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                                     Abstract 

       This paper proves the confluency and the strong normalizability of the call-by-value Ai-
     calculus with the domain-free style. The confluency of the system is proved by improving 

    the parallel reduction method of Baba, Hirolawa and Fujita. The strong normalizability is 

    proved by using the modified CPS-translation, which preserves the typa.bility and the reduction 
     relation. This paper defines the class of the reductions whose strictness is preserved by the 

     modified CPS-translation to prove the strong normalizability. 
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1 Introduction

The Aµ-calculus, which was introduced by Parigot in [14], is a formal system of calculus which 
corresponds to the classical logic by the Curry-Howard isomorphism. The Ap-calculus enables 
us to analyze proofs of the classical logic by studying the terms of the calculus. In particular, 
the confluency and the strong normalizability of proofs in the classical logic can be proved by 
investigating the property of Aµ-terms. For example, in [15], the strong normalizability of proofs 
in the second-order classical natural deduction was proved by showing the strong normalizability 
of corresponding typed Ap-terms. 

  The .µ-calculus also clarifies the algorithmic aspect of the classical logic. The algorithmic as-
pect of classical logic is characterized by the control operation. p-operations express the mechanism 
of control operation. By this, the Aji-calculus enables us to assign types to programs including 
control operators. Furthermore, the Aµ-calculus enables us also to construct programs with control 
operators from proofs of the classical logic. 

  In this sense, it is important to study the call-by-value variants of AEµ-calculus. As the pro-
gramming languages ML and Lisp were developed from the )-calculus, it is significant to design 
the programming languages from the .\p.-calculus. The call-by-value systems with control oper-
ations have been widely studied: the theory of sequential control [8], the calculus of exception 
handling A«.,, in [7], the call-by-value Aµ-calculus [9], [10], [13], and so on. For example, in [13], 
Ong and Stewart constructs a deterministic call-by-value programming language 1.PCFv from the 

call-by-value Aµ-calculus )'µµr. They also showed that p.PCFv is sufficiently strong to express 

the various control constructs, such as the ML-style raise, handle-mechanism and the first-class 

continuations callcc, throw and abort. 

  In this paper, we prove the confluency and the strong normalizability of the domain-free call-

by-value Ap.-calculus for polymorphic types, which was introduced by Fujita in [9]. The results of 
this paper are applied to the Church-style calculus in a straightforward way, since the domain-free 
style may be considered as shorthand for the second-order Church-style. 

  On the simple )/L-calculus, which is the system considered in [14], the proof of confluency was 
presented by Parigot in [14]. However, later in [1], Baba, Hirokawa and Fujita found an error 
in this proof. They showed that if the system includes the renaming rule, the straightforward



parallel reduction method does not work. They proved the  confluency of the simple Ay, calculus by 
improving the parallel reduction. They also showed that the improved method can be used for the 
proof of the confluency of the call-by-value 4-calculus without the µ7l-rule, that is µa.[a]M N 11.1 
(Al does not contain free a). In [9] and [10J, the confluency of the call-by-value Ay-calculus with 
the µ77-rule was proved for only typable terms by assuming strong normalizability. In this paper, 
we show the confluency of untyped terms of the call-by-value Ay-calculus including the µr7-rule. To 
prove this, we improve the parallel reduction method of [1]. However, the straightforward extension 
of the proof of [1] does not work, since the addition of the p77-rule gives more complicated situations 
in the proof of the diamond property, which is the main lemma to prove the confluency. This paper 
solves this problem. 

  In [5], it is described that Py proved the confluency of the simple Aµ-calculus with µr7-rule in 
his thesis. Our work in this paper is independent of Py's work and our method is different from 
his method. 

  In [15], the strong normalizability of the simple Ay-calculus was proved in two ways, one was 
the reducibility method and the other used the CPS-translation. The CPS-translation is a map 
from the Ay-calculus to the A-calculus such that the reduction relations are preserved. By this, we 
can prove the strong normalizability of the Ay-calculus from that of the A-calculus. 

  The strong normalizability of the call-by-value Ay-calculus cannot be directly concluded from 
that of the simple Ay-calculus, since we considered that the call-by-value system contains the 
symmetric structural reduction, which is not included in the simple Ay-calculus. Ong and Stewart 
mentioned in [13] that the strong normalizability of the call-by-value Ay-calculus was proved by 
the reducibility method, but their proof was not published yet. 

  The ordinary CPS-translation is not adapted to prove the strong normalizability of the call-
by-value system with the symmetric structural reduction, since it preserves only the convertibility 
relations, not the reduction relations. In [9], Fujita gave the sketch of the proof by using the 
ordinary CPS-translation. However, the proof was not finished, since it contains a deep and 
difficult gap in the proof of the lemma 6 of [9], which was the most important lemma for the strong 
normalization. 
  This paper uses a variant of the translation, which is called the modified CPS-translation 
and was presented in [6], [7], [10], [15] and so on. It was proved in [10] that the modified CPS-
translation preserves the reduction relation of the call-by-value Ay-calculus. However, even if we 
use it, the strong normalizability cannot be proved in a straightforward way. One of the causes 
of the difficulties is that the modified CPS-translation does not always preserve the strictness of 
reductions. That is, even if M reduces to N with more than one steps, M and N may be the 
same terms, where M and N are the translations of Al and N respectively by the modified CPS-
translation. So we must clarify when M D+ N holds in A-calculus for Ay-terms AI and N such 
that Al N N in Ay-calculus. One of the new and important results of this paper is that it precisely 
clarifies the class of reductions whose strictness is preserved by the modified CPS-translation, and 
this paper proves the strong normalizability by using the result. 

  The proof of the strong normalizability of the call-by-value .A-calculus in [10] used the modified 
CPS-translation, but the proof of the strong normalizability of [10] was not finished yet. The 
proof of the lemma 3.14 of [10], which is needed for the proof of strong normalizability, was not 
finished in the following reason. In the case 3 of the proof of the lemma 3.14 of [10], it was 
claimed that if we assume that 111 has no vacuous y-abstraction and AI D+st>A11,.1lID+st 
1113 Dp,7,r 1114 Dst ... holds, then Al = M1 D+ M2 = A13 D 1114 = ... holds. However, AI3 D+ M4 
does not necessarily hold, since A13 may have vacuous µ-abstractions even if 111 does not. For 
example, if we let Al = (y.a.[/3](Ax.y)([a]z))uv((Ax..x)w), Ali_ (µa.[,Q](Ax.y)([a]zu))v((Ax.x)w), 
1112 = (ya•[13]y)v((Ax.x)w), 1113 = (Acr.[8]y)((Ax.x)w) and M4 = (p..a.[/]y)w, then Al Dst All D/3,7r 

                holds, but we have M3=A14. 1112 >st 1113 D~,tr 1114

2 Call-by-value AA-calculus )'Vµ in domain-free style

In this section, we give the definition of the domain-free system of the call-by-value AA-calculus 
A1µ for polymorphic types, which was presented in [9].
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  Firstly we define the types, the terms and the substitutions for  Avit. The types of Avp are d
efined from type variables and a type constant 1 . We abbreviate a —>1 as -ia. For the definition 

of AA-terms,  we prepare two sorts of variables: ordinary variables, which are called A-variables, 
and names, which are called p-variables. 

Definition 2.1. (Types and terms) 
  Variables, types, terms and values of Avit are defined in a syntactic way as follows. 

  (1) Variables 
    (i) Type variables to, t1 ... (denoted by s, t ...). 

    (ii) A-variables xo, x1 ... (denoted by x, y ...). 
    (iii) p, variables ao, ... (denoted by a,,3...). 

  (2) Types (denoted by a, T ...) 
a ::= t1 1 1v—>aIVt.a. 

  (3) Terms (denoted by M, N ... or P, Q ...) 
    M ::= xIAx.MIAt.M pa.M MM I Ma I [a]M. 

  We call Ax.M a A-abstraction, At.M a A-abstraction, pa.M a p-abstraction, M1 M2 a term 
application, Ma a type application and [a]M an a-named term. 

  (4) Values (denoted by U, V, W ...) 
    V ::= x I Ax.M At.M [a]M. 

Notation 2.2. 
  (1) Free variables and bound variables of types and terms are defined as usual. We write FV (a) 

and FV (M) for the sets of free variables of a and 111 respectively. 
  (2) M N denotes that N is obtained from M by renaming bound variables. The expression 

a - T is similar. 
  (3) The subterms of a term are defined as usual. N C M denotes that N is a subterm occurrence 

of M. 
  (4) We use the following abbreviations, 

Ax1x2 ... xn•M - (Ax1.(Ax2.... (Axn.M) ...)), 
    M1 M2 M3 . . . Mn = (... ((M1 M2)M3) . . . Mn). 

  (5) We write Ali for a finite sequence of terms. We also use V and Q for expressing a finite 
sequence of values and types respectively. When M is_a sequence M11112 ... Mn, N11/1denotes the 

         1 term NM1112...Mn. If M is an empty sequence, NM E N.

Definition 2.3. (Substitutions) 
  The substitutions of A1µ are defined as follows. 

  (1) For types a, T, terms Al, N, type variable t and A-variable x, a[t := T], M[x := N] and 
M[t := T] are defined as usual. 

  (2) For terms Al, N, a type a and a A-variable a, M[a N], M[a a] and M[N a] are 
defined as follows. 

    (i) x9 = x. 
    (ii) (Ax.M)9 - Ax.1119. 

   (iii) (At.M)9 E At.M9. 
    (iv) (µ/3.111)9 E. µ/3.A-19. 
   (v) (111T)9 - (M9)7. 

   (vi) (M M2)0 = (M1B)(H29). 
   (vii) ([i3]M)9 - [0](M9) (if a 0 Q). 

   (viii-r) ([a]M)[a N] - [a]((111[a = N])N). 
   (viii-t) ([a]111)[a a] _ [a]((M[a a])a). 

(viii-l) ([a]M)[N a] - [a](N(M[N a])), 
  where 9 is either [a N], [a a] or [N a] and we suppose x FV(N) in (ii), t FV(N) 

or t FV (a) in (iii), 0 a and 0 FV(N) in (iv) by renaming bound variables. 

  The substitution lemmas hold in the following form.
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Lemma 2.4. (Substitution lemmas) 

  (1) M[x  := P][y := Q] = M[y := Q][x := P[y := Q1], if x y and x FV(Q). 
(2) M[a B]-111[6 B][a A[,8 B]],ifa00 and a¢FV(B). 
(3)11.7[x:= P][a A] -141[a A][x:=P[a A]], if FV(A). 

  (4) M[a A][x := P] - M[x := P][a A[x := P]], if a FV(P).

Proof. These are proved by the induction on M in a straightforward way. ^

'We define the type assignment system for Avis. This system corresponds to the second-order 
classical natural deduction by the Curry-Howard isomorphism. As there are two sorts of variables, 
we prepare two sorts of contexts, one for A-variables and one for p-variables. 

Definition 2.5. 
  (1) The A-context is a finite set r of pairs (x : a) of a A-variable x and a type a such that for 

any x, y, a and T, if both (x : a) and (y : T) are elements of r then either x 0 y or a - T. We use 
the symbols r, r' ... for A-contexts. When (z : a) E F, we define r(x) - a. FV (r) is defined as 
follows. 

   (i) FV (0) = 0. 
   (ii) FV(F U {(x : a)}) = FV(r) U {x} U FV(a). 

  (2) The 1-context is a finite set A of indexed types as for a p-variable a and a type a such 
that for any a, 0, a and T, if both as and 7-13 are elements of A then either a 0 Q or a - T. We 
use the symbols A, s'... for p,-contexts. FV (A) and 0(a) are defined similarly to (1). 

Definition 2.6. (Typing rules) 
  The axioms and rules of the type assignment of wµ are the following. 

r; A l- x : r(x) (ass) 

rU{x: al; OHM:T ~Ir;LHM:a—>T r;AHN:a~E 
    r;AI-Ax.11l:a—>T()r;AI- MN:T() 

r; A H M : a  (VI)r; A I-Al :`dt.a  (VE) 
       r;AHAt.11.1:Vt.ar;Ai-141T: Olt :=T] 

r;A-M:a11r;AU{a°}I-11/1:1 
    r;AU{aa}H[a]M:1()r;A1-µa.11r:a(1 E) 

  In the rule (VI), neither FV (r) nor FV (A) contains t. In the rule (I I), if a E FV (A), then 
A(a) - a. 

  M is called a typable term if there exist contexts r, A and a type a such that F; A I- M : a is 
provable by the axioms and the rules above. 

  If we consider types as logical formulas and read each judgement 
     {x1a1 , ... , inan}; {T1n 1, ... ,T,nctm } h 111 : a 

as 
al, ...,an,-'T1,...,~Tryn h a, 

the typing system defined above corresponds to the natural deduction system of second-order 
classical logic. 

  We define the reduction relations of A p. 

Definition 2.7. (Reductions) 
  (1) The axiom schemes of DA, and DS are the following respectively. 

       (0,) (Ax.l11)VDM[x := V] 
   Da(i3t) (At.M)a D M[t := a] 

(?i„) Ax.Vx D V (if x V FV(V))
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        (AT) (p.a.M)N D pa.11[a 4 N] 
 Dµ (pi) V(tia.ill) D pa.M[V a] 

(µt) (p,a.M)a > p,a.M[a G a] 
Dc f (it) ,ua.[a]ll D M (if a FV(M)) l (rn,) [a](p,O.V) D vp := a] 

  (2) The one-step reduction relation Al Da N is defined as follows. 
(i) If M i> N is an axiom of >A, then Al DA N. 

    (ii) If ll DA N, then Ax.M Da )x.N. 
    (iii) If Al Da N, then At.M >A At.N. 
    (iv) If Al Da N, then pa.M Da tia.N. 
    (v) If Al DA N, then MP Da NP. 

    (vi) If Al Da N, then PM DA PN. 
    (vii) If M Da N, then Ma DA Na. 
    (viii) If Al DA N, then [a]M Da [a]N. 

  The one-step reductions Dµ and DS are similarly defined from the axioms of Dµ and DS respec-
tively. D77 denotes the one-step reduction relation defined by the rule (N) above. Daµ denotes the 
union of Da and Da. Similarly, Dsa denotes the union of >. and >A, and >sr/ denotes the union 
of DS and D,7. Dµ is called the one-step p,-reduction or the structural reduction. The rule (rn) is 
called the renaming rule. 

  (3) The one-step reduction > of )pup. is defined as the union of Da, Dµ and Ds. 
  (4) D+ is the transitive closure of D, and D' is the transitive and reflexive closure of D. 

Similarly, for any symbol a a ), µ, s, 77, Ap, sA or sri, we define Da and Da. 

Notation 2.8. 
  For convenience, we write MN for the application NM, and use A, B, ... for either ordi-

nary terms Al, types a or underlined values V. We call A, B, ... extended arguments. Also 
when we use extended arguments, applications are left-associated. For example, (p,a.111)VPU 
U(V(pa.M)P). If A is a sequence of extended arguments Ai A2...A7-i MA' denotes the term 
MAi A2 ...An. For any extended argument A, we use the expression Al [a A] for either 
M[a N] (if A - N), M[a a] (if A - a) or M[V = a] (if A - V). Then we have 
([a]M)[a 4 A] - [a]M[a A]A and the pc-reduction is defined by the one rule, 

(ti) (µa.A1)A D pa.M[a G A]. 
If A is a sequence of extended arguments, M[a A denotes M[a 4 Ai][a 4 A2] ... [a An]. 
Then we have (pa.111)A Dµ tca.Al [a A. 

  It should be noted that the class of values is closed under substitutions induced by reductions 
(0v), (,Qt) or Cu), that is, if V and U are values, V[x := U],V[t := a] and V[a A] are values. 
Furthermore if V is a value and V D M holds, then Al is also a value. 

  Then we verify the following basic property about the extended arguments.

Lemma 2.9. 
Every )'p-term has just one of the following forms: 

(1) V 
   (2) (tta.N)A, 
   (3) (VU)A, 
   (4) (Va)A, 
  where V and U are values, A is a sequence of extended 

sequence.

arguments and it may be an empty

Proof. This is proved by induction on the term 111. When Al is an application, Al has the form 
of either (pa.N)A or (VB)A, where V is a value, A is a sequence of terms or types and B is a 
term or type. If M - (p.a.N)A, then ill has the form of (1). If M - (VB)A and B is a type, 
then Al has the form of (4). If 111 - (VB)A and B is a term, then, by the induction hypothesis, 
B has one of the four forms. When B is a value, Al has the form of (3). When B - (p.a.N)C, 
Al = (pa.N)CVA has the form of (2). Other cases are similarly proved. ^
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3 Confluency of  )\v
,u 

In this section, we prove the confluency of Avp by using the parallel reduction. In the definition 
of the parallel reduction, we extend the method of [1]. 
  The main result of this section is the following theorem. 

Theorem 3.1. (Confluency of ay µ) 
  For any terms Al, M1 and 1112 of .vµ , if AlD* MI and Al D" 1112, there exists a term 1113 such that Ali D'11ls and 1112 DTM3.

Definition 3.2. (Parallel reduction) 
  The parallel reduction >- is defined by the following rules. 

(P1)x>-x. 
    (P2) If Al >- Al', then Ax.M >- Ax.Al' 

    (P3) If Al >- M', then At.M >- At.M' 
    (P4) If M >- M', then µa.A1 >- 

(P5)IfAl>- Al' and N>-N', then MN>—M'N' 
    (P6) If Al >- Al', then Mu >- AI'o. 

    (P7) If Al >- Al', then [a]Al >- [a]AI' 
    (P8) If Al >- Al' and V >- V', then (Ax.Al)V > M'(.x := V'] 

    (P9) If V >- V' and x FV(V), then .x.Vx - V' 
(P10) If Al >- Al', then (At.M)u >- AI'[t := a]. 

    (P11) If Al >- Al' and a V FV(M), then µa.[a]A1 >- Al' 
    (P12) If Al >- M' and A >- A', then (µa.M)A µa.M'[a A']. 

   (P13) If V > V' and A A', then [a]((µ/3.V)A) >- V'[,3 A][0 := a]. 
A' >- A' denotes that Ai >- A'i for any i = 1, ... , n, where A - Ai ... A, and A' - Ai ... A;. If 

A is a type, the notion A >- A' is defined by A - A'.

  Note that, it is easy to see that Al >- Al holds for any term Al and that if M >- Al' then 
FV(M') c FV(M). 

   In [1], Baba, Hirokawa and Fiijita proved the confluency of the call-by-value Aµ-calculus which 
does not include polymorphic types and the rules (770 and (pis). The parallel reduction they used 
is defined by (P1), (P2), (P4), (P5), (P7), (P8), (P13) and 

    (P12') If Al >- M' and A r A' then (µa.Al)A >- pa.Al'[a A']. 
It is the point of their parallel reduction that consecutive structural reductions and one-step re-
naming are considered as one-step parallel reduction by (P13). 

  If the system includes (p,77) as the reduction rule, we must define the parallel reduction by 
(P12), not (P12'). If we define the parallel reduction by (P12'), the diamond property, which is 
the main lemma to prove confluency, does not hold. The diamond property claims that if AI Ali and Al >- Al2 then there is a Ala such that All >- Al3 and Al2 >- M3. For example, if we take 
Al = pa. [a](pj3.x)A, where a V FV((µ0.x)A), then we have 

AI >- µa.x(by (P13)), 
   M >- (µp.x)A. (by (P11)). 

But these are not always confluent by one-step parallel reduction if we define it by (P12').

Notation 3.3. 

  (1) Let A be a sequence Ai A2 ... An and Al be a term = (µa.N)A. For example, the parallel 
reduction can apply to any initial sequence of A in the term AI, that is, if N >- N' and A >- A' , 
then all of the following hold. 

    AI >- (µa.N')A~A2...A,. 
Al >- (µ.a.N'[a' 4)Al2... 
AI >- (µa.N'[a A1][a A2])A3...A 

AI >- µa.N'[a .24;][a A2]...[a4A;]. 
So we write 

(µa.N)A - (pp.a.N'[a
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for representing allof those situations, whereAl=Al... Ai and A,.=A1+ 1 ... A,lfor 
Note that  Al andA,. may be empty. 

  (2) For any natural number i, we define the i-step parallel reduction r as follows. 
   (i) AI M. 

   (ii) If M P and P N, then M ' - N. 

  Firstly, we show the next lemma to prove the diamond property. 

Lemma 3.4. 
  (1) If M > M', then M[t := a] > M'[t := a]. 

  (2) If M M' and V >- V', then A1[x := V] > AI'[x := V']. 
  (3) If M >- M' and A >- A', then AI [a A] >- A1' [a Al.  

  By (3) of this lemma, it immediately follows that if M >- M' and A - A' hold, then 
A] - Al, since M[a A]-AI[a Ai][a A2]...[a An].

some i.

Al[a =

Proof. These are proved by induction on M >- M' Cases are classified by the last rule of the 

derivation of M - AI' 

  (3) Case (P12) (0.M)B > µ/3.M'[$ B']. We have (1.10.111[a A])B[a A] >- µfi.Al'[a 
A'][13 B'[a A']], by IH. Furthermore, we have µ,0.111'[a A'][0 fiqa Al] -RHS, from 
the substitution lemma. 

  Case (P13) [y]((7i0.V)B) >- V'[Q 13][,3 y]. 
  Case (P13).1. y - a. From IH, we have, 

   LHS - [a](1./3.V[a = A])B[a = A]A 
>V'[a A'][/3 Alp :=a], 

V' [Q >3'] [a Al [0 Al [0 := a]. 
Since a # 73, we have further 

Vi[Q B'][0 =a][a~A'] 
        RHS. 

  Case (P13).2. y # a. This case is simpler than case (P13).1. 
  Other cases are proved from IH and the substitution lemmas in a straightforward way. ^

 Then we prove the diamond property. Note that, by the addition of the rule (pri), much more 
complicated cases than the proof for the system without the rule (µ77) in [1] arise in the following 

proof. One of such cases is, for example, the case 2.1. 

Lemma 3.5. 
  If M > M1 and Al >- Al2i there is a term 1113 such that M1 >- M3 and M2 > M3.

Proof. This is proved by induction on the term M. 
  (Case 1) M - .)x.111' The reduction Ax.AI' >- Ali, is derived from either (P2) or (P9). 

  (Case 1.1) Both M1 and 1112 are obtained from (P2). The forms of M1 and Al2 are .x.1111 
and A.x.A12 respectively, where M' >- Ail and M' > A1. From IH for M', there is Ala such that 
Ali ; Al2 > M3. Hence we can take Ax.A13 as M3. 

  (Case 1.2) Ali is obtained from (P2) and AI2 is from (P9). In this case, we may suppose that 
Al - Ax.Vx, M1 - .x.M1 and M2 - V2, where Vx > M1 and V > V2. The form of Vx >- 1111 is 
either Vx > V1x or (Ay.M")x - A11'[y := x]. 

  (Case 1.2.1) M1 - V1x. From IH for V, there is V3 such that V1, V2 > V3. Since x FV (V ) 
and V - V1, we have x V FV (V1), therefore, Ali - Ax.V1 x >- V3 holds. Hence we can take V3 as 
1113. 

  (Case 1.2.2) M1 - AI1'[y := x]. We may suppose that Al - )x.()y.M")x, All - Ax.1111'[y := x] 
and AI2 - V2, where Al" >- M' and .y.M" >- V2. Then, from IH for .\y.A1", we can find V3 

such that. ) y.M1',1/2 >- V3. Furthermore we have Ax.M1'[y := x] - Ay.A11', since x FT/ (AI") 
FV(A11"). Therefore, M1 - Ay.AI1' > 13 holds.
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   (Case 1.3)  11.11 is obtained from (P9) and 1112 is from. (P2). This case is similar to the case 1.2. 
   (Case 1.4) Both 111i and 1112 are obtained from (P9). This case is similar to the case 1.1. 

(Case. 2) Al - A1'a. The reduction M'a Ali is derived from either (P6), (P10) or (P12). 
   (Case 2.1) M1 is from (P6) and 1112 is from (P12). In this case, we may suppose that M 

(/ca.A1')Aa, A11 - N1a and Al2 - µa./11[a A2a], where (µa.111')A r N. The form of 
(µa.111')A r N1 is either (µa.M')A (pa .M1 [a A1,z])A1,r. or (pa.[a]M")A M'A1. 

   (Case 2.1.1) Ni - (µa.M1 [a A1,1])A1,r.. This case is proved by IH and the lemma 3.4 (3). 
  (Case 2.1.2) Ni - M1'A1. By specifying the consecutive applications of (P11), the form of 

µa.[a]A1" A-
/11'may be expressed by     i ao.[ao](j ai •[a1] ... (µa„.[an]P)A(n) ...)A(1) P1Ai") 

where A(i) >- AV) for any i, and P - P1 does not have the form of (p0.[/.1]P')B r PA.  If 
[ao](µai • • ..)A(1) >- M2 is obtained from (P7), the claim is proved easily. 

  So, in the following, we consider the case that it is obtained from (P13). If we specify the 
consecutive applications of (P13), the form of µao.[ao](µa1....)A(1) >- pao.M2 may be expressed 
by 

pa:p.[ao] (Pal .[ai] ... (iLam•Q)A(m) ...)A(1) 
} Pao •Q2[am A2 ][a'm := am-1] ... [a1 41)] [al := ao], 

where A(') AiZ) for any i, and Q - Q2 does not have the form of [am](µ0.(2')B Q1[0 
B1][3 := am]. 

   (Case 2.1.2.1) n > 771. In this case, we have 
Q [am](l-dam+1•[am+i]...(i.la'n.[an]P)A(n) ...A(7n+1)) [am.]Q', 

and we may suppose that Q2 - [am1Q2. Note that Q - [a,n]P if n = m. Then µa.[a]M" 1111' 
may be expressed by 

µao•[a'o](... (µam.[am]Q')A(m) ...)A11) CAR') ... fir), 
where QC - P1 Ain) ... Ai"'+ 1) Furthermore, in this case, since neither FV (A(i+ 1) ), ... , FV (A(m)) 
nor FV(Q') does not contain ai, for any i, we have 

Q2[a'm 71(-2m)] [am.:= am.-i] ... [a1 A21)][a1 ao] 
       ([am]Q2)[am 71(2m.) ...AA1)][am := ao] 

_ 

       [ao]Q2A2m) ... AI) 
Therefore, we have 

A'11 = Q; Alm) ... 41) Ala, 
112 = µao•([ao]Q2A2m)...A21))[ao Al al = µao•[ao]Q2A2m) ...A21)Aia. 

Hence we can find 1113 - %A3m) ... A31)A3a from IH.
   (Case 2.1.2.2) n < in. In this case, we have 

     P = (µan+1.[a'n+1]... (µ,a,n.[am]Q)A(m) ...)A( +1) = (Aan+1•P')A(n+1) 
and we may suppose that P1 = (pan+ 1.P1 [an+ 1 A(1n+l])1)A(1n+r1) 
µao.[ao](µa1....)A(1) >- µa0.11,12 may be supposed to be 

µa-o•[ao] (Pal .[al] ... (µan+i.[an+1]P')A(n+1) ...)A(1) 
        /Ia0.P2[an+1 AAn.+1)][an+1 := an] ... [a1 A21)][ai ao], 

and similarly to the case 2.4.2.2, we have further 
          i(n+1) -'(1)        =µa'o.P2[an+1A2A2][an+1 := ao]. 

Therefore, we have 
    1111 - P1An) ...Ai1)A'1a 

          (-(n          (µan+1.1'1[an+ 1~A1n+t1)] )A1(n+,,1).91)...Al(1)AlQ, 
    1112=µao•P2[an+ iA21+ 1).A2,] [an+ i := ao] [ao A20.1 

        /aan+1•P2[an+1~A2n+1)...A21)A2a. 
Hence we can take M - /can+ 1 •Pa [a'n+ 1 A(3n+ 1) . . A131)11.301 from IH. 

  Other cases are proved similarly to the above cases. 0

Then the form of
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 The properties we need to prove the confluency are the following two  lemmas . 

Lemma 3.6. 

  If M 1111 and M r M2, then there is 1113 such that Mi - M3 and M2 r M3. 

Lemma 3.7. 
(1) If M D N, then M N for some n. 

  (2) If M r N for some ii, then M D" N. 

  The lemma 3.6 can be directly concluded from the lemma 3.5, and the lemma 3.7 can be verified 
in a straightforward way . 

  The confluency of the call-by-value AA-calculus is proved from the lemmas 3.7 and 3.6 as follows.

Proof of the theorem 3.1. By the lemma 3.7 (1), M Mi and M r M2 for some n and m, 
therefore, by the lemma 3.6, we can find M3 such that 1111 r 1113 and 11.12 1113. Hence we have 
1171 D"` 1113 and 1112 c` M3 by the lemma 3.7 (2). ^

4 Modified CPS-translation

In this section, to prove the strong normalizability of Avp, we give the definition of the modified 
CPS-translation and prove that it preserves the typability of terms. 

  The modified CPS-translation, which was presented in [6], [7], [10], [15] and so on, is an 
interpretation from the AA-calculus to the A-calculus. From a logical point of view, it can be 
considered that the translation from the classical logic to the intuitionistic logic. Note that this 
translation preserves the typability and the reduction relation. 

  Firstly, we define the domain-free system of the polymorphic typed A-calculus. This system is 
a domain-free variant of the Girard's system F. 

Definition 4.1. (Domain-free polymorphic typed A-calculus) 
  The domain-free polymorphic typed A-calculus is defined as follows. In this system, both A-

variables x, y, ... and A-variables a, /3, ... are treated as the same sort of variables. The types of 
the domain-free polymorphic typed A-calculus are the same as those of Ap... 

  (1) Terms (denoted by K, L ...) 
    K .x Ax.KI At.K KK I Ka. 

  (2) The reduction relation >077 is defined from the following rules. 
(p) (Ax.L)K Don L[x := K], 
(Qt) (Arno- Da,, L[t := a], 
(77) Ax.Kx Don K (if x FV(K)), 

where K is not necessarily a value. We call the reduction relation Dpn the one-step p,7-reduction. 
  (3) The typing axioms and rules of the domain-free polymorphic typed A-calculus are the 

following.

r F- x : r(x) (ass)

rU{x:a}I-K:T
F AxK:a -'T

(-4 I)
rf-- K:a-->T FF-L:a

FI-K:a
(VI)

FF- L:T

FHK:Vt.a

(—> E)

F H At.K : Vt.a FHKr:a[t:=
— 
T] (VE)

  In the rule (VI), FV(r) does not contain t. 

Theorem 4.2. (Strong normalizability of polymorphic typed A-calculus) 
Every typable term of the domain-free polymorphic typed A-calculus is strongly normalizable.
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  The strong normalizability of F was proved by  Girard, and his proof in English is found, for 
example, in [12]. For variants of F, the proofs of the strong normalizability were given. The strong 
normalizability of the domain-free polymorphic typed A-calculus is easily proved from that of the 
Curry-style polymorphic typed A-calculus by considering the map translating both ALAI and Ala 
to Al. The proof of the strong normalizability of the Curry-style polymorphic typed A-calculus is 
found, for example, in [3].

Definition 4.3. (Modified CPS-translation) 
  The modified CPS-translation, which is a map from a term of Avy to a term of the domain-free 

polymorphic A-calculus, is defined as follows. We define the modified CPS-translation Al for a 
Ap-term Al, the map Al : K for a Aµ-term Al and a A-term K, the map (I)(V) for a value V and 
the map ag for a type a simultaneously. 

  (1) Al a Ak.(Al : k) (k is a fresh A-variable). 
  (2) V : K a K.13(V) (V is a value), 

µa.Al : K a (M : I)[a := K], 
    VU : K a 1)(V)4)(U)K (V and U are values), 

    MU : K a AI : Am.1nCU)K (AI is not a value and U is a value), 
VN : K a N :.fin.(D(V)nK (V is a value and N is not a value), 

    MN : K - AI : Am.(N : An.mnK) (Neither M nor N is a value), 
Va : K a 1.(V)agK (V is a value), 
Ma : K a Al : Am.magK (M is not a value), 

where m, n are fresh A-variables and I is the A-term Ax.x. 
  (3) cI3(x) a x, 

(D(Ax.AM) _ Ax.M, 
4)(At.Al) a At.M, 

([a] AI) a AI : a. 
  (4) t9 a t, 

(a —. T)g a aq —, , 
(bt.a)g = bt.~~a4

Notation 4.4. 
   (1) For contexts, we define the translation rq and --,Oq as follows. 

    (i) If r = {(x1 : a1), : a))}, then Fq = {(x1 : o), . . . , (x„ : ate)}. 
     (ii) If 0 = , an" }, then --.Oq = {(a1 -o ), ... , (ate : 

  (2) For any term AI which is not a value, and any extended argument A, the term AIA : K has 
the form of Al : L. So we write 0(A, K) for this L. The map q5 is syntactically defined as follows. 

   (i) 0(V, K) a Am.m4 (V )K. 
    (ii) 0(N, K) a A771. (N :An.mnK). 

    (iii) 0(a, K) - Am.magK. 
    (iv) ¢(V, K) a An.(I)(V)nK. 
  Then the map AI : K is defined as follows: 

V:Ka 4)(V), pa.M:K- (Al :I)[a:=K], 
    VU : K a (1)(V).13(U)K, Vu : K - 4)(V)agK, 

MA:KaAl:0(A,Ii).

We prepare the following lemma to prove the properties in this and the following sections.

Lemma 4.5. 

(1)(a[t := T])q - aq[t := Tq]. 
  (2) FV(a) = FV(ag), FV(r) = FV(rq) and FV(A) 

  (3) If FV(K) C FV(L), FV(Al : K) C FV(AI : L). 
  (4) For any term Al, the following hold. 

   (i) FV(4)(MI)) C FV(AI)_ 
(ii) FV(Al : K) C FV(AI) U FV(K). 

   (iii) FV(111) C FV(M).

FV(-, q).
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  (5) If x  FV(AI), (Ill : K)[x := L] - 11.1 : K[x := L]. 
  (6) FV(0(A,Ii)) C Fl/ (A) uFV(K). 

(7) Al : 00,K) {=(MA : K) (AI not a value),  Do,, (MA : K) (M a value). 

Proof. (1), (2), (3), (4) and (5) are proved by induction in a straightforward way and (6) is 
proved from (4). (7) is also easily proved. If Al is not a value, the assertion is clear from the 
definition of (/). In the case M is a value, we have LHS= 0(A,K)(I)(M). Therefore, if A - N (N 
is not a value), LHSE (Am.(N : An.mnK))4)(M) D (N : An.m ,K)[1n := CAI)]. Hence we have 
LHS- N : An.(D(A.I)nK RHS from (6). Other cases are similarly proved. ^ 

  In the following, we show that the modified CPS-translation preserves the typability of terms. 

Lemma 4.6. 
   In the domain-free polymorphic A-calculus, if we have r U {.x : T} f- K : a and F I- L : -r, then 
it follows that rFK[x:=L] :a. 

Proof. This lemma is proved by induction on the proof of r U {x : T} I- K : a. ^ 

Theorem 4.7. 
   For any term M, type a, and contexts r, A, if r; A h M : a holds in Avle, then the following 

hold in the A-calculus. 
    (1) r9 U ~~9 AI : ~~a9 

    (2) F' U- 'U{(k:-,a9)}i-(M:k):1 
    (3) r9 U X09 H (D(M) : a9 (M is a value). 

Proof. This theorem is proved by simultaneous induction on the proof of r; A HA,, µ A.2 : a. 
When M is a value, we prove only (3), since (1) and (2) follows from (3) immediately. When M 
is not a value, we prove only (2), since (1) follows from (2) immediately. 

(Case 1) (ass). If the proof is r U {x : a}; AF- x : a, we have to show r9 U {(x : a9)} U 
x : aq, which trivially holds. 

F;Ah :a->T r;AhN:a  
  (Case 2) (-> E). Suppose that the proof ends with. OI MN'T. Note that 

we don't have to consider (3) in this case, since MN is not a value. 
  (Case 2.1) If both M and N are values, MN : k - .1.(M)CN)k holds. From IH (3), we have 

r9 U X09 f- CM) : a9 and r9 U -A9 F /.(N) : a9. Therefore, we have r9 U X09 I 
4)(111)(1)(N) : --'T9 Hence we have r9 U X09 U {(k : -rrQ)} F 1.(11I)4)(N)k :1. 

  (Case 2.2) If Al is not a value and N is a value, MN : k - Al : Ani.m.4)(N)k holds. We have 
r9U,o9 I- 4)(N) : a9 from IH (3), therefore, r9U-,O'U{(k : -T9)} F- A7n.in' (N)k : -,(a9 ~~T9) 
is provable. Note that -,(a9 -> -.-rT9) - - (a -> T)9 On the other hand, from IH (2), we 
have r9 U -,09 U {(l : -'(a -> T)9)} h (Al : 1) :1. Therefore, from the lemma 4.6, we have 
r9 U -,09 H (AI : 1)[1 := Arn.m1.(N)k] :1, where (M : l)[1 := Am.77-4(N)k] EAl : Am.-m (N)k 
from the lemma. 4.5 (5). 

  Other cases are similarly proved. ^ 

5 Soundness of the modified CPS-translation 

In this section, we define the class of the reductions of Avi.t whose strictness is preserved by the 
modified CPS-translation. 

  It was proved in [10] that the modified CPS-translation preserves the reduction relation D' 
By this, we can reduce the proof of the strong normalizability of A.N. to the strong normalizability 
of the A-calculus. However, even if we use this idea, the proof of the strong normalizability of Ai,µ 
is not simple, since the modified CPS-translation does not necessarily preserve the strictness of 
the reduction, that is, there are Ap, terms Al and N such that Al D+ N and Al - N hold. This 
fact is one of the obstacles to the proof of the strong normalizability of A11µ, since that. suggests 
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the possibility of existence of an infinite reduction sequence of  Att-terms 1111 D 11.12 D ... such that 

1111 D- * Ala D"... is not infinite in A-calculus . So, in this section, we clarify the class of the reductions 
whose strictness are preserved by the modified CPS-translation , and by using this result, we prove 
the strong normalizability in the following sections . 

   The reason why the modified CPS-translation does not necessarily preserve the strictness is that 

it eliminates the information of "redundant" parts of AA-terms . For example, if we take P 

then for any term N, PN - Ak.(I.x)[a := 0(N, k)] Ak.Ix does not contain any information of 
N. So if we have N D N' , then PN D PN' holds, but PN and PN' are the same term Ak.Ix. 
We introduce the following new notions to clarify such a situation. An eliminator is the term M 
such that Al : K does not have the information of K . An inessential subterm occurrence is the 
subterm occurrence N of a term Al whose information does not remain after translating Al to 
M.- In the above example, P is an eliminator, and N is an inessential subterm occurrence in PN. 
These notions are formally defined as follows. 
Definition 5.1. (Eliminators and inessential subterm occurrences) 

  We simultaneously define eliminators, the relation Ci between a term and its subterm occur-
rence, and the relation Ei between a i-variable occurrence and a term as follows. We call N an 
inessential subterm occurrence of M if N Ci 111, and we call a an inessential variable occurrence 
of Al if a E, M. 

  (1) Eliminators 
      (i) If a Ee Al holds for any occurrence of a in M, then pa.A/ is an eliminator. Note that 

this condition includes the case of a V FV (111), that is, if a does not occur in M then µa.M is an 
eliminator. 

      (ii) If M is an eliminator, MN, NM, Ma are eliminators. Note that, even if N is not a 
value, NA1 is an eliminator when Al is an eliminator. 

   (2) Inessential subterm occurrences 
      (i) N Ci Ax.Al if N Ci M. 

(ii)Nc At.AlifNCiM. 
     (iii) N Ci µa.A/ if N Ci M. 

     (iv) N Ci [a]AI if N c M. 
     (vi) N Ci Ma if N Ci M. 

      (vii) When A11 is an eliminator, N Ci Mi A/12 if either N C; M1 or N C M2. 
      (viii) When Ali is a value and M2 is an eliminator, N C; A111112 if either N C All or 

N C; A/12. 
      (ix) When M1 is not an eliminator and either M1 is not a value or 1112 is not an eliminator, 

NCiA11A/2 if either NC,Ali orNC;M2. 
   (3) a Ei Al if a is a free µ-variable occurrence in M and, for the subterm occurrence [a]N in 

A/ which named with this a, either [a]N Ci Al holds or N is an eliminator. 
  If N C A/ and N Al, we call N an essential subterm occurrence of Al. N Ce M denotes 

that N is an essential subterm occurrence of M. If a is a µ-variable occurrence in M and a Vi 111, 
we call a an essential A-variable occurrence of M. Note that, a. free µ-variable occurrence a in Al 
is essential iff the subterm occurrence [a]N in Al which named with this a occurs essentially in Al 
and N is not an eliminator. a Ee Al denotes that a is an essential p.-variable occurrence of Al. 

  The notion of eliminators is characterized in the following lemma 5.6. Note that if Al includes 
no a, then pa.Al is an eliminator, that is, in term of [10], vacuous µ-abstractions are eliminators. 

The reason why we separate the definition of essentiality of subterms and µ-variables is that 
even if Al has [a]N as its essential subterm occurrence, this a is inessential occurrence in Al 
when N is an eliminator. For example, 111 - [a] (p,,(3.x) is essential occurrence in Al itself, but 
11,1 = Ak.k(µ0.x : a) - Ak.k(Ix)[/ := a] does not contain a, so the occurrence of a in Al is not 
essential. 
  We classify the reductions of Al/µ as follows. 

Definition 5.2. 

  (1) Suppose that Al D N. Al D` N denotes that the redex is an essential subterm occurrence 
in Al. Al Di N denotes that the redex is an inessential subterm occurrence in Al. Similarly; for 
any symbol a - A, p, s, 7l, Ap.., sA or 81), we define De and Dlr.,.
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   (2) Suppose that Al  D N and its redex is (pa.P)Q. 111 D+ N denotes that P has an a-named 
value [a]17 as its subterm.AlDµ-N denotes that P has no a-named value [a]/ as its subterm. 

   (3) Suppose that Al DN,. N and its redex is (pa.P)Q. M D . N denotes that there is an 
a-named value [a]l7which is an essential subterm occurrence inP1\1DN denotes that any 
occurrence of a-named value [a] V in P is inessential. 

   Note that if the redex (p.a.P)A of a reduction does not have any a-named subterm in P, the 
reduction is g,--reduction. 

   The main result of this section is the following theorem. 

Theorem 5.3. 
   If either AI Ds),N or Al De,N thenAlD+p'oN.Ifeither AID`%N,Al DeN or AlDZN then _N.akt, 

Al. N. 

   The soundness of the modified CPS-translation follows immediately from the theorem 5.3. 

Theorem 5.4. (Soundness of the modified CPS-translation) 
   If Al D N in Avg, then M D7377 N in the domain-free polymorphic A-calculus. 

   The soundness of the modified CPS-translation has been already proved by Fujita in [10]. 
However, the class of reductions of Ag-calculus whose strictness is preserved by the modified CPS-
translation was not precisely defined. So, in the following, we prove the theorem 5.3. 

   Firstly, we show the next lemma. 

Lemma 5.5. 

(1) FV (M : K) _fFV(M: I) (ifAlis an eliminator), FV (111 : I) U FV (K) (otherwise). 
   (2) Suppose a FV(K). If there is an essential occurrence of a in M, then a E FV(CM)) n 

FV(AI : K) n FV(AI). Otherwise a V FV(1)(M)) U FV(M : K) U FV(111). 

Proof. These are proved by induction on Al simultaneously. 
   (1) Suppose that Al - ga.AI1. Note that ga.M1 : K - (11/11 : I)[a := K] from the definition. 

   If ga.11li is an eliminator, then Ali has no essential occurrence of a , therefore, a V FV(1111 : I) 
from IH (2). Hence we have (All : I)[a := K] - (A-11 : I)[a := I] (ga.M1 : I). 

   If g.a.Al1 is not an eliminator, then there is an essential occurrence of a in Ali, therefore, 
a E FV (M1 : I) from lH (2) . Then we have FV ((M1 : /)[oz := K]) _ (FV(1111 : I) - { a }) U FV (K ) 
and FV(ga.A11 : I) = FV((1111 : I)[a := I]) = FV(A11 : I) - {a}. Hence we have FV((M1 : 
I)[a := K]) _ (FV(1111 : I) - {a}) U FV(K) = (FV(ga.11,11 : I)) U FV(K). 

   Other cases are proved in a straightforward way. 

  (2) (Case 1) Al - [a]A11. 
  (Case 1.1) There is an essential occurrence of a in [a]A11. Note that a E FV([a]A11 : K) n 

FV([a]11,11) is immediately proved from a E FV(.1>([a]111)), so we show a E FV(C[a]A11)) in the 
following. In this case, either Ali is not an eliminator or an a occurs essentially in M1. If All is 
not an eliminator, we have a E FV(1111 : a) = FV(4>([a]M1)) from IH (1). If there is an essential 
occurrence of a in Ali, we have a E FV(M1 : I) from IH (2). Since FV(1111 : I) C FV(11I1 : a) 
from IH (1), we have a E FV(1111 : a) = FV(<1.([a]M1)). 

   (Case 1.2) There is no essential occurrence of a in [a]A11. Similarly to the above case, we show 
only a V FV(4)([a]11I1)). In this case, Ali is an eliminator and there is no essential occurrence 
of a in 1111. Since Ali is an eliminator, we have FV(1111 : a) = FV(1111 : I) from IH (1). Since 
1\11 has no essential a, we have a V FV(1\11 : I) from IH (2). Hence we have a V FV(M1 : a) = 
FV(1'([4111)). 

  (Case 2) 1\1 - Ali Al2. We show only the case where neither M1 nor 1\12 is a value, since other 
cases are similarly proved. 

  (Case 2.1) All is an eliminator. In this case, any subterm occurrence in 1112 is inessential in 
1111 1112, so there is an a Ee 11111112 iff there is an a Ee A11. If there is an a Ee 1111, from IH (2), 
we have a E FV(1111 : I), which is a subset of FV(1111M2 : K) from the definition and IH (1). If
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there is no  a  Ee  Mi , from IH (2), we have a V FV(Ali : I). Since Ali is an eliminator, we have 
FV(Ali : I) = FV(M1Al2 : K) from IH (1). 

  (Case 2.2) Ali is not an eliminator. From the definition and IH (1), we have FV (Ali Al2 
K) = FV(Ali : Am.(Al2 : An.?nnli)) = FV(A11 : I) UFV(Am.(Al2 : An.nlnK)). When there is 
an a Ee M1 Al2, a occurs essentially in either Ali or Al2, then we have either a E FV (All : I) or 
a E FV(Al2 : )n.mnK) from IH (2). Therefore, we have a E FV(A11 Al2 : K). When there is no 
a Ee Ali Al2, a occurs essentially in neither Ali nor Al2, then a 0 FV (Ali : I) UFV (Al2 : An.nin.K) 
from IH (2). Hence we have a 0 FV(Al1Al2 : K). 

  Other cases are similarly proved. ^

By this lemma, we characterize the notion of the eliminators as follows.

Lemma 5.6. 
  (1) If M is an eliminator, Al : K - Al : L for any )-terns K, L. 

  (2) If Al is not an eliminator and K D+077 L in the ),-calculus, then Al : K Dp,,i Al : L.

Proof. Let x be a fresh variable. From the lemma 4.5 (5), Al : K - (Al : x)[x := K] for any 
A-term K. By the lemma 5.5 (1), if Al is an eliminator, x FV(AM : x). Then (Al : x)[x := K] 
(Al : x)[x := L], so (1) is proved. If Al is not an eliminator, x E FV(A/ : x). Hence we have 
(Al : x)[x := K] D+43,,) (Al : x)[x := L], so (2) is proved. ^

Furthermore we show the next lemma.

Lemma 5.7. 
  For any Al in which there is no a-named value as its essential subterm occurrence and any 

extended argument A, Al is an eliminator iff Al [a A] is an eliminator.

Proof. For any Al in which there is no a-named value as its essential subterm occurrence, we 
prove the following two claims by induction on Al simultaneously. 

    (1) For any subterm occurrence N in AI, N Ce M iff N[a .@ A] Ce M[a A], 
    (2) Al is an eliminator iff M[a A] is an eliminator. 

  Note that we use the notation N C Al to express occurrences of subterms, so N[a A] Ce 
AI[a A] in (1) denotes the subterm occurrence N[a A] in M[a A] corresponding to the 
subterm occurrence N in M. 

  (1) (Case 1) Ala [a]Ali. By the assumption, Ali is not a value. If N Ci [a]Mi, then 
N Ci Ali holds. Therefore, we have N[a A] c1 Ali [a A] from IH (1). Hence we have 
N[a. A] C2 [a]Ali [a A]A. If N Ce [a]Ali, then either N - [a]Ali or N Ce Mi. When 
N - [a]Ali, we have to show N[a A] Ce N[a A], which trivially holds. When N Ce Aii, 
we have N[a A] Ce Ali [a A] from IH (1). Since Ali is not a value, we have N[a A] Ce 
AVli [a A]A, therefore, N[a A] Ce [a]Ali [a A]A. 

  (Case 2) AI - Ali Al2 and N Al2. 
  (Case 2.1) N C Ali . In this case, either N C; M1 or both Ali is a value and Al2 is an eliminator. 

If N Ci Ali, the claim is proved from IH (1). Otherwise, Al2[a A] is an eliminator from IH (2), 
and Ali [a A] is a value. Hence we have N[a A] C; Ali [a A]./112[a A]. 

  (Case 2.2) N C Al2. In this case, either N C, Al2 or Ali is an eliminator. If N Ci Al2, the 
claim is proved from IH (1). Otherwise, A11 [a A] is an eliminator from IH (2), therefore, the 
claim is proved. 

  Other cases are similarly proved. 
  (2) (Case 1) Al - µ(3.111. 

  (Case 1.1) µ,@.Ali is an eliminator. Note that, we may suppose that /3 FV(A) by renaming 
bound variables. In this case, we have to show that any occurrence of 0 in A11 [a A] is inessential. 
Suppose that [0]Q is an arbitrary /3-named subterm occurrence in Ali [a A]. Then [/3]Q has 
the form of [13]P[a A] for some 0-named subterm occurrence [0]P C Al,. Since µ13.1111 is 
an eliminator, we have either [0]P Ci All or P is an eliminator. If [0]P C; 1111, then we have 
[13]Q Ci Al1 [a A] from IH (1). If P is an eliminator, then Q is an eliminator from IH (2) since 
Q = P[a A]. Therefore, any occurrence of 0 in Mi [a A] is inessential.
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  (Case 1.2)  µ03.A11 is not an eliminator. In this case, there is an essential occurrence of /3 in 
Ali that is, there is a /3-named subterm occurrence [/3]P Ce Mi such that P is not an eliminator. 
From IH (1) and (2), we have that [/3]P[a A] Ce Mi [a A] and P[a A] is not an eliminator. 
Hence µ/3.M1 [a A] is not an eliminator. 

  Other cases are similarly proved. ^

  By the lemmas 5.6 and 5.7, we prove the following property. 

Proposition 5.8. 
   (1) For any Aµ-term Al, value V, and A-term K, the following hold. 

(i) 4'(M)[x := cI>(V)] E 43(M[.x := V]) (if M is a value). 
     (ii) (Ad : K)[x := 41)(V)] - M[x := V] : K[x := ~(V)]. 

     (iii) M[x := (I)(V)] - M[x := V]. 
   (2) For any Aµ-tern Al, type a, and A-term K, the following hold. 

     (i) 4)(M)[t := a] _ 4 (Ad[t := a]) (if Al is a value). 
     (ii) (Al : K)[t := a] - M[t  := a] : K[x := Q9]. 

(iii) -117[t := a] = AI[t := a]. 
   (3) For any Aµ-term M, type a, µ-variables a, /3 and A-term K, the following hold. 

     (i) (1)(M)[a := /3] - I.(M[a := ,3]) (if M is a value). 
(ii) (M: K)[a:=/3] M[a  := : K[a:=/3]. 
(iii) AI[a:=/3] - M[a :=/3]. 

  (4) For any Aµ-term M, extended argument A, and A-tern K, if a V FV (A) U FV(K), then 
the following hold. 

     (i) ̂ (A1)[a := 0(A, K)] Da,M ,D(11/1[a A])[a := K] (if M is a value). 
     (ii) (M : L)[a := CA, K)] D«,m (M[a A] : L[a := 0(A, K)])[a := K]. 

(iii) M[a := 0(A, K)] D«,M M[a = A] [a := K]. 
„Ai denotes = if M has no a-named value as its essential subterm, and denotes D+07) otherwise. 

Proof. We show only (4), since (1), (2) and (3) are more simply proved in a similar way. In the 
proof of (4), we must be careful about whether D«,nr is Dp,n or E. 

(i) (Case 1) x. It is clear that x has no any a-named value as its essential subterm, therefore, 
what we have to show is IP(.x•)[a := ch(A,K)] - (I)(x[a A])[a := K], which means x - x. 

   (Case 2) M - Ax.M1. Note that Ax.M1 has no a-named value as its essential subterm 
iff Ali has no a-named value as its essential subterm, therefore, D«,ax.ni, = D«,Ar, . From IH 
(iii), we have Mi [a := 0(A, K)] D«,n f, Ali [a A] [a := K], hence (Ax.M1) [a := 0(A, K)] Da,nr, 
(Ax.Mi [a A])[a := K]. 

  (Case 3) M - [a]A-li. In this case, Da,[a]M, is Dpn if Mi is a value, and D« [«]nj, is Da,n.l, 
otherwise. This case is proved as follows. 

   LHS - (Mi : a)[a := Cb(A,K)] 
>« ,M, (Mi [a A] : ¢(A,K))[a := K] (from IH (ii)) 
›'b,7 (Mi [a A]A : K)[a := K] 

(Mi [a A]A : a)[a := K] (since a V FV(K)) 
~(([a]11I1)[a A])[a := K] 

         RHS. 

In the third line, from the lemma 4.5 (7), we have that D;377 is Don if Ali is a value, and that it is 
  otherwise. 

  (Case 4) M -a At.AI1. This case is similarly proved. 
  (ii) (Case 1) Al is a value. This case is proved as follows. 

   LHS - (L(I)(M))[a := 0(A, K)] 
D«,njL[a := .1)(A,K)].:1)(AI[a A])[a := K] (from (i)) 

       (M[a A] : L[a := 0(A,K)])[a := K] (since a FV(L[a :_ cb(A K)])) 
         RHS. 

  (Case 2) AI - µ/3.11I1. In this case, >«.µp.m, is >«.,M, . This case is proved as follows. 
   LHS E. (Ali : I)[/3 := L][a  I1)]
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 (1111 : I)[a := 0(A, K)][/3 := L[a := Q~(A, K)]] (since a 0 /3 and 0 V FV (0(A, K))) 
Dn,nf, (M1 [a A] : I) la := K][8 := L[a := 0(A, K)]] (from IH (ii)) 

(1111 [a A] : I)[/3 := L[a := ql(A, K)]][a := K] (since a FV(L[a :_ 0(A, Ii )])) 
R.HS. 
  (Case 3) 111111. 
  (Case 3.1) M1 is not a value and 1112 is a value. In this case, we have the following. 

   LHS = (1111: )in.m 4 (1112)L)[a := 0(A, K)] 
1�n,n1, (M1 [a A] : Amn.m (1112)[a := 0(A,K)]L)[a := K] (from IH (ii)) 
11.'(M1 [a A] : Ain.n CAl2[a A])L)[a := K] (from IH (i)) 

         RHS, 
where, by the lemma 5.6, D' in the third line is Dcym, if 1111 [a A] is not an eliminator, and it 
is - otherwise. We prove LHSD„,A.j, n/., RHS as follows. 

  (Case 3.1.1) 11.11 has no a-named value as its essential subterm. In this case, since Da,nf, is -, 
we have LHSD'RHS. 

  (Case 3.1.1.1) 1111 is an eliminator. In this case, since any subterm occurrence in 1412 is inessen-
tial, 11I11112 has no a-named value as its essential subterm. Therefore, we have to show LHS-RHS. 
Since, from the lemma 5.7, M1 [a A] is an eliminator, >' is -. Hence we have LHS-RHS. 

  (Case 3.1.1.2) 1111 is not an eliminator. In this case, NI11412 has no a-named value as its essential 
subterm if M2 has no a-named value as its essential subterm, so we have to show LHSDa,M,RHS. 
Since, from the lemma 5.7, 1411 [a A] is not an eliminator, D' is Da,nf„ so this case is proved. 

  (Case 3.1.2) 11/11 includes an a-named value as its essential subterm. In this case, since 14111112 
includes an a-named value as its essential subterm, we have to show LHSDanRHS. Since Da,m, is 
Dp,~,this case is proved. 
  Other cases are similarly proved. ^

The theorem 5.3 is proved from the proposition 5.8 as follows.

Proof of the theorem 5.3 We prove the proposition by showing the following by induction on 

111 > N simultaneously: if Al D N, then 

     (i) d>(M) Dp77 41)(N) (if Al is a value), 
     (ii) 111 : K D7377 B : K (for arbitrary A-term K), 

     (iii) 111 D'o'n N, 
where Dp,i is Dp97 if either Al Dsa N or A/I>, and it is - otherwise. 

{Le 

  At first, note that, (iii) is easily proved from (ii) by taking variable k as K in (ii), and if Al is 
a value then (ii) is easily proved from (i). So we prove only (i) if Al is a value, and otherwise we 
prove only (ii). 

  (Case 1) Al is a redex. It should be noted that, in this case, the redex is always essential in 111. 
  (Case 1.1) (0„) : (Ax.1111)V > 1111 [x := V] We show (ii), since (Ax.1111)V is not a value. Since 

this reduction is Dsa, what we have to show is ((.x.11 1)V : K) Dp71 (1111 [x := V] : K) for any 
A-term K. It is proved as follows. 

(~x.1111)V : K - 01.(X.x.11I1)4)(V)K 
(ax.1171)(1)(V)K 
       >,37111[x := .1)(V)]K 
1111 [x := V]K (by the proposition 5.8 (1)) 
(Ak.(1411 [x := V] : k))K 

p.,1111 [x := V] : K (from the lemma 4.5 (5), since k FV (1111 [x := V])). 
  (Case 1.2) (10 : Az .V D V What we have to show is cI>(Ax.Vx) D'on.1)(V). Since x FV(V), 

we have x FV(CV)), therefore, (I)(Ax.Vx) - Axk.CV)xk Der, ),x.cI)(V)x D0,7 (V). 
  (Case 1.3) (/31) : (At.1111)a > 1111 [t := a]. This case is similarly proved by the proposition 5.8 

(2). 
  (Case 1.4) (rni) : [a](1t, .V) D V[/3 := a]. This is proved by the proposition 5.8 (3) as follows. 

'([0](110.17)) = (V : I)[/3 a'] 

(V[0 := a] : I) (by the proposition 5.8 (3)) 
I4'(V[/3 := a])
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 D0,7CV[/3 := a]). 
  (Case 1.5) (A71) : µa.[a]llh D Mi. This case is proved as follows. 

pa. HMI = I(1111 : a)[a := K] 
I(1111 : K) (since a FV(A71)) 

D~,~1111 : K. 
  (Case 1.6) (µ) : (µa.M1)A D µa.1111 [a A]. Since (µca.A11)A D1, µa.M. [a A] holds iff 

1111 contains an a-named value as its essential subterm, we have to show ((µa.A11)A : K) Dn n~, 
(µa.1111 [a A] : K), where the symbol >a ,m, is that of the proposition 5.8. This case is proved 
as follows. 

(pa.M1)A : K = (11.11 : I) [a := 0(A, K)] 
(A11 [a A] : I)[a := K] (by the proposition 5.8 (4)) 

µa.M1[a A] : K. 
  (Case 2) 1111 Al2 D N11112. From IH, we have ID(M1)1>'(D(N1) if M1 is a value, and A11 : K D' N1 

K, where D' is Dpn if A11 Des), N1 or M1 Dt, N1, and it is -a otherwise. Note that, if 1111 is a 
value and 1112 is an eliminator, then we have et show M1 1112 : K - N1./1//2 : K since the redex is 
inessential in A/11112, otherwise we have to show 11711112 : K >' N1 Al2 : K . 

  (Case 2.1) Both M1 and 1112 are values. We have A11 1172 : K - 13(1111)1>(M2)KD4(N1)(D(M2)K 
from IH. 

  (Case 2.2) A/11 is a value and M2 is not a value. In this case, we have M1M2 : K - M2 
An.(b(M1)nK. From the lemma 5.6, we have M2 : (I) )77./f - 1112 : An.1)(N1)nK if M2 is an 
eliminator, otherwise Al2 : )n.(D(M1)nK D' M2 : )n..1)(N1)nK from IH. 

(Case 2.3) Afi is not a value. From IH, we have /111.21//2 : K - 11'11 : q5(,12, K) D'N1 : 0(M2, K) 
N1 M2 : K. 

  Other cases are similarly proved from IH (ii) or (iii). ^

6 Strong normalizability of > -

In this section, we prove the strong normalizability of Dµ- for untyped terms. 

Proposition 6.1. (Strong normalizability of Dµ-) 
   There is no infinite sequence of terms 110, M1 i ... such that M2 D,- Ali, 1 for any i. 

  The strong normalizability of ti-reduction is very complicated to prove. For example, let Ali be 
(µa.... [a]V ...)(µ8.N), then M1 reduces to M2 - µa.... [a]V(µ,Q.N) ... by µ+-reduction. Then 
the subterm pi 3.N is an "argument" of the µ-redex in All i and it is also a "function" of the µ-
redex in Al2, so it can be considered that µ+ -reduction produces a new "function" That makes 
the proof of the strong normalizability of DN difficult. On the other hand, the µ--reduction does 

not increase such new "functions'', so the strong normalizability of µ--reduction can be proved 

more easily than that of µ-reduction. 
  In fact, by the result of the previous section, the strong normalizability of Dµ- is sufficient to 

prove the strong normalizability of D. That is proved in the next section.

Definition 6.2. 
  Firstly, we define the maps it and I I simultaneously, then we define the map #. 

  (1) For a term M and an occurrence of subterm N in A1, the natural number 7r(N, A1) is defined 
as follows. 

     (i) ir(A1, AI) = 1. 
     (ii) If N CAI, then 7r(N, Ax./11) = 7r(N, AI). 

     (iii) If N C Al, then xr(N, At.M) = ir(N, M). 
     (iv) If N C Al, then 7r(N, Mo•) = ir(N, M). 

     (v) If N C A1, then 7r(N, µa.111) = x(N, AI ). 
     (vi) If N C Al, then ir(N, [411) = 7r(N, Al). 

     (vii) If N C AI, then (N, LM) = ILI • sr(N, AI). 
     (viii) If N C Al and AI is a value, then 7(N, ML) = ILI • 7(N, AI). 

     (ix) If N C Al and 111 is not a value, then x(N, ML) = ~r(N, M).
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  (2) For a term  Al, the natural number IMI is defined as follows. 

     (i) If M has an n-named subterm, I(pa.M)AI = E ir([a]P,M) IPI, which is the sum 
[«]Pcm f

or all a-named subterm occurrences in M. 
     (ii) If Al has no a-named subterm, l (µa.M11)AI = 1. 

     (iii) If Al does not have the form of (pa.N)A, I Ml = 1. 
  (3) #M is defined as follows. 

     (i) If there is a p-abstraction as subterm of M, #M = E 7r(pa.P, AI), which is the 
N.«.PCM 

sum for all subterm occurrences in Al that are p; abstractions . 
     (ii) Otherwise #111 = 0.

  Firstly we show some properties of the functions defined 
implies #M > #N.

above. Then we show that Al D- N

Lemma 6.3. 
  Suppose that A is an arbitrary extended argument. 

  (1) If M is not a value and N C Al, then we have 
(i) IA'IAI = IMI, 

     (ii) ir(N, MA) = 7r(N, 111). 
                         (2) If N C M and M does not include any a-named value as its subterm, then we have 

(i) IM[a 4 All = IMI, 
(ii) 7r(N[a 4 A], M[a A]) = 7r(N, Al). 

  (3) If A/3 C M2 C Mi, then 7r (M3, AIi) = 7r(M3, M2) . 7r(M2, Mi ). 
  (4) If both N and N' are values, or neither N nor N' is a value, 7r(N, M[N]) _ 7r(N', M[N']) 

for any context Al[]. The context AI[] is defined as follows. 
M[ ] [I I )sx.(M[ ]) I At.(M[ ]) I pa.(A'l[ ]) I (M[ ])N I NW[]) I (M[ ])a I [cr](M[ ])•

Proof. (1) (i) By the lemma 2.9, if M is not a value, M is either (pa.N)B, (UV). or (Vcr)B. 
If M - (pa.N)I3, we have I (pa.N)fiAI = Ipa.Nl = I (µa.N)BI by the definition. 

  (ii) If A is an underlined value V, we have LHS= T(N, VM) = I V I 7r(N, =RHS since 
I V = 1, and otherwise 7r(N,MA) = 7r(N, AI) is as the definition. 

  (2) (i) and (ii) are proved by induction on Al simultaneously. 
  (i) We show only the non-trivial case, where M (µe.M')B and 13 E FV(M'). Sup-

pose that [/3]P1, ... , [o]Pn are all of the 13-named subterm occurrences in 111' Then [131131[a 4
A],... , [,8]Pn[a 4 A] are all of the a-named subterm occurrences in M'[a 4 A]. So we have 

   RHS = I (pfi.Al')BI = E 7([Q]P > M') • IP~I> 

LHS=I(p/3.A1'[a4A])B[a4 All =E7([/3]P;[a4A],A-1'[a A]).IP,[a4 All. 

For each 1 < i < n, we have PjI = IP,[a 4 All from IH (i) and 7r([/3]P;,A-I') = 7r([/]P,,[a 
A],M'[a A]) from IH (ii). Hence we have LHS=RHS. 

  (ii) We show only the non-trivial case, where AI = [a]M' and N C Al' Note that M' is not a 
value from the assumption. This case is proved as follows. 

    RHS = ir(N, [a]M') = 7r(N, AI') 
= 7(N[a 4 A], A]) (from IH (ii)) 

     = T(N[a A1, 111'[a A]A) (from (1)) 
= 7r(N[a A], [a]M'[a A]A) 
= RHS. 

  (3) is proved by induction on Mi in a straightforward way. 
  (4) is proved by induction on Al[] Note that AI [N] is a value iff MP/ is a value. ^
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 The next definitions are only supplementary notions to make explicit of the subterm occurrences 
we  consider. 

Definition 6.4. 

  (1) The *-marked terms are defined as follows. 
    (i) If 111 is a term, Ai and AI* are *-marked terms. 

    (ii) If Al is a *-marked term and Al does not have the form of N*, then M* is a *-marked 
term. 

    (iii) If Al and N are *-marked terms, Ax.111, At.M, µa.M, MN, My and [a]./I1 are *-marked 
terms. 

  (2) For a *-marked term AI, E(M) denotes the term obtained by eliminating all *'s from Al. 
  (3) A *-marked term Al is a value if E(AI) is a value. Extended arguments for *-marked terms 

are defined in a similar way to those for terms. 
  (4) The it-reduction for *-marked terms are defined from the following rules. 

(lµ) (µ.a.M)A > po.M[a A]. 
(µ.*) (µa.M)*A > (µa.M[a A])*, 

where the substitution [a A] is defined in a similar way to that for ordinary terms with the 
additional definition 

Al* [a A]-(M[a A])* 
The notions of the µe -reduction, the 1.2 -reduction and the µ--reduction are similarly defined for 
*-marked terms. 

  (6) For *-marked term M and its subterm occurrence P, the map it is defined as 7r(P, M) = 
7r(E(P), E(M)). The other maps I • I and # are defined in a similar way. 

  Any *-marked term is obtained from a term by marking some subterm occurrences of the term 
with *. It is easily shown that if M •N. N and M' is the *-marked subterm such that E(A•I') = M, 
then there is a unique *-marked term N' such that M' > N' and E(N') - N. 

Lemma 6.5. 
  If Al is a *-marked term which has only one *, and P is the subtend occurrence in M which is 

marked with *, then 7r(P*, Al) > E 7r(Q*, N), where RHS is the sum for all *-marked subterm 
Q*cN 

occurrences in N, and RHS= 0 if there is no * in N.

Proof. We prove the following two claims for *-marked terms M and N: if we have M >µ- N, 
the following hold. 

   (1) IMI > INI. 
    (2) If M is a *-marked term which has only one *, and P is the subterm occurrence in AI 

which is marked with *, then 7r(P*, A!) > E 1r(Q*, N). 
Q"cN 
  These are proved by induction on Al >- N simultaneously. 

  (1) We may suppose that Al contains no * since we define = IE(AI)I for *-marked terms. 
We consider only non-trivial cases, where Al has the form of (µ.a.M1)A, since IAII = = 1 
otherwise. 

  (Case 1) (µa.A11)AB>- (µa.Mi [a A])B. Since I (pa .M1)ABI = and I(µa.M1 [a 
A])BI = Iµa.Mi[a A]I, we ignore B in this case. If a V FV(M1) then LHS=RHS=1, 
so we suppose a E FV (M1). Suppose that [a]Pi , ... , [a]Pn are all of the a-named sub-
term occurrences in A11. Then all of the a-named subterm occurrences in 1111 [a _A] are 
[a]Pi [a A]A, ... , [a]Pn[a API, so, in this case, we have to show 

nn 

E7r([a]P,,1111) • IN ? ~x([a]Pi[a A]A,M1[a A]) IP,[a A]AI. 
z=1i=1 

Note that, since we consider the µ--reduction, any Pi is not a value and any P1 has no a-named 
value as its subterm. For each 1 < i < n., we have that I P, I = I Pi[a A]AI from the lemma 6.3 
(1) (i) and (2) (i), and that 1([a]P„ Mi) = TC([a]Pi [a A]A, M1 [a A]) from the lemma 6.3 (2) 
(ii). Hence we have LHS=RHS.
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  (Case 2)  (µ.a•M1)A  fl- (µa.N1)A. Similarly we can ignore A, and we suppose a E FV (A11)• 
Suppose that the redex in M1 is (µfi.M2)B, and that [a]Pi, ... , [a]Pi, are all of the a-named 
subterm occurrences in M1. For each 1 < i < n, if 1111,1 denotes the *-marked term obtained f
rom M1 by marking [a]Pi with *, then we can find a unique N1,.i such that M1,i eN- N1,i and 
E(N1,i) = N1. We suppose that ([a]Pi.,1)*, ... , ([a]P;,,n )* are all of the subterm occurrences in 
N1,i that are marked with *. Then, from IH (2), we have 

7r(([a]Pi)*,M1,i) ? 7r(([a]Pi )*,N1,i.) 
j=1 f

or each i. If we ignore all *'s, we have 
771, 

ir([a]Pi,1l11) ? E )• 
7= 1 

Furthermore, we can show 1/3/1  > for any i and j as follows. If [a] Pi C M2, then mi = 1 and 
Pi,1 has the form of Pi[/3 B], and we have IP0I = B]I = IP,.I from the lemma 6.3 (2) 
(i), since the subterm P,; of 1112 has no [3-named value. If (µ/.1112)B C [a]Pi, then we have rni = 1 
and Pi, eµ- Pi,1, so we have IPi[ > Pi 1 I from IH (1). Otherwise, since we have Pi,3 - Pi for any 
j, we have IP2, = IPi,1I. Therefore, we have 

m; 

7r([a]Pi, M1) • Pi E NO • IPi,7I 
j= 

for each 1 < i < •a. Note that, if there is no such Pi ,j, then we consider 7ni = 0 and RHS of this 
inequality is 0. Hence, we have 

                                          n mi 

    LHS = Ipa.M1 I = E7r([a']Pi, Mi) • IPAI ? EE ir([a]Pij, N1) • I Pi,j I = I µa.N1 I = RHS, 
1. 11=1 j=1 

since [a]P1,1, ... , are all of the a-named subterm occurrences in N1. 
  (Case 3) (µa•Mi )Acµ- (µa•Mi )B. We have I (µa.Mi )AI = I = I (N•a•A -1)BI 

   (2) We show only non-trivial cases, where Al is the redex (pa.Mi )A, since other cases are easily 
proved IH (1) and IH (2). Note that there is no a-named value in M1. 

  (Case 1) ((pa.1111)A)* Dµ- (µa.1611 [a A])* In this case, what we have to show is 
7r((µa.M1)A, (,ua.A/1)A) _> ir(pa .111i [a A], µa.1611 [a A]), which holds since LHS=RHS= 1. 

  (Case 2) (µa.M1)*A cµ- (p.a.Mi [aA])*Since 7r((µa.M1)*, (µa.A11)*A) = 
7r(1-La.Mi µa.A11) = 1 by the lemma 6.3 (1) (ii), this case is proved. 

  (Case 3) Pt C A11. In this case, N - µa.A11 [a A] has the only one subterm occurrence 
marked with *, which is (P[a A])* C N. So we have to show 7r(P*, (µa.11ll)A) > 7r((P[a 
A])*, µa.M1 [a A]), but we can show LHS= 7r(P, M1) =RHS from the lemma 6.3 (1) (ii) and (2) 
(ii). 

  (Case 4) P* C A. If a clFV (M1) then N - µa.M1 [a A] has no *, and the proof is 
finished since RHS= 0. So we consider the case where a E FV(1111) in the following. Suppose that 
[a]Qi, . . . , [a]Q„, are all of the a-named subterm occurrences in All, and that, for each .1 < i < n, 
Ai C R11 [a A] denotes the occurrence of A applied to Q,[a A] in M1 [a A]. Then any 
subterm marked with * in N has the same form with Pt and occurs in Ai for some i, so we suppose 
that P;* denotes the subterm occurrence marked with * in Ai for each i. Then what we have to 

show is 7r(P*, (µa.Mi )A) > E 7r(P:, µa.Mi [a A]), but we can show LHS=RHS as follows. By 
i= 

the definition, we have 

    LHS = Iiia.M1 I • 7r(P*, A) = E 7r([a]Qi, n11) • IQi I • 7r(P*; A). 
i=1 

On the other hand, for each i, since P,* c Ai C [a]Qi[a A]Ai c µa.1111 [a A], we have 
7r(Pi*, µa.Mi [a A]) = ir(P, , A,.) • 7r(A1, [a]Q, [a A]Ai) • 71([a]Q1 [a A]Ai, iLa.M1 [a• A]) 
from the lemma 6.3 (3). Furthermore, we have 

7r(Ai, [a]Q A]AM.) = IQ, [a = A]I TO; ,Ai) = IQiI; 
7r([a]Qi[ct=A]A„pa.AI1[a =A])=T(([a]Qi)[a=A],1111[a=A])_7r([a]Q,,M1) 

from the lemma 6.3 (2). Since 7r(Pi*, Ai) = •, (P*, A), we have 
7r(P,*,µa.AI1[a A]) =T(P*,A) IQ,I •7([a]Q„M1)
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for each 1 < i  < n . Therefore, we have 
 nn 

   RHS =  E ir(R,*, ita.11Ii [a A]) = E xr(P*, A) • MI ' 7([0:1R,., Ali ) 
i.= 1i= 1 

Hence, LHS=RHS is proved. ^ 

 From the previous lemma, we can show the following property. 

Lemma 6.6. 
  If M >_ N, then #M > #N 

Proof. Suppose that P1, ... ,137, are all of the subterm occurrences of M that are i -abstractions. 
For each 1 < i < n, if Mi is the *-marked term obtained from Al by marking the subterm P2 
with *, then we can find a unique Ni such that Ali DN,- Ni, and E(Ni) - N. We suppose that 
Pi*1, ,1'i 7n; are all of subterm occurrence in Ni that are marked with *. If there is no such *-
masked subterm occurrence in Ni, we define nbi = 0. Note that, since Pi* in Mi is a frabstra.ction, 
any in Ni is a n-abstraction, and P1 ,1, ... , Pn ,n are all of the subterm occurrences in N that 
are it-abstractions. Then we have 

77n m, 

#M = E7r(Pi,11I), and #N = EE7r(Pi,j,N), 
z=1i=1 j=1 

where, if 771i = 0 then we consider E xr(Pi,j, N) = 0. From the lemma 6.5, we have, 
                                  9= 1 

         l7774Ni)x(P7.*M)>E7r(Pii,N 
7= 

for each i. If we ignore all *'s, we have 
777.4 

    71-(Pi, A1) ~r(Pi~ N). 
j= 

This inequality also holds for i such that nai = 0, since RHS= 0. Hence we have #M > #N. ^ 

 Furthermore, we need to define another map II ' I from a type or a term to a finite sequence of 
natural number. Finite sequences are defined as maps a from natural numbers to natural numbers 
such that there exists a number n and a(i) = 0 holds for any i > n. 

Definition 6.7. 

   (1) a, b, c, ... denote infinite sequences of natural numbers. a(i) denotes the i-th element of a 
for any natural number i > 0. 0 denotes the sequence such that 0(i) = 0 for any i. If there is ii 
such that a(i) = 0 holds for any i > n, a is called a finite sequence. For any finite sequence a, we 
define the length 1(a) of a as the maximum natural number n such that a(n - 1) 4 0. We define 
l(0) = 0. 

  (2) For a natural number n and a sequence a, n :: a denotes the sequence such that (n :: a)(0) = 
n and (n :: a) (i + 1) = a(i) holds for any i. For sequences a and b, a + b denotes the sequence such 
that (a +b)_(i) =a(i) + b(i) holds for any i. 

  (3) ab iff there is n such that a(n) > b(n) and a(i) = b(i) for any i < n. 

Definition 6.8. 
  The map II • II from a type or a term to an sequence of natural numbers is defined as follows. 

(1) IIUII = 0 and IIzII = 0. 
(ii) IIax.JIll = 1111111, Ilnt-1111I =101Iland= ~1 

(iii) II(i a.111)AII = (s(A) :: II-11MII) + ;IIAiII' 

    (iv) II (UV)AII = IIUII + IIVII + E IIAiII 

    (v) II(Ua)AII = + E IIA,II, 

  where we define s(A) = 7-1 for A E. (A1, ... , An).
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  Note that, if we consider all of finite sequences,  - is not well-founded, but if the length of finite 
sequence is bounded by a natural number, r is well-founded. 

Lemma 6.9. 
  (1) For any term M, we have 1, (II A'1II) < #M. 

  (2) If M Dµ- N, then IIA111 IINII•

Proof. (1) We define ni,,(111) as the number of the symbols in Al. Then we can prove (i) 
l (IIAI I) < nµ (M) and (ii) n,,(M) < #M as follows. (ii) is clear from the definition of # and (i) is 
proved by induction on M in a straightforward way. Suppose that M (µa.N)A and s(B) = n. 
Then we have 1(II (N-a.N)AII) <_ max{l(IINII) + 1, l(IIA1 II), • • • , l(IIAnII)}. Onthe other hand, we 
have n,,,((µa.N)A) = 1+nµ(N)+n,l(A1)+• • •+nµ,(An). Since, from IH, we have WIND < nµ(N) 
and l(IIAiII) < nµ(Ai) for any 1 < i < n, l(II (µa.N)AII) < 71µ((µa.N)A) holds. 

  (2) This is proved by induction on M Dµ- N. Note that if a b then 71:: a n :: b for any 71, 
and a + c b + c for any Z. 

  In the case where M (µa.M')AB and N - (pa.M'[a A])B, we have 

IINII = II(µa.A-I')ABII = ((n + 1) :: IIM'II) + IIAII + E IIBihI, 

IINII = II(i a.11/'[a A])BII = (n :: IIM'[a A]II) + E [IBiII, 

where 72 = s(B). Then we have II11III(0) ? IINII(0). Hence IIMII r IINII holds. 
  Other cases are proved more simply. ^

From the lemmas 6.6 and 6.9, the proposition 6.1 is proved as follows.

Proof of the proposition 6.1 For any Ale-terms Al and N, if MDµ_ N, we have l(IINII) < #M 
from the lemma 6.6 and the lemma 6.9 (1). Therefore, for any N such that MDµ_ N, IINII is 
the finite sequence of the length < #M. From the lemma 6.9 (2), if there is an infinite sequence 
AI D- Ali DN,- 1112 Dµ- ..., there is an infinite decreasing sequence of finite sequences whose length 
is bounded by #M, but it is contradictory. ̂

7 Strong normalizability of AVµ 

In this section, we prove the strong normalizability of )v i. 
  We prove the following claims to prove the strong normalizability: (1) Ds,1 is strongly normal-

izable for untyped terms, (2) Dsn can be postponed if the term is typable, and (3) Daµ is strongly 
normalizable for typable terms, and If (1) and (2) hold and we assume that there is an infinite 
reduction sequence of a typable term in Av,u, we can find an infinite sequence of Daµ by postponing 
Dsn, and that contradicts (3). 

  Firstly, we prove (1) and (2), then we prove (3) by the results of the previous sections. 

Lemma 7.1. 
Ds, is strongly normalizable.

Proof. We define 714j by (the number of symbols A in M)+(the number of symbols p in 111). 
Then it is clear that if Al Ds,l N then nAI > '2N. ^ 

Lemma 7.2. 
  If AI is typable and Al Ds,) Da N, then AI Daµ • Ds.,7 N.

Proof. This is proved in a straightforward way except the case of 

([413•(Ay.M))N > (Ay•M[i3 := n'])N Daµ M[/3 := a][y := N]• 
But there is no such case, since if ([a]µ0.(Ay.M))N is typable then the subt.erm Ay.11l must have 
the type 1, but it is impossible. ̂
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 Then we prove the strong  normalizability of Dap .. Firstly we define augmentations of terms, 
which have no inessential subterm occurrences , since they contain no eliminator. Then it is proved 
that any Aµ-reduction sequence of typable terms gives a ),,u-reduction sequence of typable augmen-

tations with the same length . Therefore, if we suppose the existence of an infinite )Aµ-reduction 
sequence of a typable term , it gives an infinite )gyp-reduction sequence of augmentations. However,
since any reduction from an augmentation is either De

sa Dt, or De                                       pep,- 
results of the sections 5 and 6 of this paper .

Definition 7.3. (Augmentations) 
  For a Aµ-term 11.1, the augmentations of AI are define 

Aug(AI) denotes the set of augmentations of M. 
    (1) For any A-variable x, Aug(x) = {x}. 

    (2) If AI' E Aug(111), then Ax.11/P E Aug(Ax.M). 
    (3) If M' E Aug(M), then At../1I' E Aug(At.AI). 
   (4) If M' E Aug(M), then [a]M' E Aug([a]M). 
   (5) If AI' E Aug(M) and N' E Aug(N), then M'N' 

   (6) If M' E Aug(M), then M'a E Aug(Ma). 
    (7) If M' E Aug(M), _ is a term which includes no 

variable, then µa.(Az.AI')([a]P) E Aug(pa.111).

that contradicts with the

i inductively as f

E Aug(MN).

ollows. In the following,

P is a term which includes no eliminator as its subterm and z is a fresh

Lemma 7.4. 

  (1) If 1'; A I- M : a holds, then there is an augmentation Al' of Al such that F, c : Vt.t; A I-
AI' : a, where c is a variable which does not occur in Al. 

  (2) If AI' E Aug(AI) for some M, then every subterm of Al' is essential.

Proof. (1) This claim is proved by induction on the proof of r; A I- M : a. 

  (2) It is easily shown by induction on A/ that Al' includes no eliminator. Then the assertion is 
immediately proved. ^

Lemma 7.5. 
  Suppose that AI' E Aug(M), V' E Aug(V) and A' E Aug(A). Then we have the following. 

(1) A1'[x := V'] is an augmentation of AI [x := V]. 
  (2) M'[t := a] is an augmentation of Alt := a]. 

  (3) A-1'[a := ,Q] is an augmentation of M[a := ,Q]. 
  (4) AI'[a Al is an augmentation of M[a A].

Proof. These are proved by induction on Al in a straightforward way. ^

Lemma 7.6. 
  Suppose that Al' E Aug(M) and Al Dap, N, then there is an augmentation N' of N such that 

Al' Dap N'

Proof. By induction on AlD N. 
  (Case 1) Al is a redex. 

  (Case 1.1) (/3„) : (Ax.N)V D N[x := V]. We have M' a (Ax.N')V' Dap N'[x := V'], and we 
have N'[x := VI] E Ai.ig(N[x := V]) from the lemma 7.5. 

  (Case 1.2) (z) : (µa.Ai)A D µa.Al[a A]. We have Al' _ ( o:.(Az.N')([a]P))A' Dap, 
lca.(Az.N'[a A'])([a]P[a A']A'). From the lemma 7.5, N'[a A'] E Aug(N[a A]) 
holds, therefore, we have that P[a A']A' includes no eliminator since so do P and A'. 

  (Case 2) pa.-Al D µa.N. From IH, we have Al' D N' for some N' E Aug(N). Hence, we have 
p.a.(Az.A1')([a]P) D 1i.a.(Az.N')([a]P). 
  Other cases are similarly proved. ^

Proposition 7.7. (Strong normalizability of Dap) 
  If 111 is a typable term, there is no infinite sequence Al a 11I , AIi , ... such that AI, Dap AIi+ i 

for any i.
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Proof. From the  lemma 7.4 (1), there is a typable augmentation 111' of M. If we suppose that 
111 = Alo Dal, Ali Da ... is an infinite sequence, then, by the lemma 7.6, we can find an infinite 
sequence 1110, Mi, ... such that Mi E Aug(Mi) and M' Daµ M,+ 1 for any i. From the lemma 7.4 (2)

, the redex of the reduction Ai,!,Daµ 111;'+ is essential in 11.1;' and the reduction is not DN+ for 
any i, so any reduction MI DAµ MI+ 1 is DsA, D1e or Dµ_ . Therefore, from the proposition 5.3, we 
have 

A1'i = A1'i.+ 1 (if Ali Dµ- Alz+ ), 
AI'i D+ A1'i+ i (otherwise). 

Since the A--reduction is strongly normalizable, the reduction Al; Da,, M;+ is not i--reduction 
for infinitely many i, so we can find an infinite reduction sequence of AI'o in the domain-free 

polymorphic A-calculus. We have also that AI'o is typable from the proposition 4.7. Therefore, 
that contradicts the strong normalizability of typable A-terms. ^ 

Theorem 7.8. (Strong normalizability of Avu) 
  Every typable AvA-tern is strongly normalizable. 

Proof. Suppose that M is a typable term and there is an infinite sequence Al Mo D Mi D 
1112 D .... From the lemma 7.1, infinitely many D's in the sequence above are Daµ. Furthermore 
from the lemma 7.2, we can find an infinite sequence M Mo Di M1' >aµ M Daµ ..., but this 
contradicts the proposition 7.7. ^

8 Concluding remarks 

In this paper, we proved the confluency and the strong normalizability of the call-by-value Ap-
calculus which has the domain-free style. However, we can consider variants of Aµ-calculus. 

  For example, as a reduction rule of >), in Aµ-calculus, we can consider the additional rule 
(fit) At.Vt > V (if t is not free in V). 

In fact, we can prove the confluency and the strong normalizability of the system with the rule 
(m) by using the method in this paper. But we should note that, we must take the domain-
free polymorphic typed A-calculus with the same rlt-rule as the codomain of the modified CPS-
translation to prove the soundness of the modified CPS-translation. If we consider A-calculus with 
u1t-rule, the reduction relation At.Vt D V in AA-calculus is proved to be preserved by the modified 
CPS-translation as follows. 

1.(At.Vt) - At.Ak.(1)(V)tk Do„ At.(I)(V)t Dp,, CV), 
where we use the alt-rule in A-calculus at the last step. 

 Another variant is the Church-style system. The Church-style call-by-value AA-calculus is defined 
as follows. The pseudo-terms are defined as 

Al ::= x Ax : a.M I At.M I pa' .AI MM I Mu I [a]Al. 
The terms of the Church-style AA-calculus are defined as the pseudo-terms which are typable by 
the following axioms and rules. 

r; o l- x : r(x) (ass) 

ru{x:u};AhM:T r;AHA.1:u—%Tr;oHN:uE 
    r;AhAx:u.A1:a-+T(~I)r;0f-AIN:T(~ 

r; A h AI : Q  (VI)r; AIAI : bt.0  (bE) 
r; A H ALAI : 'dt.0 r; A h A17 : u[t := T] 

        r;0hA1:a1Ir;AU{ua}HA1:1  
    r; A U {Q°}F-[a]AI:1()r; AF-tta°.111 : a(1 E)
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And the reduction rules of the Church-style call-by-value  Aµ-calculus are defined from the following 
axiom schemes. 

(/3„) (Ax : a.M)V° D AI [x := V], 
(i3t) (At.11l)cr D AI[t := a], 
(71„) Ax : a.Vx D V (if x FV(V)), 
(µ,.) (µa°-T.M)N° > µar.M[a N], 
(µi) V 'T(pa°.A.l) > par .AM[V = a], 
(µt) (µavt.°any D µa°[t,:-T1.m[a T], 
(µ71) Aar .[a°]AID Ad (if a ^$ FV(M)), 
(rte) [a°](0°.V) D V113 := a]. 

  The confluency for this system can be proved in the same way by the method in this paper. 
The strong normalizability can be proved easily from the result of this paper by using the following 
fact. If we define the map [.j from Church-style terms to domain-free-style terms such that 

[Ax : a.AI] 
[µa°.Mj =µa.[AIj, 

then it is clear that M D N iff [Alj D [N.] for any Church-style terms M and N. 

Acknowledgements I wish to thank Makoto Tatsuta, Ken-etsu Fujita and the referees for their 
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