connecting two of the nite order neighbors of
vertex N + 1 should go to zero at large N . C learly this is not the case in
the Euclidean stochastic T SP because of the trianglk inequality: the neighbor
of a neighbor is itself a neighbor. But in the independent edge-length m odel,
the neighbors represented In  gure 9 are \far away" from one-anotherw ith a
probability tending towards1 asN ! 1 .Thiskind of random \geom etry" is
then expected to lead to uncorrelated soins am ong the nite order neighbors
of Sy +1 and so the cavity calculation m ay becom e exact asN ! 1 .

A though it is not clear yet that the correlations go away asN ! 1 in the
Independent edge—-Jengths ensam ble, the reasoning above is supported by ex—
tensive sin ulational results. In these kinds of tests, one generates weighted
graphs In the ensam ble of interest, determ ines the optin um tour for di erent
sizes N , and then estin ates the statistical properties in the large N I it.
A 1l such sim ulational studies to date have con m ed the validity ofthe caviy
m ethod. B oth the assum ptions of no replica sym m etry breaking [7/0] and the
predictions for and P (diu +1) have been validated [69,71,70] iIn that way.
A Tthough these tests have lin ited precision in the context of the T SP, m ore
stringent tests [72,73] have been perform ed on m atching problem s. For in—
stance, using the cavity and replica m ethods, M ezard and P arisipredicted [68]
that the length ofa m nimum m atching of N points would have the large N
lin it ?=12 when the d;; are unifom ily distrbuted n D;1]. The num erical
simulations con m this value at the level 0of 0:05% .

T he consensus is thus that the cavity m ethod gives exact results at large N
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for all independent edge—dengths disorder ensambles. But for the physicist,

this is not the only Interest of the cavity m ethod: even as an approxin ation,

it is useful for understanding the e ects of quenched disorder. For instance,

one can ask [69] how bad is the factorization approxin ation when applied

to the Euclidean TSP in d = 2.For that, we com pare K rauth and M ezard’s

cavity prediction (2) = 0:7251:: to the best estin ate from num erical sim u-—
lations [74,71]0:7120 0:0004.W e see that In fact the prediction is quantita—
tively good, and it tums out that this approxin ation becom es even better as

the din ension of space d is increas=d.

5.7 Rem arks on the cavity approach and replica sym m etry breaking.

In som e respects, the cavity m ethod is com plem entary to the replica m ethod,
but both becom e unw ieldy when replica sym m etry isbroken. In the case ofthe
T SP, it tumsout that only the cavity m ethod has allowed a com plete solution,
but that m odel has no replica symm etry breaking. W hen replica sym m etry

breaking does arise, the situation is farm ore com plex, and to date only m odels
de ned on graphsw ith in nite connectivity have been solved exactly (though

not rigorously) . N evertheless, recent progress [75] in using the cavity m ethod
m ay soon lead to \exact" solutions of otherm odels such asK-SAT in spite of
the presence of replica sym m etry breaking.

6 Related topics and conclusion.

6.1 O ther optim ization problm s investigated in physics.

T his article has focused on presenting statistical physics tools in the context of
a few welkknown problm s. But m any other random com binatorial problem s
have been considered by physicists, offen using nearly identical techniques
to the ones we have presented. For the reader interested In having a m ore
com plete view ofsuch work, we give here a partial list ofproblem s and pointers
to the litterature.

G raph bipartitioning.

G iven a graph G , partition itsN vertices Into two sets ofequal size. The cost
of the partition is the number of edges connecting vertices in di erent sets.
T he graph bipartitioning (or graph bisection) problm oonsists in nding the
m ininum oost partition.
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Thisproblem is readily reform ulated in the physics Janguage of sons: to each
vertex iattach a soin S; and set it to + 1 if the vertex is assigned to the st
sstand 1 if it is assigned to the second set. C alling G5 the ad acency m atrix
ofthe graph G, the num ber of edges \crossing" the partition can be identi ed
w ith an energy:

1
E = 5 Gij (1 S_LSJ) : (134)

i< j

Since the partition is assum ed balanced, the globalm agnetization M = F ;S
is constrained to be zero. In physics studies, resesarchers enforce this constraint
in a soft way by adding M %=2 to the energy E , where is a positive param —
eter. A s a result, spins interact through e ective couplings Ji5 = G ;3 )=2
that can be positive or negative. T he corresponding energy function is then

seen to be a pin glass Ham iltonian, sim ilar to the Sherrington {K irpatrick
m odel exposed In Section 242.The rst authors to notice this denti cation

were Fu and Anderson [76,77]. They then applied the Parisi solution of the
Sherrington {K impatrick m odel to give the large N value ofthem ininum cost
partition when G has connectivities grow ing linearly wih N . These results
generalize to weighted graphs straightforwardly.

W eighted m inIm um bipartite m atching.

Let I and J betwo ssts containing N polntseach.W eassumegiven an N N
m atrix of \distances" dj; de ned foreach pairi2 I;j2 J.Forany complte
m atching (@ oneto-onem ap or a pairing between I and J, m ore comm only
known as a bipartite m atching), its cost isde ned asthe sum ofthe distances
between paired points. In them inin um weighted bipartite m atching problam
one isto nd the com pletem atching of low est cost.N aturally, one can consider
a stochastic version where the entries of the distance m atrix are independent
random variables, drawn from a probability distribution p(d).Thisproblem is
close in its technical aspects to the stochastic T SP, and like the non-bipartite
case it hasbeen \solved" both via the replica and the caviy m ethods [68,78].
In the specialcase where p(d) is the uniform distrdoution n 0;1], M ezard and
P arisi hav com puted the Jarge N lin it of the typical cost to be ?=6.In fact,
In a real tour de force, they also obtained the form of the 1=N correction to
this Iim it. M ore recently, Parisi considered the special case p(d) = exp( d)
gnd conpctured [79] that for any N the mean m Inimum cost is given by

K= 1m0 1=k?. A 1l current evidence, both num erical and analytical for sm all
N values BO], indicates that this formula at nite N ocould be exact.
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N um ber partitioning.

This problm can be m otivated by the need to divide an estate between two
Inheritors in a Airway. It isusually form ulated as follow s. Let £x1;X,; 215Xy g
beN ralnumbers in 0;1] and consider a partition of the x; Into two (uUn-—
balanced) sets. The \unfaimess" of a partition isthe sum ofthe x’s in the rst
set m Inus the sum ofthe x’s In the second. T he num ber partitioning problem
consists n detem Ining the partition that m inin izes the absolute value of
the unfaimess. W hen the x; are lndependent random num bers, it is possible
to derive som e statistical properties of the m ininum . W e refer the reader to
M ertens’ detailed review in the present issue #] ofhis recent work.

Vertex cover

Very recently, A .Hartm ann and M .W eigt studied them inin um size of vertex
coverings of random graphs. Phase transitions take place, acoom panied by
drastic changes of the com putational com plexity of nding optim al vertex
coverings using brandh {and {bound algorithm s. See the articke in the present
volum e [3].

N euralN etw orks.

To a lJarge extent, kraming and generalization properties of form alneural net—
works are optin ization problem s. T hese properties have been the sub gct of
Intense studies by statistical physicists in the last fteen years. A quite com —
pkte review ofthese works and results are exposed in the articke by A . Engel
In thisvolme [B].

6.2 Further statistical properties.

Statistical physics concspts and techniques are pow erfuil tools to investigate
the properties of ground states, that is the solutions of com binatorial opti-
m ization problem s. So far, we have concentrated on the large size (large \N ")
Iim it of these problem s, but one can also consider nite N . In addition, itm ay
be of interest to know the properties of the nearoptin um solutions.

F inite-size corrections and scaling.
M ean— eld m odels can be solved through saddlepoint calculations In the in—

nite size lim it only. C karly, optin ization problem susually dealw ih a nite
num ber of variables. It is therefore crucial to achieve a quantitative under-
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standing ofthe nite size corrections to be expected, eg., on the ground state
energy.

Far from phase transitions, corrections to the saddlepoint value can usually
be com puted In a system atic way using perturbation theory. An exam pl of
such a calculation to determm ine nite-size corrections hasbeen m entioned pre—
viously (see the bipartite m atching problem discussed in Section 6.1).Forany
quantity or \cbservable" associated w ith the optinum solution of a problm ,
one can ask how its disorderaverage depends on the system size. Sin ilarly,

uctuations, which disappear In the In nite volum e lim it, generally m atter for

nie sizes. Both e ects are weltknown In the statistical physics of system s
w ithout disordered interactions and have been the sub fct ofm any theoretical
studiesB1,82].

C lose to transition points, the handling of nite-size corrections ism uch m ore
Involved.Few resultsare avalaible fordisordered system s B3].G enerally speak—
ing, the transition region is characterized by a window, the width of which
scales as som e negative power of the system size, shrinking to zero in the in-—

nie size Iim it. W e have already discussed the critical scaling properties of
som e system s in Sections 2.3.5 and 33.1.No sin ilar theoretical study of crit—
ical exponents has been perfom ed so far for com plex optin ization problem s,
eg.K-SAT; only num erical data or bounds on the exponents are currently
available.

F inite-dim ensional energy landscapes and robustmess.

R ealistic physical system s and certain optin ization problem s such asthe Trav—
eling Salean an Problem live n a nite-dim ensionalworld. T hus, although we
considered in Section 3 a perocolation m odel on a random graph, the physics
of the problem is usually m odeled using a lattice in two or three-dim ensional
Soace, edges pining vertices only if they are close In Euclidean space. M od-
els based on random graphs are considered to describe physical system s only
when the din ension goesto 1 .

F inie-din ensionality m ay have dram atic consequences on som e properties of
the m odels; for instance it is known that the critical exponents depend on
the din ension of the em bedding space.M ore crucially, In low dim ensions, the
correct order param eter could be quite di erent from what it is n In nite
din ension. This issue is particularly acute In the physics communiy in the
case of spin glasses: so far, no consensus has been reached conceming the
correct description of these system s in dim ension 3. Two m aln theories exist:

P arisi’s hierarchical picture. T his sophisticated theory com es from extend-
Ing m ean- eld theory to nite dim ensional spaces. Ik states that low lying
con gurations, ie. having an energy slightly larger than the ground state,
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may be very far away, In the con guration space, from the ground state.
T hese excited con gurations are organized In a com plx hierarchical fashion,
In fact an ultram etric structure.

T he dropkt picture. C onversly, the droplet picture isbased on sim ple scal-
Ing argum ents ngoired from ferrom agnetic system s and clain s that low—
Iying con gurations stand close to the ground state. H igher and higher en—
ergy excitations w illbe obtained when ipping m ore and m ore spins from
the ground state.

A detailed presentation of the theories can be found in P]. K now ing which
picture is actually correct could have desp consequences for dynam ical issues
(see the next paragraph), and also for the robustness of the ground state. For
nstance, it can be in portant from a practicalpoint ofview to know how much
a perturbation orm odi cation ofthe energy function a ects the ground state
properties. Consider In particular the problm of In age reconstruction. Can
a an all change in the data m odify m acroscopically the reconstructed im age?
W ithin the dropkt picture, the answer would be generally no, whilke Parisi’s
theory would support the view that disordered system s often have non-robust
ground states.

6.3 Perspectives.

The study of the statistical properties of disordered system s has w inessed
m apr advances In the last two decades, but the m ost recent trend has been
tow ards trans-disciplinary applications. A though i is di cult to guess what

new directions will em erge, there has been a clear and grow ing interest In
using statistical physics tools for investigating problem s at the heart of com —
puter science. In this review , we ilustrated this for decision and optin ization
procblem s, but m any other problem s should follow . Looking at the m ost re—
cent work, we see em erging e orts to extend these m ethods to understand the
statistical properties of the corresponding algorithm s, be-they exact or heuris-
tic. Let us rst sketch these issues and then m ention som e further possble
directions.

Typical case com putational com plexity.

T he notion of typical case com putational com plexity is appealing, and statis—
tical physics toolsm ay help one understand how that kind of classi cation of
decision problem sm ay be reached . But clkarly them ethods needed to do so go
m uch beyond what we have presented : partition fiinctions and analogous tools
describe the solutions ofa problem ,nothow long it can taketo nd them .Nev-
ertheless, as we m entioned In Section 4.7 in the context of the D avisP utnam
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tree search, physical argum ents can shed new light on how algorithm s such as
branch and bound behave near a phase transition. T hus these m ethods m ay
tell us what is the typical com putational com plexiy of an instance chosen at
random in an ensamble, given a particular tree search algorithm . E xtending
this classi cation to obtain an algorithm —-independent de nition oftypical case
com putational com plexity m ay follow , but so far it rem ains Jargely open.

Long tim e (stationary) lim it of stochastic search algorithm s.

C onsider heuristic algorithm s that are based on stochastic search. E xam ples
are sinulated annealing, G W alk, or detemm inistic lin its of these such as lo—
cal search. These kinds of algorithm s de ne random walks, ie. stochastic
dynam ics on a discrete space of solutions (poolan assignm ents for K-SAT,
tours for the TSP, etc...) and these dynam ics are \local": just a few vari-
abls are changed at each time step. A ssum e for sin plicity that the initial
position of the walk is chosen at random . At long tin es, the search ssttles in
a steady state where the distrdoution of energies becom es stationary, that is
tin e-independent. (The energy at any given time is a random variable, de—
pending on the starting point of the search and also on all the steps of the
walk up to that time. The energy thus has a distrdbution when considering
all niial positions and all possble walks.) An obvious question is whether
this distrdbution becom es peaked in the large size lim it. Indeed, In m ost cases,
one can show that the energy ofa random solution is selfaveraging; note that
this corresponds sin ply to the sslfaveraging property of the them odynam ic
energy at in nie tem perature. In fact, forthe problem swe have focused upon,
the energy is expected to be slfaveraging at all tem peratures. By a not so
bold extrapolation, one m ay con cture that any local stochastic search algo—
rithm Jleads to selfaveraging energies In the long tine Im it. N aturally, we
also have to assum e that the algorithm s do not have too m uch m em ory; using
a sin ulated annealing w ith tem peratures changing periodically n tine will
not do!) There is num erical evidence B4] In favor of this concture, and it
m ay be possble to use statistical physics m ethods to prove it in som e lin i—
Ing cases. One can also ask what is the lim iting shape of the distribution of
energies. T his isa di cul question, but i m ay be easier in this context than
when considering the optinum .

D ynam ics of stochastic search algorithm s.

Is the selfaveraging behavior jist m entioned restricted to long tin es? Sihoe
the initial energies are those of random solutions and are thus sslfaveraging,
it is quite natural to generalize the con fcture to all tim es: \the energy at any
given tin e of a local stochastic search algorithm is selfaveraging”.
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Quite a bit of ntuition about this issue can be obtained by considering what
happens by analogy w ith a physical system relaxing tow ards equilbbrium . T he
m ain characteristic of the dynam ics In a physical system is the property called
detailed balance; this condition puts very stringent restrictions on the tran-
sition probabilities. But w ithin this speci ¢ fram ew ork, there has been much
progress recently n describing the tin e dependence of the dynam ical process.
In particular, the congcture introduced above is con m ed In the context of
mean eld p-spin glassm odels. T he exact solution of these m odels has led to
new resultson entropy production w hile the phenom enon of \ageing" hasbeen
explained theoretically. C learly an in portant goal is to extend these results
to arbirary stochastic dynam ics w ithout the hypothesis of detailed balance.
But perhaps one of the m ost ram arquable resuls com ng from these studies
(s=e for Instance the contribution of Bouchaud et al. nR]) is a relation be-
tween the relaxation during these dynam ics and the e ects of a perturbation:
the prediction, called the generalized uctuation-dissipation relation, seem s
num erically to be quite general and i would be ofm a pr interest to test it In
the context ofm ore general stochastic dynam ics.

Further directions.

W ew illbe briefand just give a list ofwhat we consider to be prom ising topics.
F irst, jast as the notion of com putational com plexity has to be generalized to
a typical case description, the analogous generalization of approxin ability is
of interest. In its stochastic or typical extension, an algorithm provides an
typical case approxin ation to a problam ifw ith probability tending towards 1
In the large size lim i, its output iswithin ofthe actual solution. N aturally
results that hold in the worse case also hold stochastically, but onem ay expect
new properties to hold in this generalized fram ework. Second, there has been
an upsurge of Interest In physics for com binatoric problam s, using techniques
from eld theory and quantum gravity. The problem s range from coloring
graphs to enum erating m eanders. A lthough the Initial problem has no disor-
der, the approaches use identities relating system s w ith disorder to system s
w ithout disorder that are as yet still In the congctoral stage. Third, is there
a relation between replica symm etry breaking and typical case com plexity?
Forth, w ill the statistical physics approaches in arti cial neural netw orks and
leaming lead to new developm ents In arti cial intelligence? F ifth, an active
sub et of study In decision science concems \belief propagation" algorithm s
which are extensions of the cavity m ethod. C an these extensions lad to bet-
ter understanding of physical system s, and nversely, w ill the use of physics
concepts such as tem perature, mean eld, scaling, and universality continue
to lead to In proved algorithm s In practice?
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A A nswers to E xercises

Al Exercise 1:System with two spins and statistical independence.

T he partition function (3) at temperature T = 1= 1reads

X 1
zZ (T)= exp EE(N 2)
15 2= 1
= exp ( 1 2))
17 2= 1
— 4cosh : @ 1)

The m agnetization m (T) and the average value of the energy HE iy can be
com puted from the know ledge ofZ , see (8) . O ne cbtains

m(@IT)=hyir =0 ; @ 2)

and

HE iy = tanh( ) : A 3)

The m agnetization vanishes since any con guration £ ;; ,g has the same
statistical weight as its opposite, £  1; 9.

T hese calculations can be repeated forthe second choice ofthe energy fiinction,
E ( 17 2)= 1 2,thllﬂleﬁ31bwjrlgre&11ts:

Z (T)= @ cosh )
m (T )= tanh
HE iy = 2 tanh ( ) : @A 4

W e see that the partition function is the square or the singlke spin partition
function. T he m agnetization and the energy (once divided by the number of
Foins) are equalto the ones of a singlke spin, see expression 4).

This coincidence is a direct consequence of the additivity property of the
energy.M ore precisely, whenever the energy ofa system can be w ritten as the
sum oftwo (orm ore) energies of dispint subsystam s, ie., wvolving dispint
con guration variables, the partition function is sinply the product of the
subsystem s partition fiinctions. Such dispint subsystem s do not Interact and
are statistically independent.
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A 2 Exercise 2: Zero tem perature energy and entropy.

Let us suppose that the con gurations C formm a discrete set. Let us callE g
the am allest energy and N ¢ the num ber of con gurations having this energy.
Sin ilarly we callE ; the inm ediately higher value of energy, w ith degeneracy
N ;. This process can be repeated form ore and m ore excited energies. At the
end, con gurations are sorted according to their energies with Eg < E{ <
E, < :e.

From the de nition (3) ofthe partition function, we w rite

Eoo Nyg+ N;e S+ N,e C2+ ::: ; @ 5)

Il
)

whereG = E5 E; isthe gap between the % excited energy and them inin al
one. By construction, all gaps G j are strictly positive (j 1). Thus, In the
an all tem perature (arge ) lim it, we obtain

Z({T)=Nye E° 1+0 e & ; @ 6)

from which we deduce the freeenergy,

1
FT)= ThzZzT)=E ThNy+0 —e °©t : @)

From the de nition of entropy (11), it appears that the zero tem perature
entropy hSir- ¢ is sim ply the logarithm of the num ber of absolute m inim a of
the energy function E (C).

A 3 Exercise 3: Spins on the com pkte graph in the presence ofa ed.

The calculations are Imm ediate from (25).The only di erence is that, In the
presence of a amall but non zero eld h, the two m inim a of the free-energy
shown on gure 2 are now at two di erent heights. One of the two m inim a
(w ith the opposite sign ofh) is exponentially suppressed w ith respect to the
other.
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A 4 Exercise 4:Quenched average.

U sing the resuls of E xercise 2, we w rite the partition fiinction, m agnetization
and the average value of the energy,

Z (T;J)=4 cosh( J)
m({T;J)=20
i )= J tanh( J) : @A 8)

A 11 these statistical quantities depend on the quenched coupling J.

W e now average over the coupling J, with distrbution (J) on the support
U ;J; ].W e obtain for the quenched average m agnetization and energy,

m(T)=20
7
e ip = dJ (J)J tanh( J) : @A .9)

J

In the zero tem perature lin i, the soins align (respectively antialign) onto
each other if the coupling J is positive (resp.negative). T he resulting ground
state energy equals §J j. A veraging over the quenched coupling, we cbtain

o+
hE ig_o = aJ J)yJj : @ 10)

A 5 Exercise 5:Frustated triangk of spins.

Both energies are even functions ofthe soins; the m agnetization isthusalvays
equal to zero.

W e rst consider the energy finction

E (17 27 3)= 12 13 23 @A 11)

T he partition function and the average value of the energy read respectively,

Z({T)=2¢€& + 6e
3+ 3et

Wi - o> 12
T e ®12)
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In the zero tem perature lim i, the ground state energy and entropy are given
by

hEiT:0= 3
KSif_o= N2  : @ 13)

There are ndeed two con gurations w ith m Inin al energy; all their spins are
aligned in the sam e direction.

W e now consider the energy function

E (17 25 3)= 12 131t 23 ¢ @ 14)

T he partition function and the average value of the energy now read respec—
tively,

ZT)=6e +2e’
E | 3+ 3t & 15)
ir = —— :
! 3+e*
In the zero tem perature lim i, the ground state energy and entropy are given
by

th-’I'=0: 1
Eir_g=h6 @ 16)

A sa resul of frustration, the ground state energy ishigherthan In the previous
case, as well as the num ber of ground states. N ote also that the gap between
the lowest and second lowest energy levels has becom e an aller.

A 6 Exercise 6:Partition function of the Sherrington-K irkpatrick m odel.

T he partition function of the Sherrington-K irkpatrick (SK ) m odel reads

0 1
X X
Z J)= eXp@P? Ji5 1 & @ 17)

= 1 i<j

w here the quenched couplings J = £J;4;1 i< j N g are random Iy drawn
from the G aussian distribution

_ f 1 1.
P J)= p— exp Jij : @A 18)
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To com pute the average value of the partition finction, we st average the
couplings out and only then calculate the sum over the spins

Z

ZJ)= dJP (J)ZJ)
0 1
x @ " X 2n
= . 1exp Ekj(ij)
5 !
=2 exp Z(N 1) ; @A 19)

W e now caloulate the second m om ent of the partition function by rew riting
the squared sum as the product oftwo independent sum s, see Exercise 1,

Z

z (J)2= dJP )2z (J)?
0 1
Z X X X
= dJP () explp= Jy(; 3+ 132
i= 11: 1 i<j
0
X X . 2 x 2a
= eXp~ —— (ij+ 1])
= 1 y 1 2N i< j
2
= 720 Y ; @A 20)
where Y equals
0 1
1 X X . 2x
Y=— Xp = — i34
4% = 1 4= 1 N i<
! O " #l
1 2° x X ] 2 x 2A
= — — - i i . 21
4N &P 2 - lexp 2N ® 21

The calculation proceeds as in the case of the spin m odel on the com plkte
graph, see section 2.3.W ede ne foreach con guration C = £ ;; ;g ofthe 2N
soins, the overlap function

>,

qaC) = ii : @A 22)

1
N

=1

Thee ective energy function appearing in the last temm ofthe pseudo partition
function Y @A 21) depends on the con guration through q(C ) only. Follow Ing
the steps of section 23, a saddlepoint calculation leads to the asym ptotic
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behaviourofY,

Y=ep N? +o0N) ; @ 23)

w here isthem ininum over g of the \free-energy" functional f\(q) de ned
in (25) wih T? instead of T . The results of section 2 3 teach us that there is
a \critical" tem perature T, = 1 such that = 0 for tem peratures above T,
and < OwhenT < T..

Above T, the partition finction does not uctuate too much around the av-
erage value Z (J); the partition function is itself selfaveraging and the free—
energy per oIn smply equals£(T)= T h2 1=@4T), see thepaperby M .
Talagrand in the sam e volum e. At low tem peratures, below T, the second m o-
ment of Z (J) isexponentially larger than the squared average; there are huge

uctuations and the partition function is not slfaveraging. It is therefore
much m ore com plicated to calculate the value of the free-eneryy.

A7 Exercise 7:A toy replica calculation.

W ewant to com pute the series expansion of In (1+ x) starting from the identity
(foranallrealn)

I+ x)"=1+n @+ x)+ 0 M?) ; @ 24)

and the series expansion of (1 + x)" for integern. To do so, we use New ton’s
binom ial formula

T nt K 25
+ = ;
A+ x) ko k" ® 25)

valid for positive Integers n. n play two rols in omula @ 25). First, it is
the upper bound of the sum over k. Secondly, n appears In the com binatorial
factor in the sum .Factorialsm ay be continued analytically to realvalues ofn
using Euler'sGamm a function.A s (z) haspols at negative integer values of
the argum ent z, wem ay extend the sum in expression A 25) to nteger values
ofk lamger than n w ithout changing the nalresul,

1 ¥ o 26
(+X)_k:0k!(n o= : @ 26)
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Let us focus now on the com binatorial factor

!
C k) = n! :n(n D 2):::n k+ 1) . @2
kln  k)! k!

Fork= 0,wehaveC (n;0)= 1 foralln.W hen k 1,therhs.of @ 27) isa
polynom ial of n and can be inm ediately continued to realn. In the snalln
Iim it, we obtain

ees 1
C(n;k)=n( 2A kzl)'"( k) o(n)=n%+ om) &k 1) :@28)

F inally, we w rite the sn alln continuation of equation @ 25) as

n % ( lj{ ! k
l+x)'=1+n Tx + o) : A 29)

k=1

Com paring equation @ 24) and @A 29), we obtain the correct result

2 1
hl+ x)= ﬁxk : @A 30)
k=1 k

T he above calculation is a sin ple application of the replica tridk. O bviously,
the calculation ofthe freeenergy ofdisordered m odels, e g.the K -Satis ability
or the T SP m odels, are m uch m ore Involved from a technicalpoint of view .
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