
Theoretical Computer Science 275 (2002) 521–560
www.elsevier.com/locate/tcs

Operational and abstract semantics of the
query language G-Log

Agostino Cortesia, Agostino Dovierb; ∗, Elisa Quintarellic, Letizia Tancac

aDip. di Informatica, Universit�a Ca’ Foscari, Via Torino, 155 30173 Venezia – Mestre, Italy
bDip. di Informatica, Universit�a di Verona, Strada Le Grazie, 15, I-37134 Verona, Italy
cDip. di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci, 32,

20133 Milano, Italy

Received April 1999; revised October 2000; accepted May 2001
Communicated by G. Levi

Abstract

The amount and variety of data available electronically have dramatically increased in the last
decade; however, data and documents are stored in di3erent ways and do not usually show their
internal structure. In order to take full advantage of the topological structure of digital documents,
and particularly web sites, their hierarchical organization should be exploited by introducing a
notion of query similar to the one used in database systems. A good approach, in that respect,
is the one provided by graphical query languages, originally designed to model object bases and
later proposed for semistructured data, like G-Log. The aim of this paper is to provide suitable
graph-based semantics to this language, supporting both data structure variability and topological
similarities between queries and document structures. A suite of operational semantics based on
the notion of bisimulation is introduced both at the concrete level (instances) and at the abstract
level (schemata), giving rise to a semantic framework that bene8ts from the cross-fertilization of
tools originally designed in quite di3erent research areas (databases, concurrency, logics, static
analysis). c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The amount and variety of data available electronically have dramatically increased
in the last decade: such data may be structured, when coming from relational or object-
oriented databases, or completely unstructured, when they consist of simple collections
of text or image 8les. Intermediate situations arise when some kind of structure is
present, as for instance in HTML 8les, in digital libraries or in XML documents [13].

∗ Corresponding author.
E-mail addresses: cortesi@dsi.unive.it (A. Cortesi), dovier@sci.univr.it (A. Dovier), quintare@elet.polimi.it

(E. Quintarelli), tanca@elet.polimi.it (L. Tanca).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00295 -X

522 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

However, a major drawback which precludes the appropriate bene8ts of this information
richness is that the data sources stored in di3erent forms do not usually show such
internal structure.
A number of research projects are currently addressing the problem of accessing in

a uniform way this plethora of semistructured data. Among these, we can cite LOREL
[23], UnQL [4], WebSQL [24], WebOQL [3], StruQL [15].
E3ectiveness and eGciency are mandatory requirements when accessing semistruc-

tured information. Therefore, appropriate search techniques are more than necessary.
Pure keyword-based search techniques proved to be ine3ective, since in that setting
only the document lexicon is taken into account, while the intrinsic semantics con-
veyed by the document structure is often lost. In practice, this leads to the retrieval of
too many documents, since the ones that do not share the required structure are often
included into the result.
In order to take full advantage of the document structure, its hierarchical (or topolog-

ical) organization should be somehow exploited, by introducing some notion of query
like the one used in database systems, being still aware of the fact that the document
structure is far from being as strict as in the usual database context.
In this paper, we refer to the graphical representation and query style of G-Log,

a well-known database language for complex objects [31, 29]. 1 The reason of this
choice stands on observing that most of the models and languages for representing and
querying semistructured information cited above share an analytical approach to data
representation, lacking a synthetic notion of schema. Conversely, G-Log models semi-
structured information by using a concept very close to that of database schema, that
in this context enables the user to formulate a query in an easier way. Nevertheless,
the use of a schema-like facility, however desirable, should not be mandatory, since
we may well imagine a situation where the user is not fully aware of the document’s
exact organization. In this case, assuming a strict matching between the document and
the required topological structure may lead to miss some still interesting documents
that do not adhere precisely to the query structure.
Our approach to attack these problems is to make the required topological similarity

Jexible, in order to support di3erent similarity levels. Therefore, the aim of this paper
is to illustrate e3ective techniques that allow the query formulator to relax and restrict
topological requirements at his=her choice. Its main contribution is the design of a suite
of operational and logical semantics for G-Log, based on the notion of bisimulation
[27] (see also [22, 4]), given both at the instance and at the schema level. In particular,

1 Note that the use of graphs for representing information structure is common in the history of Database
theory and in Arti8cial Intelligence: recall, for instance, the entity-relationship model [6], the semantic
networks, the various graphical representations of object-oriented data like Good [19], and Graphlog [9],
just to name a few. Moreover, computational models based on graphs transformations are used not only in
Database theory: they are used as semantic domains for various kinds of formalisms and languages like, for
example, actor systems, the �-calculus, functional programming, neural networks (see [20] for a survey on
this topic).

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 523

we discuss in full detail the bene8ts of tuning the semantics by enforcing or relaxing
requirements on the bisimulation relation.
The relationship between instances and schemata is investigated using Abstract Inter-

pretation theory [10], which provides a systematic approach to guarantee the correctness
of operating on schemata with respect to the corresponding concrete computations on
instances.
The revisitation of the semantics of G-Log also clari8es some subtle ambiguities in

the initial semantics of G-Log queries. Since the semantics is based on the notion of
bisimulation, the implementation of the language will inherit all the algorithmic prop-
erties studied in the literature. 2 In particular, Kanellakis and Smolka in [21] relate the
bisimulation problem with the general (relational) coarsest partition problem, and they
propose an algorithmic solution and pointed out that the partition re8nement algorithms
in [32] can serve, and more eGciently, to the same task. Applicability of our approach
is strongly based on this eGcient implementation of the bisimulation tests.
Alternative approaches to the semantics of graphical languages have been introduced

in the literature. For instance, the semantics of Graphlog is given via rewriting into
DATALOG. Our choice of giving directly a graph-based semantics is not only justi8ed
by the fact that this is a typical approach for visual languages, but also, and more
signi8cantly, by the fact that the expressive power of G-Log is higher than that of
DATALOG.
Our work started as a part of the WG-Log project [8], which addresses the problem

of Web information querying by enriching G-Log [31, 29] with constructs of typical
hypermedia, like entry points, indexes, navigational edges, etc. A subsequent project
[5, 7, 12], still in the area of semistructured information querying, addresses the prob-
lem of querying XML-speci8ed information, and still investigates the possibilities of
Jexible query formulation. To this aim, in [28] the XML-GL language is translated into
G-Log, in order to take advantage of the parametric semantics de8ned here. The results
presented here for G-Log can thus be easily extended to WG-Log and XML-GL as
well. As schemata can evolve gracefully with the evolution of their instances (applying
abstract interpretation theory), in the extended setting of WG-Log and XML-GL, and
more in general in the graph-based languages similar to G-Log, this will allow to trace
the evolution of documents and Web pages by keeping trace of the history of their
DTDs or schemata.
Our approach may remind readers of previous works on Graphlog [9] and UnQL

[4]; di3erences between G-Log and those are mainly related to expressive power: for
instance, G-Log allows to express cyclic information and queries, and achieves its

2 Bisimulation is usually attributed to Park, who introduced the term in [30], extending a previous notion
of automata simulation by Milner [25]. Milner employs bisimulation as the core for establishing observational
equivalence of the Calculus of Communicating Systems (CCS) [26, 27]. In the Modal Logic=Model Checking
areas this notion was introduced by van Benthem (cf. [33]) as an equivalence principle between Kripke
structures. In Set Theory, it was introduced as a natural principle replacing extensionality in the context of
non-well-founded sets [2].

524 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

high expressive power by allowing a fully user-controlled non-determinism. Addition
of entities, other than the addition of relations allowed in Graphlog, is admitted in
G-Log which, in its full form, is Turing complete [29].
This issue is further dealt with in Section 7, where it becomes clear that our results

can be extended to these languages as well, and in general to any graphical language
whose main aim is to query and transform a graph-oriented data model by using graph-
based rules.
The paper is organized as follows. Section 2 introduces the language G-Log. Sec-

tion 3 explains the (concrete) operational semantics of the language, showing the three-
level semantics which introduces Jexibility. In Section 4 some results for the semantics
proposed are given in detail; here di3erent types of rules are analyzed and the di3er-
ences between the three semantics are highlighted. In Section 5 the notion of abstract
graphs (corresponding to schemata) is introduced, and the concepts of abstract interpre-
tation are applied; in some cases query applicability can be tested directly on schemata;
this means that they represent instances correctly. Moreover, this section also shows
how schemata can be derived by abstraction (in n log n time) from instance sets, thus
allowing to deduce a common scheme or DTD from a set of documents. Section 6
introduces a logical and model theoretic view of G-Log graphs and the relationships
with the concrete operational semantics are analyzed. In Section 7 we present a com-
parison with similar previous approaches and we set the lines for future works. Finally,
conclusions are drawn in Section 8.

2. The language G-Log

2.1. An informal presentation

In this section we introduce some intuitive examples of queries in the language
G-Log, in order to appreciate its expressive power and to emphasize some ambiguities
we are going to tackle later on.
Consider the graph depicted in Fig. 1(a). It represents the query ‘collect all the

people that are fathers of someone’. Intuitively, the boldface part of the graph (also
called the ‘green part’) is what you try to get from the DB, while you match the rest
of the graph (also called the ‘red part’) with a graph representing the DB instance.
The query Fig. 1(b) can be read as ‘collect all the workers having (at least) one

son that works in some town’.
Also negative requirements can be introduced in a query by means of dashed edges

and nodes. This is depicted by query Fig. 1(c) whose meaning is ‘collect all the
workers having (at least) one son that works in a town di3erent from that where his
father works’.
The translation of queries (a), (b), (c) into logical formulas is also illustrated in

Fig. 1 (with abbreviations for predicate symbols). As observed in [29], G-Log o3ers
the expressive power of logic, the modeling power of object-oriented DBs, and the
representation power of graphs.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 525

Fig. 1. Sample queries.

Fig. 2. Problematical queries.

However, the modeling power of G-Log is heavily constrained by some arguable
choices in its semantics [29]. Consider, for instance, query Fig. 2(d): it can be intu-
itively interpreted in three di3erent ways:
• collect the people having two children, not necessarily distinct;
• collect the people having exactly two (distinct) children;
• collect the people having at least two (distinct) children.
The semantics of G-Log as given in [29] uniquely selects the 8rst option. As a conse-
quence, queries (a) and (d) become equivalent, so there is no way to express ‘collect
the people that have more than one child’ without making use of negative information
(negated equality edges in G-Log [29]).
An even deeper problem arises when considering query (e): in G-Log it has exactly

the same meaning as query (b). In other words, it is not possible to express a query
like ‘collect the people that work in the same town as (at least) one of their children’
in a natural fashion. Actually, such a query can be expressed in G-Log, but not in a
straightforward way. Of course, these problems are further emphasized when combined
with negation.
In order to address this kind of ambiguities, in the following sections we revisit

the semantics of G-Log taking advantage of the use of the well-known concept of

526 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

bisimulation. Furthermore, we apply the abstract interpretation approach to the op-
erational semantics de8ned in this way, in order to clarify the relationship between
concrete (instances) and abstract (schemata) data representations.

2.2. Syntax of G-Log

In this section we introduce the basic aspects of the syntax of the G-Log language.
De8nitions are based on the concept of directed labeled graph, and, di3erently from
[29, 31], rules, programs, and queries are de8ned independently of the context in which
they are used. This simpli8es the notation and allows the study of algebraic properties
of programs. However, the semantics (cf. Section 3) will be given in such a way that
the practical use is coherent with that of [29, 31].

De�nition 2.1. A G-Log graph is a directed labeled graph 〈N; E; ‘〉, where N is a
(8nite) set of nodes, E is a set of labeled edges of the form 〈m; label ; n〉, where m;
n∈N and label is a pair of C× (L∪{⊥}), while ‘ :N→ (T∪{⊥})×C× (L∪{⊥})
×(S∪{⊥}). ⊥ means ‘unde8ned’, and:
• T= {entity; slot} is a set of types for nodes;
• C= {red; green; black} is a set of colors;
• L is a set of labels to be used as entity, slot, and relation names;
• S is a set of strings to be used as concrete values.
‘ is the composition of four single-valued functions ‘T; ‘C; ‘L; ‘S. When the context is
clear, if e= 〈m; 〈c; k〉; n〉, with abuse of notation we say that ‘C(e)= c and ‘L(e)= k.
Moreover, we require that
• (∀x∈N)(‘T(x) �=slot→ ‘S(x)=⊥) (i.e., values are associated to slot nodes only),
• (∀〈m; label ; n〉 ∈E)(‘T(m) �=slot) (i.e., slot nodes are leaves).

Observe that two nodes may be connected by more than one edge, provided that
edge labels be di3erent.
Red (RS) and black edges and nodes are graphically represented by thin lines (this

does not originate confusion, since there cannot be red and black nodes and edges
in the same graph), while green (GS) by thick lines. Red and green nodes are used
together in queries.
Colors red and green are chosen to remind traGc lights. Red edges and nodes add

constraints to a query (= stop!), while green nodes and edges correspond to the data
we wish to derive (=walk!).
Result nodes play a particular role in queries: they have the intuitive meaning of

requiring the collection of all objects ful8lling a particular property. Moreover, result
nodes can occur in (instances of) web-like databases to simulate web pages connecting
links. In this paper, if an entity node is labeled by result 3 it will be simply represented
by small squares, and its outcoming edges implicitly labeled by ‘connects’. In general,

3 Ref. [11] uses entry point nodes for this purpose.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 527

an entity (slot) node n will be represented by a rectangle (oval) containing the label
‘L(n).
As an instance, consider the graph (d) of Fig. 2. Let 1 be the topmost node, 2 the

center node, 3 the leftmost, and 4 the rightmost node. Then,

G = 〈 N = { 1; 2; 3; 4};
E = { 〈1; 〈GS; connects〉; 2〉;

〈2; 〈RS; father〉; 3〉;
〈2; 〈GS; father〉; 4〉};

‘ = { 1
→ 〈entity; GS; result;⊥〉;
2
→ 〈entity; RS;Person;⊥〉;
3
→ 〈entity; RS;Person;⊥〉;
4
→ 〈entity; RS;Person;⊥〉}〉

De�nition 2.2. Let G= 〈N; E; ‘〉 and G′ = 〈N ′; E′; ‘′〉 be G-Log graphs. We say that G
is a labeled subgraph of G′, denoted G�G′, if N ⊆N ′, E⊆E′, and ‘= ‘′|N (i.e., for
all x∈N it holds that ‘(x)= ‘′(x)).

With � we denote the (empty) G-Log graph 〈∅; ∅; ∅〉. It is immediate to see that
given a G-Log graph G, then

〈{G′ is a G-Log graph: G′ � G};�〉
is a complete lattice, where �≡G, ⊥≡ �. Moreover, given two G-Log graphs G1 =
〈N1; E1; ‘1〉�G and G2 = 〈N2; E2; ‘2〉�G, where ‘1|N2 = ‘2|N1 , their l.u.b. and g.l.b. can
be computed as 4

G1 � G2 = 〈N1 ∪ N2; E1 ∪ E2; ‘1 ∪ ‘2〉;
G1 � G2 = 〈N1 ∩ N2; E1 ∩ E2; ‘1 ∩ ‘2〉:

De�nition 2.3. Given a G-Log graph G= 〈N; E; ‘〉, and a set C of colors, C ⊆C,
consider the sets N ′ =N ∩ ‘−1

C (C) and E′ = {〈m; 〈c; k〉; n〉 ∈E: c∈C}. The restriction
of G to the colors in C, denoted as G|C is de8ned as G|C = 〈N ′; E′; ‘|N ′〉.

Observe that G|C is not necessarily a graph, since, for instance, it may contain only
edges and no nodes.
We introduce the notions of concrete graph, rule, and program. Through them, we

aim at characterizing the instances of a semi-structured database like a WWW site.

De�nition 2.4. A G-Log concrete graph is a G-Log graph such that

4 As a side remark, notice that, if G is the (complete) graph 〈N; N ×{⊥}×N; ‘〉 and n= |N |, then the

lattice contains:
∑n
i=0 (

n
i)2

i2 =O(n2n
2
) subgraphs. If G is not of this form, it is diGcult to 8nd the exact

number; however, if |E|=O(|N |2), then the upper bound remains the same as the complete case.

528 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

1. (∀x∈N ∪E)(‘C(x)= black), and
2. (∀n∈N)(‘T(n)= slot→ ‘S(n) �=⊥).
With Gc we denote the set of G-Log concrete graphs.

De�nition 2.5. A G-Log rule R= 〈N; E; ‘〉 is a G-Log graph such that
1. (∀x∈N ∪E)(‘C(x) �= black),
2. R|{GS} �= ∅, and
3. (∀n; n′ ∈N)((‘C(n)=GS ∧ ‘C(n′)=RS)→ (‘L(n) �= ‘L(n′)∨ ‘T(n) �= ‘T(n′))).

The third condition is introduced to avoid the possibility of in8nite generation of
nodes (cf. Remark 4.11). 5 Notice that it can be the case that R|{RS} = ∅. This corre-
sponds to an unconditional query or update. In general, we can split the notion of rule
in two concepts: query and update. Basically, queries are expected to extract informa-
tion from a graph (i.e., no existing class of objects is modi8ed), whereas updates are
expected to build up new instances of the graph (i.e., classes and relationships can be
modi8ed).

Remark 2.6. Observe that no restriction is imposed on the structure of the graphs.
Graphs can contain cycles of any kind.

De�nition 2.7. Given a G-Log rule R= 〈N; E; ‘〉 and a graph G= 〈N ′; E′; ‘′〉, The rule
R is a query with respect to G if the following conditions hold:
1. (∀n∈N)(‘C(n)=GS→ (∀n′ ∈N ′)(‘L(n) �= ‘L(n′)∨ ‘T(n) �= ‘T(n′))),
2. (∀e∈E)(‘C(e)=GS→ (∀e′ ∈E′)(‘L(e) �= ‘L(e′))).
The rule R is an update with respect to G if it is not a query.

As a matter of fact, this formal notion does not correspond exactly to the common
usage of the word ‘query’: we further distinguish two kinds of queries: generative
queries retrieve some objects and relationships and, based on them, construct new
concepts. For instance, from the notion of parent, a generative query (the transitive
closure) can construct the notion of ancestor. Pure retrieval queries associate links
to a number of objects enjoining a common property. The last notion captures the
common intuition of query. The previous one is more related to the usual notion of
view.
A computation can be seen as a sequence of applications of a sequence of rules to

a graph. This leads to the following de8nition of program.

De�nition 2.8. A G-Log program is a 8nite list of sets of G-Log rules.

Examples of G-Log programs can be found in Section 3.2.

5 This corresponds to the well-known problem of OID generation in logical object oriented DBs [1].

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 529

Fig. 3. Bisimilar and not bisimilar graphs.

3. Operational semantics of G-Log

We present a three-level semantics, based on the concept of bisimulation. In Sec-
tion 7.2 we compare this approach with that based on the concept of embedding of a
graph used in [29]. 6

First, let us remind the well-known concept of bisimulation [30, 27] adapted to our
setting:

De�nition 3.1. Given two G-Log graphs G0 = 〈N0; E0; ‘0〉 and G1 = 〈N1; E1; ‘1〉,
a relation b⊆N0 ×N1 is said to be a bisimulation between G0 and G1 if and
only if
1. for i=0; 1, (∀ni ∈Ni)(∃n1−i ∈N1−i)n0 b n1,
2. (∀n0∈N0)(∀n1∈N1)(n0 b n1→‘0T(n0)= ‘1T(n1)∧ ‘0L(n0)= ‘1L(n1)∧ ‘0S(n0) := ‘1S(n1))

(where := means that if both labels are de8ned—i.e., di3erent from ⊥—they must
be equal), and

3. for i=0; 1, (∀n∈Ni), let Mi(n)=def {〈m; label〉 : 〈n; 〈color; label〉; m〉 ∈Ei}.
Then, (∀n0 ∈N0)(∀n1 ∈N1) such that n0 b n1, for i=0; 1 it holds that

(∀〈mi; ‘i〉 ∈ Mi(ni))(∃〈m1−i ; ‘1−i〉 ∈ M1−i(n1−i))(m0 bm1 ∧ ‘i = ‘1−i):

We write G0
b∼G1 (G0

b
�∼G1) if b is (not) a bisimulation between G0 and G1. We

write G0 ∼G1 (G0 �∼G1) if there is (not) a bisimulation between G0 and G1: in this
case we also say that G0 is bisimilar to G1.

A brief explanation of the conditions above may be useful. Condition 1 is obvious:
no node in the two graphs can be left out of the relation b. Condition 2 states that
two nodes belonging to relation b have same type and same label, exactly. Moreover,
if they are just slots, then either one of their values is unde8ned, or they have also the
same value. Finally, condition 3 deals with edge correspondences. If two nodes n0; n1
are in relation b, then every edge having n0 as endpoint should 8nd as a counterpart
a corresponding edge with n1 as endpoint.
As an example, consider the graphs in Fig. 3:

6 In this paper we do not face the problem of negation (dashed nodes and edges). A line for future work
is drawn in Section 7.3.

530 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

• G0 ∼G1 ∼G2, as well as the reJexive, symmetric and transitive closure of this fact,
since ∼ is an equivalence relation (cf. Lemma 3.3);

• G0 �∼G3 since it is impossible to ‘bind’ a node labeled by P with one labeled by
Q. Thus, condition (2) cannot be veri8ed;

• G0 �∼G4 since it is impossible to verify condition (3).
Notice that colors (represented by the ‘C function) are not taken into account in the

bisimulation de8nition, while the value 8elds of the label are considered only when
they are de8ned. The last feature will allow to apply bisimulations between schemata
and instances (see Section 5).
The bisimulation relation can be further re8ned by introducing additional conditions:

De�nition 3.2. Given two G-Log graphs G0 = 〈N0; E0; ‘0〉 and G1 = 〈N1; E1; ‘1〉, and
b⊆N0 ×N1 we say that
• b is a directional bisimulation, denoted by G0

b
∼̃ G1, if G0

b∼G1 and b is a function

from N0 to N1. We say that G0 ∼̃G1 if there is a b such that G0

b
∼̃G1.

• b is a bidirectional bisimulation, denoted by G0
b≡G1, if G0

b∼G1 and b is a bijective

function from N0 to N1. We say that G0 ≡G1 if there is a b such that G0
b≡G1.

Again in Fig. 3, we have that
• G1 ∼̃G0, G2 ∼̃G0 while the converse is not true.
• Gi≡Gi for i=0; 1; 2; 3; 4, while Gi �≡Gj for i �= j.
The three relations de8ned above will be used to de8ne the semantics that we are

going to study in the rest of the paper:
∼ is used to build a semantics based on bisimulation;
∼̃ is used to build a semantics based on the concept of bisimulation that is also a

function;
≡ is used to build a semantics based on graph isomorphism (injective embeddings

[29] or, equivalently, bisimulations that are bijections).
Some basic properties of these relations are emphasized in the following lemma.

Lemma 3.3. (1) ∼; ∼̃; and ≡; are re<exive and transitive relations;
(2) Both ∼ and ≡ are symmetric relations and thus; equivalence relations;
(3) ∼̃ is a preorder (and not an ordering).
(4) G≡G′ if and only if G ∼̃G′ and G′ ∼̃G.

Proof. Follows immediately from the de8nition for 1 and 2. For 3, consider the graphs:

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 531

It holds that G1 ∼̃G2 and vice versa. However, the two graphs are not the same
graph. For proving statement (4), it is suGcient to observe that, by the requirement
(1) of the de8nition of bisimulation (De8nition 3.1), the two functions ensuring that
G ∼̃G′ and G′ ∼̃G are onto. This means that |N |= |N ′| and, thus, both functions are
bijections.

Remark 3.4. The operational semantics of the original de8nition of the language
G-Log [29] is based on a di3erent notion of matching of graphs: the so-called em-
bedding. Relationships between our proposals and the embedding are explained in
Section 7.

3.1. Semantics of rules

The 8rst two notions that we de8ne are the applicability of a rule and the satis8ability
of a graph, given a rule.

De�nition 3.5. Let G be a concrete graph and R a rule. For # in {∼; ∼̃; ≡}, R is
#-applicable in G if (∃G1 �G)(R{RS}#G1).

De�nition 3.6. Let G be a concrete graph and R a rule. For # in {∼; ∼̃; ≡}, G
#-satis>es R (G |=# R) if for all G1 �G such that there is b1 with R{RS}

b1
G1, there

exist G2 �G and b2 ⊇ b1 that satisfy the following conditions:
(i) G1 �G2;

(ii) R{RS;GS}
b2
G2;

(iii) (∀G3 �G2)(G1 �G3 ∧R{RS}#G3 →G3 =G1).

Intuitively, G satis8es R if for any subgraph G1 of G matching (with respect to #)
the red part of the rule (i.e., the pre-condition), there is a way to ‘complete’ G1 into
a graph G2 �G such that the whole rule R matches G2. Condition (iii) is necessary
to avoid the possibility of using other parts of G, matching with R{RS} independently,
to extend G1.

Example 3.7. For instance, consider the graphs below.

Rule R is not #-applicable to G1 (so G1 #-satis8es R trivially) and G2 #-satis8es
R, for # in {∼; ∼̃; ≡}. Observe the necessity of condition (iii), in the case of ∼, to

ensure that G3 does not ∼-satisfy R. As a matter of fact, with b1 = {〈2; 5〉} RRS b1∼G′

532 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 4. Non-commutativity of rule applications.

where G′ consists of the unique node 5. However, with b2 = {〈2; 4〉; 〈2; 5〉; 〈1; 3〉} it

holds that R b2∼G3. To achieve this bisimulation, however, b1 has been ‘unnaturally
extended’. This is avoided by the last condition of De8nition 3.6.

Problems like those seen in Example 3.7 come from the fact that functions can be
extended to relations. This is not possible for ∼̃, and ≡ because their extensions must
be functions, by de8nition. Thus, De8nition 3.6 can be signi8cantly simpli8ed for ∼̃
and ≡:

Lemma 3.8. Let G be a concrete graph and R a rule. For # in {∼̃; ≡}; G #-satis>es

R (G |=# R) if and only if for all G1 �G and for all b1 such that R{RS}
b1
G1 ∃G2 �G

and ∃b2 ⊇ b1:
1. G1 �G2 and

2. R{RS;GS}
b2
G2.

The notion of applicability is a pre-condition for an e3ective application of a rule
to a concrete graph, whose precise semantics is given below:

De�nition 3.9. Let R be a rule. Its operational semantics <R=#⊆Gc×Gc is de8ned as
follows: for # in {∼; ∼̃; ≡}, 〈G;G′〉 ∈ <R=# if and only if:
1. G�G′, G′ |=# R, and
2. G′ is minimal with respect to property (1), namely there is no graph G′′ such that
G�G′′, G′′ ❁G′, and G′′ |=# R.

Intuitively, a rule, if applicable, extends G in such a way that G satis8es R. Moreover,
it is required that the extension be minimal. If R is not applicable in G, then G satis8es
R trivially and 〈G;G〉 ∈ <R=#.

Example 3.10. Consider the graph G and the rules R1 and R2 of Fig. 4. The application
of Rule R2 leaves the graph G unchanged. The application of Rule R1 uniquely adds
the grandfather relation. The application of Rule R2 after that of Rule R1 furtherly adds
the grandchild relation. Thus, rule application is not commutative.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 533

Fig. 5. Application of a rule R to a graph G.

Example 3.11. Consider graphs of Fig. 5. It holds that 〈G;G1〉 and 〈G;G2〉 belong
to <R=∼. 〈G;G3〉 =∈ <R=∼ since G3 �|=∼ R: this is due to condition (iii) in the De8nition
3.6. Notice that G1 ∼G2 ∼G3.

De�nition 3.12. If G is a G-Log graph, then for # in {∼; ∼̃; ≡}, < · =#(G) is a function
from the set of the rules to the powerset of the set of G-Log graphs, de8ned as follows:

<R=#(G) =def {G′: 〈G;G′〉 ∈ <R=#}

Rules can be combined to build programs according to De8nition 2.8:

De�nition 3.13. Let S = {R1; : : : ; Rn} be a set of rules. Then, for # in {∼; ∼̃; ≡},
〈G;G′〉 ∈ <S=# if
1. G � G′, G′ |=# Ri, for i=1; : : : ; n, and
2. G′ is minimal with respect to property (1).
Let P be a program 〈S1; : : : ; Sn〉. For # in {∼; ∼̃; ≡}, 〈G0; Gn〉 ∈ <P=# if and only if

there are G1; : : : ; Gn−1 such that 〈Gi; Gi+1〉 ∈ <Si+1=#, for i=0; : : : ; n− 1.

The following notion is useful in practical querying:

De�nition 3.14. Let R be a rule and G be a concrete graph such that G |=R. For #
in {∼; ∼̃; ≡}, the #-view of G using R, denoted by G|R is the union of all the graphs
G′ �G such that R #G′. The unfolded #-view of G using R (G�|R) is the disjoint
union of all the G′.

Fig. 6 shows a concrete graph G satisfying a rule R, its view using R (in this case
there is no di3erence adopting di3erent semantics), and its unfolded view.

3.2. Programming in G-Log

Let us show now how to build up a database using the G-Log language and then,
how to query it.
Suppose we want to create a new database which contains informations about stu-

dents, the courses they attend and teachers. We use an unconditional rule, i.e., a rule

534 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 6. Rules, concrete graphs, and views.

Fig. 7. An update and a concrete graph.

without red part, since we wish to build up the database and not to modify an existing
one.
For example, the graph G0 depicted in Fig. 7 is a G-Log generative unconditional

query (its color is only green solid); it creates a simple database with three entities:
John is a student who attends the Database course and Dr. Smith is the teacher of
the same course. If we apply G0 to the initial empty concrete graph, we build up the
G-Log concrete graph G1 of Fig. 7 which #-satis>es G0. Given G1 we can either query
it or add more information to it.
Now, suppose we apply the rule R of Fig. 8 ‘if a person teaches a course and a

student attends that course then the person is a student’s teacher’ to G1. R is #-
applicable to G1 for # in {∼; ∼̃; ≡}. As a matter of fact, for each # there is a
#-relation between the red solid part of R and a subgraph of G1; therefore, for each

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 535

Fig. 8. A G-Log rule and a concrete graph.

Fig. 9. A G-Log program.

#, there is a way to expand the concrete graph in order to obtain a new graph G′
1

of Fig. 8 that matches the whole rule. In this particular case, the extension is the
same.
This way, using G-Log rules, we can query a database to obtain information and

complete its concrete graph adding new nodes or edges.
Moreover, G-Log allows the expression of complex queries by means of programs

which are sequences of rules. Sometimes it is worthwhile to have the possibility
of expressing transitive properties: in G-Log a set of two rules is
enough.
For instance, the program of Fig. 9 expresses the following transitive property: ‘if

two students attend the same course, they are schoolfellows. And, if a student x is
a schoolfellow of a student y and y is a schoolfellow of a student z then x is z’s
schoolfellow’.

4. Basic semantic results

In this subsection we analyze the main results concerning the proposed parametric
semantics, in order to point out G-Log rules of a form ensuring desirable properties,
8rst of all program determinism.

4.1. Applicability

Proposition 4.1. For each G-Log rule R;

536 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 10. Applicability di3erences.

1. if R is ≡-applicable; then it is ∼̃-applicable;
2. if R is ∼̃-applicable; then it is ∼-applicable.

Proof. Immediate, by de8nition.

Relations ∼; ∼̃, and ≡ have di3erent expressivity and thus they can be compared
to form an ordering (cf., also, Section 7). The ordering is strict, as follows from
Fig. 10: R1 is #-applicable to G1 only when # is ∼. R2 is #-applicable to G2 for ∼
and ∼̃, but not for ≡.

4.2. Satis>ability

The situation is a bit more intricate as far as the concept of satis>ability is con-
cerned:

Proposition 4.2. There are rules R such that the sets {G :G |=∼ R}, {G :G |=∼̃ R};
and {G :G |=≡ R} are pairwise distinct.

Proof. Consider rule R1 and the graph G1 below. G1 does not satisfy R for ∼ and ∼̃.
However, since R1 is not ≡-applicable in G1, trivially G1 |=≡ R1.
On the other hand, rule R1 is ≡-applicable (hence, ∼- and ∼̃-applicable, thanks to

Proposition 4.1) to graph G2. However, it only holds that G2 |=∼ R1.

Now we prove that for some R, {G :G |=∼̃ R} may contain elements that are not
in the other two sets. Consider rule R2 and graph G3 below:

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 537

R2 is ≡-applicable to G3 but it is not ≡-satis8ed. Similarly, R2 is ∼-applicable
to G3 but it is not ∼-satis8ed, due to the rightmost subgraph. Instead, G3 ∼̃-satis-
8es R2.

Thus, none of the three sets is included in the other.

Proposition 4.3. Let G be a G-Log graph and R a G-Log rule. For # in {∼; ∼̃; ≡};
if R is #-applicable to G; then there is a G′ such that (1) G�G′; and (2) G′ |=# R;
and G′ is minimal with respect to the properties (1) and (2).

Proof. Consider a rule R #-applicable to G. The existence of a G′ ful8lling (1)
and (2) is clearly ensured: for each Gi�G such that Gi#RRS (existing by hypothesis),
consider G′

i obtained by augmenting Gi with new nodes and edges ‘copying’ RGS .
Consider G′ =G ∪ ⋃i G

′
i . Assumption (3) of the de8nition of rule (De8nition 2.5)

ensures that the process cannot enter into loop, thus ensuring the 8niteness of the
graph G′.
To get one (among the various possible) minimal graph it is suGcient to remove

some of the new edges and nodes (possibly collapsing them) while the satis8ability
property still holds.

In other words, if R is #-applicable to G, then <R=#(G) is not empty.

Corollary 4.4. For #∈{∼; ∼̃; ≡}; for any rule R and graph G; <R=#(G) �= ∅.

Proof. If R is not ≡-applicable in G, then <R=#(G)= 〈G;G〉 by de8nition. Otherwise,
the result follows from Proposition 4.3.

4.3. Simple edge-adding rules

We analyze now the e3ect of some simple rules, edge-adding rules, and prove the
determinism of their semantics. First of all we point out an ambiguity hidden in the
graphical language.
Consider the following rule in which the green part is composed only by one edge

connecting two nodes with the same label:

538 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Its intuitive meaning is: any time you have two entity nodes labeled by A (necessarily
distinct if we are using the ≡ semantics) add an edge labeled p between them, unless
one edge of this form is already present. The meaning is exactly the same as that of
the following rule:

The 8rst rule, in a sense, hides a cycle of green edges. Notice that this happens even
if the two rules are not bisimilar: the existence of a bisimulation between two rules is
not required for the two rules to have the same expressive power.
Table 1 shows the di3erences of the operational semantics of rules R1; R2; R3 ad-

mitting cycles of green edges involving equivalent nodes on simple concrete graphs
G1; G2; G3.
We observe that

1. The three semantics are all equivalent with respect to rule R1.
2. For the other rules, there are always di3erences.
3. Rules R2 and R3 may be non-≡-applicable for graphs with too few nodes. This is

due to the constraint on cardinality required by the graph isomorphism relation ≡.
4. The semantics based on bisimulation (∼) does not distinguish the three rules R1, R2,

and R3. This is due to the possibility given by bisimulation (a relation in general—
not necessarily a function) to bind one node with a family of nodes.

5. The semantics based on ∼̃ cannot distinguish rules R2 and R3.
6. The semantics based on ≡ distinguishes all the rules.
7. In all the examples, the application of rules is a function.
Actually, the same conclusions can be drawn whenever all the nodes belonging to

a cycle are roots of #-equivalent and disjoint G-Log graphs. R1 and R2 are
• ∼-equivalent if R1 ∼R2.
• ≡-equivalent if R1 ≡R2, and
• ∼̃-equivalent if for all I , R1 ∼̃ I if and only if R2 ∼̃ I .
Let us study some more general properties of rule application for simple rules. We

begin with the simple cases in which RGS consists only of edges.

Lemma 4.5. For each G-Log rule R; if RGS consists only of one edge and no nodes;
then <R=# is a function; for # in {∼; ∼̃;≡}.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 539

Table 1
E3ects of ‘cyclic rules

Proof. We need to prove that for each G-Log graph G, there is exactly one G′ such
that 〈G;G′〉 ∈ <R=#.
If R is not #-applicable, then the result holds by de8nition choosing G′ as G.

540 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Assume R is #-applicable in G, for any # in {∼; ∼̃;≡}. By hypothesis, R can have
only one of the following two forms:

where the nodes labeled by A and B in (1) are distinct nodes (but not necessarily label
A is di3erent from label B) or in (2) they are the same node. We prove 8rst the fact
when # is ∼.
Let R be of the form (1). Its semantics is exactly that of introducing all possible

edges labeled by p connecting subgraphs bisimilar to A;) and B; * of G, unless they
are already present. This kind of extension of G is clearly unique.
Let R be of the form (2). As shown in Example 3.7, condition (iii) in De8nition 3.6

ensures that the only (minimal) way to generate a graph satisfying the rule is that of
adding a self-loop for each node matching with A;).
When # is ∼̃ or ≡, the situation is similar (and easier than for ∼ as concerns

case (2)).

Now we extend the above lemma to the case in which R contains several edges.

Proposition 4.6. For each edge-adding rule R; <R=# is a function; for # in {∼; ∼̃;≡}.

Proof. R contains n green edges, with n¿0, by de8nition of rule. Consider the rules
Ri, i=1; : : : ; n, obtained by removing from R the green edges 1; : : : ; T− 1; i+ 1; : : : ; n.
Each Ri is of the form analyzed by Lemma 4.5. Let G be a G-Log graph. Consider
the following procedure, parametric with respect to # in {∼; ∼̃;≡}:

G′′ :=G;
repeat
G′ :=G′′;
for i=1 to n do

let G′′ be the result of Ri applied to G′′ with respect to #
until G′′ =G′;

The procedure is clearly terminating. Moreover, by induction on the number n of
green edges, it is easy to prove that the procedure is ensured to return a unique graph
G′ (use Lemma 4.5), that G′ #-satis8es R and it is the minimum graph extending G
ful8lling such a property.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 541

4.4. Very simple queries

We consider simple rules, actually very used in practice:

De�nition 4.7. A rule R is said to be a very simple rule if RGS consists in one node
, and one edge 〈,; lab; -〉, with ‘C(-)=RS.

In this section we are interested in very simple rules that are queries (very simple
queries—VSQ). In general, <R=# applied to a concrete graph G is not a function, even
when R is a very simple query with respect to G. Consider the following diagrams: 7

Then, <R1=#(G1)= {G′
1; G

′′
1 }. However, the views of G′

1 and G′′
1 with respect to R1

(see De8nition 3.14) are bisimilar. So we could guess that < · =# is a function modulo
bisimulation, at least with respect to a ‘structured’ subgraphs of G, i.e., graphs 8ltered
by a rule. This does not hold in general, as follows from the following example
concerning grandfathers, fathers, and sons:

It holds that <R2=#(G2)= {G′
2; G

′′
2}. However, G′

2 and G′′
2 are not bisimilar. The

uniqueness (modulo bisimulation) is ensured only when the various parts of G matching
with RRS are all independent (unfolded views).
However, a sort of regularity of the semantics of rule application can be obtained

by considering

GR# =def
⊔

G′∈<R=#(G)
G′

Such a graph is unique (up to isomorphism) and it is a sort of skeleton from
which all elements of <R=#(G) can be obtained. As an instance, for the

7 As usual, square nodes can be read as Result nodes and outgoing edges as connects edges.

542 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

examples above:

Lemma 4.8. Let G be a G-Log graph and R be a VSQ with respect to G. Then; for
in {∼; ∼̃;≡}; there is a unique graph (up to isomorphism) GR# such that
1: GR# |=R;
2: ∀G′ ∈ <R=#(G) it holds that G′ �GR# ; and
3. GR# is minimal with respect to properties (1) and (2).

Proof. If R is not #-applicable to G, then choose GR# as G. Otherwise since, by def-
inition of query, no node labeled by result and edge labeled by connects is in G,
whenever there is a subgraph G′ of G such that RRS#G′, add a node , and an edge
〈,; lab; -〉. Moreover, keep track of all nodes ,; - of this kind. When all the G′ of
that form have been processed, add edges from all nodes , to all nodes -, uniquely
obtaining the graph GR# .

Proposition 4.9. Let G be a G-Log graph and R be a VSQ with respect to G. For
in {∼; ∼̃;≡}; de>ne

views(G; R; #) = {G′�|R: ∃G′ ∈ <R=#(G)}:
Then for each I1; I2 ∈ views(G; R; #); it holds that I1 is isomorphic to I2.

Proof. Assume I1; I2 ∈ views(G; R; #), I1 and I2 distinct graphs. This means that there
are two graphs G1 and G2 in <R=#(G) such that I1 =G�

1 |R and I2 =G�
2 |R. Since Gi ∈

<R=#(G) it holds that for each G′ �G such that RRS#G′ there is an edge between a
Result node (not occurring in G) and a node of G. This means, by de8nition of
unfolded view, that a graph exactly composed by G′ and the just mentioned node and
edge is both in I1 and in I2, and, moreover, this is an isolated subgraph of both I1 and
I2. Nodes and edges are introduced in I1 and I2 only in this way. This ensures that
I1 ≡ I2.

To reach a more convincing deterministic result for the semantics, we suggest to
add determinism to the de8nition: we de8ne the deterministic semantics of R:

<R=det# (G) = G′

for G′ ∈ <R=#(G) and G′ contains at most one node more than G.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 543

Fig. 11. In8nite generation.

Proposition 4.10. Let G be a G-Log graph and R be a VSQ with respect to G. For
in {∼; ∼̃;≡}; then <R=det# (G) is well-de>ned; i.e.; <R=det# (G) is a function.

Proof. Assume, by contradiction, that G1; G2 ∈ <R=#(G) and that they di3er by G for
at most one node.
If R is not #-applicable, then G1 =G2 =G by de8nition.
Assume R is #-applicable. Since R is a query with respect to G, no result nodes are

in G. Thus, both G1 and G2 contains exactly one (result) node , more than G. Without
loss of generality, we can assume that it is the same node in the two graphs. New
(connects) edges have been introduced from , to the various subgraphs equivalent to
RRS . It is immediate to check that an edge of this form belongs to G1 if and only if
it belongs to G2, unless one of them is not in <R=#(G).

<R=det# (G) can therefore be seen as a privileged answer to a query. Actually, it contains
exactly all the information we need and does not introduce redundant nodes.
We conclude this section with a consideration that explains the rationale behind

condition (3) of being a rule.

Remark 4.11. Consider the graph R in Fig. 11, that does not ful8ll requirement (3)
of being a rule. It intuitively says that for all nodes labeled A you need to have a
node labeled by A connected with it by an edge labeled by p. The application of R
to the trivial graph G generates a denumerable family G′′; G′′′; : : : of graphs satisfying
R. However, none of them is minimal. Moreover, notice that the graph G′ does not
satisfy R, as condition (3) of the de8nition of bisimulation is not satis8ed.

5. Abstract graphs and semantics

In order to represent sets of instances sharing the same structure, we introduce now
the notion of abstract graph. Following the Abstract Interpretation approach [10, 16],
we see that abstract graphs can be used as a domain to abstract the computation of
G-Log programs over concrete graphs. This can also be seen as an alternative view of

544 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 12. A schema, an instance, and a rule.

reasoning on schemata and instances of a database or a WWW site, coherently with
the Dataguide approach of [18].

De�nition 5.1. A (G-Log) abstract graph is a G-Log graph such that
1. (∀x∈N ∪E)(‘C(x)= black),
2. (∀x∈N)(‘S(x)=⊥), i.e., an abstract graph has no values.
With GA we denote the set of G-Log abstract graphs.

Let us use once again the notion of bisimulation to re-formulate the G-Log concepts
of instance and schema. Intuitively, an abstract graph represents a concrete graph if it
contains its skeleton while disregarding multiplicities and values.

De�nition 5.2. A concrete graph I is an instance of an abstract graph G if (∃I ′ � I)
(G∼ I ′) : In this case G is said to be a schema for I . I ′ is said to be a witness of the
relation schema-instance.

In Fig. 12 there is an example of application of the de8nition above. (S) represents
(I). To build the witness (I ′), add to (I) an edge labeled by works linking the entity
node Person of Bob with the entity node Town. Moreover, add edges labeled by lives
from the two nodes labeled Person to the node labeled Town, and add also an edge
reverse to the father edge. It is easy to check that a bisimulation from S to I ′ is
uniquely determined.
The notions of applicability and satis>ability for abstract graphs are the same as in

De8nitions 3:6 and 3:8. This also holds for the operational semantics de8nitions for
rules and programs. Anyway, the semantics based on bisimulation ∼ is, in a sense,
less precise and, thus, it is the most suited for abstract computations.
The following properties can be immediately derived from the de8nitions above.

Lemma 5.3. (a) If I is an instance of G with witness I ′; then for all I ′′ such that
I � I ′′ � I ′ it holds that I ′′ is an instance of G.
(b) If I is a concrete graph; G is an abstract graph; with I ∼G; then I is an

instance of G.
(c) If I is a concrete graph; G; G′ are abstract graphs; with G∼G′; then I is an

instance of G if and only if I is an instance of G′.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 545

We have already observed after De8nition 2.2 that given a G-Log graph G0, the set
〈{G is a G-Log graph: G�G0};�〉 is a complete lattice. 8 In the rest of this section
we assume that every (concrete and abstract) graph belongs to this lattice. Under this
hypothesis we may properly deal with the � relation between graphs.
A Galois connection [10] between GA and ˝(GC) can be obtained by considering

the concretization function / :GA
=∼ →˝(GC):

/(G) = {I : I is an instance of G}
and its adjoint abstraction function) :˝(GC)→GA

=∼ de8ned by

)(S) = �{G ∈ GA: /(G) ⊆ S}:
Algorithmically, given a set of instances S, we may build up its abstraction)(S) by
taking the union of all their nodes and edges. Moreover, applying standard techniques,
we can build the minimum graph ∼-equivalent to that graph. This graph is unique up
to isomorphism, and it can be computed without knowing G0. Using the techniques
in [32], this simpli8cation can be performed in time O(m log n + n), where m is the
number of edges and n the number of nodes.
The abstraction function for rules can be obtained exactly in the same way as for

concrete graphs. Thus, when R is a rule,)(R) denotes the graph obtained by deleting
values (i.e., ‘S =⊥) from R and then computing the minimum graph ∼-equivalent
to it.
The following two auxiliary results will be useful in order to prove monotonicity

and injectivity of the function / just de8ned.

Lemma 5.4. If G1 = 〈N1; E1; ‘1〉�G2 = 〈N2; E2; ‘2〉 and G1 ∼G′ = 〈N ′; E′; ‘′〉; then
there is G′′ �G′ such that G′′ ∼G2.

Proof. Without loss of generality, assume that N ′ ∩N2 = ∅. Let b′ such that G1
b′∼G′.

Let N ′′ =N ′, E′′ =E′, ‘′′ = ‘′, b′′ = b′.
• for all n∈N2\N1 let N ′′ =N ′′ ∪{n}, b′′ = b′′ ∪{(n; n)}, and ‘′′ = ‘′′ ∪{(n; ‘2(n))};
• for all 〈m; 0; n〉 in E2\E1, let E′′ =E′′ ∪{〈,; 0; -〉 :mb′′,; nb′′-}.
It is immediate to check that G2

b′′∼G′′ = 〈N ′′; E′′; ‘′′〉.

Lemma 5.5. If G�G1 ∼G2 �G3 ∼G; then G∼G1 ∼G2 ∼G3.

Proof. It is suGcient to prove that G∼G1; the remaining part of the claim follows by
the fact that ∼ is an equivalence relation. Let a and b be the two bisimulations such

that G1
a∼G2 and G3

b∼G. By Lemma 5.4, there is G0 such that G1 �G0 and G0
a′∼G2,

where a′ extends a as in the proof of that lemma. We will refer to a′ simply as a

8 Assume, for instance, to deal with Web sites. G0 can be chosen as the graph obtained by disjoint union
of all the instances and schemata of all Web sites.

546 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

and we call c= a ◦ b. It is easy to verify that c is monotonic; thus we can build two
in8nite descending chains:

G1 � c(G1)(� G) � c(c(G1)) � c(c(c(G1))) : : :

G0 � c(G0)(= G) � c(c(G0)) � c(c(c(G0))) : : :

Since the graphs are 8nite, there must be an integer n such that

cnG1 = cn+1G1 ∧ cnG0 = cn+1G0

(assuming that the graph G is non-empty, the 8xed points above must be non-empty).
Moreover, by construction, it holds that

G1 ∼ c(G1) ∼ c(c(G1)) ∼ c(c(c(G1))) : : :

G0 ∼ c(G0)(= G) ∼ c(c(G0)) ∼ c(c(c(G0))) : : :

In particular, G1 ∼ cn(G1) and G∼ cn(G0). Since the application of relation c is mono-
tonic, it holds that

ci(G1) � ci(G0):

Thus, in particular, cn(G1)� cn(G0). On the other hand, since c(G0)=G and G�G1,
it holds that

ci+1(G0) � ci(G1):

Thus, cn(G0)= cn+1(G0)� cn(G1). This means that cn(G1)= cn(G0) and, moreover,
that G∼ cn(G1)∼G1.

Theorem 5.6. Function / is monotonic; i.e.; for any pair of abstract graphs G;G′;
G�G′ implies /(G)⊆ /(G′).

Proof. Let I ∈ /(G). By de8nition of /, there exists I ′ � I such that I ′ ∼G�G′. By
applying Lemma 5.4, there exists I ′′ � I ′ such that I ′′ ∼G′. By transitivity of the
ordering relation, we get I ′′ � I . Hence, I ∈ /(G′).

Theorem 5.7. Function / is injective; i.e.; for any pair of abstract graphs G;G′; G �∼G′

implies /(G) �= /(G′).

Proof. Assume that /(G1)= /(G2), and let I1 ∈ /(G1) with I1 ∼G1. By the assumption,
I1 ∈ /(G2) too. Hence, by the de8nition of /, ∃I ′1 � I1 such that I ′ ∼G2. Therefore,

G1 ∼ I1 � I ′1 ∼ G2:

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 547

Now, let I2 ∈ /(G2) with I2 ∼G2. By the same reasoning, there exists I ′2 � I2 such that
I ′2 ∼G1. Therefore,

G1 ∼ I1 � I ′1 ∼ G2 ∼ I2 � I ′2 ∼ G1:

By Lemma 5.5 we immediately get G1 ∼G2, concluding the proof.

Theorem 5.8 (Correctness). Let G;G′ be abstract graphs and R a rule such that
〈G;G′〉 ∈ <)(R)=∼. If I ∈ /(G) and 〈I; I ′〉 ∈ <R=∼; then I ′ ∈ /(G′); i.e.; the following di-
agram commutes:

G
)(R)−−→ G′� /

� /

I R−−→ I ′

Proof. By the hypotheses and by Lemma 5.4, there exist Î and Î ′ such that the fol-
lowing diagram holds:

R |= I ′ Î
′ ∼ G′ |=)(R)

� � �
R|{RS} � I � Î ∼ G �)(R)|{RS}

By the de8nition of satis8ability of the rule R, we may build I ′′ such that I ′ � I ′′ ∼ Î ′.
In order to build such a I ′′, extend I ′ only with arcs and nodes belonging to Î ′;
minimality conditions on G′ (and thus on Î ′) avoid redundancies. Hence, from the
diagram above we get I ′ � I ′′ ∼ Î ′ ∼G′, i.e. I ′ ∈ /(G′).

Theorem 5.8 guarantees the correctness of abstract computations: the application of
a rule abstraction to an abstract graph safely represents the application of the corre-
sponding concrete rule to any of its instances. The practical impact of this result is
quite interesting. Consider the abstract graph S and the rule R′ in Fig. 12. Since)(R′)
is not applicable to S, we can immediately conclude that the same rule is not applica-
ble to any instance of S. Therefore, we may apply rules to abstract graphs in order to
build complex queries, and then, once checked that they are applicable to the abstract
graph we can turn to the concrete cases to get the desired answer. This is particularly
interesting when the instance resides on a remote site.
Moreover, suppose we use G-Log rules to specify site instance evolution during the

site life. Then, the application of the same rule to the site schema returns automatically
the schema corresponding to the new site instance. 9

Remark 5.9. According to standard de8nition of schema, De8nition 5.1 may be further
enforced with the condition:

9 Of course, in this context we are interested in those site updates that would a3ect the schema, since
schema-invariant updates do not need to be traced.

548 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 13. Two levels of abstraction.

3. (∀x; y∈N)(‘T(x) �= ‘T(y)∨ ‘L(x) �= ‘L(y)), i.e. there is no repetition of nodes.
In this case, given a set S of instances, we may build up its abstraction)′(S) computing
)(S) and then by collapsing all the nodes in it having the same type and label. The
same technique can be applied to a rule R.)′ can be seen as an abstraction less precise
than); by construction, it holds that)′()(S))=)′(S). The concretization function /
remains the same.
When R is a query, Theorem 5.8 still holds using)′ in place of). In Fig. 13 we

present the concrete graph I , the abstract graph G=)(I) and the schema S =)′(I).
For each rule Ri;)(Ri)=)′(Ri) is obtained by removing the concrete value label (in
these cases, Udine and Verona). It holds that
• {I ′}= <R1=(I); {I}= <R2=(I)= <R3=(I);
• {G′}= <)(R1)=(G)= <)(R2)=(G); {G}= <)(R3)=G;

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 549

• {S ′}= <)′(R1)=(S)= <)′(R2)=(S)= <)′(R3)=(S).
When, as in this case, rule application is deterministic, the two levels of abstractions
can be summarized by the following diagram:

S
)′(R)−−→ Sf

�|�)′)′(Gf)�)′

G
)(R)−−→ Gf

�|�))(If)�)

I R−−→ If

This leads to a hierarchy of abstraction in the spirit of [16].

6. Logical semantics of G-Log

Aim of this section is to provide a model theoretic characterization of the lan-
guage G-Log. First, we show how to automatically extract a 8rst-order formula from a
G-Log graph. Then we show that G-Log concrete graphs are simply representations
of Herbrand structures: they are models of the formulae associated with the rules they
satisfy.
As said in Section 2.2, result nodes and their outgoing edges labeled by connects

are represented without writing explicitly the labels. We write 2(x1; : : : ; xn) to de-
note that 2 is a 8rst-order formula with free variables among x1; : : : ; xn. Moreover,
[‘N(n)](x1; : : : ; xn) denotes the atom p(x1; : : : ; xn) where p is ‘N(n). Similarly, for ‘L
and ‘S.

6.1. Formulae for G-Log rules

In this subsection we describe how to obtain a 8rst-order formula from each G-Log
rule.

De�nition 6.1. A G-Log formula is a closed 8rst-order formula of the following form:

∀x1 · · · xh (B1(x1; : : : ; xh) → ∃z1 · · · zkB2(x1; : : : ; xh; z1; : : : ; zk))
where xi; zi are variables and the Bi are conjunctions of atoms.

Remark 6.2. Observe that the existential quanti8cation of the variable on the r.h.s. of
the implication causes that the formula cannot be encoded as a simple Horn clause of
DATALOG.

550 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 14. G-Log rule.

We show how to associate a G-Log formula to every G-Log rule. We begin with
the semantics based on directional bisimulation ∼̃; then we show how to modify the
technique according to the other two semantics.

De�nition 6.3. Let R = 〈N; E; ‘〉 be a G-Log rule; we de8ne the G-Log formula 4∼̃
R

and the formula 5∼̃
R as follows:

1. ∀n∈N associate a distinct variable -(n).
2. ∀n∈N let ’n be the formula: [‘L(n)](-(n))∧ [‘T(n)](-(n))∧[‘S(n)](-(n)). If ‘S(n)

=⊥, then the last conjunct is omitted.
3. ∀e= 〈m; 〈c; ‘L(e)〉; n〉 ∈E let ’e be the formula: [‘L(e)](-(m); -(n)).
4. Let n1; : : : ; nh be the nodes of N such that ‘C(e) = RS.
5. Let n′1; : : : ; n

′
k be the nodes of N such that ‘C(e) = GS.

6. The formula 4∼̃
R is

∀-(n1) · · · -(nh)




(∧
n∈N;‘C(n)=RS

’n ∧
∧

e∈E;‘C(e)=RS
’e

)
→

∃-(n′1) · · · -(n′k)
(∧
n∈N;‘C(n)=GS

’n ∧
∧

e∈E;‘C(e)=GS
’e

)

 :

7. The formula 5∼̃
R is

∃-(n1) · · · -(nh)
(∧
n∈N;‘C(n)=RS

’n ∧
∧

e∈E;‘C(e)=RS
’e

)
:

For instance, the formula 4∼̃
R associated to the rule R of Fig. 14 is 10

∀x1x2x3
(
Person(x1)∧Town(x2)∧Lives(x1; x2)∧Town(x3)∧Studies(x1; x3)→
∃z1(result(z1)∧connects(z1; x1))

)
:

Logical formulae corresponding to G-Log graphs are di3erent if we study the other
two semantics. With the semantics based on the concept of graph isomorphism ≡, rule
R of Fig. 14 represents the query ‘collect all the people living and studying in two
di@erent towns’.

10 We omit the type information for the sake of readability.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 551

Fig. 15. A G-Log rule and a concrete graph.

In the construction of 4≡
R we need to force the fact that the two towns must be

distinct. This can be done by adding an inequality constraint between the variables
identifying the nodes x2 and x3:

∀x1x2x3




Person(x1) ∧ Town(x2) ∧ Lives(x1; x2) ∧ Town(x3)

∧Studies(x1; x3) ∧ x2 �= x3 →
∃z1(result(z1) ∧ connects(z1; x1))


 :

More generally, we will require that all nodes of the graph are distinct:

De�nition 6.4. Given a G-Log rule R= 〈N; E; ‘〉, and the formula

4∼̃
R = ∀-(n1) · · · -(nh)(B1 → ∃-(n′1) · · · -(n′k)B2);

then the formula 4≡
R is

∀-(n1) · · · -(nh)

×




(
B1 ∧

∧
16i¡j6h

-(ni) �= -(nj)

)
→

∃-(n′1) · · · -(n′k)
(
B2 ∧

∧
16i¡j6k

-(n′i) �= -(n′j) ∧
∧

16i6h;16j6k
-(ni) �= -(n′j)

)

 :

Similarly, formula 5≡
R can be obtained by adding

∧
16i¡j6h -(ni) �= -(nj) to the con-

juncts of 5∼̃
R .

Consider now the semantics based on ∼, the rule R, and the concrete graph G of
Fig. 15. R is ∼-applicable (De8nition 3.5) to (G) but is not #-applicable for # in
{≡; ∼̃}.

The G-Log formula 4∼̃
R :

∀x1x2x3
(
Person(x1)∧Student(x2)∧Course(x3)∧Teaches(x1; x3)∧Attends(x2; x3)→
Teacher(x1; x2)

)

represents the query ‘if a person teaches a course and a student attends the same course,
then the person is that student’s teacher’. The semantics based on bisimulation requires
a weaker condition, since the constraint ‘the same’ cannot be forced. This means that,

552 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

in the ∼-semantics the rule requires that whenever a student attends a course and a
person teaches some (other?) course, the person is that student’s teacher.

De�nition 6.5. Given a G-Log rule R, we de8ne the unfolding of R, brieJy unf (R),
to be the graph obtained by replacing every subgraph of R of the form

with the subgraph:

Then, we set 4∼
R =4∼̃

unf (R) and 5∼
R =5∼̃

unf (R).

For instance, the formula 4∼
R for the rule R of Fig. 15 is

∀x1x2x3x4

 Person(x1) ∧ Student(x2) ∧ Course(x3)∧

Course(x4) ∧ Teaches(x1; x3) ∧ Attends(x2; x4) →
Teacher(x1; x2)


 :

that does not constraint the courses to be the same.
In Section 6.3 we formally prove that the logical semantics of rules we are describing

is consistent with the operational semantics.

6.2. Concrete graphs as models

In this subsection we show, independently of the operational rule, how to obtain
a 8rst-order formula, from a concrete graph; in particular, we show that concrete
graphs are representations of the least Herbrand model (modulo isomorphism) of the
Skolemization of that formula.

De�nition 6.6. Let G= 〈N; E; ‘〉 be a concrete graph. As in De8nition 6.3, to every
n∈N = {n1; : : : ; nh} associate a variable -(n) and to every node n and edge e associate
the formulae ’n and ’e, respectively. Then, the formula 4G associated to G is

∃-(n1) · · · -(nh)
∧
n∈N

’(n) ∧ ∧
e∈E

’(e):

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 553

De�nition 6.7. Let G= 〈N; E; ‘〉 be a concrete graph. We associate to G the structure
MG = 〈D; I〉 built as follows:
1. for every node n∈N introduce a constant cn; let D = {cn: n∈N},
2. I(p(cn))= true if and only if p(-(n)) is a conjunct of 4G,
3. I(p(cm; cn))= true if and only if p(-(m); -(n)) is a conjunct of 4G.

MG is the least Herbrand model of the Skolemization of the formula 4G.
For example, let G be the concrete graph of Fig. 15, and ci, i=1; : : : ; n, the constants

introduced for the nodes of the concrete graph. Then, MG can be expressed by the set
of facts that are true:

Person(c1); entity(c1); Course(c2); entity(c2)
String(c3); slot(c3);Physics(c3); Student(c4); entity(c4);
Course(c5); entity(c5) String(c6); slot(c6);Data Base(c6);
Teaches(c1; c2);Name(c2; c3); Attends(c4; c5);Name(c5; c6)

6.3. Model theoretic semantics

In this subsection we highlight the relationships between the operational seman-
tics of Section 3 and the logical view of G-Log graphs presented in Subsections 6.1
and 6.2.

Proposition 6.8 (Applicability). Let G be a concrete graph and R a rule. Then R is
#-applicable to G if and only if MG |=5#

R .

Proof. We prove 8rst the claim when # is ∼̃. R is ∼̃-applicable to G means that there
is G1 � G such that RRS ∼̃G1. Thus, there is a function f from the nodes of RRS to
those of G1 ful8lling the requirements of ∼̃. Using that f we 8nd exactly the constants
ci of the domain D obtained by skolemization of 4G to be assigned to the existentially
quanti8ed variables -(ni) of 5∼̃

R to ensure that MG |=5∼̃
R . Similarly, starting from an

assignment ensuring MG |=5∼̃
R we can build a function f such that RRS ∼̃G1 for some

G1 � G.
To conclude the proof, notice that when computing 5#

≡ and 5#
∼ we have taken into

account the constraint to map distinct nodes into distinct objects, and the possibility
given by the unfolding of a node to be mapped into distinct objects, respectively.

Proposition 6.9 (Satis8ability). Let G be a concrete graph and R a rule. Then G
#-satis>es R if and only if MG |=4#R.

Proof. We prove 8rst the claim when # is ∼̃. G ∼̃-satis8es G when for all G1 � G
such that RRS ∼̃G1 there is a G2 � G1 such that R ∼̃G2. But this is exactly the meaning
of the formula 4∼̃

R .
To conclude the proof, notice that the way to compute 5#

R when # is ∼ or ≡ ensures
that the result holds.

554 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Proposition 6.10 (Rule application). Let G be a G-Log concrete graph and R a rule.
Then; for #∈{∼ ∼̃;≡};

G′ ∈ <R=#(G) → (MG �|= 5#
R ∧ G = G′)∨

(MG |= 5#
R ∧MG |= 4#R ∧ G = G′)∨

(MG |= 5#
R ∧MG �|= 4#R ∧ G′ �= G ∧MG′ |= 4R)

Proof. The proof is by case analysis. Assume G′ ∈ <R=#(G).
1. If R is not #-applicable to G then G′ =G by de8nition. From Proposition 6.8 it

holds that MG �|=5#
R . Since the l.h.s. of the implication of 4#R is false, then trivially

MG |=4#R.
2. If, conversely, R is #-applicable to G (and from Proposition 6.8 MG |=5#

R) either
(a) G #-satis8es R (and thus, by Proposition 6.9, MG |=4#R), or
(b) G does not #-satisfy R (and thus, by Proposition 6.9, MG �|=4#R).
In the former case G′ =G; in the latter there is a G′ � G such that G′ #-satis8es
R. Thus, by Proposition 6.9, MG′ |=4#R.

Notice that it can be the case that

MG |= 5#
R ∧MG �|= 4#R ∧ G′ �= G ∧MG′ |= 4R

but G′ =∈ <R=#(G). This happens when G′ is not a minimal extension of G. Thus, the
converse direction of th above proposition is not always true. However,

Corollary 6.11. Let G be a G-Log concrete graph and R a rule. Then; for #∈
{∼ ∼̃;≡};

∃G′(G′ ∈ <R=#(G) ∧ G′ �= G) ↔ MG |= 5#
R ∧MG �|= 4#R ∧ (∃G′ � G)(MG′ |= 4R)

Proof. The (→) direction follows immediately from Proposition 6.10. Assume now
that MG |=5#R ∧MG �|=4#R ∧ (∃G′ �G)(MG′ |=4R). From Propositions 6.8 and 6.9 we
know that R is #-applicable to G and G does not #-satisfy R. Then, by Proposi-
tion 4.3 this is suGcient to ensure that there is a minimal G′ extending G and #-satis-
fying R.

To sum up, given a rule R and a graph G, the model-theoretic interpretation of the
rule application is that of 8nding a (minimal) G′ �G such that MG′ |=4#R.
More generally, the e3ect of the application of the consecutive rules R1; : : : ; Rn to

an initial concrete graph G is that of producing a (non-deterministic) path of the form

G R1⇒G1
R1⇒· · · Rn⇒Gn;

where MGi |=4#Rj for all j6i.
As a 8nal remark, also for abstract graphs it is possible to develop a logical seman-

tics. However, while a concrete graph leads to an existential formula, an abstract graph

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 555

leads to universally quanti8ed formulae in which a lot of closure properties are to be
stored. The diGculty of handling these formulae requires further work.

7. Comparisons and future work

7.1. Related proposals

A graphical language that shows many similarities with G-Log is Graphlog [9], a
declarative language with graph-based data model and rules. Graphlog is a determinis-
tic language intended for the relational model, and not for the object-oriented model, it
is not Turing-complete, and allows no sequences of rules. Moreover, Graphlog query
graphs are acyclic and the queries, which require patterns to be present in (or absent
from) the database graph, are supposed to extend databases only with new edges (i.e.,
can only de8ne new relations). Conversely, G-Log was originally developed as a lan-
guage and data model for complex objects with identity [1], and in its full form it is
Turing complete [31]. The structure and the meaning of queries in the two languages
are rather similar, but cycles are allowed in G-Log, and G-Log rules enable the user
to extend the databases both with entities and relations.
Similarities can also be found between our approach and previous works on UnQL

[5], where the notion of bisimulation is used for investigating query decomposition.
However, di3erences between G-Log and UnQL are quite deep. For instance, when
assigning semantics to the language basic blocks, we allow information to be lo-
cated in graph nodes, while UNQL locates information on edges; more importantly,
G-Log queries are written directly in the graph formalism, while UNQL describes data
instances graphically, and the query language of UNQL is SQL-like. Moreover,
G-Log allows to express cyclic information and queries, and achieves its high ex-
pressive power by allowing a fully user-controlled non-determinism.
Anyway, keeping in mind these di3erences the results of our work can be also

applied to Graphlog and UNQL, and in general to any graphical language whose main
aim is to query and transform a graph-based data model by using graph-based rules.
For further comparisons between graphical query languages see [29].

7.2. Relationship with the original G-Log semantics

In this subsection we wish to point out the connections of a bisimulation-based
semantics with the embedding-based semantics of [31, 29]. To complete the

De8nition 3.2, b is a directional pseudo-bisimulation, denoted by G0
b#∼G1, if there

is a function b from the nodes of G0 to the nodes of G1 ful8lling conditions 1 and
2 of the de8nition of bisimulation and, moreover, condition 3 for i=0. We say that

G0 #∼G1 if there is a b such that G0
b#∼G1. #∼ is used to build a semantics based

on the notion of embedding as given in [29].

556 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

Fig. 16. R is
∼-applicable to G.

It is immediate to extend the Proposition 4.1 proving that if R is ∼̃-applicable, then
it is #∼-applicable. However, also this implication is strict: in Fig. 16 it is represented
a rule R applicable to a graph G only by this semantics.
Thus, the naturally induced ordering among relations is depicted by

The bottom element, say ⊥∼, of the above graph exists: G⊥∼G′ if there is a
relation (not necessarily a function!) b ful8lling conditions 1 and 2 of the de8nition of
bisimulation and, moreover, condition 3 for i=0. The 8rst example of Fig. 10 denotes
a case of applicability for ∼ but not for #∼.

7.3. G-Log graphs with negation

Among the future work (and actually, under development) we plan to extend the
semantics in order to deal with rules and programs with negation (i.e., containing red
dashed nodes and edges—c.f. Section 2.1).
Intuitively, dashed edges express negative information; consider, for instance, R and

G as in Fig. 17. R intuitively means ‘collect all the people that do not live in a
town named Verona’. The fact that graphs G′ and G′′ satisfy R can be formalized
by extending the de8nitions of [29] concerning negation according to our semantics.
However,
• G′ can be obtained from G by using a sort of failure rule or, almost equivalently,

by applying the Closed World Assumption: we infer that ‘Ago does not live in
Verona’ from the fact that we cannot derive that this fact is true.

• G′′ is obtained by adding the hypothesis ‘Ago lives in Verona’ that ensures that no
subset of G ful8lls R.
This kind of non-determinism is dealt with in [29, 31] by limiting the G-Log pro-

grams to queries. We plan to study this and the related issues in the near future.

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 557

Fig. 17. Negation as failure.

7.4. Computational issues

During the implementation of the operational semantics of the language G-Log, two
typical graph problems must be faced: given two graphs G1 and G2,
1. to verify if G1#G2, and
2. to verify if there is G3 �G1 such that G3#G2.

In the case of the relation ≡, problem 1 is known as graph isomorphism, while
problem 2 is the subgraph isomorphism. The former is in NP but still it is not known
whether it is NP-complete or it is in P. 11 The latter in NP-complete [17].
In the case of bisimulation (∼), problem 1 is polynomial (O(m log n+ n), where m

is the number of edges and n the number of nodes; see, e.g. [32]).
An interesting work is to characterize all the remaining problems from a computa-

tional point of view, and then use these results to improve the performances of the old
implementation of the languages G-Log and WG-Log based on the notion of embedding
(cf. Section 7.2).

8. Conclusions

We have presented a new version of the semantics of the language G-Log, a graph-
based query language originally designed for the representation and querying of object-
based data. G-Log embodies the formal basis of the WG-Log system, which proposes
a language and an architecture for querying and restructuring Web site data and, more
generally, semistructured information. The results obtained in this paper allow a deeper
understanding of some subtle ambiguities of the original semantics of G-Log, while
proposing three alternative semantics which improve on the complexity of query com-
putation in a signi8cant way. Moreover, given that we use WG-Log schemata in order
to represent sets of sites having the same structure, the results on abstraction provide
the following important applicative consequences in the WG-Log context:

11 Actually, it is one of the candidates for membership in the (hypothetical) intermediate class NPI [17].

558 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

• graceful tolerance of data dynamics, i.e., an easy mechanism for schema updates
resulting from instance evolution over time (Correctness Theorem);

• eBcient checking of instance correctness with respect to a given schema (abstraction
and concretization processes, functions) and /);

• eBcient checking (i.e., at the schema level) of query applicability to a certain
instance (Correctness Theorem);

• semi-automatic integration of heterogeneous datasources: components of a hetero-
geneous database can be translated into a language similar to G-Log, by a standard
wrapper at the instance level, and later a uni8ed, schematic representation of the
whole set of data can be automatically derived (abstraction process, function)).

As a conclusion, we believe that all the advantages a3orded by the adoption of the
bisimulation semantics perspective well account for the choice of working directly on
the graph-based representation of G-Log, rather that on its logical counterpart.
Some important issues are only tackled in this paper; noticeably, queries involving

negation have not been deeply examined yet: this is an issue for future research,
together with the study of appropriate algorithms to implement eGciently the various
semantics. Recently, it has been shown how to implement in linear time the task of
8nding a subgraph bisimilar to a given one (one of the key actions to be implemented
for the operational semantics) for a wide family of graphs [14].

Acknowledgements

This work has bene8ted from discussions with Sara Comai, Ernesto Damiani, Barbara
Oliboni, and Roberto Posenato, all of whom we would like to thank. We thank the
anonymous referees for their helpful comments.
The work has been partially supported by the MURST projects Tecniche formali

per la speci8ca, l’analisi, la veri8ca, la sintesi e la trasformazione di sistemi software,
Interpretazione Astratta, Type Systems e Analisi Control-Flow, and Metodologie e tec-
nologie per la gestione di dati e processi su reti Internet e Intranet, and by the CNR
Progetto Coordinato MIDA.

References

[1] A. Abiteboul, P. Kanellakis, Object identity as a query language primitive, Proc. 1989 SIGMOD Internat.
Conf. on the Management of Data, Sigmod Record, Vol. 19, June 1990.

[2] P. Aczel, Non-well-founded Sets. Lecture Notes, Vol. 14 Center for the Study of Language and
Information, Stanford, 1988.

[3] G. Arocena, A. Mendelzon, WebOQL: restructuring documents, databases, and webs. In Proc. 14th
Internat. Conf. on Data Engineering, IEEE Computer Society Press, Silver Spring, MD, 1998, pp. 24
–33.

[4] P. Buneman, S.B. Davidson, G.G. Hillebrand, D. Suciu, A query language and optimization techniques
for unstructured data, in: H.V. Jagadish, I.S. Mumick (Eds.), Proc. 1996 ACM SIGMOD Internat. Conf.
on Management of Data, Montreal, Canada, pp. 505–516, June 1996, ACM Press 1996, SIEMOD Record
25 (2).

A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560 559

[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, L. Tanca, XML-GL: a graphical language for
querying and restructuring XML documents. Proc. 8th Internat. World Wide Web Conference WWW8”,
Toronto, Canada, May 1999.

[6] P.P. Chen, The entity-relationship model: toward a uni8ed view of data, ACM Trans. DB Systems 1
(1) (1976) 9–36.

[7] S. Comai, Graphical query languages for semi-structured information, Ph.D. Thesis, Politecnico di
Milano, 1999.

[8] S. Comai, E. Damiani, R. Posenato, L. Tanca, A Schema-based approach to modeling and querying
WWW data, Proc. Internat. Conf. on Flexible Query Answering Systems, FQAS’98, Roskilde, Denmark,
May 13–15, 1998.

[9] M.P. Consens, A.O. Mendelzon, Graphlog: a visual formalism for real life recursion, Proc. 9th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, Nashville, Tennessee, April 2–
4, 1990.

[10] P. Cousot, R. Cousot, Abstract interpretation: a uni8ed framework for static analysis of programs by
construction of approximation of 8xpoints. Proc. 4th ACM POPL, 1977, pp. 238–252.

[11] E. Damiani, L. Tanca, Semantic approches to structuring and querying web sites. Proc. 7th IFIP Work.
Conf. on Database Semantics (DS-97), 1997.

[12] E. Damiani, L. Tanca, Blind queries to XML data. Proc. SEBD 2000, June 2000, pp. 79–93.
[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, XML-QL: a query language for XML. In

Proc. QL’98—The Query Languages Workshop, December 1998.
[14] A. Dovier, E. Quintarelli, Model-checking based data retrieval, in: Proc. of DBPL ’01, 8th Int. Workshop

on Databases and Programming Languages, Marino, Rome, September 8–10, 2001.
[15] M. Fernandez, D. Florescu, A. Levy, D. Suciu, A query language for a web-site management system,

SIGMOD Record 26 (3) (1997) 4–11.
[16] G. FilXe, R. Giacobazzi, F. Ranzato, A unifying view on abstract domain design, ACM Comput. Surveys

28 (2) (1996) 333–336.
[17] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness,

W. H. Freeman and Company, New York, 1979.
[18] R. Goldman, J. Widom, Dataguides: enabling querying formulation and optimization in semi-structured

databases, VLDB’97, Proc. 23rd Internat. Conf. on Very Large Data Bases, 1997, pp. 436–
445.

[19] M. Gyssens, J. Paredaens, J.V. den Bussche, D. Van Gucht, A graph-oriented object database model,
IEEE Trans. Knowledge Data Engng. 6 (1994) 572–586.

[20] R. Heckel, G. Engels, Graph Transformation and Visual Modeling Techniques, Bull. EATCS 71 (2000)
186–202.

[21] P.C. Kanellakis, S.A. Smolka, CCS expressions, 8nite state processes, and three problems of equivalence,
Inform. Comput. 86 (1) (1990) 43–68.

[22] A. Lisitsa, V. Sazanov, Bounded hyperset theory and web-like data bases. Research Report, 97-21,
DIMACS, 1997.

[23] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: a database management system for
semistructured data, SIGMOD Record 23 (3) (1997) 54–66.

[24] A. Mendelzon, G. Mihaila, T. Milo, Querying the world wide web, Proc. 4th Conf. on Parallel and
Distributed Information Systems, Miami Beach, Florida, USA, December 1996.

[25] R. Milner, An algebraic de8nition of simulation between programs, Second Internat. Joint Conf. on
Arti8cial Intelligence, London, 1971, pp. 481–489.

[26] R. Milner, in: A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92,
Springer, Berlin, 1980.

[27] R. Milner, Operational and algebraic semantics of concurrent processes, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science, Elsevier Science, Amsterdam, 1990 (Chapter 19).

[28] B. Oliboni, L. Tanca, Querying XML speci8ed WWW sites: links and recursion in XML-GL, Proc. 6th
Internat. Conf. on Rules and Objects in Databases, London, July 2000, pp. 1167–1181.

[29] J. Paredaens, P. Peelman, L. Tanca, G-Log: a declarative graphical query language, IEEE Trans.
Knowledge and Data Engng. 7 (1995) 436–453.

[30] D. Park, Concurrency and automata on in8nite sequences. In Theoretical Computer Science, Number
104 of Lecture Notes in Computer Science. Springer Verlag, 1980.

560 A. Cortesi et al. / Theoretical Computer Science 275 (2002) 521–560

[31] P. Peelman, G-Log: a deductive language for a graph-based data model, Ph.D. Thesis, Antwerpen
University, 1993.

[32] R. Paige, R.E. Tarjan, Three partition re8nements algorithms, SIAM J. Comput. 16 (6) (1987) 973–989.
[33] J. van Benthem, Modal correspondence theory, Ph.D. Dissertation, Universiteit van Amsterdam, Instituut

voor Logica en Grondslagenonderzoek van Exacte Wetenschappen, 1978, pp. 1–148.

