Statisticalm echanics m ethods and phase transitions in optim ization problem s.

O livier C . M artin, ${ }^{a ; 1} R e m i M$ onasson, ${ }^{b ; 2}$
and R iccardo Zecchina ${ }^{c ; 3}$
${ }^{a}$ LP TM S, U niversite P aris-Sud, O rsay, France
${ }^{\mathrm{b}}$ The Jam es Franck Institute, T he U niversity of C hicago, C hicago, Il
${ }^{\mathrm{c}}$ Intemational C entre for T heoretical P hysics, T rieste, Italy

Abstract

R ecently, it has been recognized that phase transitions play an im portant role in the probabilistic analysis of com binatorial optim ization problem s. H ow ever, there are in fact m any other relations that lead to close ties between com puter science and statistical physics. This review aims at presenting the tools and concepts designed by physicists to deal w ith optim ization or decision problem s in an accessible language for com puter scientists and m athem aticians, w ith no prerequisites in physics. W e rst introduce som e elem entary m ethods of statisticalm echanics and then progressively cover the tools appropriate for disordered system s. In each case, we apply these m ethods to study the phase transitions or the statistical properties of the optim al solutions in various com binatorial problem s . W e cover in detail the R andom G raph, the Satis ability, and the T raveling Salesm an problem s. R eferences to the physics literature on optim ization are provided. W e also give our perspective regarding the interdisciplinary contribution of physics to com puter science.

K ey words: statistical physics, phase transitions, optim ization
PACS: $64.60 . \mathrm{Cn}, 75.10 \mathrm{Nr}$, 02.60 Pn

[^0]At the heart of statistical physics, discrete m athem atics, and theoretical com puter science, lie m athem atically sim ilar counting and optim ization problem s. T his situation leads to a transgression of boundaries so that progress in one discipline can bene t the others. A n old exam ple of this is the work of K asteleyn (a physicist) who introduced a m ethod for counting perfect m atchings over planar graphs (a discrete m athem atics problem). O ur belief is that a sim ilar cross-fertilization of m ethods and m odels should arise in the study of com binatorial problem s over random structures. Such problem s have attracted the attention of a large com m unity of researcher in the last decade, but a transgression of boundaries has only just begun. O ne of the m any po-tentialspin-o s of this kind of cross-fertilization would be the use of com puter science and graph theoreticalm ethods to tackle unsolved problem s in the statistical physics of \com plex" (disordered) system s. But we also hope that the bene ts can go the other way, i.e., that the recent developm ents in statistical physics m ay be of use to the other two com m unities; such is our m otivation for this article.

This review does not assum e any know ledge in physics, and thus we expect it to be accessible to m athem aticians and com puter scientists eager to leam the m ain ideas and tools of statistical physics when applied to random combinatorics. W e have chosen to ilhustrate these \physical" approaches on three problem s: the Random G raph, the Satis ability, and the Traveling Salesm an problem s. This particular focus should help the interested reader explore the statistical physics literature on decision and optim ization problem s. Furtherm ore, we hope to m ake the case that these m ethods, developed during the last tw enty years in the context of the so called spin glass theory [1,2], m ay provide new concepts and results in the study of phase transitions, and average case com putational com plexity, in com puter science problem s. Som e exam ples of this kind of m ethodological transfer can also be found in three other papers of this TCS special issue, dealing w ith statistical m echanics analyses of vertex covering on random graphs [3], of num ber partitioning [4] and of leaming theory in arti cial neural netw orks [5].

Random com binatorics becam e a central part of graph theory follow ing the pioneering w ork by E rdos and R enyi. Their study of chusters in random graphs (peroolation for physicists) show ed the existence of zero-one law s (phase transitions in the term inology of physics). M ore recently, such phenom ena have played a fundam ental role when tackling average\{case com plexity. Indeed, num erical evidence suggests that the onset of intractability in random NPcom plete problem s can be put in relation w ith the appearance of phase transitions analogous to the percolation transition. Interestingly, the concept of random structures is present in m ost naturalsciences, including biology, chem -
istry, or physics. But in the last two decades, the theoretical fram ew ork developed in physics has lead to new analytical and num erical tools that can be shared w ith the m ore m athem atical disciplines. The potential connections between discrete m athem atics, theoretical com puter science and statistical physics becom e particularly obvious when one considers the typical properties of random system s . In such cases, percolation, zero-one law s, or phase transitions are sim ply di erent nam es describing the sam e phenom ena within the di erent disciplines. It seem s to us that m uch can be gained by exploring the com plem entary nature of the di erent paradigm s in m athem atics and physics. In what follow s , we shall try to m ake this happen by giving a thorough statistical mechanics analysis of three prototype problem s, nam ely percolation in random graphs, satis ability in random K Satis ability, and optim ization via the T raveling Salesm an P roblem. The review is preceded by a general discussion of som e basic concpts and tools of statistical mechanics. W e have also included simple exercises to help the interested reader becom e fam iliar w ith the m ethodology; hopefilly he (she) w illlbe able to adapt it to the study ofm any other problem s, e.g., m atching, num ber partitioning [4], etc... W hen appropriate, we com pare the results of statistical physics to those of discrete m athem atics and com puter science.

From a statisticalm echanics perspective, a phase transition is nothing but the onset of non-trivial macroscopic (collective) behavior in a system com posed of a large number of lelem ents" that follow simple microscopic laws. The analogy w th random graphs is straightforw ard. There the elem ents are the edges of the graph which are added at random at each time step and the m acroscopic phenom enon is the appearance of a connected com ponent of the graph containing a nite fraction of all the vertioes, in the lim it of a very large number of vertices. If a system has a phase transition, it can be in one of several \phases", depending on the values of som e control param eters. Each phase is characterized by a di erent microscopic organization. Central to this characterization is the identi cation of an order param eter (usually the expectation value of a m icroscopic quantity) which discrim inates between the di erent phases. O nœe again the analogy with random graphs is appropriate. A n order param eter of the percolation transition is the fraction of vertioes belonging to the giant connected com ponent. Such a fraction is zero below the percolation transition, that is, when the connectivity of the random graph is too sm all, and becom es strictly positive beyond the percolation threshold.

W hile in percolation it is proven that the order param eter is indeed the fraction of vertioes belonging to the in nite giant com ponent, in m ore com plicated system s the determ ination of an order param eter is generally an open problem. Though not rigourous, statisticalm echanics provides num erous speci c m ethods for identifying and studying order param eters, and we shall ilhustrate this on the K-Satis ability problem. This step is useful of course for providing a good intuitive view of the system 's behavior, but m ore im portantly it also
gives inform ation on the m icroscopic structure of the phases, inform ation that can be used both in deriving analytical results and in interpreting num erical sim ulations.

The way physicists and m athem aticians proceed is quite di erent. T heoretical physicists generally do not prove theorem s , rather they attem pt to understand problem s by obtaining exact and approxim ate results based on reasonable hypotheses. In practioe, these hypotheses are \validated" a posteriori through com parison w ith experim ents or num erical sim ulations, and through consistency w ith the overall.body of know ledge in physics. In this sense, theoretical physics m ust be distinguished from m athem atical physics whose scope is to m ake rigorous statem ents. O f course, exact solutions play an im portant role in statistical physics in that they represent lim titing cases where analytical or num erical techniques can be checked, but they are not the m ain focus of this discipline.

For the sake of brevity we left out from this review som e very relevant and closely connected topics such as exact enum eration m ethods [6] or applications of com puter science algorithm s to the study oftwo dim ensional com plex physical system s [7,8]. Furtherm ore we do not claim to present a com plete picture of what has been done by physicists on decision and optim ization problem s. R ather, we hope that what we do present w ill enable readers from the m ore m athem aticaldisciplines to understand in detail them ajority ofw hat hasbeen done by physicists using the m ethods of statisticalm echanics.

2 Elem ents of Statistical P hysics

In this section, the reader w ill be introduced to the basic notions of statistical mechanics. W e start by illustrating on various exam ples the existence of phases and phase transitions, ubiquitous in physics and m ore surprisingly in other elds of science too. T he concepts of m icroscopic and m acroscopic levels of description naturally appear and allow for a rapid presentation of the foundations of statistical m echanics. W e then expose in greater detail the com binatorial interpretation of statisticalm echanics and introduce som e key vocabulary and de nitions. An accurate investigation of the properties of the so-called Ising m odel on the com plete graph K_{N} exem pli es the above concepts and calculation techniques. In order to bridge the gap w ith optim ization problem s, we then tum to the crucial issue of random ness and present appropriate analytical techniques to deal w ith random structures, e.g., the celebrated replica m ethod.

This section has been elaborated for a non physicist readers and we stress that no a priori know ledge of statisticalm echanics is required. E xercises have
been included to illustrate key notions and should help the reader to acquire a deeper understanding of concepts and techniques. Solutions are sketched in A ppendix A. Excellent presentations of statisticalm echanics can be found in textbooks e.g. 9 \{11] for readers w anting further details.

2.1 P hases and transitions

M any physical com pounds can exist in nature as distinct \states", called phases, depending on the values of control param eters, such as tem perature, pressure, ... The change of phase happens very abruptly at som e precise values of the param eters and is called transition. W e list below a few well-known exam ples from condensed m atter physics as well as two cases com ing from biology and com puter science.

2.1.1 Liquid-gas transition.

At atm ospheric pressure water boils at a \critical" tem perature $T_{c}=100^{\circ} \mathrm{C}$. W hen the tem perature T is low er than T_{c}, w ater is a liquid while above T_{c} it is a gas. At the critical tem perature T_{c}, a coexistence betw een the liquid and gas phases is possible: the fraction ofliquid w ater depends only on the totalvolum e occupied by both phases. The coexistence of the tw o phases at criticality is an essential feature of the liquid-gas transition. Transitions sharing this property are called rst order phase transitions form athem atical reasons exposed later.

2.1.2 Ferrom agnetic-param agnetic transition.

It is well-know n that m agnets attract nails m ade out of iron. The m agnetic eld produced by the m agnet induces som e strong intemal m agnetization in the nail resulting in an attractive force. M aterials behaving as iron are referred to as ferrom agnetic. H ow ever, the attractive force disappears when the tem perature of the nail is raised above $\mathrm{T}_{\mathrm{C}}=770^{\circ} \mathrm{C}$. T he nail then enters the param agnetic phase where the net m agnetization vanishes. There is no phase coexistence at the critical tem perature; the transition is said to be of second order.

The ferrom agnetic-param agnetic transition tem perature T_{C} varies considerably w th the m aterial under consideration. For instance, $T_{c}=1115^{\circ} \mathrm{C}$ for cobalt, $\mathrm{T}_{\mathrm{C}}=454^{\circ} \mathrm{C}$ fornickel and $\mathrm{T}_{\mathrm{C}}=585^{\circ} \mathrm{C}$ form agnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$. H ow ever, rem arkably, it tums out that som e other quantities \{ the critical exponents related to the (drastic) changes of physical properties at or close to the transition \{ are equal for a large class ofm aterials! T he disoovery ofsuch universality
was a breakthrough and led to very deep theoretical developm ents in m odem physics. U niversality is characteristic of second order phase transitions.

2.1.3 C onductor-superconductor transition.

G ood conductors such as copper are used to m ake electric w ires because of their weak resistance to electric currents at room tem perature. A s the tem perature is low ered, electrical resistance generally decreases sm oothly as collisions betw een electrons and vibrations of the m etallic crystal becom e weaker and w eaker. In 1911, K am m erling O nnes observed that the electrical resistance of a sam ple ofm ercury fellabruptly dow n to zero as tem perature passed through $\mathrm{T}_{\mathrm{c}}{ }^{\prime} 4: 2^{\circ} \mathrm{K} \quad\left(0^{\circ} \mathrm{K}\right.$ being the absolute zero of the K elvin scale.) This change of state, betw een a norm alconductor (nite resistance) and a superconductor (zero resistance) is a true phase transition: a very sm all variation of tem perature at T_{C} is enough to change resistance by four or ve orders ofm agnitude!

2.1.4 DNA denaturation transition.

In physiological conditions, D NA has the double helix structure discovered by W atson and Crick in 1953. T he two strands carry com plem entary sequences of A, T, G or C bases and are intertw ined, form ing either $A-T$ or $G-C$ pairs. B ases in a pair are attached together by hydrogen bonds. A s the tem perature is raised or ionic conditions are appropriately m odi ed, bonds weaken and break up. The strands m ay then separate so that the double helix structure is lost: the DNA is denatured. This transition is abrupt on repeated hom ogeneous DNA sequences [12].

Recent m icrom anipulation experim ents on individual DNA molecules have show n that denaturation can also be obtained through a m echanical action on D NA. W hen im posing a su cient torque to the m olecule to unw ind the double helix, the latter opens up and DNA denaturates. At a xed critical torque, denaturated and double helix regionsm ay coexist along the sam em olecule [13] so this transition is like a liquid-gas one.

2.1.5 Transition in the random K-Satis ability problem .

C om puter scientists discovered som e years ago that the random K-Satis ability problem exhibits a threshold phenom enon as the ratio of the number of clauses (M) over the num ber of B oolean variables (\mathbb{N}) crosses a critical value c (\mathbb{K}) depending on the num ber of literals per clause $K . W$ hen is sm aller than the threshold $\mathrm{c}(\mathrm{K})$, a random ly drawn form ula is alm ost surely satisable while, above threshold, it is unsatis able w ith probability reaching one in the N ! 1 lim it.

For $K=2$, the threshold is known exactly: ${ }_{c}(2)=1$. For $K \quad 3$, there is no rigorous proofof the existence of a phase transition so farbut m any theoretical and num erical results strongly support it, see articles by A chlioptas \& Franco and D ubois \& K irousis in the present issue. C urrent best estim ates indicate that the threshold of random 3-SAT is located at c (3) ' 4:25. Statistical physics studies show that the order of the phase transition depends on K, the transition being continuous for $2-S A T$ and of rst order for 3-SAT (and higher values of K).

2.1.6 M acroscopic vs. m icroscopic descriptions.

W hat can be inferred from the above exam ples? F irst, a (physical) system may be found in totally di erent phases w ith very di erent m acroscopic properties although its intrinsic com position at a m icroscopic level (m olecules, m agnetic spins, base pairs, clauses, ...) is the sam e. H owever, from a physical, m echanical, electrical, biological, com putational, ... point of view, essential properties of this system change com pletely from a phase to another. Second, the abrupt change of phase follow s from very slight modi cations of a control param eter e.g. tem perature, torque, ratio of clauses per variable ... about a critical value. Thirdly, critical exponents, that characterize quantitatively second order phase transitions, are universal, that is, insensitive to m any details of the system s under study. Last of all, transitions appear for large system s only.

The above points raise som e fundam entalquestions: how can them ain features of a system at a macroscopic level, de ning a phase, change abruptly and how are these features related to the m icroscopic structure of the system? Statistical physics focuses on these questions.
2.2 Foundations of statisticalm echan ics and relationship w ith com binatorics.

2.2.1 N eeds for a statistical description.

Statisticalphysics aim sat predicting quantitatively them acroscopic behaviour of a system (and in particular itsphases) from the know ledge of itsm icroscopic com ponents and their interactions.W hat do wem ean by interaction? C onsider for instance a liquid m ade of N small particles (idealized representations of atom s or m olecules) occupying positions of coordinates x_{i} in Euclidean space where label i runs from 1 to N. Particle number i is sub ject to a froce f_{i} (interaction) due to the presence of neighboring particles; this force generally depends of the relative positions of these particles. To determ ine the positions of the particles at any later tim e t, we m ust integrate the equations ofm otion
given by N ew ton's fundam ental law of m echanics,

$$
\begin{equation*}
m_{i} \frac{d^{2} \varkappa_{i}}{d t^{2}}=f_{i}\left(f \varkappa_{j} g\right) ; \quad(i=1 ;::: ; N) ; \tag{1}
\end{equation*}
$$

where m_{i} is the m ass of particle i. Solving these equations cannot be done in practioe. The forces f_{i} are indeed highly non linear functions of the particle positions \varkappa_{j}. W e therefore w ind up w ith a set of com plicated coupled di erentialequations w hose num ber N, of order 10^{3}, is gigantic and not am enable to analytical treatm ent.

This im possibility, added to the intuitive feeling that understanding m acroscopic properties cannot require the exact know ledge of allm icroscopic tra jectories of particles has been circum vented by a totally di erent approach. The basic idea is to describe the system of particles in a probabilistic way in order to deduce m acroscopic features as em ergent statistical properties.

2.2.2 P robability distribution over the set of con gurations.

The im plem entation of this idea has required the introduction of revolutionary concepts at the end of the ninteenth century by Boltzm ann and followers, and in particular, the ideas of ergodicity and therm odynam ical equilibrium . W e shall not attem pt here to provide an exposition of these concepts. The interested reader can consult textbooks e.g. [9\{11]. A s far as com binatorial aspects of statisticalm echanics are concemed, it is su cient to start from the follow ing postulate.

A con guration C of the system, that is, the speci cation of the N particle positions $f x_{j} g$, has a probability $p(C)$ to be realized at any time when the system is in equilibrium. In other words, the system will be in con guration C w ith probability p(C).T he latter depends on tem perature T and equals

$$
\begin{equation*}
p(C)=\frac{1}{Z} \exp \quad \frac{1}{T} E(C) \quad: \tag{2}
\end{equation*}
$$

In the above expression, E is the energy and is a real-valued function, over the set of con gurations. The partition function Z ensures the correct norm alization of the probability distribution p,

$$
\begin{equation*}
Z={ }_{c}^{x} \exp \quad \frac{1}{T} E(C) \tag{3}
\end{equation*}
$$

N ote that we have used a discrete sum over con gurations C in (3) instead of an integral over particle positions \varkappa_{j}. This notation has been chosen since all
the partition functions we shall m eet in the course of studying optim ization problem s are related to nite (i.e. discrete) sets of con gurations.

C onsider two lim iting cases of (2):
in nite tem perature $T=1$: the probability $p(C)$ becom es independent of C.All con gurations are thus equiprobable. The system is in a fully \disordered" phase, like a gas or a param agnet.
zero tem perature $T=0$: the probability $p(C)$ is concentrated on the m inim um of the energy function E, called the ground state. This minim um corresponds to a con guration where all particles are at mechanically stable positions, that is, occupy positions r_{i} carefiully optim ized so that all forces f_{i} vanish. O ften, these strong constraints de ne regular padkings of particles and the system achieves a perfect crystalline and \ordered" state.

W hen varying the tem perature, interm ediate situations can be reached. W e now exam ine som e sim ple exam ples.

2.2.3 C ases of one and two spins.

W e now consider the case of a single abstract particle that can sit at two di erent positions only. This simple system can be recast as follow s. Let us im agine an arrow capable of pointing in the up or dow directions only. This arrow is usually called a spin and the direction is denoted by a binary variable , equal to +1 if the spin is up, to 1 if the spin is down.

In this single particle system, there are only two possible con gurations C = $\mathrm{f}+1 \mathrm{~g}$ and $\mathrm{C}=\mathrm{f} \quad 1 \mathrm{~g}$ and we choose for the energy function $\mathrm{E}(\mathrm{I})=\quad . \mathrm{N}$ ote that additive constants in E have no e ect on (2) and multiplicative constants can be absorbed in the tem perature T. The partition function can be easily com puted from (3) and reads $\mathrm{Z}=2$ cosh where $=1=\mathrm{T}$ denotes the inverse tem perature. The probabilities that the spin points up or dow n are respectively $p_{+}=\exp ()=Z$ and $p=\exp (\quad)=Z$. At in nite temperature $(=0)$, the spin is indi erently up or dow $n: p(+1)=p(1)=1=2$. Conversely, at zero tem perature, it only points upwards: $p(+1)=1 ; p(1)=0 . C=f+1 g$ is the con guration ofm inim um energy.

The average value of the spin, called m agnetization is given by

$$
m=h \quad i_{T}=\begin{align*}
& x \tag{4}\\
& =1
\end{align*} p()=\tanh () \quad:
$$

The sym bolh ridenotes the average over the probability distribution p. N otice that, when the tem perature is lowered from $T=1$ down to $T=0$, the m agnetization increases smoothly from $m=0$ up to $m=1$. T here is no
abrupt change (singularity or non analyticity) in m as a function of and therefore no phase transition.

Exercise 1:Consider two spins 1 and 2 w th energy function

$$
\begin{equation*}
E(1 ; 2)=12: \tag{5}
\end{equation*}
$$

C alculate the partition function, the m agnetization of each spin as well as the average value of the energy. Repeat these calculations for

$$
\begin{equation*}
E(1 ; 2)=1 \quad 2: \tag{6}
\end{equation*}
$$

H ow is the latter choice related to the single spin case?

2.2.4 Com binatorialm eaning of the partition function.

W e have so far introduced statisticalm echanics in probabilistic term s. There exists also a close relationship w ith com binatorics through the enum eration of con gurations at a given energy; we now show this relationship.
T he average value of the energy m ay be com puted directly from the de nition

$$
\begin{equation*}
h E i_{T}={ }_{c}^{x} p(C) E(C) ; \tag{7}
\end{equation*}
$$

or from the partition function Z via the follow ing identity

$$
\begin{equation*}
\mathrm{hE} \mathrm{i}_{\mathrm{T}}=\frac{\mathrm{d}}{\mathrm{~d}} \ln \mathrm{z} \tag{8}
\end{equation*}
$$

that can easily derived from (3).The identity (8) can be extended to higher m om ents of the energy. For instance, the variance of E can be com puted from the second derivative of the partition function

$$
\begin{equation*}
h E^{2} i_{T} \quad h E \frac{?}{f}=\frac{d^{2}}{d^{2}} \ln Z \quad: \tag{9}
\end{equation*}
$$

Such equalities suggest that Z is the generating function of the con guration energies. To prove this statem ent, let us rew rite (3) as

$$
Z={ }_{c}^{x} \exp (\quad E(C))
$$

```
= X N (E) exp ( E ) ;
```

where $N(E)$ is the num ber of con gurations C having energies E (C) precisely equal to E. If $x=\exp (\quad), Z(x)$ is simply the generating function of the coe cients N (E) as usually de ned in combinatorics.

The quantity $\hat{S}(E)=\ln N(E)$ is called the entropy associated w ith the energy E. In general, calculating $\hat{S}(\mathbb{E})$ is a very hard task. U sually, it is much m ore convenient to de ne the average entropy $\mathrm{hS} \mathrm{i}_{\mathrm{T}}$ at tem perature T as the contribution to the partition function which is not directly due to energy,

$$
\begin{equation*}
\mathrm{hS} \mathrm{i}_{\mathrm{T}}=\frac{1}{\mathrm{~T}} \mathrm{~F}(\mathrm{~T}) \quad \mathrm{hE} \dot{\mathrm{i}} \quad \text {; } \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
F(T)=T \ln Z(T) \tag{12}
\end{equation*}
$$

is called the free-energy of the system.
In general, the above de nitions for the energy and tem perature dependent entropies do not coincide. H ow ever, as explained in next Section, in the large size \lim it $h S i_{T}$ equals $\hat{S}(\mathbb{E})$ provided that the energy E is set to its them al average $E=h E i_{T}$.

The entropy is an increasing fiunction oftem perature. At zero tem perature, it corresponds to the logarithm of the num ber of absolute minim a of the energy function E (C).

E xercise 2: P rove this last statem ent.

2.2.5 Large size lim it and onset of singularity.

W e have not encountered any phase transition in the above exam ples of system s w th one or two spins. A necessary condition for the existence of a transition in a system is indeed that the size of the latter goes to in nity. The m athem atical reason is sim ple: if the num ber of term s in the sum (3) is nite, the partition function Z, the free-energy F, the average energy, ... are analytic functions of the inverse tem perature and so do not have singularities at nite tem perature.

M ost analytical studies are therefore devoted to the understanding of the em ergence of singularities in the free-energy w hen the size of the system goes
to in nity, the so-called them odynam ic lim it.
A n im portant feature of the them odynam ic lim it is the concentration ofm easure for observables e.g. energy or entropy. Such quantities do not uctuate m uch around their m ean values. M ore precisely, if we calln the size, i.e. the num ber of spins, of the system, the m om ents of the energy usually scale as

$$
\begin{align*}
& h E i_{T}
\end{align*}=0(\mathbb{N})
$$

and, thus the energy of pan guration is with high probability equal to the average value up to $O(\bar{N})$ uctuations. Such a result also applies to the entropy, and hS $i_{T}=\hat{S}\left(h E i_{T}\right)$ up to $O(\bar{N})$ term $\mathrm{S} . \mathrm{M}$ easure concentration in the them odynam ic lim it is a very im portant and usefulproperty, see [14].

2.3 Spin m odel on the com plete graph.

W e shall now study a system of N spins, called the Ising model, exhibiting a phase transition in the lim it N ! 1 . W e consider the com plete graph K_{N}; each vertex is labelled by an integer num ber $i=1 ;::: ; \mathrm{N}$ and carries a binary spin i. The energy function of a con guration $C=f_{1} ;::: ;{ }_{\mathrm{N}} \mathrm{g}$ is given by

$$
\begin{equation*}
E\left({ }_{1} ;::: ;_{N}\right)=\frac{1}{N}_{i<j}^{X}{ }_{i} h_{i}^{X} \quad \text { i } \tag{14}
\end{equation*}
$$

2.3.1 Rem arks on the energy function.

The rst term in (14) is called the interaction term. The sum runs over all pairs of spins, that is over all edges of K_{N}. The m inus sign ensures that the m inim um of energy is reached when allspins point in the sam e direction. This direction depends on the second term of (14) and, m ore precisely, upon the sign of the $\backslash m$ agnetic eld" h. If the latter is positive (respectively negative), the ground state is obtained when all spins are up (resp. down).

In the absence of eld ($\mathrm{h}=0$), we know the two ground states. T he energy and entropy at zero tem perature can be com puted from (14) and (11),

$$
\begin{align*}
h E i_{T=0} & =\frac{1}{2}(\mathbb{N} \quad 1) ; \tag{15}\\
h S i_{T=0} & =\ln 2 \tag{16}
\end{align*}
$$

N otioe that the ground state energy is $O(\mathbb{N})$ due to the presence of the factor $1=\mathrm{N}$ in (14) whereas the entropy is O (1).

At in nite tem perature, all con gurations are equiprobable. The partition function is simply equal to the total num ber of con gurations: $Z_{T=1}=2^{N}$, leading to

$$
\begin{align*}
& \mathrm{hE} \mathrm{i}_{\mathrm{T}=1}=0 \quad ; \tag{17}\\
& \mathrm{hS} \mathrm{i}_{\mathrm{T}=1}=\mathrm{N} \quad \ln 2 \quad: \tag{18}
\end{align*}
$$

W hen the tem perature is nite, a com prom ise is realized in (10) between energy and entropy: the con gurations with low energies E have the largest probabilities but the ost probable energy also depends on the entropy, i.e. on the size of the coe cients $\mathrm{N}(\mathbb{E})$. Tem perature tunes the relative im portance of these two opposite e ects. The phase transition studied in this section separates tw o regin es:
a high tem perature phase where entropy e ects are dom inant: spins con gurations are disordered and spins do not point in any priviledged direction (for $h=0$). T he average m agnetization m vanishes.
a low tem perature phase where energy e ects dom inate: spins have a tendency to align w th each other, resulting in ordered con gurations w ith a non zero m agnetization $m=h_{i} i_{T} \in 0$.

Let us stress that the energy and the entropy m ust have the sam e orders of m agnitude $(=0(\mathbb{N}))$ to allow for such a com prom ise and thus for the existence of a phase transition at nite strictly positive tem perature.
2.3.2 The m agnetization is the order param eter.
W e start by de ning the m agnetization of a con guration $C=f_{1} ;::: ;{ }_{\mathrm{n}} \mathrm{g}$ as

$$
\begin{equation*}
m(C)=\frac{1}{N}_{i=1}^{x^{N}}: \tag{19}
\end{equation*}
$$

The calculation of the partition function relies on the follow ing rem ark. The energy function (14) depends on the con guration C through itsm agnetization m (C) only. M ore precisely,

$$
\begin{equation*}
E(C)=N \frac{1}{2} m(C)^{2}+h m(C)+\frac{1}{2}: \tag{20}
\end{equation*}
$$

F ig. 1. Entropy $s(m)$ of the Ising m odel on the com plete graph as a function of m agnetization m.

In the follow ing, we shall also need the entropy at xed magnetization $S(m)$. C on gurations w ith a xed m agnetization m have $N+$ spins up and N spins down w ith

$$
\begin{align*}
& \mathrm{N}_{+}=\mathrm{N} \quad \frac{1+\mathrm{m}}{2} \\
& \mathrm{~N}=\mathrm{N} \quad \frac{1 \quad \mathrm{~m}}{2} ; \tag{21}
\end{align*}
$$

T he num ber ofsuch con gurations is therefore given by the binom ialcoe cient

$$
\begin{equation*}
e^{S(m)}=\frac{N!}{N+\mathbb{N}!} \quad: \tag{22}
\end{equation*}
$$

In the large N lim it, Stirling's form ula gives acoess to the asym ptotic expression of the entropy density, $s(m)=S(m)=N$, at xed m agnetization,

$$
\begin{equation*}
s(m)=\frac{1 \quad m}{2} \ln \frac{1 \quad m}{2} \quad \frac{1+m}{2} \quad \ln \frac{1+m}{2} \tag{23}
\end{equation*}
$$

F igure 1 displays $s(m)$ as a function of m. The m axim um is reached at zero m agnetization $(s(0)=\ln 2)$ and the entropy vanishes on the boundaries $m=$
1.

Let us stress that $S(m)$ de ned in (23) is the entropy at given m agnetization and di ers a priori from the energy and tem perature dependent entropies, $\hat{S}(E)$ and $h S i_{T}$, de ned above. H ow ever, in the therm odynam ic lim it, allquantities are equal provided that m and E coincide w ith their therm al averages,
lm i_{T} and $h E i_{T}$.
T he average value $\mathrm{hm} \mathrm{i}_{\mathrm{T}}$ of the m agnetization w ill be show n to vanish in the high tem perature phase and to be di erent from zero in the low tem perature phase. The m agnetization is an order param eter: its value (zero or non-zero) indicates in which phase the system is.

2.3.3 C alculation of the free-energy.

The partition function Z reads

$$
\begin{align*}
& Z=\quad X \quad \exp \left[\quad E\left(1 ;::: ;_{N}\right)\right] \\
& =\exp ^{1 ;::: ;_{N}={ }^{1}} \mathrm{~N} \hat{\mathrm{f}}(\mathrm{~m})^{i} \quad \text {; } \tag{24}\\
& \mathrm{m}=1 ; 1+\frac{2}{\mathrm{~N}} ;:: ; \boldsymbol{i}_{1} \frac{2}{\mathrm{~N}} ; 1
\end{align*}
$$

where

$$
\begin{equation*}
\hat{f}(m)=\frac{1}{2} m^{2} \quad \mathrm{hm} \quad \mathrm{~T}(m) \tag{25}
\end{equation*}
$$

up to $\mathrm{O}(1=\mathrm{N})$ term s . For the m om ent, we shall take $\mathrm{h}=0$.
In the lim it ofan in nite num ber N ofspins, the free-energy m ay be com puted by m eans of the saddle-point (Laplace) m ethod. W e look for the saddle-point m agnetization m (that depends upon tem perature T) m in im izing $\hat{f}(m)$ (25). T he latter is plotted in F igure 2 for three di erent tem peratures.

It can be seen graphically that the m in $m u m$ of \hat{f} is located at $m=0$ when the tem perature is larger than $T_{C}=1$ while there exist two opposite m in \dot{m} a, $m=m(T)<0, m=m(T)>0$ below this critical tem perature. The optim um m agnetization is solution of the saddle-point equation,

$$
\begin{equation*}
m=\tanh (m) ; \tag{26}
\end{equation*}
$$

while the free-energy is given by

$$
\begin{equation*}
f(T)=\lim _{N!1} \frac{T}{N} \ln Z=\hat{f}(m) \quad: \tag{27}
\end{equation*}
$$

The average energy and entropy per spin (divided by N) can be com puted from $(27,8,11)$,

Fig. 2. Free-energy function $\hat{f}(m)$ of the Ising m odel on the com plete graph as a function of the m agnetization m in zero m agnetic eld h and for three di erent tem peratures. a: high tem perature $T=12, \mathrm{~b}$: critical tem perature $\mathrm{T}=1$, c : low tem perature $\mathrm{T}=0: 8$.

$$
\begin{align*}
& h e i_{T}=\frac{1}{2}(m)^{2} ; \tag{28}\\
& h s i_{T}=s(m): \tag{29}
\end{align*}
$$

2.3.4 P hase transition and sym m etry breaking.

In the absenœ of a m agnetic eld, the energy (14) is an even function of the spins: the probability of two opposite con gurations $f_{1} ;::: ;_{\mathrm{n}} \mathrm{g}$ and $f \quad 1 ;::: ;{ }_{n} g$ are equal. A sa consequence, the them alaverage $h i_{T}$ of any spin vanishes. T his result is true for any N and so, in the large N lim it,

$$
\begin{equation*}
\lim _{N!1} \lim _{h!0} h i_{T}=0: \tag{30}
\end{equation*}
$$

It is thus necessary to unveil the m eaning of the saddle-point m agnetization m arising in the com putation of the partition function.

To do so, we repeat the previous calculation of the free-energy in presence of a magnetic eld $\mathrm{h}>0$. Them agnetization is now di erent from zero. At high tem perature $T>T_{c}$, this m agnetization decreases as the m agnetic eld h is low ered and vanishes when $h=0$,

$$
\begin{equation*}
\lim _{\mathrm{h}!0^{+}} \lim _{\mathrm{N}!1} \mathrm{~h} \mathrm{i}_{\mathrm{T}}=0 \quad\left(\mathrm{~T}>\mathrm{T}_{\mathrm{C}}\right) \quad: \tag{31}
\end{equation*}
$$

Therefore, at high tem perature, the inversion of lim its betw een (30) and (31) has no e ect on the nal result.

The situation drastically changes at low tem perature. W hen $\mathrm{T}<\mathrm{T}_{\mathrm{c}}$, the degeneracy between the two m in m a of f is lifted by the m agnetic eld. D ue to the eld, a contribution hm m ust be added to the free-energy (25) and favours them in m um in m over that in m.The contribution to the partition function (24) com ing from the second m in $m u m$ is exponentially $s m$ aller than the contribution due to the globalm inim $u m$ in m by a factorexp (2 N hm). The probability m easure on spins con gurations is therefore fully concentrated around the globalm inim um w th positive m agnetization and

$$
\begin{equation*}
\lim _{h!0^{+}} \lim _{N!1} h i_{T}=m \quad\left(T<T_{C}\right) \quad: \tag{32}
\end{equation*}
$$

From (30) and (32), the m eaning of the phase transition is now clear. A bove the critical tem perature, a sm all perturbation of the system (e.g. a term in the energy function pushing spins up), is irrelevant: as the perturbation disappears ($\mathrm{h}!0$), so do its e ects (m ! 0), see (31). C onversely, below the critical tem perature, a sm all perturbation is enough to trigger strong e ects: spins point up (w ith a spontaneous m agnetization $m>0$) even after the perturbation has disappeared ($h=0$), see (32). At low tem perature, tw o phases w ith opposite m agnetizations m and m coexist. Adding an in nitesim al eld h favours and selects one of them. In m ore m athem atical term s, the m agnetization m is a non-analytic and discontinuous function of h at $h=0$.

So, the phase transition here appears to be intim ately related to the notion of sym m etry breaking. In the case of the Ising m odel, the probability distribution over con gurations is sym m etrical, that is, left unchanged under the reversal of spins ! . A high tem perature, this sym m etry also holds for average quantities: $h i_{T}=0$. At low tem perature, the reversal sym m etry is broken since, in presence of an in nitesim alperturbation, $h i_{T}=m$. The intial sym m etry of the system im plies only that the tw o possible phases of the system have opposite m agnetizations m and m.

In the present case, the sym m etry of the system was easy to identify, and to break! W e shall see that m ore abstract and com plex sym m etries m ay arise in other problem s, e.g. the random graph and K -Satis ability. The understanding of phase transitions very often w ill rely on the breaking of associated sym m etries.

E xercise 3: H ow does equation (26) becom em odi ed when there is a non-zero m agnetic eld? C alculate explicitely the free-energy in presence of a magnetic eld and check the correctness of the above statem ents.

2.3.5 V icinity of the transition and critical exponents.

To com plete the present analysis, we now investigate the properties of the Ising m odel close to the criticaltem perature $\mathrm{T}_{\mathrm{c}}=1$ and de ne $\mathrm{T}=1+\quad \mathrm{w}$ ith j j 1.The spontaneous m agnetization reads from (26),

$$
\begin{equation*}
m(\quad)=P \sum_{3} \quad \text { if } \quad 0, \tag{33}
\end{equation*}
$$

Thus them agnetization grow sas a pow er ofthe shifted tem perature :m () () w ith $=1=2$. , not to be confused w ith the inverse tem perature, is called a critical exponent since it characterizes the power law behaviour of a physical quantity, here the m agnetization, close to criticality. Such exponents are universal in that they are largely independent of the \details" of the de nition of the m odel. W e shall com e back to this point in the sections devoted to the random graph and the K Satis ability m odels.

A nother exponent of interest is related to the nite size e ect at the transition. So far, we have calculated the average values of various quantities in the in nite size \lim it N ! 1 . We have in particular shown the existence of a critical tem perature separating a phase where the sum of the spins is on average zero (> 0) from a phase where the sum of the spins acquires an $O(\mathbb{N}) m$ ean (< 0).At the transition point $(=0)$, we know that the sum of spins cannot be of order N ; instead we have a scaling in N with <1.

W hat is the value of ? From expression (24), let us expand the free-energy function $\hat{f}(m)$ (25) in powers of the m agnetization $m=O\left(\mathbb{N}{ }^{1}\right)$,

$$
\begin{equation*}
f(m) \quad f(0)=\frac{-}{2} m^{2}+\frac{1}{12} m^{4}+O\left(m^{6} ; m^{4}\right) \quad ; \tag{34}
\end{equation*}
$$

w th $\mathrm{f}(0)=\mathrm{T} \ln 2$. Above the critical tem perature, >0, the average m agnetization is expected to vanish. D ue to the presence of the quadratic leading term in (34), the uctuations of m are of the order of $N{ }^{1=2}$. The sum of the spins, N m , has a distribution whose width grow sas $\mathrm{N}^{1=2}$, giving $=1=2$.

At the critical tem perature, the partition function reads from (24),

$$
\begin{equation*}
Z^{\prime} 2^{N} \quad d m \quad e^{N m^{4}=12} \quad \text { : } \tag{35}
\end{equation*}
$$

The average m agnetization thus vanishes as expected and uctuations are of the order of $N{ }^{1=4}$. The sum of the spins, $N \mathrm{~m}$, thus has a distribution whose width grow s as $\mathrm{N}^{3=4}$, giving $=3=4$.

The size of the critical region (in tem perature) is de ned as the largest value m ax of the shifted tem perature leaving unchanged the order of m agnitude of the uctuations of the m agnetization m.A new critical exponent that m onitors this shift is introduced: m ax $N^{1=}$. Dem anding that term s on the r.h.s. of (34) be of the sam e order in N, we nd $=2$.

2.4 Random ness and the replica m ethod.

The above analysis of the Ising m odelhas been usefiul to ilhustrate som e classic analytical techniques and to clarify the concept ofphase transitions. H ow ever, m ost optim ization or decision problem s encountered in com puter science contain another essential ingredient we have not discussed so far, nam ely random ness. To avoid any confusion, let us stress that random ness in this case, e.g. a B oolean form ula random ly drawn from a well-de ned distribution, and called quenched disorder in physics, must be clearly distinguished from the probabilistic form ulation of statistical m echanics related to the existence of them aldisorder, see (2). A s already stressed, as far as com binatorial aspects of statisticalm echanics are concemed, we can start from the de nition (10) of the partition function and interpret it as a generating function, forgetting the probabilistic origin. On the contrary, quenched disorder cannot be om itted. W e are then left with com binatorial problem s de ned on random structures, that is, with partition functions where the weights them selves are random variables.

2.4.1 D istribution of \quenched" disorder.

W e start w ith a sim ple case:

E xercise 4: Consider two spins 1 and 2 with energy function

$$
\begin{equation*}
E(1 ; 2)=J_{1} 2 ; \tag{36}
\end{equation*}
$$

where J is a real variable called coupling. C alculate the partition function, the m agnetization of each spin as well as the average value of the energy at given (quenched) J. Assum e now that the coupling J is a random variable with m easure (J) on a nite support $\left[J ; J_{+}\right] . W$ rite down the expressions of the m ean over J of the m agnetization and energy. W hat is the value of the average ground state energy?

The m eaning of the word \quenched" is clear from the above exam ple. Spins are alw ays distributed according to (2) but the energy function E now depends on random ly draw n variables e.g. the coupling J. A verage quantities (over the probability distribution p) m ust be com puted keeping these random variables xed (or quenched) and thus are random variables them selves that will be averaged over J later on. To distinguish both kinds of averages we hereafter use an overbar to denote the average over the quenched random variables while brackets still indicate a them al average using p.
M odels w ith quenched random ness are often very di cult to solve. O ne of the reasons is that their physical behaviour is m ore com plex due to the presence of frustration.

2.4.2 N otion of frustration.

Frustration is best introduced through the follow ing sim ple exam ple.

E xercise 5: Consider three spins 1,2 and 3 with energy function

$$
\begin{equation*}
E(1 ; 2 ; 3)=12 \quad 13 \quad 23: \tag{37}
\end{equation*}
$$

C alculate the partition function, the m agnetization ofeach spin as well as the average value of the energy. W hat are the ground state energy and entropy?

Repeat the calculation and answer the sam e questions for

$$
\begin{equation*}
E(1 ; 2 ; 3)=12 \quad 13+23 \text { : } \tag{38}
\end{equation*}
$$

N ote the change of the last sign on the r.h.s. of (38).
The presence of quenched disorder w ith both negative and positive couplings generates frustration, that is con icting term s in the energy function. A fam ous exam ple is the Sherrington-K irkpatridk (SK) model, a random version of the Ising m odel on the com plete graph whose energy function reads

$$
\begin{equation*}
E_{S K}\left(1 ;::: ;{ }_{N}\right)=P_{\bar{N}}^{1}{ }_{i<j}^{X} J_{i j i j} ; \tag{39}
\end{equation*}
$$

w here the quenched couplings $J_{i j}$ are independent random norm al variables. In the SK m odel, contrarily to the Ising m odel, the product of the couplings $J_{i j}$ along the loops of the com plete graph $K_{N} m$ ay be negative. The ground state is no longer given by the \all spins up" con guration, nor by any sim ple prescription and m ust be sought for am ong the set of 2^{N} possible con gurations. F inding the ground state energy for an arbitrary set of couplings $J_{i j}$ is a hard com binatorial optim ization task which in this case belongs to the class of NP hard problem s $[15,16]$.

2.4.3 T hem odynam ic lim it and self-averaging quantities.

Though physicalquantities depend a priorion quenched couplings, som e sim pli cations m ay take place in the large size lim it N ! 1. M any quantities of interest m ay exhibit less and less uctuations around their m ean values and becom e self-averaging. In other words, the distributions of som e random variables becom e highly concentrated as N grow s. T ypical exam ples of highly concentrated quantities are the (free-)energy, the entropy, the m agnetization, ... whereas the partition function is generally not self-averaging.

Self-averaging properties are particularly relevant when analyzing a problem. Indeed, for these quantities, we only have to com pute their average values, not their full probability distributions. W e shall encounter num erous exam ples of concentrated random variables later in this article.

Exercise 6: Show that the partition function of the SK m odel is not selfaveraging by calculating its rst two m om ents.

2.4.4 Replica method.

W e consider a generic m odelw ith N spins i and an energy function $E(C ; J$) depending on a set of random couplings J . Furtherm ore we assum e that the free-energy $F(J)$ of this m odel is self-averaging and would like to com pute its
quenched averaged value $\overline{F(J)}$ or, equivalently from (12), the averaged logarithm of the partition function $\ln Z(J)$. Though wellposed, this com putation is generally a very hard task from the analyticalpoint ofview. A n originalbut non rigorous m ethod, the replica approach, was invented by K ac in the sixties to perform such calculations. T he starting point of the replica approach is the follow ing expansion

$$
\begin{equation*}
\mathrm{Z}(\mathrm{~J})^{\mathrm{n}}=1+\mathrm{n} \ln \mathrm{Z}(\mathrm{~J})+\mathrm{O}\left(\mathrm{n}^{2}\right) \quad ; \tag{40}
\end{equation*}
$$

valid for any set of couplings J and $s m$ all real n. The identity (40) m ay be averaged over couplings and gives the m ean free-energy from the averaged $n{ }^{\text {th }}$ power of the partition function

$$
\begin{equation*}
\overline{F(J)}=T \lim _{n!0} \frac{\overline{\mathrm{Z}(J)^{n}}}{n} 1^{!}: \tag{41}
\end{equation*}
$$

If we restrict to integer n, the $n^{\text {th }} m$ om ent of the partition function Z can be rew ritten as

T his last expression m akes transparent the principle of the replica m ethod. W e have n copies, or replicas, of the initial problem. T he random couplings disappear once the average over the quenched couplings has been carried out. F inally, we m ust com pute the partition function of an abstract system of N vectorial spins $\sim_{i}=\left(\underset{i}{1} ;::: ; n_{i}^{n}\right)$ w th the non random energy function

$$
\begin{equation*}
E_{e f f}\left(f \sim_{i} g\right)=\quad T \ln ^{4} \exp \quad \frac{1}{T}_{a=1}^{X^{n}} E\left(C^{a} ; J\right)^{5}: \tag{43}
\end{equation*}
$$

This new partition function can be estim ated analytically in som e cases by m eans of the saddle-point m ethod just as we did for the Ising m odel. T he result m ay be w ritten form ally as

$$
\begin{equation*}
\overline{Z(J)^{\mathrm{n}}}=\exp \quad \mathrm{Nf}(\mathrm{n}) \tag{44}
\end{equation*}
$$

to leading order in N . On general grounds, there is no reason to expect the partition function to be highly concentrated. Thus, $\tilde{f}(n)$ is a non linear function of its integer argum ent n satisfying $\tilde{f^{(}(0)}=0$. The core idea of the
replica approach is to continue analytically f to the set of real n and ob$\operatorname{tain} \bar{F}(J)=T N d f=d n$ evaluated at $n=0$. The existence and uniqueness of the analytic continuation is generally ensured for nite sizes N due to the $m o-$ m ent theorem. In m ost problem s indeed one succeeds in bounding $\downarrow \mathrm{Z}(\mathrm{J})$ jfrom above by a (J independent) constant C.Them om ents ofZ grow only exponentially w ith n and their know ledge allow s for a com plete reconstruction of the probability distribution of $Z(J)$. H ow ever this argum ent breaks down when the saddle-point m ethod is employed and the upper bound $C=\exp (O \mathbb{N})$) becom es in nite.

Though there is generally no rigorous schem e for the analytic continuation when N ! 1 , physicists have developped in the past twenty years m any em pirical rules to use the replica m ethod and obtain precise and som etim es exact results for the averaged free-nergy. We shall see in the case of the K Satis ability problem how the replica approach can be applied and how very peculiar phase transitions, related to the abstract \replica" sym m etry breaking, are present.
T hem athem atician or com puter scientist reader of this briefpresentation m ay feel uneasy and distrustful of the replica m ethod because of the uncontrolled analytic continuation. To help him /her loose som e inhibitions, he/she is asked to consider the follow ing warm ing up exercise:

E xercise 7: C onsider N ew ton's binom ial expression for $(1+x)^{n}$ with integer n and perform an analytic continuation to realn. Take the $\mathrm{n}!0 \mathrm{~lm}$ it and show that this leads to the series expansion in x of $\ln (1+x)$.

3 R andom G raphs

In this section, we show how the statisticalm echanics concepts and techniques exposed in the previous section allow to reproduce som e fam ous results of Erdos and Renyion random graphs[17].

3.1 G eneralities

F irst let us de ne the random graphs used. C onsider the com plete graph K_{N} over N vertioes. W e de ne $\mathrm{G}_{\mathrm{N} ; \mathrm{N}_{\mathrm{L}}}$ as the set of graphs obtained by taking only $N_{L}=N=2$ am ong the ${ }_{2}^{N}$ edges of K_{N} in all possible di erent ways. A
 O ther random graphs can be generated from the com plete graph K_{N} through a random deletion process of the edges w ith probability $1 \quad=\mathrm{N}$. In the large

N lim it, both fam ilies of random graphs share com m on properties and we shall m ention explicitely the precise fam ily we use only when necessary.

3.1.1 C onnected com ponents.

W e call \clusters" the connected com ponents of a given graph G; the \size" of a cluster is the num ber of vertices it contains. A n isolated vertex is a cluster of size unity. The num ber of connected com ponents of is denoted by C (G) and we shallindicate its norm alized fraction by $\mathrm{C}(\mathrm{G})=\frac{\mathrm{C}}{\mathrm{N}}$. If C is sm all, the random graph G has few big clusters whereas for capproaching unity there are m any chusters of sm all size. Percolation theory is concemed w ith the study of the relationship betw een the probability p oftw o vertioes being connected w th the typical value ofc in the N ! 1 lim it. The soope of this section is to show how such a relationship can be exploited by the study of a statisticalmechanics m odel, the so called Potts m odel, after a suitable analytic continuation. A s a historical note, let us mention that analytic continuations have played an enorm ous role in physics this last century, leading often to unexpected deep results, im possible or very di cult to obtain by other m eans.

3.1.2 Generating function for clusters.

Let P (G) be the probabillty ofdraw ing a random graph G through the deletion process from the com plete graph K_{N}. Since the edge deletions are statistically independent, this probability depends on the number of edges N_{L} only, and factorizes as

$$
\begin{equation*}
P(G)=p^{N_{\mathrm{L}}(G)}(1 \quad p)^{\frac{N(\mathbb{N} 1)}{2} N_{\mathrm{L}}(G)} ; \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
1 \quad p=1 \quad \bar{N} \tag{46}
\end{equation*}
$$

is the probability of edge deletion. W e want to study the probability density (c) of generating a random graph w ith c clusters,

$$
\begin{equation*}
(c)={ }_{G}^{X} P(G) \quad(C \quad C(G)) \quad ; \tag{47}
\end{equation*}
$$

where indicates the D irac distribution.
We can introduce a generating function of the cluster probability by

$$
\begin{aligned}
& Z^{1} \\
& Y(q)=d c \quad(c) q^{N} c \\
& 0
\end{aligned}
$$

$$
\begin{align*}
& =\underbrace{X}_{G K_{N}} P(G) q^{C(G)}=X_{G K_{N}}^{X} P^{L(G)}(1 \quad P)^{N(\mathbb{N} 1)} L^{L(G)} q^{C(G)} ; \tag{48}
\end{align*}
$$

w ith q being a form al (eventually real) param eter.

3.1.3 Large size lim it.

In the large size lim it, (c) is expected to be highly concentrated around som e value $c($) equal to the typical fraction of clusters per vertex and depending only the average degree of valency . R andom graphs whose c (G) di ers enough from $\mathrm{c}(\mathrm{)}$ w illbe exponentially rare in N . T herefore, the quantity

$$
\begin{equation*}
!(c)=\lim _{N!} \frac{1}{N} \log \quad(c) \tag{49}
\end{equation*}
$$

should vanish for $c=c()$ and be strictly negative otherw ise. In the follow ing, we shall com pute ! (c) and thus obtain inform ation not only on the typical num ber of clusters but also on the large deviations (rare events).

De ning the logarithm $\tilde{f}^{(}(\mathrm{q})$ of the cluster generating function as

$$
\begin{equation*}
f(q)=\lim _{N!1} \frac{1}{N} \log Y(q) \tag{50}
\end{equation*}
$$

we obtain from a saddle-point calculation on c, see $(48,49)$,

$$
\begin{equation*}
\tilde{f}(q)=\max _{0} \operatorname{ax}_{c} c \ln q+!(c) \quad: \tag{51}
\end{equation*}
$$

In other words, \tilde{f} and ! are sim ply con jugated Legendre transform s . It tums out that a direct com putation of \tilde{f} is easier and thus prefered.

3.2 Statisticalm echanics of the random graph.

H ereafter, we proceed to com pute the properties of random graphs by using a m apping to the so-called Potts m odel. Som e know results can be rederived by the statisticalm echanics approach, and additionalpredictions are m ade.

3.2.1 P resentation of the P otts m odel.

The Potts m odel[18] is de ned in term s of an energy function which depends on N spin variables ${ }_{\mathrm{i}}$, one for each vertex of the com plete graph K_{N}, which take q distinct values $i=0 ; 1 ;:: ; ; q \quad 1$.The energy function reads

$$
E\left[\begin{array}{l}
\mathrm{I} \tag{52}\\
i
\end{array}\right]={ }_{i<j}^{X}(i ; j) ;
$$

where $(a ; b)$ is the K roneckerdelta function: $(a ; b)=1$ if $a=b$ and $(a ; b)=0$ if $a \mathrm{~b}$. The partition function of the P otts m odel is
where is the inverse tem perature and the sum m ation runs over all q^{N} spin con gurations.

In order to identify the m apping betw een the statisticalm echanics features of the Potts m odel and the percolation problem in random graphs we com pare the expansion of $Z_{p \text { otts }}$ to the de nition of the chuster generating function of the random graphs.

3.2.2 Expansion of the P otts partition function.

Follow ing K asteleyn and Fortuin [19], we start by rew riting Z_{P} otts as a dichrom atic polynom ial. U pon posing

$$
\begin{equation*}
\mathrm{v}=\mathrm{e} \quad 1 \text {; } \tag{54}
\end{equation*}
$$

one can easily cheok that (53) can be recast in the form

$$
\begin{equation*}
Z_{\text {Potts }}={ }_{f_{i g i<j}}^{X}[1+V(i ; j)]: \tag{55}
\end{equation*}
$$

W hen i and j take the sam e value there appears a factor $(1+v)$ in the product (corresponding to a term e in (53)); on the contrary, whenever i and j are di erent the product rem ains unaltered. T he expansion of the above product reads

$$
\begin{align*}
& Z_{\text {Potts }}={ }_{\mathrm{fig}}^{\mathrm{X}}[1+\mathrm{V} \underset{\mathrm{i}<\mathrm{j}}{\mathrm{X}} \quad(\mathrm{i} ; \quad \mathrm{j}) \\
& \left.+v_{i<j ; k<l=(i ; j) \epsilon_{(k ; 1)}^{2}}(i ; j)(k ; 1)+\quad\right]: \tag{56}
\end{align*}
$$

W e obtain $2^{\frac{N(N) 1)}{2}}$ term seach of which com posed by two factors, the rst one given by v raised to a power equal to the num ber of s com posing the second factor. It follow s that each term corresponds to a possible subset of edges on K_{N}, each edge weighted by a factor v . There is a one\{to \{one correspondence between each term of the sum and the sub \{graphsG of N_{N}.T he edge structure of each sub \{graph is encoded in the product of the s . T his fact allow s us to rew rite the partition fiunction as a sum over sub \{graphs
where $L(G)$ is the num ber of edges in the sub $\left\{g r a p h ~ G a n d ~ i_{k} ; j_{k}\right.$ are the vertices connected by the k-th edge of the sub \{graph. W em ay now exchange the order of the sum m ations and perform the sum over the spin con gurations. G iven a sub \{graph G w ith L links and C clusters (isolated vertioes inchuded), the sum over spins con gurations will give zero unless all the sbelonging to a cluster of G have the sam evalue (cf. the functions). In such a cluster, one can set the s to any of the q di erent values and hence the nal form of the partition function reads

$$
\begin{equation*}
Z_{\text {Potts }}=X_{G K_{N}}^{X} v^{I(G)} q^{C(G)}: \tag{58}
\end{equation*}
$$

3.2.3 C onnection w ith the cluster generating finction

If we now m ake the follow ing identi cation

$$
\begin{equation*}
\mathrm{p}=1 \quad \mathrm{e}=\mathrm{v}=(1+\mathrm{v}) ; \tag{59}
\end{equation*}
$$

we can rew rite the partition function as

$$
\begin{align*}
& Z_{P_{\text {otts }}}=X_{G K_{N}}^{X} p^{L(G)} q^{C(G)} \\
& =\left(\begin{array}{ll}
1 & p
\end{array}\right)_{G(\mathbb{N} 1)}^{2} X_{N} P^{L(G)}(1 \quad p)^{\frac{N(\mathbb{N} 1)}{2}} \mathrm{~L}(G) q^{C(G)}: \tag{60}
\end{align*}
$$

C om puting the prefactor on the rh.s. of (60), we have

$$
\begin{equation*}
Z_{\text {Potts }}=e^{\frac{N}{2}} Y(q) ; \tag{61}
\end{equation*}
$$

for term sexponential in $N . Y$ is the cluster generating function of the graph (48). The large N behaviour of the cluster probability! (c) is therefore related
to the P otts free\{energy,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{P} \text { otts }}(\mathrm{q})=\lim _{\mathrm{N}!1} \frac{1}{\mathrm{~N}} \ln \mathrm{Z}_{\mathrm{P} \text { otts }} ; \tag{62}
\end{equation*}
$$

through

$$
\begin{equation*}
\overline{2} \quad f_{\text {otts }}(q)=\max _{0} \operatorname{ax}_{1}(c \ln q+!(c)): \tag{63}
\end{equation*}
$$

W e are interested in nding the value c (q) which maxim izes the rh.s. in (63); since

$$
\begin{equation*}
\frac{\mathrm{d}!(\mathrm{c})}{\mathrm{dc}}_{\mathrm{c}(\mathrm{q})}=\ln \mathrm{q} \tag{64}
\end{equation*}
$$

it follows that! takes its m axim um value for $q=1 . D$ i erentiating eq. (63) w ith respect to q , we have

$$
\begin{equation*}
\frac{\mathrm{df}_{\mathrm{Potts}}}{\mathrm{dq}}=\frac{\mathrm{d}}{\mathrm{dq}}(\mathrm{c} \ln \mathrm{q}+!(\mathrm{c}))=\frac{\varrho}{@ c}(c \ln q+!(\mathrm{c})) \frac{@ c}{@ q}+\frac{c}{q} ; \tag{65}
\end{equation*}
$$

which, in virtue of eq. (64) becom es:

$$
\begin{equation*}
c(q)=q \frac{d f_{\text {otts }}}{d q}(q) \quad: \tag{66}
\end{equation*}
$$

It is now clear that the typical fraction of clusters per site, $c(q=1)$, can be obtained, at a given connectivity , by com puting the P otts free-energy in the vicinity of $q=1$. Since the P otts m odel is originally de ned for integer values of q only, an analytic continuation to real values of q is necessary. W e now explain how to perform this continuation.

3.2.4 Fre-energy calculation.

A s in the case of the Ising m odel of section II, a careful exam ination of the energy function (52) shows that the latter depends on the spin con guration only through the fractions $x(; f i g)$ of variables i in the th state ($=$ 0;1; ;q 1) [20],

$$
\begin{equation*}
x\left(; f{ }_{i} g\right)=\frac{1}{N}_{i=1}^{\mathrm{XN}^{\mathrm{N}}}(\mathrm{i} ;) ; \quad(=0 ; 1 ;::: ; q \quad 1) \quad: \tag{67}
\end{equation*}
$$

Of course, ${ }^{P} \quad x\left(; f{ }_{i} G\right)=1$. Note that in the Ising case $(q=2)$ the two fractions $x(0)$ and $x(1)$ can be param etrized by a unique param eter e.g. the m agnetization $m=(x(1) \quad x(0))=2$.

U sing these fractions, the energy (52) m ay be rew ritten as

$$
\begin{equation*}
E\left[f_{i} G\right]=\frac{N}{}_{2}^{\mathbb{X}^{1}}\left[\mathbb{X}\left(; f_{i} G\right)\right]^{2}+\frac{N}{2}: \tag{68}
\end{equation*}
$$

N ote that the last term on the r.h.s. of (68) can be neglected w ith respect to the rst term whose order ofm agnitude is $0\left(\mathbb{N}^{2}\right)$.

The partition function (53) at inverse tem perature $=$ =N now becom es

$$
\begin{align*}
& { }_{\mathrm{Z}}(\mathbb{R}) \\
& =\quad \quad{ }_{=1}^{1} d x() \exp (N f[f x() g]) \tag{69}
\end{align*}
$$

to the leading order in N. The subscript (R) indicates that the sum or the integralm ust be restricted to the norm alized subspace ${ }^{P}{ }_{q}{ }_{=}^{1} \times()=1$. The \free-energy" density functionalf appearing in (69) is

$$
\mathrm{f}[\mathrm{fx}(\mathrm{r}) \mathrm{g}]=\begin{align*}
& \mathrm{X}^{1} \tag{70}\\
& =0
\end{align*} \quad \overline{2}^{[\mathrm{x}()]^{2}+\mathrm{x}() \ln \mathrm{x}()}:
$$

In the lim it of large N, the integral in (69) m ay be evaluated by the saddlepoint m ethod. The P otts free-energy (62) then reads

$$
\begin{equation*}
f_{P \text { otts }}(q)=\min _{f \times(\text { in })} f[f x \quad g] \tag{71}
\end{equation*}
$$

and the problem becom es that of analyzing them inim a off. G iven the initial form ulation of the problem, each possible value of am ong $0 ;::: ; q 1$ plays the sam e role; indeed f is invariant under the perm utation sym m etry of the di erent q values. H ow ever, we should keep in m ind that such a sym m etry could be broken by the minim um (see section 2).W e shall see that depending on the value of the connectivity, the perm utation sym m etry m ay or m ay not be broken, leading to a phase transition in the problem which coincides w ith the birth a giant com ponent in the associated random graph.

3.2.5 Sym m etric saddle-point.

C onsider rst the sym m etric extrem um of f,

$$
\begin{equation*}
x^{\text {sym }}(1)=\frac{1}{q} ; \quad 8=0 ;::: ; q \quad 1: \tag{72}
\end{equation*}
$$

W e have

$$
\begin{equation*}
\mathrm{f}_{\mathrm{P} \text { otts }}^{\mathrm{sym}}(\mathrm{q})=\quad \operatorname{lnq} \overline{2 q}: \tag{73}
\end{equation*}
$$

Taking the Legendre transform of this free-energy, see $(63,66)$, we get for the logarithm of the cluster distribution density

$$
!^{\mathrm{sym}}(\mathrm{c})=\overline{2} \quad\left(\begin{array}{lll}
1 & \mathrm{c})\left(1+\ln \quad \ln \left[\begin{array}{ll}
1 & c
\end{array}\right]\right) \quad: \tag{74}
\end{array}\right.
$$

$!^{\text {sym }}$ (c) is m axim al and null at $c^{\text {sym }}()=1 \quad \frac{1}{2}$, a result that cannot be true for connectivities larger than two and must break down som ew here below. Com parison w th the rigorous derivation in random graph theory indicates that the sym m etric result is exact as long as $\quad c=1$ and is false above the percolation threshold ${ }_{c}$. The failure of the sym m etric extrem um in the presence of a giant com ponent proves the onset of sym m etry breaking.

To understand the m echanism responsible for the sym m etry breaking, we look for the local stability of the sym m etric saddle-point (72) and com pute the eigenvalues of the H essian m atrix

$$
\begin{equation*}
\mathrm{M} ;=\frac{@^{2}}{@ \mathrm{x}(\mathrm{x}(\mathrm{x}} \mathrm{f}[\mathrm{fx}(\mathrm{~g})]_{\mathrm{sym} ;(\mathbb{R})} ; \tag{75}
\end{equation*}
$$

restricted to the norm alized subspace. The sim ple algebraic structure of M allows an exact com putation of its $q 1$ eigenvalues for a generic integer q. We nd a non degenerate eigenvalue $0=q(q \quad)$ and another eigenvalue ${ }_{1}=\mathrm{q} \quad \mathrm{w}$ th m ultiplicty $\mathrm{q} \quad 2$. The analytic continuation of the eigenvalues to realq! 1 lead to the single value $=1$ which changes sign at the percolation threshold c. Therefore, the sym m etric saddle-point is not a local m inim um off above c, show ing that a m ore com plicated saddle-point has to be found.

3.2.6 Sym m etry broken saddle-point.

The sim plest way to break the sym m etry of the problem is to look for solutions in which one am ong the q values appears m ore frequently than the others.

Therefore we look for a saddle-point of the form

$$
\begin{align*}
& x(0)=\frac{1}{q}\left[\begin{array}{ll}
1+(1 & q) s
\end{array}\right] \\
& x()=\frac{1}{q}\left[\begin{array}{ll}
1 & s
\end{array} ; \quad\left(\begin{array}{ll}
=1 ;:: ; ; q & 1
\end{array}\right):\right. \tag{76}
\end{align*}
$$

The sym m etric case can be recovered in this enlarged subspace of solutions by setting $s=0$. The free-energy of the Potts m odel is obtained by plugging the fractions (76) into (70). In the lim it q! 1 of interest,

$$
f\left[\begin{array}{ll}
\mathrm{fr} & \mathrm{~g}
\end{array}\right]=\overline{2}_{2}^{+}\left(\begin{array}{ll}
\mathrm{q} & 1
\end{array}\right) \mathrm{f}_{\mathrm{f}} \mathrm{otts}(\mathrm{~s} ; ~)+\mathrm{O}\left(\begin{array}{ll}
(\mathrm{q} & 1 \tag{77}
\end{array}\right)
$$

w ith

$$
f_{\text {P otts }}(s ;)=\frac{-}{2}\left(1 \quad \frac{1}{2} s^{2}\right) \quad 1+s+\left(\begin{array}{lll}
1 & s \tag{78}
\end{array}\right) \ln (1 \quad s)
$$

M inim ization of $f_{P \text { otts }}(s ;)$ ith respect to the order param eter s show s that for 1 the sym m etric solution $s=0$ is recovered, whereas for >1 there exists a non vanishing optim al value s () of s that is solution of the im plicit equation

$$
\begin{equation*}
1 \quad s=\exp (\quad s) \quad: \tag{79}
\end{equation*}
$$

The stability analysis (which we will not give here) show s that the solution is stable for any value of. The interpretation ofs () is straightforw ard: s is the fraction of vertioes belonging to the giant cluster. T he average fraction of connected com ponents c() equals $\mathrm{f}_{\mathrm{otts}}(\mathrm{s}(\mathrm{)}$)), see (66), in perfect agreem ent w ith exact results by E rdos and Renyi.

3.3 D iscussion.

Further results on the properties of random graphs can be extracted from the previous type of calculation. W e shall exam ine two of them .

3.3.1 Scaling at the percolation point.

Given the interpretation of s () for any large but nite value of N, we may de ne the probability of existence of a cluster containing N s sites as follow s

$$
\begin{equation*}
P(s ; N), \frac{\exp (\mathbb{N} f(s ;))}{\exp (\mathbb{N} f(s ;))} \tag{80}
\end{equation*}
$$

In the in nite size lim it this leads to the expected result

$$
\begin{equation*}
\lim _{N!1} P(s ; N)=(s \quad s()) \tag{81}
\end{equation*}
$$

In order to describe in detail how sharp (in N) the transition is at $=1$, we need to consider corrections to the saddle point solutions by m aking an expansion of the free-energy $f_{P \text { otts }}(s ;=1)$ in the order param eter s. At threshold, we have $s(1)=0$ and $f_{P \text { otts }}(s ; 1)=s^{3}=6+O\left(s^{4}\right)$ and therefore

$$
\begin{equation*}
P(s ; N)^{\prime} \exp \left(N s^{3}=6\right) \tag{82}
\end{equation*}
$$

In order to keep the probability nite at the critical point the only possible scaling for s is $s=0\left(\mathbb{N}^{1=3}\right)$ which leads to a size of the giant com ponent at criticality $\mathrm{N} \quad \mathrm{N}^{1=3}=\mathrm{N}^{2=3}$, in agreem ent w ith the E rdosR enyi results.

3.3.2 Large deviations.

The know ledge of the P otts free-energy for any value ofq allow s one to com pute its Legendre transform,!(c). The com putation does not show any di culty and we do not reproduce the results here [21]. P hase transitions are also found to take place for rare events (graphs that do not dom inate the cluster probability distribution). N otice that we consider here random graphs obtained by deleting edges from K_{N} w th a xed probability. Large deviations results indeed depend strongly on the process of generating graphs.

A s a typical exam ple of what can be found using statisticalm echanics, let us m ention this sim ple result

$$
\begin{equation*}
!(c=1)=\overline{2} \quad ; \tag{83}
\end{equation*}
$$

for all connectivities. The above identity m eans that the probability that a random graph has $\mathrm{N} \quad \circ(\mathbb{N}$) connected com ponents decreases as exp ($\quad \mathrm{N}=2$) when N gets large. T his result m ay be easily understood. C onsider for instance graphs w th N edges m ade of a com plete graph on ${ }^{\rho} \overline{2 N}$ vertices plus N
$\mathrm{p} \overline{2 \mathrm{~N}}$ isolated vertioes. The fraction of connected com ponents in this graph is $c=1 \quad 0(1=N)!1$.T he num ber of such graphs is sim ply the num ber of choices of ${ }^{P} \frac{1}{2} \mathrm{~N}$ vertioes am ong N ones. Taking into account the edge deletion probability $1 \quad \mathrm{p}=1 \quad=\mathrm{N}$, one easily recovers (83).

3.3.3 C onclusion.

The random graph problem is a nioe starting point to test ideas and techniques from statisticalm echanics. First, rigorous results are known and can be confronted to the outputs of the calculation. Secondly, analytical calculations are not too di cult and can be exploited easily.

A s its m ain focus, this section aim ed at exem plifying the strategy used in m ore com plicated, e.g. K -Satis ability, problem s. T he procedure of analytic continuation, which is at the root of the replica approach, appears nicely in the com putation of the Potts free-energy and is shown to give exact results (though in a non rigorousw ay). The pow er of the approach is im pressive. M any quantities can be com puted and rather subtle e ects such as large deviations are easily obtained in a unique fram ew ork.

At the sam e tim e, the m ain weakness of the statistical m echanics approach is also visible. M ost interesting e ects are obtained when an underlying sym m etry is broken. But the structure of the broken saddle-point subspace is far from obvious, in contrast to the Ising case of the previous section. T here is at rst sight som e kind of arbitrariness in the search of a saddle-point of the form of (76). In the absence of a well-established and rigorous procedure, the sym m etry breaking schem es to be used m ust satisfy at least basic self-consistency checks (plausibility of results, local stability, ...). In addition, theoreticalphysicists have developed various schem es that are know n to bee cient for various classes of problem sbut (failin other cases). A kind ofstandard lore, ofprecious help to solve new problem s , exists and is still waiting for m m athem atical foundations.

4 R andom K -satis ability problem

In what follow s we shall describe the m ain steps of the replica approach to the statisticalm echanics analysis of the Satis ability problem. T he interested reader m ay nd additionaldetails conceming the calculations in several published papers [22\{28] and in the references therein.

The satisfaction of constrained B oolean form ulae is a key issue in com plexity theory. M any com putational problem s are known to be N P -com plete $[15,29]$
through a polynom ialm apping onto the K-Satis ability (SAT) problem, which in tum was the rst problem shown to be NP -oom plete by Cook in 1971 [30].

Recently [31], there has been m uch interest in a random version of the $K-S A T$ problem de ned as follow s . Consider N Boolean variables $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1 ;::: ; \mathrm{N}$. C all a clause C the logical R of K random ly chosen variables, each of them being negated or left unchanged with equal probabilities. Then repeat this process by draw ing independently M random clauses $\mathrm{C}, ~ `=1 ;::: ; \mathrm{M}$. The logical AND of all these clauses is a \form ula", referred to as F. It is said to be satis able if there exists a logical assignm ent of the xs evaluating F to true, and unsatis able otherw ise.

Num erical experim ents have concentrated on the study of the probability $\mathrm{P}_{\mathrm{N}}(; \mathrm{K})$ that a random ly chosen F having $\mathrm{M}=\mathrm{N}$ clauses be satis able. For large sizes, a rem arkable behaviour arises: P_{N} seem s to reach unity for
$<{ }_{c}(\mathbb{K})$ and vanishes for $>{ }_{c}(\mathbb{K})$ when N ! 1 [32,31]. Such an abrupt threshold behaviour, separating a SAT phase from an UNSAT one, has indeed been rigorously con m ed for 2-SAT, which is in P, w ith ${ }_{c}(2)=1[33,34]$. For larger $K \quad 3, K-S A T$ is NP-com plete and much less is known. The existence of a sharp transition has not been rigorously proved but estim ates of the thresholds have been found : c (3)' 4:3 [35]. M oreover, som e rigorous lower and upper bounds to ${ }_{c}$ (3) (if it exists), ${ }_{1 . b}:=3: 14$ and $u: b:=4: 51$ respectively have been established (see the review articles dedicated to upper and low er bounds contained in this TC S special issue).

The interest in random $K-S A T$ arises partly from the follow ing fact: it has been observed num erically that hard random instances are generated when the problem s are critically constrained, i.e., close to the SAT /UNSAT phase boundary $[32,31]$. The study of such hard instances represents a theoretical challenge towards an understanding of com plexity and the analysis of exact algorithm s. M oreover, hard random instances are also a test-bed for the optim ization of heuristic (incom plete) search procedures, which are widely used in practioe.

Statistical mechanics provides new intuition on the nature of the solutions of random $\mathrm{K}-\mathrm{SAT}$ (or MAX-K-SAT) through the introduction of an order param eter which describes the geom etrical structure of the space of solutions. In addition, it gives also a global picture of the dynam ical operation of search procedures and the com putational com plexity of K -SAT solving.
4.1 $\mathrm{K}-$ SAT energy and the partition function.

To apply the statistical physics approach exem pli ed on the random graph problem, one has to identify the energy function corresponding to the $K-S A T$
problem.

The logical values of an x_{i} can be represented by a binary variable S_{i}, called a spin, through the oneto-one m apping $S_{i}=1$ (respectively +1) if x_{i} is false (resp. true). The random clauses can then be encoded into an M N m atrix $C_{~_{i}}$ in the following w ay : $C_{i}=1$ (respectively +1) if the clause C_{P}, inchudes $\overline{X_{i}}\left(\right.$ resp. $\left.\mathrm{X}_{\mathrm{i}}\right), \mathrm{C}_{\mathrm{i}}=0$ otherw ise. It can be checked easily that ${ }_{i=1}^{N} C_{i} S_{i}$ equals the num ber of w rong literals in clause '. C onsider now the cost-function $\mathrm{E}[\mathrm{C} ; \mathrm{S}]$ de ned as the num ber of clauses that are not satis ed by the logical assignm ent corresponding to con guration S.

$$
\begin{equation*}
E[C ; S]=\mathbb{X}_{\substack{M}}^{X^{N}} C_{\backslash 1} S_{i}+K^{!} \quad ; \tag{84}
\end{equation*}
$$

where $(j)=1$ if $j=0$, zero otherw ise, denotes the K ronecker function. T he m inim um (or ground state $-G S$) E [C] of $E[C ; S]$, is the lowest num ber of violated clauses that can be achieved by the best possible logical assignm ent [23]. E [C] is a random variable that becom es highly concentrated around its average value $\mathrm{E}_{\mathrm{GS}} \quad \overline{\mathrm{E}[\mathrm{C}}$] in the large size lim it [36]. T he latter is accessible through the know ledge of the averaged logarithm of the generating function

$$
\begin{equation*}
Z[C]={ }_{s}^{X} \exp (E[C ; S] T) \tag{85}
\end{equation*}
$$

since

$$
\begin{equation*}
\mathrm{E}_{\mathrm{GS}}=\mathrm{T} \overline{\log Z[\mathrm{C}]}+\mathrm{O}\left(\mathrm{~T}^{2}\right) ; \tag{86}
\end{equation*}
$$

w hen the auxiliary param eter T is sent to zero. B eing the m inim al num ber of violated clauses, $\mathrm{E}_{\mathrm{G} S}$ equals zero in the sat region and is strictly positive in the unsat phase. T he know ledge ofE G s as a function of therefore determ ines the threshold ratio c (K).

4.2 T he average over the disorder.

T he calculation of the average value of the logarithm of the partition function in (86) is an aw kward one. To circum vent this di culty, we com pute the $\mathrm{n}^{\text {th }}$ m om ent of Z for integer-vahed n and perform an analytic continuation to real n to exploit the identity $\overline{Z[C]^{n}}=1+n \overline{\log Z[C]}+O\left(n^{2}\right)$. The $n^{\text {th }} m$ om ent of Z is obtained by replicating n tim es the sum over the spin con gurations S
and averaging over the clause distribution [23]

$$
\overline{Z[C]}=\sum_{S^{1} ; S^{2} ;::: ; S^{n}}^{x} \quad \begin{align*}
& \operatorname{Xin}^{n} E\left[C ; S^{a}\right]=T \tag{87}
\end{align*}
$$

which in tum m ay be viewed as a generating function in the variable $e^{1=T}$.
In order to com pute the expectation values that appear in eq. (87), one notioes that each individual term

$$
\begin{equation*}
z\left[f S^{a} g\right]=\overline{\exp \quad \frac{1}{T}_{a=1}^{X^{n}} E\left[C ; S^{a}\right]} \tag{88}
\end{equation*}
$$

factorises over the sets ofdi erent clauses due to the absence of any correlation in their probability distribution. It follow s

$$
\begin{equation*}
\mathrm{z}\left[\mathrm{f}^{\mathrm{a}} \mathrm{~g}\right]=\left(\mathrm{k}\left[\mathrm{f} S^{a} \mathrm{~g}\right]\right)^{\mathrm{M}} ; \tag{89}
\end{equation*}
$$

where each factor is de ned by
w ith the bar denoting the uniform average over the set of $2^{K}{ }_{K}^{N} \quad$ vectors of N com ponents $\mathrm{C}_{\mathrm{i}}=0$; 1 and of squared nom equal to K .

Resorting to the identity,
one m ay carry out the average over in disorder in eq. (90) to obtain
up to negligible $\mathrm{O}(1=\mathrm{N})$ contributions.
The averaged term in the rh.s. of (87) depends on the $n \quad N$ spin values only through the $2^{\text {n }}$ occupation fractions $\mathrm{x}(\sim)$ labeled by the vectors $\sim \mathrm{w}$ ith
n binary com ponents; $x(\sim)$ equals the num ber (divided by N) of labels isuch that $S_{i}^{a}={ }^{a}, 8 a=1 ;::: ; n$. It follow S that ${ }_{k}\left[f S^{a} g\right]={ }_{k}[x] w$ here

To leading order in N (e.g., by resorting to a saddle point integration), the nal expression of the $n^{\text {th }} m$ om ent of Z can bew rilten as $\overline{Z[C]^{n}}$, $\exp \left(N f_{\text {opt }}=T\right)$ where $f_{\text {opt }}$ is the optim um (in fact them inim um for integer n) over allpossible xs of the functional [23]

$$
\begin{equation*}
\mathrm{f}[\mathrm{x}]=\mathrm{e}[\mathrm{x}]+\frac{1}{\mathrm{~T}}_{\sim}^{\mathrm{x}} \mathrm{x}(\sim) \log \mathrm{x}(\sim) \quad ; \tag{94}
\end{equation*}
$$

w ith
N ote the sim ilarities between equations (94) and (70). W hile in the random graph or P otts m odel case took on q values, the $\mathrm{K}-\mathrm{SAT}$ m odel requires the introduction of 2^{n} vectors \sim. In both cases, an analytic continuation of the free-energy to non integer values of q or n has to be perform ed. Finally, note that the optim um of fiul lls $x(\sim)=x(\sim)$ due to the uniform distribution of the disorder C .

4.3 O roler param eter and replica-sym m etric saddle-point equations.

The optim ization conditions over $f[x]$ provide 2^{n} coupled equations for the $x s . N$ otioe that f is a sym m etric functional, invariant under any perm utation of the replicas a, as is evident from equation (87). A n extrem um m ay thus be sought in the so-called replica sym m etric ($R S$) subspace of dim ension $n+1$ where $x(\sim)$ is left unchanged under the action of the sym m etric group. In the lim it of interest, T ! 0 , and w ithin the RS subspace, the occupation fractions m ay be conveniently expressed as the m om ents of a probability density $P(m)$
over the range 1 m 1 [23],

$$
\begin{equation*}
x\left({ }_{1} ; 2 ;::: ;_{n}\right)=\mathrm{Z}_{1}^{1} d m P(m)^{\mathrm{Y}^{n}} \frac{1+m^{a}}{2} \tag{96}
\end{equation*}
$$

P (m) is not uniquely de ned by (96) for integer values of n but acquires som e precise meaning in the $n!0 \mathrm{lim}$ it. It is the probability density of the expectation values of the spin variables over the set of ground states. C onsider a formula F and all the spin con gurations $S^{(j)}, j=1 ;::: ; Q$ realizing the m inim um $E[C]$ of the cost-function $E[C ; S]$, that is the solutions of the M AXSAT problem de ned by F. Then de ne the average magnetizations of the spins

$$
\begin{equation*}
m_{i}=\frac{1}{Q}_{j=1}^{X_{i}} S_{i}^{(j)} \tag{97}
\end{equation*}
$$

over the set of optim alcon gurations. C all H ($\mathrm{C} ; \mathrm{m}$) the histogram of the $\mathrm{m}_{\mathrm{i}} \mathrm{S}$ and $H(m)$ its quenched average, i.e., the average of H ($\mathrm{C} ; \mathrm{m}$) over the random choices of the form ulae F.H (m) is a probability density over the interval
$1 \mathrm{~m} \quad 1$ giving inform ation on the distribution of the variables induced by the constraint of satisfying all the clauses. In the absence of clauses, all assignm ents are solutions and all m agnetizations vanish: H $(m)=(m)$ and variables are not constrained. O ppositely, variables that alw ays take the sam e value in all solutions, if any, have m agnetizations equal to +1 (or 1): such variables are totally constrained by the clauses.

A s discussed in ref. [23], if the R S solution is the globaloptim um of (94) then $H(m)$ equals the above m entioned $P(m)$ in the lim it of large sizes N ! 1 . T herefore, the order param eter arising in the replica calculation re ects the $\backslash m$ icroscopic" structure of the solutions of the K SAT problem.

At this stage of the analysis it is possible to perform the analytic continuation n ! 0 since all the functionals have been expressed in term of the generic num ber of replicas n. Such a process leads to a self-consistent functional equation for the order param eter $P(m)$, which reads

$$
\begin{align*}
P(m)= & \frac{1}{1 m^{2}}{ }^{2+} d u \cos \frac{u}{2} \ln \frac{1+m}{1} m^{2} \\
& \left.\exp ^{4} \quad K+K^{Z^{1} K_{Y} 1} d m \cdot P(m,) \cos \frac{u}{2} \ln A_{(K} \quad 1\right) \tag{98}
\end{align*}
$$

w ith

$$
\begin{equation*}
\left.A_{(K ~ 1)} \quad A_{(K} \quad 1\right)(f m, g ;)=1+(e \quad 1)_{\ddots=1}^{K_{Y} 1} \frac{1+m}{2} \quad ; \tag{99}
\end{equation*}
$$

and $\quad 1=\mathrm{T} . \mathrm{T}$ he corresponding replica sym m etric free\{energy density reads

$$
\begin{align*}
& +\frac{K}{2}_{1}^{\left.Z^{1}{ }_{K Y}{ }^{1} d m, ~ P(m,) \ln A_{(K \quad 1)}\right)} \\
& \frac{1}{2}_{1}^{Z^{1}} d m P(m) \ln \left(1 \quad m^{2}\right) \quad: \tag{100}
\end{align*}
$$

It can be checked that equation (98) is recovered when optim izing the freeenergy functional (100) over all (even) probability densities P (m) on the interval [-1,1].

4.4 The sim ple case of $K=1$.

Before entering in the analysis of the saddle-point equations for general K , it is worth considering the sim ple $\mathrm{K}=1$ case which can be solved either by a direct com binatorial m ethod or w ithin the statistical m echanics approach. Though random 1-SAT does not present any criticalbehaviour (for nite), its study allow s an intuitive understanding of the m eaning and correctness of the statisticalm echanics approach.

Fork = 1, a sam ple ofM clauses can be de ned com pletely by giving directly the num bers t_{i} and f_{i} of clauses im posing that a certain B oolean variable S_{i} m ust be true or false respectively. The partition function corresponding to a given sam ple reads

$$
\begin{equation*}
Z[f t ; f g]={ }_{i=1}^{\mathrm{M}}\left(e^{t_{i}}+e^{f_{i}}\right) ; \tag{101}
\end{equation*}
$$

and the average over the disorder gives

$$
\left.\frac{1}{\mathrm{~N}} \overline{\ln Z[f t ; f g]}=\frac{1}{N}_{\mathrm{ft}_{\mathrm{i}} ; \mathrm{f}_{\mathrm{i}} \mathrm{~g}}^{\mathrm{X}} Q_{\mathrm{N}=1}^{\mathrm{N}} \mathrm{t}_{\mathrm{i}}!\mathfrak{t}_{\mathrm{i}}!\right) \mathrm{ln} Z[f t ; f g]
$$

$$
\begin{equation*}
=\ln 2 \frac{}{2}+\mathrm{X}_{\mathrm{l}=1}^{\mathrm{A}} e I_{1}() \ln \cosh \frac{1}{2}^{!} \tag{102}
\end{equation*}
$$

where I_{l} denotes the $I^{\text {th }} m$ odi ed B essel function. The zero tem perature lim it gives the ground state energy density

$$
e_{G S}()=-\left[\begin{array}{lllll}
1 & e & I_{0}() & e & I_{1}() \tag{103}
\end{array}\right]
$$

and the ground state entropy density

$$
\begin{equation*}
S_{G S}()=e \quad I_{0}() \ln 2: \tag{104}
\end{equation*}
$$

For any > 0, the ground\{state energy density is positive and therefore the overallB oolean form ula is false w ith probability one. A lso, the entropy density is nite, i.e., the num ber of m in'm a of the energy for any is exponentially large. Such a result can be understood by noticing that there exist a fraction of unconstrained variables e $I_{0}()$ which are sub ject to equal but opposite constraints $t_{i}=f_{i}$.

The above results are recovered in the statisticalm echanics fram ew ork, thereby show ing that the RS A nsatz is exact for all and when $K=1$.

The solution of the saddle-point equation (98) can be found for any tem perature T leading to the expression

$$
\begin{equation*}
P(m)=x_{=1}^{x^{3}} e \quad I \cdot() \quad m \quad \tanh \frac{n^{2}}{2!}: \tag{105}
\end{equation*}
$$

In the lim it of interest ! 1 , this form ula reads

$$
\left.P(m)=e \quad I_{0}() \quad(m)+\frac{1}{2}\left(1 \quad e I_{0}()\right)\left(\begin{array}{ll}
(m & 1
\end{array}\right)+(m+1)\right):(106)
$$

A s shown in gure 3, the fraction of unconstrained variables is sim ply associated w th the unfrozen spins and thus gives the weight of the ffunction at $m=0.0 n$ the contrary, the non-zero value of the fraction of violated clauses, proportional to the ground-state energy density, is due to the presence of com pletely frozen (over constrained) spins ofm agnetizationsm $m=1$. Such a feature rem ains valid for any K .

Fig. 3. Energy density (bold line) and entropy density (thin line) versus in a random $1-S A T$ formula, in the \lim it $N!1$.

4.5 Sat phase: structure of the space of solutions.

W e start by considering the sat phase. A n interesting quantity to look at is the typical num ber of solutions of the random $K-S A T$ problem; this quantity can be obtained from the ground state entropy density $S_{G S}()$ given by eq.(100) in the ! 1 lim it.

In the absence of any clauses, all assignm ents are solutions: $\mathrm{s}_{\mathrm{G}}(=0)=$ $\ln 2 . W$ e have com puted the Taylor expansion of $s_{G}()$ in the vicinity of $=0$, up to the seventh order in . Results are shown in Figure 4. It is found that $S_{G S}\left(c_{c}=1\right)=: 38$ and $S_{G S}(=4: 2)=: 1$ for $2-S A T$ and $3-S A T$ respectively: just below threshold, solutions are exponentially num erous. T his result is con m ed by rigorous work [37].
M ore involved calculations, including replica sym m etry breaking (R SB) e ects [28], have show n that the value of the entropy is insensitive to $R S B$ in the sat phase. T herefore the RS calculation provides a quite precise estim ate of the entropy (believed to be exact at low ratios, see Talagrand's paper in this volum e for a discussion).

Recent analytical calculations for 3-SAT [28] (also con med by num erical investigations) indicate that the RS theory breaks down at a de nite ratio RSB below c, where the solutions start to be organized into distinct clusters. T he m eaning of this statem ent is as follow s. Think of the space of spins con gurations as the N -dim ensional hypercube. O ptim al assignm ents are a subset of

Fig. 4. RS estim ate for the entropy density in random $2-S A T$ and 3-SAT below their thresholds. R SB corrections due to clustering are absent in $2-S A T$ and very sm all (w thin few a percent) in 3-SAT. The dots represent the results of exact enum erations in sm all system s (\mathbb{N} ranging from 20 to 30, see ref. [22])
the set of 2^{N} vertices on the hypercube. R eplica sym m etry am ounts to assum ing that any pair of vertines are a s. separated by the sam e H am m ing distance d , de ned as the fraction of distinct spins in the corresponding con gurations. In other words, solutions are gathered in a single cluster, of diam eter dN. R SB variationalcalculations [28] show that this sim plifying assum ption is not generally true in the whole sat phase and that another scenario m ay take place close to threshold:

Below RsB the space of solutions is replica sym m etric. There exist one cluster of solutions characterized by a single probability distribution of local m agnetizations. The H am m ing distance d is a decreasing function of , starting at $d(0)=1=2$.
At $\mathrm{RSB}^{\prime} 4: 0$, the space of solutions breaks into a large num ber (polynom ial in N) of di erent clusters. Each cluster contains an exponential num ber of solutions. The typical H am m ing distance d_{0} between solutions belonging to di erent chusters is close to $0: 3$ and rem ains nearly constant (正 is slightly decreasing) up to c, indicating that the centers of these clusters do not m ove on the hypercube when m ore and m ore clauses are added. W ithin each cluster, solutions tend to becom e m ore and m ore sim ilar, w ith a rapidly decreasing intra-chuster H am m ing distance d_{1}.

Figure 5 provides a qualitative representation of the clustering process. T he fact that the H am m ing distance can take two values at m ost is a direct consequence of the R SB A nsatz. In reality, the distance distribution could be m ore com plicated. T he key point is that statisticalm echanics calculations strongly support the idea that the space of solutions has a highly organized structure, even in the sat phase.

Fig. 5. VariationalR SB estim ate for the clustering of solutionsbelow cfor 3 SAT. d is the typical H am m ing distance betw een solutions. The splitting of the curves at $\quad 4$ corresponds to chustering. There appear two characteristic distances, one w thin each cluster and one betw een solutions belonging to di erent clusters.
R ecently, the exact solution of the balanced version of random $\mathrm{K}-\mathrm{SAT}$ [38] has provided a concrete exam ple in which the appearance of chustering before the sat/unsat transition can be studied both analytical and num erically. N ote that this phenom enon is strongly rem iniscent of what happens in som e form al multi-layer neural netw orks m odels [5].

4.6 U nsat phase: the backbone and the order of the phase transition.

In the unsat phase, it is expected that $O(\mathbb{N})$ variables becom e totally constrained, i.e. take on the sam e value in allthe ground states. Such a hypothesis, which of course needs to be veri ed a posteriori, corresponds to a structural change in the probability distribution $P(m)$ which develops D irac peaks at $\mathrm{m}=1$.

In the \lim it of interest (T ! 0), to describe the accum ulation of the m agnetization on the borders of its dom ain (m2 [$1 ; 1]$), we introduce the rescaled variable z, im plicitly de ned by the relation $m=\tanh (z=T)$, see equation (106). C alling $R(z)$ the probability density of the $z s$, the saddle-point equations read

$$
\begin{aligned}
& R(z)={ }^{7} \frac{d u}{2} \cos (u z) \exp \quad \frac{K}{2^{K} 1}+K \\
& 1 \\
& { }^{2}{ }^{K}{ }_{Y} 1 \\
& d z \cdot R(z,) \cos \left(u m \operatorname{in}\left(1 ; z_{1} ;::: ; Z_{\mathrm{K}} \quad 1\right)\right)^{5} \quad: \\
& 0 \text { } \quad=1
\end{aligned}
$$

T he corresponding ground state energy density reads, see (100),

$$
\begin{aligned}
& e_{G S}()=(1 \quad K)^{7^{1}} \mathrm{Y}^{K} d z \cdot R(z,) m \text { in }\left(1 ; z_{1} ;::: ; z_{K}\right)
\end{aligned}
$$

It is easy to see that the saddle\{point equation (107) is in fact a self\{ consistent identity for $\mathrm{R}(\mathrm{z})$ in the range $\mathrm{z} 2[0 ; 1]$ only. O utside this interval, equation (107) is m erely a de nition of the functional order param eter R .

A s discussed in detail in ref. [23], equations (107) adm it an in nite sequence ofm ore and m ore structured exact solutions of the form

$$
R(z)=\begin{array}{llll}
x^{3} \tag{109}\\
l= & r & z & \frac{-}{q}
\end{array} \quad ;
$$

having exactly q peaks in the interval $\left[0 ; 1\left[\right.\right.$ whose centers are $z=\frac{\vdots}{q}, ~ `=$ 0;:::;q 1.The corresponding energy density reads, from (109) and (108),

$$
\begin{align*}
& x_{j=1}^{q} \frac{j}{q} j^{0} \frac{r}{0}_{2}^{2}+\frac{r_{j}}{2}+{\underset{x=1}{\dot{x}^{1}}{ }_{1}^{1}{ }^{A} \quad: ~}_{\text {in }} \tag{110}
\end{align*}
$$

Though there might be continuous solutions to (107), it is hoped that the energy of ground state can be arbitrarily well approxim ated by the above large q solutions.

The location of the sat/unsat threshold can be obtained for any K by looking at the value of beyond which the ground state energy becom es positive. For 2 SAT the exact result $c(2)=1$ is recovered whereas for $K>2$ the RS energy becom es positive at a value of (e.g., c(3)' $4: 6$ as shown in gure 6) which is sightly higher than the value estim ated by num erical sim ulations.

4.6.1 A hint at replica sym m etry breaking.

The RS theory provides an upper bound for the thresholds for any $K>2$, whereas the exact values can be obtained only by adopting a m ore general

Fig. 6. RS estim ate for the ground state energy density, e., the num ber of violated clauses divided by N in random $3-\mathrm{SA}$. The prediction is given as a function of , for $q 1$ and in the \lim it N ! 1 . See ref. [23] for details.
functional form for the solution of the saddle-point equations w hidh explicitly breaks the sym m etry betw een replicas (see ref. [27] for a precise discussion). Such an issue is indeed a relevant, and largely open, problem in the statistical physics of random system s [39\{46].

T he general structure of the functional order param eter whidn describes solutions that break the perm utational sym m etry am ong replicas consists of a distribution ofprobability densities: each B oolean variable uctuates from one cluster of solutions to another, leading to a site dependent probability density of local B oolean m agnetizations. T he distribution over all di erent variables then provides a probability distribution ofprobabillty distributions. T he above schem e can in principle be iterated, leading to m ore and m ore re ned levels of clustering of solutions. Such a scenario would correspond to the so-called continuous R SB schem e [1]. H ow ever the rst step solution could su ce to capture the exact solution of random $K-S A T$, as happens in other sim ilar random system s [1].

4.6.2 A brupt vs. sm ooth phase transition .

O fparticular interest are the fully constrained variables \{ the so called backbone com ponent $\left\{\right.$, that is the $x_{i} S$ such that $m_{i}=1 . W$ thin the RSAnsatz, the fraction of fully constrained variables (;K) can be directly com puted

F ig. 7. N um ericalestim ates of the value of the backbone order param eter in $2-S A T$ and 3-SAT .T he curves [25] are obtained by com plete enum erations in sm all system s (up to $N=500$ variables for $2-S A T$ and $N=30$ for $3-S A T$) averaged over m any sam ples.
from the saddle-point equations. C learly, (; K) vanishes in the SAT region otherw ise the addition of N new clauses to F would lead to a contradiction w th a nite probability for any >0. Two kinds of scenarii have been found when entering the unsat phase. For 2-SAT, (; 2) sm oothly increases above the threshold $c(2)=1$. For 3-SAT (and m ore generally $K \quad 3)$, (;3) exhibits a discontinuous jum p to a nite value c slightly above the threshold. A nite fraction of variables becom e suddenly over constrained when crossing the threshold! N um erical results on the grow th of the backbone order param eter are given in gure 7 .

4.6.3 The random $2+\mathrm{p}-$ SA T m odel.

The sat/unsat transition is accom panied by a sm ooth (respectively abrupt) change in the badkbone com ponent and therefore in the structure of the solutions of the 2 -SAT (resp. 3-SAT) problem. A better way to understand how such a change takes place is to consider a m ixed m odel, which continuously interpolates between 2-SAT and 3-SAT. The so-called $2+\mathrm{p-SAT}$ model [25] includes a fraction p (resp. $1 \quad \mathrm{p}$) of clauses of length two (resp. three). 2-SAT is recovered for $p=0$ and $3-S A T$ when $p=1$. The RS theory predicts that, at the sat/unsat transition, the appearance of the backbone com ponent becom es abrupt when $p>p_{0}{ }^{\prime} 0: 4$ (se gure 8). On the contrary, when $p<p_{0}$, the transition is $s m$ ooth as in the $2-S A T$ case. Such a scenario is consistent w ith both rigorous results (see the paper by A chlioptas et al. in this volum e) based on the probabilistic analysis of sim ple algorithm and w ith variational calculations [28] which include RSB e ects.

Fig. 8. c (p) versus p in random $2+p-S A T . U p$ to $p_{0}^{\prime \prime}: 4 \quad c(p)=1=(1 \quad p)$, in agreem ent w th rigorous results. For $p>p_{0}$ the transition becom es discontinuous in the backbone order param eter and the RS theory provides an upper bound for c (p) which is w thin a few percent of the results of num erical sim ulations (dots) [25,26].

A n additional argum ent in favor of the above picture is given by the analysis of the nite-size e ects on $P_{N}(; K)$ and the em ergence of som e universality for $p<p_{0}$. (The de nition of P_{N} was given when we began discussing the properties of $K-S A T$.) A detailed account of these ndings m ay be found in $[25,26]$. For $p<p_{0}$ the size of the critical w indow where the transition takes place is observed to rem ain constant and close to the value expected for 2-SAT. The criticalbehaviour is the sam e as for the peroolation transition in random graphs (see also ref. [47]). For $p>p_{0}$ the size of the w indow shrinks follow ing som e non-universal exponents tow ard its statistical low er bound [48] but num ericaldata do not allow for any precise estim ate. T he balanced version of $2+\mathrm{p}-S A T$ can be studied exactly and both the phase diagram and the critical exponents tum out to behave very sim ilarly to the ones of $2+\mathrm{p}-$ SAT [49].

A s we shall conclude in the next section, the know ledge of the phase diagram of the $2+\mathrm{p}-$ SAT m odel is very precious to understand the com putationalcom plexity of $3-S A T$ solving.

4.7 C om putational com plexity and dynam ics.

Num erical experim ents have shown that the typical solving tim e of search algorithm s displays an easy-hard-easy pattem as a function of with a peak of com plexity close to the threshold. Since com putational com plexity is strongly a ected by the presence of a phase transition, it is appropriate to ask whether the nature of this phase transition plays an im portant role too. T he peak in the search cost seem s indeed to scale polynom ially w ith N (even using D avisP utnam-like procedures) for the $2-S A T$ problem, where the transition is continuous, and exponentially w ith N in the 3-SAT case, forw hich the birth of the badkbone is known to be discontinuous.

Precise num erical sim ulations [25,26] on the com putationalcom plexity ofsolving critical $2+\mathrm{p}$-SAT instances support the view that the crossover between polynom ial and exponential scalings takes place at p_{0}, the very value ofp separating continuous from discontinuous transitions. Though investigated $2+\mathrm{p}-$ SAT instances are all critical and the problem itself is NP-com plete for any p > 0, it is only when the phase transition is abrupt that hardness show s up (including the fastest known random ized search algorithm s such as walksat [50]).

To understand why search algorithm s require polynom ial or exponential com putationale orts, statistical studies of the solutions cannot be su cient. A full dynam ical study of how search procedures operate has to be carried out. Such studies had already been initiated by m athem aticians in the easy region, where search tree are particularly sim ple and alm ost no backtracking occurs. Franco and Chao [51] have in particular analyzed the operation of D P algorithm s w ith di erent kinds of heuristics and have show n that at sm all values of the typical com plexity is linear in N.

Recently, the whole range ofvalues of , including the hard phase, has been investigated, using dynam icalstatisticalm echanics tools [52].D uring the search process, the search tree built by D P grow s w ith tim e and this grow th process can be analyzed quantitatively. The key idea is that, under the action of P, 3-SAT instances are tumed into m ixed $2+\mathrm{p}$-SAT instances (som e clauses are simpli ed into clauses of length two, other are satis ed and elim inated). The param eters p and of the instance under consideration dynam ically evolve under the action ofD P. Their evolution can be traced back as a tra jectory in the phase diagram of the $2+\mathrm{p}-\mathrm{SAT}$ m odel of gure 8. Depending on whether tra jectories cross or not the sat/unsat boundary, easy or hard resolutions take place, and the location of crossings can be used to quantitatively predict the scaling of the resolution tim es [52].

5 The traveling salesm an problem and the cavity m ethod

In Section 3, we derived partition functions using statistical physics representations based on analytic continuations. Furtherm ore, we used the saddle point m ethod on these partition functions and that allowed us to reproduce a num ber of exact results. T hen we m oved on in Section 4 and applied these m ethods to m odels $w i t h$ quenched disorder. H ow ever, because of the greater com plexity of such m odels, we resorted to an additional tool of statistical physics: the replica m ethod. Though this kind of approach is non-rigourous, it is believed that it provides new exact results for a num ber of di erent problem s , in particular in optim ization.

The replica m ethod is not the only technical tool that physicists have developed in the past years. A nother approach, called the cavity m ethod, will be exposed in the present Section. The cavity approach gives, at the end of the com putation, the sam es results as the replica approach. Yet the assum ptions it relies upon tum out to be m uch m ore intuitive and its form alism is closer to a probabilistic theory form ulation. B ecause of this, it can be used to prove som e of the results derived from statisticalm echanics; see 53,54$]$ for recent progress in this direction. In the rest of this section, we show how this cavity m ethod can be used to \solve" a case of the Traveling Salesm an Problem (T SP).

T he T SP is probably the w orld's m ost studied optim ization problem. A s usually form ulated for a weighted graph, one considers all H am iltonian cycles or \tours" (closed circuits visiting each vertex once and only once) and asks for the shortest one. The total length is given by the sum of the weights or \lengths" of the edges m aking up the tour. Since the H am iltonian cycle problem is NP -com plete, certainly the T SP is very di cult. H ow ever, in m ost cases considered, the graph is com plete (there is an edge for each pair of vertioes), so the di culty lies in determ ining the shortest tour. W ithout further restrictions on the nature of the graph, the TSP is NP hard [15]. O ne speaks of the asym m etric T SP when the edges on the graph are oriented, and of the sym m etric TSP for the usual (unoriented) case. B oth types are frequently used m odels in scheduling and routing problem s , though the industrialapplications tend to m ove aw ay from the sim ple form ulations considered in academ ia. The sym m etric TSP s are further divided into \m etric" and non -m etric according to whether or not the triangle inequality for the edge lengths is satis ed. The so-called Euclidean T SP is probably the best known TSP and it is m etric; the vertioes are points (cities, or sites) in the plane, and the length of the edge connecting cities i and j is given by the Euclidean distance between i and j. Even w thin this restricted class of weighted graphs, the problem of nding the optim um tour rem ains N P hard [15].

The TSP has been at the forefront of m any past and recent developm ents
in com plexity. For instance, pretty much all general purpose algorithm ic approaches have been rst presented and tested for the T SP. This tradition begins back in 1959 when Beardw ood et al. [55] published tour lengths obtained from hand-draw n solutions! Later, the idea of optim ization by local search was introduced in the context of the T SP by Lin [56], and sim ulated annealing $[57,58]$ was rst tested on TSP s also. The list continues w ith branch and bound 59], until today's state of the art algorithm s based on cutting planes (branch and cut) [60], allow ing one to solve problem s w ith several thousand cities [61]. M any physicists have worked on these kinds of algorithm ic questions from a practicalpoint of view ; in m ost cases their algorithm s incorporate concepts such as tem perature, m ean eld, and renorm alization, that are standard in statistical physics, leading to som e of the m ost e ective m ethods of heuristic resolution [62]. It m ight be argued that these approaches can also be used to im prove the heuristic decision rules at the heart of exact m ethods (for instance in branching strategies), but m ore w ork has to be done to determ ine whether this is indeed the case.

The w idespread academ ic use of the T SP also extends to other issues in com plexity. For instance, there has been m uch recent progress in approxim ability of the TSP [63]. H ow ever statistical physics has nothing to say about w orst case behavior; instead it is relevant for describing the typicalbehavior arising in a statistical fram ew ork and tends to focus on self-averaging properties. T hus we are lead to consider T SP s where the edge lengths betw een vertices are chosen random ly according to a given probability distribution; the comesponding problem is called the stochastic T SP.

5.1 The stochastic T SP .

Statistical physicists as well as probabilists are not interested per-se in any particular instance of the TSP, rather they seek \generic" properties. This m ight be the typical com putational com plexity or the typical length of T SP s w ith N cities. It is then necessary to consider the stochastic TSP where each instance (the speci cation of the weighted graph) is taken at random from an ensem ble of instances; this de nes our \quenched disorder". A though onem ay be interested in m any di erent ensembles, only a few have been the sub ject of thorough investigation. Perhaps the most studied stochastic TSP is the Euclidean onew here the cities are random ly distributed in a given region of the plane [55]. This is a \random point" ensem ble. A nother ensem ble that hasbeen $\mathrm{m} u$ ch considered consists in having the edge lengths allbe independent random variables, corresponding to a \random distance" ensemble. (T his term inology is m isleading: the problem is not m etric as the triangle inequality is generally not satis ed.) Random distance ensembles have been considered forboth the sym m etric [64] and the asym m etric [65] T SP .

For any of these ensembles, one can ask for the behavior of the optim um tour length, or consider properties of the tour itself. M ost work by probabilists has focused on the rst aspect (see [14] for a review), starting w th the sem inal work of B eardw ood, H alton, and H am m ensley [55] (hereafter referred to as BHH). Those authors considered the Euclidean ensemble where points are random ly (and independently) distributed in a bounded region of ddim ensionalE uclidean space according to the probability density (X).G iven a not too singular , BHH proved that the optim um tour length, L_{E}, becom es peaked at large N , and that w ith probability one as N ! 1

$$
\begin{equation*}
\frac{L_{\mathrm{E}}}{\mathrm{~N}^{1 \quad 1=\mathrm{d}}}!\quad(\mathrm{d})^{\mathrm{Z}} \quad 1 \quad 1=\mathrm{d}(\mathrm{X}) \mathrm{dX} \tag{111}
\end{equation*}
$$

Here is a constant, independent of , depending only on the dim ension of space. Som e com m ents are in order. The rst is that the relative uctuations of the tour length about its m ean tend to zero as N ! 1 , allow ing one to m eaningfully de ne a \typical" or generic tour length at large N. This fundam ental property was initially proven using sub-additivity properties of the tour length, but from a m ore m odem perspective, it follow s from considering the passage from N to $N+1$ cities, corresponding to a martingale process (see [66]). The second point is that the N dependence of this typical length is such that the rescaled length $\mathrm{L}_{\mathrm{E}}=\mathrm{N}^{1}{ }^{1=\mathrm{d}}$ converges in probability at large N . In the language of statistical physics, this quantity is just the ground state energy density of the system where one increases the volume linearly with N so that the m ean density of points is N-independent. In general such an energy density is expected to be self-averaging, i.e., have a well de ned large N lim it, independent of the sequence of random ly generated sam ples (w ith probability one) as in Eq.(111). In som e problem s, the self-averaging property can be derived, while it w ill sim ply be assum ed to hold when using the cavity approach.

A nother com m ent is that given Eq.(111), the essence of the problem is the same for any (X); it is thus com m on practioe to form ulate the Euclidean $T S P$ using N points laid down independently in a unit square (or hypercube if $d>2$), the distribution being uniform .

There has been much work [14] on obtaining bounds and various estim ates of the constants (d), but no exact results are known for $d>1$. H owever, R hee [67] has proved that

$$
\begin{equation*}
p \frac{(d)}{d}!p \frac{1}{2 e} \text { as } d!1 \tag{112}
\end{equation*}
$$

From the point of view of a statistical physics analysis, the di culty in com -
puting (d) arises from the correlations am ong the point to point distances. Indeed, in the Euclidean ensemble, there are dN random variables associated w th the random positions of the points, and $N(\mathbb{N} \quad 1)=2$ distances; these distances are thus highly redundant (and a fortiori correlated). W hen these distances are instead taken to be random and independent, the \cavity" m ethod of statisticalphysics allow s one to perform the calculation of the corresponding . Because of this, we will focus on that quenched disorder ensem ble.

In the \independent edge-lengths ensem ble" (as opposed to the independent points ensem ble), it is the distances or edge lengths between points that are independent random variables. Let $d_{i j}$ be the \distance" between points iand j (the problem is not m etric, but we nevertheless follow the standard nom enclature and refer to $d_{i j}$ as a distance). In the m ost studied case, $d_{i j}$ is taken from a uniform distribution in [0;1]. From a physicist's perspective, it is natural to stay \close" to the Euclidean random point ensemble [64] by taking the distribution of d_{ij} to be that of two points random ly distributed in the unit square (hypercube when $d>2$). The independent points and independent edge-lengths ensembles then have the sam e distribution for individual distances, and in the short distance and large N lim it they also have the sam e distribution for pairs ofdistances. Them ain di erence betw een the ensem bles thus arises when considering three or m ore distances; in the Euclidean case, these have correlations as show n for instance by the triangle inequally.

The m inim um tour length in these random edge-lengths m odels is expected to be self-averaging; the m ethods of R hee and Talagrand [66] show that the distribution of T SP tour lengths becom es peaked at large N in this case, but currently there is no proof of the existence of a lim it as in the Euclidean case. N evertheless, this seem s to be just a technicaldi culty, and it is expected that the rescaled tour length indeed has a lim it at large N; we thus de ne (d) in analogy to the expression in Eq. (111) w ith the understanding that the sare di erent in the independent points and independent edge-lengths ensem bles.

5.2 A statistical physics representation.

Follow ing the notation of Section 2, we introduce the generating or partition function

$$
\begin{equation*}
Z(T)=^{X} \exp \left(\frac{L()}{T}\right) \tag{113}
\end{equation*}
$$

where is a perm utation of the vertioes and determ ines uniquely a tour. In e ect we have identi ed con gurations w ith tours, that is with perm utations; furtherm ore, the energy of a con guration is simply the length of its tour.
T his construction am ounts to introducing a probability $\mathrm{e}^{\mathrm{L}()=\mathrm{T}}=\mathrm{Z}$ for each tour. W hen $\mathrm{T}=1$, all tours are equally probable, while when T ! 0 only the shortest tour(s) survive. A sbefore, T is the tem perature, and the averages $h: i_{T}$ using this probability distribution are the them al averages. From them one can extract m ost quantities of interest. For instance

$$
\begin{equation*}
\langle L\rangle_{T}=\frac{1}{Z} \frac{d Z}{d(1=T)} \tag{114}
\end{equation*}
$$

gives the m ean tour length at tem perature T. W e then have for the T SP tour length: L_{m} in $=\lim _{\mathrm{T}!}<\mathrm{L}>_{\mathrm{T}}$.

The generating function Z requires perform ing a sum over all pem utations and is a di cult object to treat. To circum vent this di culty, a di erent representation is used. We rst introduce what is called a \spin" S, having now m-components, $S, \quad=1 ;::: ; \mathrm{m}$. These com ponents are real and satisfy the constraint ${ }^{P} \quad(S)^{2}=m$. Such a spin can be identi ed w ith a point on a sphere in m-dim ensional Euclidean space. N ote that when $\mathrm{m}=1$, we recover the kinds of spins considered in the previous sections. N ow for our statistical physics representation of the TSP, a spin S_{i} is associated to each vertex V_{i} of the graph, $i=1 ;:: ; ; N$. De ne $R_{i j}=e^{d_{i j}=T}$ and introduce a new generating function

$$
\begin{equation*}
G(T ; m ;!)={ }^{Z} d S_{1} d S_{2}:: d S_{N} \exp \left(!_{i<j}^{X} R_{i j} S_{i} \quad S\right) \tag{115}
\end{equation*}
$$

In this expression, is the usual scalar product, and dS is associated w ith the un_{R} iform m easure on the sphere in dim ension m. W e have norm alized it so that $d S=1$; then ${ }^{R} d S S S=$; T he claim is now that the in itial generating function Z is equivalent to using an analytic continuation of G in m :

$$
\begin{equation*}
\lim _{m!0}^{m!!_{1}} \frac{G!^{N}}{x} \exp \left(\frac{L()}{T}\right) \tag{116}
\end{equation*}
$$

C om paring to the P otts m odel of Section 3, we see that m is analogous to the Potts param eter q : the partition function is de ned for integer values of the param eter, and then has to be analytically continued to real values.

The derivation ofequation (116) is based on show ing the equality ofboth sides when perform ing a power series in $1=T$. First expand the exponential in the integral:

$$
\begin{equation*}
G={ }^{Z} d S_{1} d S_{2}:::_{d S_{N}}^{4} 1+!_{i<j}^{X} R_{i j}\left(S_{i} \quad j\right)+\frac{!^{2}}{2!} 5^{3} \tag{117}
\end{equation*}
$$

N ow integrate term by term ; each resulting contribution can be associated with a subgraph (but w here edges can appearm ultiple tim es) whose w eight is given in term s of its edges and its cycles. (N ote that each vertex m ust be covered an even num ber of tim es because the integrand is even under S_{i} ! S_{i}.) Each edge E_{ij} appearing in the subgraph contributes a multiplicative factor $R_{i j}$ to its total weight. A further factor com es from the loops (cycles) of the subgraph. It is not di cult to see that each such loop leads to a factor m in the total weight because of the integration over the m-dim ensional spins. T hus as m ! 0 only subgraphs having a single loop survive in G and then vertioes cannot belong to m ore than two edges. Finally, when!! 1 , the loops w ith the m ost vertioes dom inate, leading to tours. Thus if we rst take m ! 0 and then ! ! 1 , the expansion of $G 1$ reduces to a sum over all the tours of the graph. Furtherm ore, the weight of each tour is proportional to the product of the R_{ij} belonging to the tour, so that one recovers the total weight $m!{ }^{N} \exp (\mathrm{~L}=\mathrm{T})$ where L is the tour length. In conclusion, Eq. (116) is justi ed to all orders in $1=T$, and thus for any nite N it holds as an identity.

W hether one uses Z or $G \quad 1$ does not m atter as they di er only by an irrelevant m ultiplicative factor (we assumem and $1=$! in nitesim al). From G 1, one can com pute the optimum tour and not just the optim um tour length; indeed, at nite tem perature, the probability that a tour contains the edge E_{ij} is given by the m ean occupation of that edge. De ning $\mathrm{n}_{\mathrm{ij}}=1$ if the edge is used by the tour and $\mathrm{n}_{\mathrm{ij}}=0$ otherw ise, the probability of occupation is

$$
\begin{equation*}
\mathrm{hn}_{\mathrm{ij}} \dot{\mathrm{I}}_{\mathrm{T}}=!\mathrm{R}_{\mathrm{ij}} \mathrm{hS}_{\mathrm{i}} \quad \mathrm{Si}_{\mathrm{T}} \tag{118}
\end{equation*}
$$

where from now on $h: i_{T} m$ eans them al average using either Z or G 1; the one that is used should be clear from the observable considered. N ow if we take in Eq. 118 the \lim it T ! 0, we nd those edges that are occupied and thus the optim al tour (assum ing it is unique). N ote also that Eq. (118) has a simple justi cation: $\mathrm{hS}_{\mathrm{i}} \quad \mathrm{Si}_{\mathrm{T}}$ has a num erator whose expansion gives $m!{ }^{N}{ }^{1}=R_{i j}$ tim es the weighted sum over alltours containing the edge $i j$, while the denom inator is $m!^{N}$ tim es the weighted sum over all tours. T he identity Eq. (118) then follow s im m ediately.

5.3 T he cavity equations.

The partition function G 1 gives the \statistical physics" of the TSP for any given graph. U sing this form alizm to determ ine analytically the optim um tour in a general case seem s an im possible task. N evertheless, G is a good starting point for follow ing the passage from N to $N+1$ vertioes as in a m artingale process, and the derivation of a recursion in N is the heart of

Fig. 9. $(\mathbb{N}+1)$ th spin and its ordered neighbors.
the cavily m ethod. The term cavity com es from the fact that the system at $N+1$ is com pared to the one at N by rem oving the $(\mathbb{N}+1$)th spin, thereby creating a cavity. In gure 9, we have represented in counter-clockw ise order the nearest, next-nearest, etc... neighbors of site $N+1$ which is at the center of the cavity. Because the total num ber of spins w ill be som etim es N and som etim es $N+1$, we indicate the num ber via a subscript on G. Thus for instance $G_{N} \quad 1$ is to be used when considering quantities for the system w ith N spins. N ow for every quantity associated w th the system having $\mathrm{N}+1$ spins, if we integrate explicitly over spin $\mathrm{N}+1$, we are left with quantities de ned in the system having only N spins. C onsider for instance $\mathrm{G}_{\mathrm{N}+1} \quad 1$ itself. W hen expanding the exponentials depending on S_{N+1}, we obtain: (i) term s linear in $\mathrm{S}_{\mathrm{N}+1}$ that integrate to zero; (ii) term s quadratic in $\mathrm{S}_{\mathrm{N}+1}$ that upon integration give products $S_{i} \quad S_{i}$ (iii) higher pow ers in S_{N+1} that do not contribute asm! 0.A sim ple calculation leads to the identity

$$
\begin{equation*}
\frac{G_{N+1} \quad 1}{G_{N} \quad 1}=!_{1}^{2} \sum_{j<k N}^{X} R_{j ; N+1} R_{k ; N+1} h S_{j} \quad{\sum S i S_{T}^{0}}_{0}=\frac{Z_{N+1}}{Z_{N}} \tag{119}
\end{equation*}
$$

where h: i_{T}^{0} is a \cavity average", to be taken in the system having only the rst N spins, spin $N+1$ being absent. N ote that Z_{N} and $\mathrm{Z}_{\mathrm{N}+1}$ are the partition functions of Eq. 113 w hen there are N and $\mathrm{N}+1$ vertioes; also, it is easy to see that one need not restrict the sum to $j \in k$ because the term $j=k$ vanishes asm! 0 .

Straightforw ard calculations in this sam e spirit lead to relations betw een therm alexpectation values using $N+1$ spins and those using N spins. For instance

$$
\begin{equation*}
h S_{N+1} i_{T} \quad\left(G_{N+1} \quad 1\right)={ }_{j=1}^{X^{N}}!R_{j ; N+1} h S_{j} i_{T}^{0} \quad\left(G_{N} \quad 1\right) \tag{120}
\end{equation*}
$$

Sim ilarly, one has for the two-spin average:

$$
\begin{equation*}
h S_{N+1} \quad \mathbb{S}_{T} \quad\left(G_{N+1} \quad 1\right)={\left.\underset{j \neq i}{X} \quad!R_{j ; N+1} h S_{i} \quad S_{T}^{0} \quad\left(G_{N} \quad 1\right)\right)}_{1} \tag{121}
\end{equation*}
$$

M ore generally, the num erator in any observable depending on spin $N+1$ has a sim ple expression in term s of the num erators of observables in the absence of that spin. Furtherm ore, one can use Eq. 119 to elim inate all reference to G_{N} and G_{N+1} in these relations. The conclusion is that if we know how to com pute the properties of system s w ith N spins, we can then deduce those of system s w ith $N+1$ spins; the cavity m ethod is thus a recursion on N for all the properties of such a system.

5.4 The factorization approxim ation.

U nfortunately, these recursion equations cannot be solved, but let us approxim ate them by neglecting certain correlations. C learly, $\mathrm{S}_{\mathrm{N}+1}$ is strongly correlated w ith its nearest neighbors because the corresponding R s are im portant. M ore generally, two spins whose joining edge length is short (are near neighbors) will be strongly correlated because short tours will often occupy that edge. T hus we m ust and will take into account the correlations betw een $\mathrm{S}_{\mathrm{N}+1}$ and its near neighbors. H ow ever, we w ill neglect here the correlations am ong these neighbors them selves, so that in the absence of $\mathrm{S}_{\mathrm{N}+1}$, their joint probability distribution factorizes, so that in particular

$$
\begin{equation*}
h S_{i} \quad S_{i_{T}}^{0}=h S_{i} i_{T}^{0} \quad h S_{T}^{0} \tag{122}
\end{equation*}
$$

T his property im plies that replica sym m etry is not broken, and this is indeed believed to be the case for the TSP. Factorization m akes the cavity approach particularly tractable, as we shall soon see. (In system s where replica sym m etry is broken, it is necessary to nd ways to param etrize these correlations; this is quite com plex and not well resolved, even w ithin the statistical physics approach.)

A second point concems the m eaning of $h S_{N+1} i_{T} \cdot G_{N+1}$ is rotationally sym m etric; there is no preferred direction, so the them al average of any spin vanishes. N ote however that we have seen a sim ilar situation before in the context of the Ising m odel (c.f. Section 2). Here as before, the interactions tend to align the spins. Thus, when the tem perature is low enough, we expect to have a spontaneous m agnetization when N ! 1 . To m ake this m ore explicit, we can introduce a sm all magnetic eld, i.e., an interaction term of the type h iSfor each spin; we then take the lim it $N!1$ and only after take $h!0$. This m agnetic eld breaks the rotational sym m etry, and so the
system has a preferred direction, even after the eld has been rem oved. By convention, we shall take this direction to be along the rst axis.

G iven these two rem arks, we can use the exact equations (120) and (121) to obtain the cavity equations assum ing factorization. Denoting by S^{1} the com ponent along the rst axis of S, one has

$$
\begin{equation*}
h S_{N+1}^{1} i_{T}=\frac{P_{j=1}^{N} R_{j ; N+1} h S_{j}^{1} i_{T}^{0}}{!\sum_{j<k N} R_{j ; N+1} R_{k ; N+1} h S_{j}^{1} i_{T}^{0}} h S_{k}^{1} i_{T}^{0} \tag{123}
\end{equation*}
$$

Sim ilarly, one has for the two-spin average (see Eq. 118):

$$
\begin{equation*}
h n_{i ; N+1} i_{T}=R_{i ; N+1} h S_{i}^{1} i_{T}^{0} \frac{P{ }_{j \notin i} R_{j ; N+1} h S_{j}^{1} i_{T}^{0}}{1 j<k N R_{j ; \mathbb{N}+1} R_{k ; N+1} h S_{j}^{1} i_{T}^{0} h S_{k}^{1} i_{T}^{0}} \tag{124}
\end{equation*}
$$

These are the standard cavity recurrence equations, rst derived by M ezard and P arisi [68].W e also note that in this factorization approxim ation, one has $h S_{\mathrm{N}+1} \quad \mathbb{S}_{\mathrm{T}}=\mathrm{h} \mathrm{S}_{\mathrm{N}+1}^{1} \mathrm{i}_{\mathrm{T}} \mathrm{hS}_{\mathrm{i}}^{1} \mathrm{i}_{\mathrm{T}}^{0}$

5.5 The N ! 1 and T ! 0 lim its.

The last step of the cavity m ethod is to assum e that the recurrence equations, when considered in the disorder ensem ble, give rise to a stationary stochastic process when N ! 1 . C onsider for instance the individual m agnetizations $h S_{i} i_{T}$; they are random variables because the $d_{i j}$ them selves are. If we want them to have a lim iting distribution at large N, (i.e., in physical term s , to have a therm odynam ic \lim it), we have to rescale the $d_{i j}$ by $N^{1=d}$ or equivalently set $T=T^{N} N{ }^{1=d}$ with T xed. (N ote that in the case of the Euclidean TSP, the rescaling of lengths can be interpreted as taking the lim it N ! 1 while keeping the density of points $x e d$, that is by increasing the size of the volume linearly with N.) The im portant point is that the \environm ent" seen by the spinsm ust have lim iting statisticalproperties as N ! 1 , and this translates to having N-independent statistics for the distances of a spin to its near neighbors. Then it is assum ed that the probability density of the $\mathrm{hS}_{\mathrm{i}}^{1} \mathrm{i}_{\mathrm{T}}$ converges to a lim iting distribution P_{1} when N ! 1 . The cavity method is thus a kind of bootstrap approach where P_{1} is assum ed to exist and it is determ ined by its stationarity property under the cavity recurrence.

That such a stationary lim it exists can bem otivated by the large N behavior of the tour length in the stochastic T SP. In fact, it is expected that allquantities associated w th any xed num ber ofedges w ill converge in the them odynam ic lim it, so it should be possible to look at 2,3 , or k edge constructs. At present
though, because of the technical di culty, only the single edge com putations have been carried out. Fortunately, that is enough for getting the value of , and allows one to obtain the so called link-length distribution, i.e., the distribution of the edge lengths appearing in the optim al tours.

Equation (123) w ith the condition of stationarity of the stochastic process leads to a com plicated im plicit equation for P_{1}. Fortunately, in the zero tem perature lim it (which is where we recover the usual stochastic T SP), the recurrence relations are m uch sim pler. Follow ing K rauth and M ezard [69], one de nes i for any vertex i ($i=1 ;::: ; N$) via:

$$
\begin{equation*}
h S_{i}^{1} i^{0}=\frac{\exp \left({ }_{i}=T^{r}\right)}{!^{1=2}} \tag{125}
\end{equation*}
$$

O ne also de nes $\mathrm{N}+1$ analogously using $\mathrm{hS}_{\mathrm{N}+1}^{1} \mathrm{i}$. N ow re-order the indiges of the rst N vertioes so that

$$
\begin{equation*}
\mathrm{N}^{1=\mathrm{d}} \mathrm{~d}_{1 ; \mathrm{N}+1} \quad 1 \quad \mathrm{~N}^{1=\mathrm{d}} \mathrm{~d}_{2 ; \mathrm{N}+1} \quad 2 \quad::: \quad \mathrm{N}^{1=\mathrm{d}} \mathrm{~d}_{\mathrm{N} ; \mathrm{N}+1} \quad \mathrm{~N} \tag{126}
\end{equation*}
$$

Then the zero-tem perature lim it of Eq. 123 leads to

$$
\begin{equation*}
\mathrm{N}+1=\mathrm{d}_{2 ; \mathrm{N}+1} \mathrm{~N}^{1=\mathrm{d}} \tag{127}
\end{equation*}
$$

while Eq. 124 show s that the optim um tour uses the edges connecting $N+1$ to vertioes 1 and 2, i.e., $n_{1 ; N+1}=n_{2 ; N+1}=1$, all others are equal to zero.

If we have a stationary stochastic process, Eq. (127) leads to a self-consistent equation for the probability density P of the $s . W$ e also see that the random variables $i=N^{1=d} d_{i ; N+1} \quad i \quad(i=1 ;::: ; N)$ play a fundam ental role. By hypothesis, they are uncorrelated: the $d_{i, N}+1$ because we are dealing w th the independent edge-lengths ensemble, and the i because we have explicitly neglected the correlations betw een the spins in the absence of S_{N+1}. D enote by () the probability density of these random variables; () is uniquely determ ined in term $\operatorname{s~ofP,~assum~ing~the~distribution~ofd~} \mathrm{i}_{\mathrm{i} N}+1$ given. From here on, take for sim plicity these edge lengths to be uniform ily distributed in $[0 ; 1]$. (T his corresponds to the 1 -dim ensional case $d=1$; we refer the reader to [69] form ore general distributions.) The relation betw een and P then becom es

$$
\begin{equation*}
(\mathrm{x})=\frac{1}{\mathrm{~N}}_{0}^{\mathrm{Z}^{\mathrm{N}}} \mathrm{P}(\mathrm{l} \quad) \mathrm{dl} \tag{128}
\end{equation*}
$$

N ow a self-consistent equation for P is obtained by using the fact that $N+1$
is the second sm allest of the N di erent s :
Z^{1}

1) () (
(u)du) (
$(u) d u)^{N} \quad 2$

In the large N lim it, this integral non-linear im plicit equation sim pli es to

$$
\begin{equation*}
P()=\frac{d G()}{d} G() e^{G()} \text { where } G()=\underbrace{Z^{1}}_{0} u P(u \quad) d u \tag{130}
\end{equation*}
$$

P lugging the expression for P into this last equation leads to

$$
G()=e^{Z_{1}}[1+G(t)] e^{G(t)} d t
$$

This cannot be solyed analytically, but can easily be treated num erically, and one can obtain m achine precision results for G and thus P w ithout too m uch e ort.

A ssum ing G and P have been com puted, one can nd in a sim ilar way the distribution of $d_{1 ; N+1}$ and $d_{2 ; N+1}$. For instance, the distribution of the rescaled distance $\mathrm{N}_{1 ; \mathrm{N}+1}=\mathrm{I}_{1}$ is given by

$$
\begin{equation*}
P_{1}\left(\Psi_{1}\right)=e_{1}^{Z^{1}} P\left(\Psi_{1} \quad\right) e^{G()} d \tag{132}
\end{equation*}
$$

This, along w ith the analogous distribution for $d_{2 ; N}+1$, gives the distribution of edge lengths in the optim um tour, and thus also the m ean tour length, i.e., when $d=1$, the value of . K rauth and M ezard [69] show ed that this constant could be w rilten in term s of G alone,

$$
\begin{equation*}
=\frac{1}{2}_{1}^{Z_{1}^{1}} G(t)[1+G(t)] e^{G(t)} d t \tag{133}
\end{equation*}
$$

and they found $=2: 041 \ldots$ (N ote that when $d=1$, as suggested by Eq. (111), the tour length becom es independent of N. This can be understood qualitatively by observing that each vertex can connect to one of its near neighbors that is at a distance $O(1=\mathrm{N})$.)

5.6 \E xact" solution in the independent edge-lengths ensem ble.

As described, the cavily method involves an uncontrollable approxim ation associated w ith ignoring certain correlations. It is natural to ask whether those correlationsm ight in fact.be absent in certain ensem bles. A sim ple case is w hen the graph considered is a C ayley tree w ith the root (corresponding to vertex $\mathrm{N}+1$) rem oved. Then the di erent neighbors of $\mathrm{S}_{\mathrm{N}+1}$ are uncoupled and have no correlations at all. Unfortunately, this type of graph will not do for the TSP as it has no H am iltonian cycles, but it can do for other problem s close to the TSP such as the m inim um m atching problem.

So let us consider instead the structure of independent edge-lengths graphs. Locally their properties ressemble those of Cayley trees, so that with som e luck the previous reasoning can hold for these types of graphs as N ! 1 . A though the correlations that were neglected in the cavity calculation will always be present at nite N in the independent edge-lengths m odel, they have every reason to go to zero as N ! 1.The justi cation is that the close neighbors of vertex $N+1$ are \in nitely" far from one-another when N ! 1 . In the language of tours (rather than spins), this m eans that the probability for the tour to have an edge connecting two of the nite order neighbors of vertex $N+1$ should go to zero at large N. C learly this is not the case in the Euclidean stochastic T SP because of the triangle inequality: the neighbor of a neighbor is itself a neighbor. But in the independent edge-length model, the neighbors represented in gure 9 are \far aw ay" from one-another with a probability tending tow ards 1 as N ! 1 . This kind of random \geom etry" is then expected to lead to uncorrelated spins am ong the nite order neighbors of S_{N+1} and so the cavity calculation m ay becom e exact as N ! 1 .

A lthough it is not clear yet that the correlations go aw ay as N ! 1 in the independent edge-lengths ensemble, the reasoning above is supported by extensive sim ulational results. In these kinds of tests, one generates weighted graphs in the ensem ble of interest, determ ines the optim um tour for di erent sizes N, and then estim ates the statistical properties in the large N lim it. A ll such sim ulational studies to date have con m ed the validity of the cavity m ethod. B oth the assum ptions of no replica sym m etry breaking [70] and the predictions for and $P\left(d_{1 ; N+1}\right)$ have been validated $[69,71,70]$ in that way. A though these tests have lim ited precision in the context of the TSP, m ore stringent tests $[72,73]$ have been perform ed on m atching problem s. For instance, using the cavity and replica m ethods, M ezard and P arisipredicted [68] that the length of a minim um matching of N points would have the large N lim it ${ }^{2}=12$ when the $d_{i j}$ are uniform ily distributed in $[0 ; 1]$. T he num erical sim ulations con m this value at the level of $0: 05 \%$.

The consensus is thus that the cavity m ethod gives exact results at large N
for all independent edge-lengths disorder ensembles. But for the physicist, this is not the only interest of the cavity m ethod: even as an approxim ation, it is useful for understanding the e ects of quenched disorder. For instance, one can ask [69] how bad is the factorization approxim ation when applied to the Euclidean T SP in $d=2$. For that, we com pare K rauth and M ezard's cavity prediction (2) 0 0:7251::: to the best estim ate from num erical sim ulations $[74,71] 0: 7120$ 0:0004. W e see that in fact the prediction is quantitatively good, and it tums out that this approxim ation becom es even better as the dim ension of space d is increased.
5.7 Rem arks on the cavity approach and replica sym m etry breaking.

In som e respects, the cavity m ethod is com plem entary to the replica m ethod, but both becom e unw ieldy w hen replica sym m etry is broken. In the case of the T SP, 斗tums out that only the cavity m ethod has allow ed a com plete solution, but that m odel has no replica sym m etry breaking. W hen replica sym m etry breaking does arise, the situation is farm ore com plex, and to date only m odels de ned on graphs w ith in nite connectivity have been solved exactly (though not rigorously). N evertheless, recent progress [75] in using the cavity m ethod m ay soon lead to \exact" solutions of other m odels such as K-SAT in spite of the presence of replica sym m etry breaking.

6 R elated topics and conclusion .

6.1 O ther optim ization problem s investigated in physics.

T his article has focused on presenting statisticalphysics tools in the context of a few well-known problem s. But m any other random com binatorialproblem s have been considered by physicists, often using nearly identical techniques to the ones we have presented. For the reader interested in having a m ore com plete view ofsuch w ork, we give here a partiallist ofproblem s and pointers to the lilterature.

G raph bipartitioning.

G iven a graph G, partition its N vertioes into tw o sets of equal size. T he cost of the partition is the num ber of edges connecting vertioes in di erent sets. T he graph bipartitioning (or graph bisection) problem consists in nding the m inim um cost partition.

This problem is readily reform ulated in the physics language of spins: to each vertex i attach a spin S_{i} and set it to +1 if the vertex is assigned to the rst set and 1 if it is assigned to the second set. C alling $G_{i j}$ the adjacency m atrix of the graph G, the num ber ofedges \crossing" the partition can be identi ed w ith an energy:

$$
\begin{equation*}
E=\frac{1}{2}_{i<j}^{X} G_{i j}\left(1 \quad S_{i} S_{j}\right) \quad: \tag{134}
\end{equation*}
$$

Since the partition is assum ed balanced, the globalm agnetization $M={ }^{P}{ }_{i} S_{i}$ is constrained to be zero. In physics studies, researchers enforce this constraint in a soft way by adding $M^{2}=2$ to the energy E, where is a positive param eter. A s a result, spins interact through e ective couplings $J_{i j}=\left(G_{i j} \quad\right)=2$ that can be positive or negative. The corresponding energy function is then seen to be a spin glass H am iltonian, sim ilar to the Sherrington $\{\mathrm{K}$ ippatrick m odel exposed in Section 2.42.The rst authors to notice this identi cation were Fu and A nderson [76,77]. They then applied the Parisi solution of the Sherrington $\{K$ irpatrick m odel to give the large N value of the m inim um cost partition when G has connectivities grow ing linearly with N. These results generalize to w eighted graphs straightforw ardly.
W eighted m in im um bipartite m atching.

Let I and J be tw O sets containing N points each. W e assum e given an $N \quad N$ m atrix of \distanœes" $d_{i j}$ de ned for each pair i2 I; 2 J. For any com plete m atching (a one-to-one m ap or a pairing between I and J, m ore com m only known as a bipartite m atching), its cost is de ned as the sum of the distances between paired points. In the m inim um weighted bipartite m atching problem one is to nd the com pletem atching of low est cost. N aturally, one can consider a stochastic version where the entries of the distance m atrix are independent random variables, drawn from a probability distribution $p(d)$. This problem is close in its technical aspects to the stochastic T SP, and like the non-bipartite case it has been \solved" both via the replica and the cavity m ethods [68,78]. In the special case where $p(d)$ is the uniform distribution in $[0 ; 1], M$ ezard and P arisi hav com puted the large N lim it of the typical cost to be ${ }^{2}=6$. In fact, in a real tour de force, they also obtained the form of the $1=\mathrm{N}$ correction to this lim it. M ore recently, Parisi considered the special case $p(d)=\exp (d)$
 $\mathrm{k}=1 ;: \ldots ; \mathrm{N} 1=\mathrm{k}^{2}$. A ll current evidence, both num erical and analytical for sm all N values [80], indicates that this form ula at nite N could be exact.

N um ber partitioning.
This problem can be m otivated by the need to divide an estate betw een two inheritors in a fair way. It is usually form ulated as follow s. Let $f x_{1} ; \mathrm{x}_{2} ;::: ; \mathrm{x}_{\mathrm{N}} \mathrm{g}$ be N real numbers in $[0 ; 1]$ and consider a partition of the x_{i} into two (unbalanced) sets. The \unfaimess" of a partition is the sum of the x 's in the rst set m inus the sum of the x 's in the second. T he num ber partitioning problem consists in determ ining the partition that m inim izes the absolute value of the unfaimess. W hen the x_{i} are independent random num bers, it is possible to derive som e statistical properties of the m in im um. W e refer the reader to M ertens' detailed review in the present issue [4] of his recent work.

Vertex cover

Very recently, A. H artm ann and M.W eigt studied the minim um size of vertex coverings of random graphs. P hase transitions take place, accom panied by drastic changes of the computational complexity of nding optim al vertex coverings using branch \{and\{bound algorithm s . See the article in the present volume [3].

Neural N etw orks.
To a large extent, leaming and generalization properties of form al neural networks are optim ization problem s. These properties have been the sub ject of intense studies by statistical physicists in the last fteen years. A quite com plete review of these works and results are exposed in the article by A. Engel in this volume 5].

6.2 Further statistical properties.

Statistical physics concepts and techniques are powerful tools to investigate the properties of ground states, that is the solutions of com binatorial optim ization problem s. So far, we have concentrated on the large size (large \N ") lim it of these problem s, but one can also consider nite N . In addition, it m ay be of interest to know the properties of the near-optim um solutions.

F inite-size corrections and scaling.
M ean- eld m odels can be solved through saddle-point calculations in the innite size lim it only. C learly, optim ization problem susually dealw ith a nite num ber of variables. It is therefore crucial to achieve a quantitative under-
standing of the nite size corrections to be expected, e.g., on the ground state energy.

Far from phase transitions, corrections to the saddle-point value can usually be com puted in a system atic way using perturbation theory. An exam ple of such a calculation to determ ine nite-size corrections hasbeen m entioned previously (se the bipartite m atching problem discussed in Section 6.1). For any quantity or \observable" associated w th the optim um solution of a problem, one can ask how its disorder-average depends on the system size. Sim ilarly, uctuations, which disappear in the in nite volum e lim it, generally m atter for nite sizes. B oth e ects are well-known in the statistical physics of system s w ithout disordered interactions and have been the sub ject ofm any theoretical studies[81,82].

C lose to transition points, the handling of nite-size corrections is m uch m ore involved. Few results are avalaible fordisordered system s [83]. G enerally speaking, the transition region is characterized by a window, the width of which scales as som e negative power of the system size, shrinking to zero in the innite size lim it. W e have already discussed the critical scaling properties of som e system s in Sections 2.3 .5 and 3.3.1. N o sim ilar theoretical study of critical exponents has been perform ed so far for com plex optim ization problem s, e.g. K-SAT; only num erical data or bounds on the exponents are currently available.
F inite-dim ensionalenergy landscapes and robustness.
Realistic physical system sand certain optim ization problem ssuch as the T raveling Salesm an Problem live in a nite-dim ensionalworld. Thus, although we considered in Section 3 a percolation m odel on a random graph, the physics of the problem is usually m odeled using a lattice in two or three-dim ensional space, edges joining vertioes only if they are close in Euclidean space. M odels based on random graphs are considered to describe physical system s only when the dim ension goes to 1 .
F inite-dim ensionality m ay have dram atic consequences on som e properties of the models; for instance it is known that the critical exponents depend on the dim ension of the em bedding space. M ore crucially, in low dim ensions, the correct order param eter could be quite di erent from what it is in in nite dim ension. This issue is particularly acute in the physics comm unity in the case of spin glasses: so far, no consensus has been reached conceming the correct description of these system s in dim ension 3 . Two m ain theories exist:

P arisi's hierarchical picture. This sophisticated theory com es from extending m ean-eld theory to nite dim ensional spaces. It states that low lying con gurations, i.e. having an energy slightly larger than the ground state,
m ay be very far away, in the con guration space, from the ground state. These excited con gurations are organized in a com plex hierarchicalfashion, in fact an ultram etric structure.
T he droplet picture. C onvensely, the droplet picture is based on sim ple scaling argum ents inspired from ferrom agnetic system s and claim s that lowlying con gurations stand close to the ground state. H igher and higher energy excitations w ill be obtained when ipping m ore and m ore spins from the ground state.

A detailed presentation of the theories can be found in [2]. K now ing which picture is actually correct could have deep consequences for dynam ical issues (see the next paragraph), and also for the robustness of the ground state. For instance, it can be im portant from a practicalpoint ofview to know how m uch a perturbation orm odi cation of the energy function a ects the ground state properties. C onsider in particular the problem of im age reconstruction. C an a $s m$ all change in the data m odify m acroscopically the reconstructed im age? W ithin the droplet picture, the answ er would be generally no, while P arisi's theory w ould support the view that disordered system s often have non-robust ground states.

6.3 P erspectives.

The study of the statistical properties of disordered system s has w itnessed m a jor advances in the last tw o decades, but the m ost recent trend has been tow ards trans-disciplinary applications. A though it is di cult to guess what new directions will em erge, there has been a clear and grow ing interest in using statistical physics tools for investigating problem s at the heart of com puter science. In this review, we illustrated this for decision and optim ization problem s, but m any other problem s should follow. Looking at the m ost recent work, we see em erging e orts to extend these m ethods to understand the statisticalproperties of the corresponding algorithm s , be-they exact or heuristic. Let us rst sketch these issues and then mention som e further possible directions.

Typical case com putational com plexity .
T he notion of typical case com putational com plexity is appealing, and statistical physics tools m ay help one understand how that kind of classi cation of decision problem sm ay be reached. B ut clearly the m ethods needed to do so go m uch beyond what we have presented: partition functions and analogous tools describe the solutions of problem, not how long it can take to nd them . N evertheless, as we m entioned in Section 4.7 in the context of the D avis P utnam
tree search, physical argum ents can shed new light on how algorithm s such as branch and bound behave near a phase transition. T hus these m ethods m ay tell us what is the typical com putational com plexity of an instance chosen at random in an ensemble, given a particular tree search algorithm. Extending this classi cation to obtain an algorithm -independent de nition oftypical case com putational com plexity m ay follow, but so far it rem ains largely open.

Long tim e (stationary) lim it of stochastic search algorithm s.
C onsider heuristic algorithm s that are based on stochastic search. E xam ples are sim ulated annealing, G WN alk, or determ inistic lim its of these such as $10-$ cal search. These kinds of algorithm s de ne random walks, i.e., stochastic dynam ics on a discrete space of solutions (boolean assignm ents for $\mathrm{K}-\mathrm{SAT}$, tours for the TSP, etc...) and these dynam ics are \local": just a few variables are changed at each time step. A ssume for sim plicity that the initial position of the walk is chosen at random. At long tim es, the search settles in a steady state where the distribution of energies becom es stationary, that is tim e-independent. (T he energy at any given time is a random variable, depending on the starting point of the search and also on all the steps of the walk up to that time. The energy thus has a distribution when considering all initial positions and all possible walks.) An obvious question is whether this distribution becom es peaked in the large size lim it. Indeed, in m ost cases, one can show that the energy of a random solution is self-averaging; note that this corresponds sim ply to the self-averaging property of the therm odynam ic energy at in nite tem perature. In fact, for the problem swe have focused upon, the energy is expected to be self-averaging at all tem peratures. By a not so bold extrapolation, one m ay con jecture that any local stochastic search algorithm leads to self-averaging energies in the long time lim it. (Naturally, we also have to assum e that the algorithm s do not have too $\mathrm{m} u \mathrm{uch}_{\mathrm{m}} \mathrm{m}$ ory; using a sim ulated annealing with tem peratures changing periodically in time will not do!) There is num erical evidence [84] in favor of this con jecture, and it m ay be possible to use statistical physics m ethods to prove it in some lim iting cases. O ne can also ask what is the lim iting shape of the distribution of energies. This is a di cult question, but it m ay be easier in this context than when considering the optim um .

D ynam ics of stochastic search algorithm s.
Is the self-averaging behavior just m entioned restricted to long tim es? Since the initial energies are those of random solutions and are thus self-averaging, it is quite natural to generalize the con jecture to all tim es: \the energy at any given tim e of a local stochastic search algorithm is self-averaging".

Q uite a bit of intuition about this issue can be obtained by considering what happens by analogy w th a physical system relaxing tow ards equilibrium . T he m ain characteristic of the dynam ics in a physical system is the property called detailed balanc; this condition puts very stringent restrictions on the transition probabilities. But within this speci c fram ew ork, there has been much progress recently in describing the tim e dependence of the dynam ical process. In particular, the con jecture introduced above is con m ed in the context of m ean eld p-spin glass m odels. The exact solution of these m odels has led to new results on entropy production while the phenom enon of \ageing" hasbeen explained theoretically. C learly an im portant goal is to extend these results to arbitrary stochastic dynam ics without the hypothesis of detailed balance. But perhaps one of the m ost rem arquable results com ing from these studies (see for instance the contribution of Bouchaud et al. in [2]) is a relation between the relaxation during these dynam ics and the e ects of a perturbation: the prediction, called the generalized uctuation-dissipation relation, seem s num erically to be quite general and it would be ofm a jor interest to test it in the context ofm ore general stochastic dynam ics.

Further directions.

W ew illbe brief and just give a list ofw hat we consider to be prom ising topics. First, just as the notion of com putational com plexity has to be generalized to a typical case description, the analogous generalization of approxim ability is of interest. In its stochastic or typical extension, an algorithm provides an typical case approxim ation to a problem ifw ith probability tending tow ards 1 in the large size lim it, its output is within of the actual solution. N aturally results that hold in the w orse case also hold stochastically, but onem ay expect new properties to hold in this generalized fram ew ork. Second, there has been an upsurge of interest in physics for com binatoric problem s, using techniques from eld theory and quantum gravity. The problem s range from coloring graphs to enum erating m eanders. A though the initial problem has no disorder, the approaches use identities relating system s with disorder to system s w ithout disorder that are as yet still in the con jectoral stage. Third, is there a relation betw een replica sym m etry breaking and typical case com plexity? Forth, w ill the statistical physics approaches in arti cial neural netw onks and leaming lead to new developm ents in arti cial intelligence? Fifth, an active sub ject of study in decision science conœems \belief propagation" algorithm s which are extensions of the cavity m ethod. C an these extensions lead to better understanding of physical system s, and inversely, will the use of physics concepts such as tem perature, m ean eld, scaling, and universality continue to lead to im proved algorithm s in practioe?

A cknow ledgem ents | O.C M. acknow ledges support from the Institut U niversitaire de France. W e thank C. K enyon and P. Flajolet for com m ents and encouragem ents.

A A nsw ers to Exercises
A. 1 E xercise 1: System w ith two spins and statistical independence.

The partition function (3) at tem perature $\mathrm{T}=1=$ reads

$$
\begin{align*}
Z(T) & =X_{1 ;{ }_{2}=1} \exp \frac{1}{T} E\left(\begin{array}{ll}
1 ;
\end{array}\right) \\
& \left.=X^{2} \quad \exp \left(\begin{array}{ll}
1 & 2
\end{array}\right)\right) \\
& =4 \cosh \quad:
\end{align*}
$$

T he m agnetization m (T) and the average value of the energy $h E i_{T}$ can be com puted from the know ledge of Z, see (8). O ne obtains

$$
\begin{equation*}
m(T)=h_{1} i_{T}=0 ; \tag{A2}
\end{equation*}
$$

and

$$
\begin{equation*}
h E i_{T}=\tanh () \quad: \tag{A.3}
\end{equation*}
$$

The magnetization vanishes since any con guration $f_{1} ;{ }_{2} g$ has the same statistical weight as its opposite, f 1; 2 g .

T hese calculations can be repeated for the second choice of the energy function, $E(1 ; 2)=1 \quad 2$, w ith the follow ing results:
$Z(T)=(2 \cosh)^{2}$
$m(T)=\tanh$
$h E i_{T}=2 \tanh () \quad$:

W e see that the partition function is the square or the single spin partition function. The m agnetization and the energy (once divided by the num ber of spins) are equal to the ones of a single spin, see expression (4).

This coincidence is a direct consequence of the additivity property of the energy. M ore precisely, w henever the energy of a system can be written as the sum of two (or m ore) energies of disjoint subsystem s, i.e., involving disjoint con guration variables, the partition function is sim ply the product of the subsystem s partition functions. Such disjoint subsystem s do not interact and are statistically independent.
A. 2 Exercise 2: Zero tem perature energy and entropy.

Let us suppose that the con gurations C form a discrete set. Let us call E_{0} the $s m$ allest energy and N_{0} the num ber of con gurations having this energy. Sim ilarly we call E_{1} the im m ediately higher value of energy, w ith degeneracy N_{1}. This process can be repeated for m ore and m ore excited energies. At the end, con gurations are sorted according to their energies with $\mathrm{E}_{0}<\mathrm{E}_{1}<$ $\mathrm{E}_{2}<$: : :

From the de nition (3) of the partition function, we w rite

$$
\begin{align*}
Z & =X_{j} N_{j} e^{E_{j}} \\
& =e^{E_{0}} \quad N_{0}+N_{1} e^{G_{1}}+N_{2} e^{G_{2}}+::: \tag{A.5}
\end{align*}
$$

w here $G_{j}=E_{j} \quad E_{0}$ is the gap betw een the $j^{\text {th }}$ excited energy and the m in im al one. By constnuction, all gaps G_{j} are strictly positive (j 1). Thus, in the sm all tem perature (large) lim it, we obtain

$$
\begin{equation*}
Z(T)=N_{0} e^{E_{0}} 1+O e^{G_{1}} \quad ; \tag{A.6}
\end{equation*}
$$

from which we deduce the free-energy,

$$
F(T)=\quad T \ln Z(T)=E_{0} \quad T \ln N_{0}+O \quad \frac{1}{-} e^{G_{1}} \quad: \quad \text { (A.7) }
$$

From the de nition of entropy (11), it appears that the zero tem perature entropy $h S i_{T=0}$ is sim ply the logarithm of the num ber of absolute m in im a of the energy function E (C).
A. 3 Exercise 3: Spins on the com plete graph in the presence of a eld.

The calculations are im m ediate from (25). The only di erence is that, in the presence of a $s m$ all but non zero eld h, the two m inim a of the free-energy shown on gure 2 are now at two di erent heights. O ne of the two minim a (w ith the opposite sign of h) is exponentially suppressed w th respect to the other.

A. 4 E xercise 4: Q uenched average.

U sing the results of E xercise 2, we w rite the partition function, m agnetization and the average value of the energy,

$$
\begin{align*}
\mathrm{Z}(\mathrm{~T} ; \mathrm{J}) & =4 \cosh (\mathrm{~J}) \\
\mathrm{m}(\mathrm{~T} ; \mathrm{J}) & =0 \\
\mathrm{hE} \mathrm{i}_{\mathrm{T}}(\mathrm{~J}) & =\mathrm{J} \tanh (J) \quad: \tag{A.8}
\end{align*}
$$

A ll these statistical quantities depend on the quenched coupling J.
W e now average over the coupling J, with distribution (J) on the support $\left[J ; J_{+}\right] . W$ e obtain for the quenched average m agnetization and energy,

$$
\begin{aligned}
& \overline{m(T)}=0 \\
& \overline{\mathrm{hE} \mathrm{i}_{\mathrm{T}}}=\int_{J}^{\mathrm{Z}+} \mathrm{dJ}
\end{aligned}
$$

In the zero tem perature lim it, the spins align (respectively anti-align) onto each other if the coupling J is positive (resp. negative). The resulting ground state energy equals $j \top j$. A veraging over the quenched coupling, we obtain

$$
\begin{equation*}
\overline{\mathrm{hE} \mathrm{i}_{\mathrm{T}=0}}=\int_{J}^{\mathbb{Z}+} \mathrm{dJ} \quad(\mathrm{~J}) \mathrm{j} J j: \tag{A.10}
\end{equation*}
$$

A. 5 E xercise 5: Frustrated triangle of spins.

B oth energies are even functions of the spins; the m agnetization is thus alw ays equal to zero.

W e rst consider the energy function

$$
\begin{equation*}
E\left({ }_{1} ; 2 ; 3\right)=122 \quad 13 \quad 23: \tag{A.11}
\end{equation*}
$$

The partition function and the average value of the energy read respectively,

$$
\begin{align*}
& Z(T)=2 e^{3}+6 e \\
& h E i_{T}=\frac{3+3 e^{4}}{1+3 e^{4}}: \tag{A.12}
\end{align*}
$$

In the zero tem perature lim it, the ground state energy and entropy are given by

$$
\begin{align*}
& \mathrm{hE} \mathrm{i}_{\mathrm{T}=0}=3 \\
& \mathrm{hS} \mathrm{i}_{\mathrm{T}=0}=\ln 2: \tag{A.13}
\end{align*}
$$

There are indeed two con gurations w ith m inim al energy; all their spins are aligned in the sam e direction.

W e now consider the energy function

$$
\begin{equation*}
E(1 ; 2 ; 3)=12 \quad 13+23 \text { : } \tag{A.14}
\end{equation*}
$$

The partition function and the average value of the energy now read respectively,

$$
\begin{align*}
& Z(T)=6 e+2 e^{3} \\
& h E \dot{i}_{T}=\frac{3+3 e^{4}}{3+e^{4}}: \tag{A.15}
\end{align*}
$$

In the zero tem perature lim it, the ground state energy and entropy are given by

$$
\begin{align*}
& h E \dot{i}_{\mathrm{T}=0}=1 \\
& h E \mathrm{i}_{\mathrm{T}=0}=\ln 6: \tag{A.16}
\end{align*}
$$

A sa result offrustration, the ground state energy is higher than in the previous case, as well as the num ber of ground states. N ote also that the gap between the low est and second low est energy levels has becom e sm aller.
A. 6 Exercise 6: Partition function of the Sherrington-K irkpatrick m odel.

The partition function of the Sherrington-K irkpatrick (SK) m odel reads

$$
\begin{equation*}
Z(J)={\underset{i}{ }=1}_{X}^{\exp }{ }^{@} P \bar{N}_{i<j}^{X} J_{i j i}{ }_{j}^{A} \quad \text {; } \tag{A.17}
\end{equation*}
$$

where the quenched couplings $J=f J_{i j} ; 1$ i< $j \quad N g$ are random ly draw n from the G aussian distribution

$$
\begin{equation*}
P(J)=\sum_{1 i<j N}^{P} \frac{1}{2} \exp \frac{1}{2} J_{i j}^{2} \quad: \tag{A.18}
\end{equation*}
$$

To com pute the average value of the partition function, we rst average the couplings out and only then calculate the sum over the spins

$$
\begin{aligned}
& \overline{Z(J)}=\mathrm{CJPP}^{Z}(J) \mathrm{Z}(J)
\end{aligned}
$$

$$
\begin{align*}
& =2^{\mathbb{N}} \exp \frac{2}{4}(\mathbb{N} \quad 1) \quad \text {; } \tag{A.19}
\end{align*}
$$

W e now calculate the second m om ent of the partition function by rew riting the squared sum as the product of two independent sum s , see E xercise 1,

$$
\begin{aligned}
& \overline{Z(J)^{2}}={ }^{Z} \operatorname{dJP}(J) Z(J)^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\overline{\mathrm{Z}(\mathrm{~J})}^{2} \mathrm{Y} \text {; } \tag{A20}
\end{align*}
$$

where Y equals

The calculation proceeds as in the case of the spin m odel on the com plete graph, see section 23.W e de ne for each con guration $C=f$ i; ig of the 2 N spins, the overlap function

$$
\begin{equation*}
q(C)=\frac{1}{N}_{i=1}^{X_{i}^{N}} \quad: \tag{A22}
\end{equation*}
$$

T hee ective energy function appearing in the last term of the pseudo partition function Y (A 21) depends on the con guration through $q(C)$ only. Follow ing the steps of section 2.3, a saddle-point calculation leads to the asym ptotic
behaviour of Y,

$$
\begin{equation*}
\mathrm{Y}=\exp \quad \mathrm{N}^{2}+\mathrm{O}(\mathbb{N}) \tag{A23}
\end{equation*}
$$

where is the m inim um over q of the \free-energy" functional \hat{f} (q) de ned in (25) w ith T^{2} instead of T. The results of section 2.3 teach us that there is a \critical" tem perature $T_{C}=1$ such that $=0$ for tem peratures above T_{C} and <0 when $T<T_{c}$.

A bove T_{c}, the partition function does not uctuate too $\mathrm{m} u{ }^{\text {un }}$ around the average value $\overline{Z(J)}$; the partition function is itself self-averaging and the freeenergy per spin simply equals $f(T)=T \ln 2 \quad 1=(4 T)$, see the paper by M. T alagrand in the sam e volum e. At low tem peratures, below T_{c}, the second mo m ent of $Z(J)$ is exponentially larger than the squared average; there are huge uctuations and the partition function is not self-averaging. It is therefore $\mathrm{m} u \mathrm{ch}_{\mathrm{m}} \mathrm{m}$ ore com plicated to calculate the value of the free-energy.
A. 7 Exercise 7: A toy replica calculation.

W ewant to com pute the series expansion of $\ln (1+x)$ starting from the identity (for sm all real n)

$$
\begin{equation*}
(1+x)^{\mathrm{n}}=1+\mathrm{n} \ln (1+\mathrm{x})+\mathrm{O}\left(\mathrm{n}^{2}\right) \tag{A24}
\end{equation*}
$$

and the series expansion of $(1+x)^{n}$ for integer n. To do so, we use N ew ton's binom ial form ula
valid for positive integers n. n play two roles in form ula (A 25). First, it is the upper bound of the sum over k. Secondly, n appears in the com binatorial factor in the sum. Factorials m ay be continued analytically to real values of n using Euler's G am m a function. As (z) has poles at negative integer values of the argum ent z, wem ay extend the sum in expression (A 25) to integer values of k larger than n w ithout changing the nal result,

$$
\begin{equation*}
(1+x)^{n}={ }_{k=0}^{x^{1}} \frac{n!}{k!(n \quad k)!} x^{k} \quad: \tag{A26}
\end{equation*}
$$

Let us focus now on the com binatorial factor

$$
C(n ; k)=\frac{n!}{k!(n \quad k)!}=\frac{n\left(\begin{array}{lll}
n & 1
\end{array}\right)(n \quad 2):::\left(\begin{array}{ll}
n & k+1
\end{array}\right)}{k!}: \quad \text { (A 27) }
$$

Fork $=0$, we have $C(n ; 0)=1$ for alln. W hen $k \quad 1$, the rh.s. of (A 27) is a polynom ial of n and can be im m ediately continued to realn. In the sm all n lim it, we obtain

$$
C(n ; k)=n \frac{(1)(2):::(\mathrm{k})}{\mathrm{k}!}+o(n)=n \frac{(1)^{1}}{k}+o(n) \quad(k \quad 1):(\mathbb{A} 28)
$$

Finally, we w rite the sm all n continuation of equation (A 25) as

$$
\begin{equation*}
(1+x)^{n}=1+n \sum_{k=1}^{x^{1}} \frac{(1)^{k}}{k} x^{k}+o(n) \quad: \tag{A29}
\end{equation*}
$$

Com paring equation (A 24) and (A 29), we obtain the correct result

$$
\begin{equation*}
\ln (1+x)=x_{k=1}^{x^{k}} \frac{(1)^{k} 1}{k} x^{k} \quad: \tag{A.30}
\end{equation*}
$$

The above calculation is a sim ple application of the replica trick. O bviously, the calculation of the free-energy ofdisordered m odels, e.g. the K -Satis ability or the TSP m odels, are much m ore involved from a technical point of view .

R eferences
[1] M . M ezard, G. P arisi, M . A . V irasoro (Eds.), Spin G lass Theory and Beyond, W orld Scienti C, Singapore, 1987.
[2] A. P. Young (Ed.), Spin G lasses and Random Fields, W orld Scienti c, Singapore, 1998.
[3] A. Hartm ann, M. W eigt, Statistical mechanics perspective on the phase transition in vertex covering of nite-connectivity random graphs, in the present issue of T heoretical C om puter Science.
[4] S.M ertens, A physicist's approach to num ber partitioning, in the present issue of T heoretical C om puter Science .
[5] A. Engel, C om plexity of leaming in arti cial neural netw orks, in the present issue of T heoretical C om puter Science.
[6] R . B axter, E xactly solved m odels in StatisticalM echanics, A cadem ic P ress, San D iego, 1982.
[7] H. R ieger, Frustrated system s: G round state properties via combinatorial optim ization, in: J. K ertesz, I. K ondor (Eds.), A dvances in Computer Sim ulation, Vol. 501 of Lecture N otes in P hysics, Springer-V erlag, H eidelberg, 1998.
[8] P. Young, Inform atics - 10 years back, 10 years ahead, celebration of the 10th aniversary of Schloss D agstuhl.
[9] R . R eif, Fundam entals of Statistical and T hem alP hysics, M oG raw H ill, N ew York, 1965.
[10] S.M a, StatisticalM echanics, W orld Scienti c, Singapore, 1985.
[11] K . H uang, Statistical M echanics, W iley, N ew -Y ork, 1967.
[12] W . Saenger, P rinciple of N ucleic A cid Structure, Springer-V erlag, N ew -Y ork, 1984.
[13] T. Stridk, J. A llem and, D. Bensim on, R. Lavery, V. C roquette, P hase coexistence in a single D NA m olecule, P hysica A 263 (1998) 392.
[14] J. M . Steele, P robability Theory and Combinatorial Optim ization, SIAM, Philadelphia, 1997.
[15] M . R. G arey, D. S. Johnson, C om puters and Intractability: A G uide to the Theory of NP C om pleteness, Freem an, N ew York, 1979.
[16] C . H . P apadim itriou, K . Steiglitz, C om binatorialo ptim ization: A lgorithm sand C om plexity, P rentice H all, Englew ood C li s, N J, 1982.
[17] B . B ollobas, R andom G raphs, A cadem ic P ress, N ew -Y ork, 1985.
[18] R . P otts, P roc. C am.b. Phil. Soc. 48 (1952) 106.
[19] P. K asteleyn, C . Fortuin, J. Phys. Soc. Japan Suppl. 26 (1969) 1114.
[20] F. W u, The potts m odel, Rev. M od. Phys. 54 (1982) 235.
[21] A. M organte, Large deviations in random graphs, Tech. rep., Laboratoire de P hysique T heorique de ${ }^{\prime} E N S$, rapport de stage (1998).
[22] R.M onasson, R . Zecchina, Entropy of the K-satis ability problem, P hys. R ev. Lett. 76 (1996) $3881\{3885$.
[23] R . M onasson, R . Zecchina, Statisticalm echanics of the random K -Sat problem, Phys. Rev.E 56 (1997) 1357\{1361.
[24]R.M onasson, R. Zecchina, Tricriticalpoints in random com binatorics: the ($2+$ p)-SAT case, J. Phys.A 31 (1998) 9209\{9217.
[25] R. M onasson, R. Zecchina, S. Kirkpatridk, B. Selm an, L. Troyansky, C om putational com plexity from 'characteristic' phase transitions, N ature 400 (1999) 133\{137.
[26] R . M onasson, R. Zecchina, S. K irkpatrick, B. Selm an, L. Troyansky, 2+ psat: Relation of typicalcase com plexity to the nature of the phase transition, R andom Structures and A lgorithm s 3 (1999) 414.
[27] R. M onasson, O ptim ization problem s and replica sym m etry breaking in nite connectivity spin glasses, J. P hys. A 31 (1998) 513.
[28] G.B iroli, R.M onasson, M.W eigt, A variational description of the ground state structure in random satis ability problem s, Euro. P hys. J.B 14 (2000) 551.
[29] C . H . P apadim 五riou, C om putational C om plexity, A ddison \{W esley, 1994.
[30] S. C ook, The com plexity of theorem \{proving procedures, in: Proc. 3rd Ann. A CM Sym p. on Theory of C om puting, A ssoc. C om put. M ach., New York, 1971, p. 151.
[31] T. H . Eds., B. A. H uberm an, C.W illiam s, Issue 1-2, special issue on phase transitions, A rti cial Intelligence 81.
[32] D . M itchell, B. Selm an, H . Levesque, H ard and easy distributions of sat problem s, in: Proc. of Am. A ssoc. for A rtif. Intell. A A A I-92, 1992, pp. 456 \{ 465.
[33] A. G oerdt, A threshold for unsatis ability, J. C om put. System Sci. 53 (1996) 469.
[34] V . C hvatal, B . R eed, M idk gets som e (the odds are on his side), in : P roc. 33rd EEE Sym p. on Foundations of C om puter Science, 1992, p. 620.
[35] S. K irkpatrick, B. Selm an, C ritical behaviour in the satis ability of random boolean expressions, Science 264 (1994) 1297.
[36] A . B roder, A . Frieze, E. U pfal, On the satis ability and m axim um satis ability of random 3-cnf form ulas, Proc. 4th A nnual ACM SIAM Symp. on D iscrete A lgorithm s (1993) 322.
[37] O . D ubois P rivate com m unication.
[38] F. R icci-Tersenghi, M . W eigt, R . Zecchina, T he sim plest k-satis ability m odel, Phys. Rev.E 63 (2001) 026702, 'arX iv:condm at 0011181.
[39] J. R . B anavar, D. Sherrington, N . Sourlas, G raph bipartitioning and statistical mechanics, J. Phys. A Lett. 20 (1987) L1\{L8.
[40] M . M ezard, G . P arisi, M ean- eld theory of random ly frustrated system s w ith nite connectivity, Europhys. Lett. 3 (10) (1987) 1067.
[41] L. Viana, A. J. B ray, P hase diagram s for dihute spin-glasses, J. Phys. C 18 (1985) 3037\{3051.
[42] I. K anter, H . Som polinsky, M ean-eld theory of spin-glasses with nite coordination num ber, P hys. R ev. Lett. 58 (1987) 164.
[43] C . D . D om inicis, Y. G oldschm idt, Replica symmetry breaking in nite connectivity system s: a large connectivity expansion at nite and zero tem perature, J.P hys. A 22 (1989) L775.
[44] P. M ottishaw , C .D .D om inicis, O n the stability of random ly frustrated system s w ith nite connectivity, J. Phys. A 20 (1987) L375.
[45] C . D .D om in icis, P .M ottishaw, Replica sym m etry breaking in w eak connectivity system s, J. Phys. A 20 (1987) L1267.
[46] Y. G oldschm idt, P . Lai, The nite connectivity spin glass: investigation of replica sym m etry breaking of the ground state, J. P hys. A 23 (1990) L775.
[47] B . B ollobas, C . B orgs, J. C hayes, J. H . K im , D .W ilson, T he scaling w indow of the 2-sat transition, R andom Structures and A lgorithm s 2000, in press.
[48] D. W ilson, T he em pirical values of the critical k-sat exponents are w rong 2000 preprint
[49] M . Leone, F. R icci-Tersenghi, R . Zecchina, P hase coexistence and nite size scaling in random combinatorial problem s, JP hysA, in press (2001).
[50] B . Selm an, H . K autz, B. C ohen, Localsearch strategies for satis ability testing, in: P roceedings of IM AC S, 1993, p. 661.
[51] J. F. M -T. Chao, P robabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k-satis ability, In form ation Science 51 (1990) 289\{314.
[52] S. C occo, R. M onasson, Trajectories in phase diagram s, growth processes and com putational com plexity: how search algorithm s solve the 3-satis ability problem ,, Phys. Rev. Lett. 86 (2001) 1654, iarx iv:ondmat
[53] M . Talagrand, R igorous low tem perature results for the p-spin m ean eld spin glass m odel, P robabillity T heory and R elated F ields 117 (2000) 303\{360.
[54] D. J. A ldous, T he zeta (2) lim it in the random assignm ent problem MathPR
[55] J. B eardw ood, J. H. H alton, J. M . H am m ersley, The shortest path through m any points, P roc. C am b. Phil. Soc. 55 (1959) $299\{327$.
[56] S. Lin, C om puter solutions of the traveling salesm an problem, Bell System Technical Joumal 44 (1965) 2245\{2269.
[57] S. K irkpatrick, C . D . Gelatt Jr., M . P. Vecchi, O ptim ization by sim ulated annealing, Science 220 (1983) 671 \{680.
[58] V. C emy, Therm odynam ical approach to the traveling salesm an problem: An e cient sim ulation algorithm, J. Optim ization Theory A ppl. 45 (1985) 41.

59] E. L. Law ler, D.E.W ood, B ranch-and-bound m ethods: A survey, Operations Res. 14, No. 4 (1966) 699.
[60] M . W . P adberg, G . R inaldi, A branch and cut algorithm for the resolution of large-scale sym m etric traveling salesm an problem s, SIAM R eview 33 (1991) 60.
[61] D. A pplegate, R . B ixby, V. Chvtal, W. C ook, On the solution of traveling salesm an problem s, D ocum enta M athem atica, JD M . ICM III (1998) 645 \{656.
[62] D. S. Johnson, L. A. M OGeoch, The traveling salesm an problem : A case study in local optim ization, in: E. H. L. A arts, J. K. Lenstra (Eds.), Local Search in C om binatorial O ptim ization, J. W iley \& and Sons, New York, 1997, pp. 215\{310.
[63] S. A rora, Polynom ial tim e approxim ation schem es for Euclidean traveling salesm an and other geom etric problem s, Joumalof the ACM 45 (1998) 753\{782.
[64] J. Vannim enus, M . M ezard, On the statistical mechanics of optim ization problem s of the travelling salesm an type, J. P hysique Lett. 45 (1984) L1145\{ L1153.
[65] R . M . K arp, A patching algorithm for the nonsym m etric travelling salesm an problem, SIAM J.C om put. 8 (1979) $561\{573$.
[66] W . T . R hee, M . Talagrand, M artingale inequalities and N P -com plete problem s, M athem atics of O peration R esearch 12 (1) (1987) 177 \{181.
[67] W . T. R hee, On the travelling salesperson problem in m any dim ensions, R andom Structures and A lgorithm s 3 (3) (1992) 227\{233.
[68] M . M ezard, G . P arisi, M ean- eld equations for the m atching and the travelling salesm an problem, Europhys. Lett. 2 (1986) 913\{918.
[69]W . K rauth, M . M ezard, The cavity method and the travelling-salesm an problem, Europhys. Lett. 8 (1989) $213\{218$.
[70] A. G. Percus, O. C . M artin, T he stochastic traveling salesm an problem : F in ite size scaling and the cavity prediction, J. Stat. Phys. 94 (5/6) (1999) $739\{758$.
[71]D. S. Johnson, L. A. M OG eoch, E. E. R othberg, A sym ptotic experim ental analysis for the H eld $-K$ anp traveling salesm an bound, in: 7th A nnual ACM SIAM Sym posium on D iscrete A lgorithm s, A tlanta, G A , 1996, pp. $341\{350$.
[72] R . B runetti, W . K rauth, M .M ezard, G.P arisi, E xtensive num erical sim ulations of weighted m atchings: Total length and distribution of links in the optim al solution, Europhys. Lett. 14 (1991) 295\{301.
[73] J. H oudayer, J. H. B outet de M onvel, O. C .M artin, C om paring m ean eld and Euclidean m atching problem s, Eur. P hys. Jour. B 6 (1998) $383\{393$.
[74]A. G. Percus, O. C. M artin, F inte size and dim ensional dependence in the Euclidean traveling salesm an problem, Phys. Rev. Lett. 76 (1996) $1188\{1191$.
[75] M . M ezard, G . P arisi, T he B ethe lattioe spin glass revisited icondim at ono941
[76] Y. Fu, P . W . A nderson, A pplication of statistical m echan ics to N P -com plete problem s in com binatorial optim ization, J. P hys. A 19 (1986) 1605\{1620.
[77] K . F ischer, J. H ertz, Spin glasses, C am bridge U niversity P ress, C am bridge, 1991.
[78] M . M ezard, G. P arisi, O n the solution of the random link m atching problem s , J. Physique 48 (1987) 1451\{1459.
 (1998).
[80] V . D otsenko, E xact solution of the random bipartite m atching m odel, J. P hys. A 33 (2000) 2015, condmat $\bar{c} 91147 \overline{7} 1$.
[81] J. C ardy, F inite size scaling, vol2 of C urrent P hysics Sources and C om m ents, N orth H olland, Am sterdam, 1988.
[82] V . P rivm an, F in ite size scaling and num erical sim ulations of statistical system S , W orld Scienti c, Singapore, 1988.
[83] G . P arisi, F . R itort, F. Slanina, Several results on the nite-size corrections in the Sherrington-K irkpatrick spin glass m odel, J. P hys. A 26 (1993) 3775.
[84] G . R . Schreiber, O . C . M artin, C ut size statistics of graph bisection heuristics, SIAM Joumal on O ptim ization 10 (1) (1999) $231\{251$.

[^0]: 1 Email:m artino@ ipno.in2p3.fr
 ${ }^{2}$ P erm anent address: CNR S-Laboratoire de Physique Theorique de $\mathrm{l}^{\prime} \mathrm{E}$ N S, P aris, France; E-m ail: m onasson@ lpt.ens.fr
 3 E m ail: zecchina@ ictp trieste.it

