- X

1314

EWwL1

Confluency and Strong Normalizability of Call-by-Value
Ap-Calculus

(MEPETF Mu Bt R DS HiHE & WIER L)

T T

Confluency and Strong Normalizability of
Call-by-Value Au-Calculus

Koji Nakazawa

Department of Mathematics, Kyoto University
Kyoto 606-8502, JAPAN
e-mail: nakazawa@kusm.kyeto-u.ac.jp

Abstract

This paper proves the confluency and the strong normalizability of the call-by-value Ap-
caleculus with the demain-fres style. The cenfluency of the system i proved by improving
the parallel reduction method of Baba, Hirokaws and Fujila. The strong normalizaebility is
proved by using the modified CP3-translation, which preserves the typability and the reduction
relation. This paper defines the class of the reductlons whase strictness is preserved by the
modified CPS-translation to prove the strong normalizability.

Keywords: call-by-value Ap-calculus, domain-free type system, confluency, strong normaliz-
ability, CPS-translation.

1 Introduction

The Ap-caleulus, which was introduced by Parigot in [14], is a formal system of calenlus which
corresponds to the classical logic by the Curry-Howard isomorphism. The Ay-calenlus enables
us to analyze proofs of the classical logic by studying the terms of the calculus. In particular,
the confluency and the strong normalizability of preofs in the classical logic can be proved by
investigating the property of Ap-terms. For example, in [15], the strong normalizabllity of proofs
in the second-oider ¢lassical natural deduction was proved by showing the strong normalizability
of corresponding typed Au-terms.

The Aj-calculus also clavifiea the algorithmic aspect of the classical logic. The algorithmic as-
pect of classical logic is chavactetized by the control operation. p-operations express the mechanism
of control operation. By this, the Ap-calculus enables us to assign types to programs including
control operators. Furthermore, the Au-calculus enables us also to construct programs with control
operators from proofs of the classical logic.

In this sense, it is important to study the call-by-vaiue vaviants of Ap-caleulus. As the pro-
gramming languages ML and Lisp were developed from the A-calculus, it is significant to design
the programming languages from the Ag-calculus. The call-by-value systems with control oper-
ations have been widely studied: the theory of sequential control {8], the calculus of exception
handling A7, in {7}, the call-by-value Au-calculus [9], {10], [13], and 50 on. For example, in |13],
Ong and Stewart constructs & deterministic call-by-value programming language pPCFy from the
call-by-value Aps-calculus Auy. They also showed that uPCFy is sufficiently strong to express
the various control constructs, such as the ML-style raise, handle-mechanistn and the first-class
sontinuations callcc, throw and abort.

In this paper, we prove the confluency and the strong normalizahility of the domain-free call-
by-value Ap-calculus for polymorphic types, which was introduced by Fujita in [9]. The results of
this paper are applied to the Church-style ealeulus in a straightforward way, since the domain-free
style may be considered as shorthand for the second-order Church-style.

On the simple Aj-calculus, which is the system considered in [14], the proof of confluency was
presented by Parigot in [14]. However, later in {1], Baba, Hirokawa and Fujita found an error
in this proof. They showed that if the system includes the renaming rule, the straightforward

parallel reduction method does not work. They proved the confluency of the simple Au-calcuius by
improving the parallel reduction. They also showed that the improved method can be used for the
proof of the confluency of the call-by-value Au-caleulus without the ps-rule, that is uo.[o]d > M
(M does not contain free a). In [] and [10], the confluency of the call-by-value Au-calculus with
the pr-rule was proved for only typable terms by assuming strong normalizability. In this paper,
we ghow the confluency of untyped tarms of the call-by-value Au-calculus including the pun-rute. To
prove this, we improve the parallel reduction method of [1]. However, the straightforward extension
of the proof of [1] does not work, since the addition of the ur-rule gives more complicated situations
in the proof of the diamond property, which is the main lemma to prove the confluency. This paper
salves this problem.

In [5), it is described that Py proved the confluency of the simple hu-caleulus with pn-rule in
his thesis. Our wark In this paper is independent of Py's work and our method is different from
his method.

In [18], the strong normalizabllity of the simple Au-calculus was proved in two ways, one was
the reducibility method and the other nsed the CPS-translation. The CPS-translation is a map
from the Ay-calculus to the A-calculus such that the reduction relations are preserved. By this, we
can prove the strong normalizability of the Ap-calculus from that of the A-calculus.

The strong normalizabillty of the call-by-value Ap—calculus cannot be directly concluded from
that of the simple Au-caleulus, since we considered that the call-by-value system contains the
symimetric structural reduction, which is not included in the simple Ap-calculus. Ong and Stewart
mentioned in [13] that the strong normalizability of the call-by-value Au-calculus was proved by
the reducibility method, but their proof was not published yet.

The ordinary CPS-translation iz not adapted to prove the strong normalizability of the call-
by-value system with the symmetric structural reduction, since it preserves only the convertibility
relations, not the reduction relatlons. In [9], Fulita gave the sketch of the proof by using the
ordinary CPS-translation. However, the proof was not finished, gince it conthins a deep and
diffieult gap in the proof of the lemma G of [9], which was the most important Jesnma for the strong
normalization.

This paper uses a variant of the translation, which is called the modified CPS-translation
and was presented in [6], [7], [10], [15] and so on. It was proved in [10] that the modified CPS-
translation preserves the reduction relatlon of the call-by-value Mji-calculus. However, even if we
use it, the strong normalizability cannot be proved in a straightforward way. One of the causes
of the difficulties is that the modified CPS-translation does not always preserve the strictness of
reductions. That is, even if M reduces to /N with more than ane steps, M and N may be the
same terms, where M and N are the translations of M and N respectively by the modified CPS-
translation. So we must clarify when X »* W holds in A-celeulus for Au-terms M and N such
that A > N in Ap-calculus. One of the new and important results of this paper is that it precisely
clarifies the class of reductions whose atlicthess is preserved by the modified CPS-translation, and
this paper proves the strong normalizebility by using the result.

The proof of the strong normalizability of the call-by-value Ap-calculys in [10] used the modified
CPS-translation, but the proof of the strong normalizability of [10] was not finished yet. The
proof of the lemma 3.14 of [10], which is needed for the proof of strong novmalizability, was not
finished in the following reason. In the case 3 of the proof of the lemma 3.14 of [10), it was
claimed that if we assume that Af has no vacuous u-abstraction and M o3 M) Ao b},

My g, Ma >y, ... holds, then M= Mot My = Mao* My =... holds. However, s t>* M
does not necesserily hold, since Mz may have vacuous p-abstractions even if M does not. For
example, if we let M = (pa.[8l{Ae.y)([o]uev((Ar.ahw), My = (pa (8] (dx.9)([e]zw)}e((Ar.z)w),
Mz = (po.[Blyjv((Ar.z)w), Ma = (pe(Bly)((Az.2)w) snd My = (pex. [Blylw, then M &y My Bgne
Mp 0y M3 > gy My holds, but we have Az = Mj.

2 Call-by-value Ju-calculus Ay in domain-free style

In this section, we give the definition of the domain-free system of the call-by-value Ag-calculus
Ay p for polymorphic types, which was presented in [9].

-2 -

Firstly we define the types, the terms and the substitutions for Ayp. The types of Avp are
defined from type variables and a type canstant 1. We abbreviate & —L as -¢. For the definition
of Ap-terms, we prepare two sarts of variables: ordinary variables, which are called A-variables,
and names, which are called p-variables.

Definition 2.1. (Types and terms)
Variables, types, terms and values of Ay are defined in & syntactic way as follows.
(1) Variables
(1) Type variables tg,%: ... {denoted by s,¢...).
(i} A-veriables g, 73 ... (denoted by z,y...).
(iii) u-varisbles ag, s ... (denoted by o, 8..).
(2) Types {denoted by ¢,7...)
gu=t| 1l |o—o]|Vio.
(3) Terms (denoted by M, N...or B,Q...}
M u= x|z M|ALM | poM | MM | Mo | [o]M.
We call Ar.Af a A-abstraction, At.M a A-abstraction, pa.M a p-abstraction, MyMz & term
application, Mo a type application and [a]M an o-named term.
(4) Values (denoted by U, V,W...)
V u=z|Az.M| ALM | [o]M.

MNotation 2.2,
(1) Free variables and bound variables of types and terme are defined aa usual. We write FV(z)
and FV (M) for the sets of free variables of o and M respectively.
(2) M = N denotes that N is obtained from M by renaming bound variables. The expression
o = 7 is similar.
(3) The subterms of a term are defined as usual. N C M denotes that NV is a subterm occurrence
of M.
(4) We uze the following abbreviations,
AT1%z . .. o.M = (Azr.(Azp. .. (A2 M) L)),
MiMaMy. . M= (.. ((M{M2IMz). .. M) .
(§) We write M for a finite sequence of terms. We also use V and & for expressing s finite
sequence of values and types respactively. When M is a sequence MMz ... My, NM denotes the
term NM1Mz. .. M,. If M is an empty sequence, NM = N.

Definition 2.3. (Substitutions)
The substitutions of Ayvu are defined as follows.
(1) For types o, 7, terms A, N, type variable ¢ and A-variable z, ot := 7], M|z ;= N] and
Mt := 7] are defined as usual
(2) For terms M, N, a type ¢ and a p-varisble o, M[a < N], M[a < o] and M[N = of are
cdefined as follows.
(i) 26 ==
(ii) (Az.M)8 = Az.M8.
(itl) (At.M)0 = At.MO.
(iv) (d.M)8 = 8.M8.
(v) (M7)8 = (M@)T.
(vi) (M1 Mz)0 = (M18)(M20).
(vii) {[B1A1)8 = [B](M9) (if & £ B).
(viir) (jaM)fa < N) = [al((M[a & N]IN).
(viii-t) (o] M)fe <= o] = [oJ{(M]e: <= f)o).
(viii-l) {[e] M = a] = [a{N(M[N = o)),
where § is either [a < N, [o += o] or [V = o] snd we suppose z @ FV(N) in (i), t ¢ FV(N)
or t ¢ FV{(c) in (iii), 8 # « and £ ¢ FV{N) in (iv) by renaming bound variables.

The substitution Jemmas hold in the following form.

Lemma 2.4, {Substitution lemmas)
(1} Mz := Plly .= Q] = M|y := Q)le := Ply:= Q]| if ¢ £ y and z ¢ FV(Q).
(2} Mjor <= A|[B <= B = M[f = Bllo <= A[8 <« B||, if a # 8 and o ¢ FV(B).
(3) M[z := Plla « A] = M| <= A][x = Pla <« A)), ifx ¢ FV(A).
(4) Ml = Az := P] = M|z := Plla « Al := P|], if o ¢ FV{P).

Proof. These are proved by the induction on M in a straightforward way. D

We define the type assignment system for Ayu. This system corvesponds to the second-order
classical neturat deduction by the Curty-Howard isomorphism. As there are two sorts of variables,
we prepare two sorts of contexts, one for A-variables and one for g-variables.

Definition 2.5.

(1) The A-context is a finite set T of pairs (x : o} of a A-variable x and a type o such that for
any t,y,¢ and 1, if both (z : o) and (y : 7} are elements of I then either z # y or ¢ = 7. We use
the symbols I',I''. .. for A-contexts. When {(z : o) € I', we define I'(z} = ¢. FV(T) is defined as
follows.

() FV () = .
(i) F¥(I'u{(z:a)}) = FY(IYU {z} U FV{o).

(2) The p-context is a finite set A of indexed types o® for & p-variable o and a type ¢ such
that for any o, 8,0 and 7, if both ¢® and 72 are elements of A then either a £ foro = 7. We
use the symbols A, A" .. for y-contexts. FI7(A) and A(a) are defined similarly to (1).

Defnition 2.8. (Typing rules)
The axioms and rules of the type assignment of Ay u are the following.

AF2:Tz) {ass)

Tu{r:ehAFM:T AFM:o0—7 TTWAFN:o

TareM oo) T.AF MN :7 (= E)
LAFM:o T;AFM:Ye
CiAFALM (Vo (¥]) AR Mr:oft:=17] (VE)
LAFM:o (L1 FAU{o®}F ML (L E)

;AU {o®}F [a]M L T;AF paM o

In the rule (¥}, neither FV(I') nor FV{A) containg . In the rule (L I}, if &« € FV{A), then

Ala)=o.
Af is called a typable term if there exist contexts I', A and a type o such that T: A F M : 0 is
provable by the axioms and the rules above.

H we consider types as logical formulas and read each judgement

{z1:01, - Tn il {1, T }E Mo
a8

01300 Oy, Tm F &,
the typing system defined above corresponds to the natural deduction system of second-order
classical logic,

We define the reduction relations of Ay pe.

Definition 2.7. {(Reductions)
(1) The axiom schemes of >, [>, and £, are the following respectively.
(#) (zM)Ve Mz=V]
By s (Gr) {Al'-.ﬂ.‘!']c‘.' =] fl'f[t = O‘J
() Mz VzoV (fzég FV{\)

(i) Vi{po M) pa MV = o
() (poedl)o o po Ao < o]

>, { () pofe)M =M (f o ¢ FV(AD)
(rn) [o](uB.V)o V(8 := a]

(2} The one-step reduction relation M >, N is defined as follows.
(1) If M © N is att axiom of t>), then M >y N.
(ii) 1f M t5 NV, then Az.M [>5 Az.N.

(ili) If M &5 N, then AL.M > At.N.
(v} If M 1>, N, then po.M >y pa. N,
(V) IfM) N, then MP oy, NP.
(vi} If Af 5 N, then PAM -5 PN.
(vii) If M =a N, then Mo >, No.
(viil) If A{ >3 N, then [o]M o [o] N.

The one-step reductions t>, and t>, are similacly defined from the axioms of &, and -, respec-
tively. [>, denotes the one-step reduction relation defined by the rule () above. t>), denotes the
union of by and t>,. Similarly, t-,), denotes the union of >, and t>), and [+,, denotes the unicn
of &, and py. >, is called the one-step u-reduction or the structural reduction. The rule (rn) is
called the renaming rule.

{3) The one-step reduction r> of Ay is defined as the union of &>, B, and t>,.

{4) =* is the transitive closure of t», and t>* is the transitive and reflexive closure of .
Similarly, for any symbol a = A, 4, 8, 9, Ay, A or sn, we define =} and .

{ () (o M)N b paMla = N]

Notation 2.8.

For convenience, we write MN for the application NAM, and use A, B, ... for either ordi
nary terms M, types o or underlined values V. We call A, B,... extended arguments. Alsc
when we use extended arguments, applications are left-associated. For example, (po. MV PU =
U(V{pa.M)P). If A is a sequence of extended arguments Ay Az ... A,, MA denotes the term
MAyA4y... . A,. For any extended srgument .4, we use the expression M[a < A for either
Mlo = Nl (f4= N} Mlo <= o] (if A= o) or M[V = o] (if A = V). Then we have
([a) Mo <= A = [o)M[ax « A]4 and the p-reduction is defined by the one rule,

() (poM)AP oMo <= Al
H A is a sequence of extended arguments, Mo <= A) denotes Mo <= Allle <= Az) .. Ja = Ag)
Then we heve (m.}if]ﬂ'l:v; paMa « A}

It should be noted that che class of values iz closed under substitutions Induced by reductions
{A,),{B.) or (u), that is, if V and U are values, V|z := U], V[t := ¢] and V]a < A] are values.
Furthermore if V is a value and V = M holds, then Af is also a value.

Then we vetify the following basic property ahout the extended arguments.

Lemma 2.9.
Every Ap-term has just one of the following forms:

mv
(2) (per.N)A,
(3) (VINA,
(4) (Vo)d,
where V and U are values, A is a sequence of extended arguments snd it may be an empty
Sequence.

Proof. This is proved by induction on the term A/, When Af is an application, Af has the form
of either {uor. M)A or (VB)A, where VV is a value, A is » sequence of terms or types and B is
term or type. I M = {pa.VN)d, then A has the form of (1). If Af = (VB)A and B is a type,
then A has the form of (4). If M = (VB)A and B is a term, then, by the induction hypothesis,
B has one of the four forms. When B is a value, Af has the form of (3). When B = (pa.N)C,
M = (4. N)EV A has the form of (2). Other cases are similarly proved. O

-5

3 Confluency of \yu

In this section, we prove the confluency of Ay by using the paralle]l reduction. In the definition
of the parallel reduction, we extend the method of [1).
The main result of this secticn is the following theorem.

Theorem 3.1. (Confluency of Avp)
For any terms M, My and Mg of My, if M 1>* My and M * M,, there exists a term My such
that My b~ M2 and M - Ay

Definition 8.2, (Parallel reduction)
The pavallel reduction » is defined by the following rules,
(P1} 2 > =.
{P2) If M > AL', then .M > Az. A’
(P3} If M > A, then At.M » AtM'
(P4) X M > A, then uo M > po. M/
(P5) If M > Af' and N » N, then MN & AN’
{P8) If M » A’, then Mo = Mo,
(P7) I M = M’, then [a]M > [o] M*
(P8} If M > M’ and V > V', then (A M)V > M'[z = V)
(PO)IfV >V’ and = ¢ FV(V), then Az.Vz » V'
(P10) If M » M’, then (At.M)a > M'[t := q).
(P11) ¥ M ~ M’ snd o ¢ FY (M), theh pa.fa)M =~ M
(P12) I M » M’ and A = A, then (pa M)A » pa.M'[a < A).
(P13) XV - V' and A > A, then [of((u8.V}A) » V'[8 « (B = a].
A > A denotes that A; > Al for any i =1,.,..n, where A= Aq... A, and AT A} .. A If
A is a type, the notion A > A’ is defined by A = A",

Note that, it is easy to see that M > M holds for any term M and thet if A > A’ then
FV (M) C FV(M).

In [1], Baba, Hirckawa and Fujita proved the confluency of the call-by-value dj-caleulus which
does not include polymorphic types and the rules (1,) and {un). The parallel reduction they used
is defired by (P1), {P2), (P4}, (P5), (P7}, {P8}, (P13) and

(P12') If M > M’ and A > A’ then (za. M)A > po M'[o = A'].
It is the point of their parallel reduction that consecutive structural reductions and one-step re-
naming are considered as one-step parallel reduction by (P13}

If the system includes (un) as the reduction rule, we must define the paraliel reduction by
(P12}, not (P12’). If we define the parallel reduction by (P12*), the diamond prapeity, which is
the main lemma to prove confluency, does not hold. The diamond property claims that if M > Afy
and fif »~ Mz then there is a Mj such that My = My and Mz = Mj. For example, if we take
M = pofa)(pB.x) A, where o € FV({8.2)A), then we have

M= poaz (by (P13)},
M= (uf2)d (b (P11}
But these are net always confluent by one-step parallel reduction if we define it hy (P127.

Notation 3.3.)
{1) Let A be a sequence 4y Ap... A, and M be a term = (per N)A. For example, the parsllel
reduction can apply to any initial sequence of A in the term A/, that is, if N - N and A & A,
then all of the foliowing hold.
M > (o N'AJA; .. A,
M > (uoN'o = A4, AL
M > (paN'[o = Al)la = A4S .. AL

A = poN'ja <= Aj]la < 43). .. Ja <= 4.
So we write _ . .
(o N)A = (e N'|a = A7) AL

for tepreseiiting all of those situations, where A = Ay.. A and A; = Ay ... A, for some i,
Note that 4; and 4, may be empty.

{2) For any natural number i, we define the i-step parallel reduction > as follows.
. 0
(i) M = AL
(ii) If A ¥ Pand P> N, then M & N.

Firstly, we show the next lemma to prove the diamond property.

Lemma 3.4,
(1) If M > M’, then Mt := ¢] = M'[t := 0.
(DHM >~ M andV » V', then M(z := V] = M'[z := V']
(B M > M and A » A', then Mie «= Al » Mo = A,

By (3) of th_._ia lanma, it immediately follows that If M = M’ and A » A’ hold, then M(a +
A - M'le &= A7), since Mo « A = M[a < Aifa < Az]... [a < Ad).

Proof. These are proved by induction on M » M’ Cases are classified by the last rule of the
derivation of A » M’

{3) Case (P12) (18.M)B = uf.M'[3 & B). We have (.M « A))Bla « 4] » pB. Mo <
A'll8 += B’[or + A']], by IH. Furthermore, we have pS.M'[a « A']|8 « B'la «= A’]] =RHS, from
the substitution lemms. _

Case (P13) [7]((#8.V)B) = V'|B <« B[3 :=).

Case (P13).1. v = a. From IH, we have,

LHS = [0 (40.V [<= A]) B = AjA
> Ve« A8 < Bl = A')|[8 « A'|[B:=q],
= V'[8 &« B'|a « A|[f = A|[8 = o
Since o # A, we have further
= V(8 < B8 := ala = 4]
= RHS.

Case (P13).2. v # a. This case is simpler than case (P13).1.
Other cases sre proved from IH and the substitution lemmas in a straightforward way. O

Then we prove the diamond property. Note that, by the addition of the rule (un), much more
complicated cases than the proof for the system without the rule (un) in (1] arise in the following
proof. One of such cases is, for example, the case 2.1.

Lemma 3.5.
If M = My and M = Mo, there ig a term My such thai My > Ms and Mz » M;.

Proof. This is proved by induction on the term M.

{Case 1) M = Ar.M’ The reduction Az .M’ > Al is derived from either (P2) or (P9).

(Case 1.1) Both A7y and My are obtained from (P2). The forms of My and Afy are Xz.Af]
and Az.Mj respectively, where M' > A{ and M’ = Mj. From IH for M, there is M} such that
M} ALy > Mg. Hence we can take At.Af{ as M.

(Case 1.2) Ay is obtained from (P2) and Mp is from {P9). In this case, we may suppose that
M = dz.Va, My = Mz.M] and Mz =15, where Vi - M) and V' - V2. The form of Vir > Af is
either Vo > Vyz or (.M)x > M{'[y := z].

(Case 1.2.1) M = Viz. From IH for V, thers is V3 such that Vi,V » V3. Since z ¢ FV{V)
and V > Vi, we have = ¢ FV (1), therefore, Mfy = Ar.Viz > 13 holds. Hence we can take 15 as
Mj.
(Case 1.2.2) Af{ = A{'[y := a]. We may suppose that M = Az.(dy. M)z, My = Az. My := 2]
and Mp = Vz, where A/ » MY and Ay.Al” - V. Then, from IH for Ay A", we can find V3
such that Ay.Afy’, V2 » Va. Furthermore we have Az.Aff'ly 1= 2] = Ay ALY, since © ¢ FV{M") D
FV(AL{"). Therefore, My = dy.M{ = V3 holds.

-7-

(Case 1.3) A, is obtained from (P9) and M is from (P2). This case is sinilar to the case 1.2.
(Case 1.4) Both Ay and Mp are obtained from (P9). This case is similar to the case 1.1.
(Case 2) M = M'’c. The reduction Af'c > M; i derived from either (P8), (P10) ar (P12).
(CB&E}-IJ M, is from (P6) and Az is from (P12). In this case, we may suppose that A =
{M-M']a‘lﬂ', My = Nio and My = po.Mjja < Azo], where (,ua.M"]ff » Nyj. The form of
{(pa M)A > Ny is either (pa. M)A > (o Mi[a <= A1))Ay - or {pa.[o}d")A - M4,
(Case 2.1.1) My = (pa.M|[or <= Ay 1)) A1,r. This case is proved by 1H and the lemma 3.4 (3).
(Case 2.1.2) Ny = M{'4,. By apecifying the consecutive applications of (P11), the form of
per[od M > M! may be expressed by
w0 oo (ucr.[on] . {pan fau | PYA A - A, AY,
where A9 > A for any 5, and P > P, does not have the form of (eA.IA)P)E » P
laal{penr.. . JA™ = Mj I obtained from (P7), the claim is proved easily.
So, in the following, we consider the case that it iz cbtained from (P13). If we specify the
E;nsecut.ive applications of (P13), the form of poayp. Jeo] (s, .. JAM » pon. M) mey be expressed
pao.fog](poy [en] . .. (pom QJAT™ .) A
- gty Qo [oem <= AT [ty = tm-1]. - [on &= A)[ey := oq),
where A > AP for auy i, and Q > @2 does not have the formh of [a] (25.Q)5 » Q4[8 «
B1]|8 == o]
{Case 2.1.2.1) n > m. In this case, we have
@ = [(Hme 1-[0ms 1] . . . (lrn.[on] P)AT . A = [om] &,
end we may suppose that Qz = [om]Q5. Note that Q = [ma]P if n = m. Then ua.ja)M” > MY
may be expressed by
ticxg. o). . (porm Jom)@ VA . YA - QLA AV,
where @}y = P .ﬂ,"’ .. &A™ Furthermare, in this case, since neither FV(Al+)y, _ Fi(Am)
nor FV () does not contain oy for any {, we have
Qzlorn < AT [oem = Gtmnn]... a1 & AN [ar = o]
= (lomlQom < A2 ... £l == o]
= [ao) @A™ ... A
Therefore, we have
My = QAT . AN Ay,
M = oo (o] @A™ .. Ao += Aro] = pag.|oo) QAL ... B Ao
Hence we can find M3 = QA ... A3" Aae from IH.
{Case 2.1.2.2) n < m. In this case, we have
P = (uoms1.[ome1] . -(#ﬂm-lﬁm]Q)J‘i{m] ”.}‘i'tm- "= [J'-f-ﬂfn+1-P')4‘i1M 1).
and we may suppose that Py = {(poa.1.Pjlan1 <« .ﬂlT 11]};@%‘: Y Then the form of
pceo.foa] (i .. JAY = piag. A5 may be supposed to be
Pn"’ﬂ-[a’ﬂ](ﬂ-ﬂ1 +[ﬂ'1] o (.u-ﬂ'rl.-l- 1 -[':?n-l- 1]1}')‘&'[114 . -}-E(‘:‘
> potg Palone 1 & A5 Mlene s := o] oy 4= A3V]l o= ag),
and gimilarly to the case 2.4.2.2, we have further
= pero.Bhlonet = AV A [one 1 = en].
Therefore, we have
ﬂﬂ = H.&‘-:ln} ‘e .Aﬂ.i”fiﬂ'
= (pone 1. Blans s = A7 VDA VAT AV Ay,
My = poo.Floner = A 2 (@1 1= ao]lon + Az0]
= p0ns 1. P[0 1 &= .112“ L ..‘itzu.gzcrL
Hence we can take A = pon. 1. P01 = j’(amﬂ ... A Aya) from TH.
Other cases are proved similarly to the above cases, D

The properties we need to prove the confluency are the following two lemmas.

Lemma 3.8, n n n
K M > My and M » My, then there is Mg such that My » My and Mj = AMa.

Lemma 3.7, "
(1) If M >* N, then M = N for some n.

(2) If M = N for some n, then M & N.

The lemma 3.6 can be directly concluded from the lemma 3.5, and the lemma 3.7 can be verified
in a straightforward way.
The confluency of the call-by-velue Au-calculus is proved from the Jemmas 3.7 and 3.6 as follows.

Proof of the theorem 3.1. By the lemma 8.7 (1), M > M; and M = M> for some 1 and m,

therefare, by the lemma 3.6, we can find Mg such that My » Mz and My = M. Hence we have
My My and M, " M3 by the lemma 3.7 (2). O

4 Modified CPS-translation

In this section, 1o prove the strong normalizability of Ay u, we give the definition of the modified
CP3S-translation and prove that it preserves the typability of terms,

The modified CPS-translation, which was presented in [6], [7], [10], [15] and s0 on, is an
interpretation from the Au-caleulus to the A-calculus. From a logical point of view, it can be
considered that the translation from the classicat logic to the intuitionistic logic. Note that this
translation preserves the typability and the reduction relation.

Firstly, we define the domain-free system of the polymorphic typed A-calculus. This system is
a domain-free variant of the Girard's system F.

Definition 4.1. (Domain-free polymorphic typed A-calculus)

The doirain-free polymorphic typed A-calculus is defined as follows. In this system, both A-
variables i, v, ... and p-variables o, 8, ... are treated as the same sort of variables. The types of
the domain-free polymorphic typed A-calculus are the same as thase of Ay .

(1) Terms (denoted by K, L...)

K u=z|de K |AMK|KK| Ko
{2) The reduction relation 1>, is defined from the following rules.
(8) (L)X g, Liz = K],
(%) (ALL)a gy LIt :=a),
(7) M Kztg, K (if & FI(K)),
where K iz not necessarily s value. We call the reduction relation £z, the one-step fn-reduction.

(3) The typing axioms and rules of the domain-free polymorphic typed X-caleulus are the

following.

Trz:T(z} (ase)

Fu{zx:o}FK:7
I'FAz.K:0—>7

FH:a— ;

I'KL:T - E}

'EK:a THE :Vig
THALK :Vio vI) THRr:olti=1] (VE)

In the rule {¥]), FV{I'} does nct contain {.

Theorem 4.2. (Strong normalizability of polymorphic typed A-calculus)
Every typabie term of the domain-free polymerphic typed A-calculus is strongly normalizable.

The strong normalizability of ¥ was proved by Girard, and his proof in English is found, for
example, in [12]. For variants of F, the proofs of the strong normalizability were given, The strong
noymalizability of the domain-free polymorphic typed A-calculus is easily proved from that of the
Curry-style polymorphic typed A-calculus by considering the map translsting both At. AL and Afe
to M. The proof of the strong normalizability of the Curry-style polymorphic typed A-calculus js
found, for example, in 3]

Definition 4.3. (Modified CPS-translation)
The modified CPS-translation, which is & map from a term of Avp to a term of the domain-free
polymorphic A-calculus, is defined as follows. We define the modified CPS-translation M for a
Ap-term M, the map Af : K for a Mu-term M and a Mterm K, the map O{V) for a value V and
the map ¢? for a type o simultaneously.
(1} M = Me.(M : k) (k is a fresh A-variable).
(2} V:K = K§(V) (V is a value),
po MK = (M: D= K],
VUK =d(V)O(I)K (V and U are values),
MU:K=M: dmm®U)K {M is not a value and U is a value),
VN E=N:dn®V)nK (Visa value and N i not a value),
MN K =M: N : nmnK) {Neither M nor I is a value},
Vo: K = &(V}e'K (V is a value),
Mo K =M dmmo'K (M is not & velue),
where m, 2 are fresh A-variables and J is the A-term Az.z.

(3) (x) =1,
DAz M) = Az M,
S{ALM) = ALM,
P{lolM)=M:c.

4 =t,
1%=1,
fo—= 1) =0¥ - -7l

(vt.o)¥ = Wt.~—o?

Notation 4.4,
() For contexts, we define the translation T'? and - A? as follows.
{)HT={(ry:01),...,(Ta:0q}}, then T¥ = {{z4 : &f),... . (zn : ¢1)}.
(ii) If A = {o*,... 0" }, ther -A" = {{ay : ~a7), ..., (or : mo2}}.
(2) For any terin A which is not a value, and any extended argument A, the term A A : K has
the form of A : L. So we write ¢(A, K) for this L. The map ¢ is syntactically defined as follows.
(i) (V. K) = Am.m@(V)K.
(ii) ¢(N, K) = am.(N : dnmnK).
(iii) ¢lo, K) = dm.moiK.
(iv) $(V, K) = M. B(V)nkK.
Then the map M : K is defined as follows:
V: K = Kd(V), podf K = (M : I[e = K],
VI K = 0(V)RU)E, Vo:K=0(V)oIK,
MA: K=M:3{AK).

We prepare the following lemma to prove the properties in this and the followlng sections.

Lemma 4.5.
(1) {gft == 7])? = o[t := 1.
(2) FV{o) = FV(a%), FV(T) = FV([%) and FV(A) = FV(-A").
(3) If FV{K) C FV(L), FV{Af : K} C FV(M : L}.
(4) For any term A, the following fold.
(i) FV{®(M}) C FV(M).
(i) FV(.!E_: KYC FV(AIYUFY(K).
(ili) FV(M) C FV{M).

=10 -

(5)Ifz¢ FV(M), (M : Kllz=Li=M: K[x:=L].
(6) FV(4(A, K)) C FY(A)U FV(K).

. =(MA:K) (M not a value),
(DM SAKY 1A K) (M o vadue),

Proof. (1), {2), (3), {4} end (5} sre proved by induction in a straightforward way and (6) is
proved from (4). (7) is also eastly proved. If M is not a value, the assertion is clear from the
definition of @. In the case M is a value, we have LHS= ¢(A, K)B(M). Therefore, if A = N (N
is not a value}, LHS= (Am.(NV : e K)NE(M) & (N : ek)[m := &(M)]. Hence we have
LHS= N : \n.B({M)nk =RHS from (6). Other cases are similarly proved. O

In the following, we show that the modified CPS-translation preserves the typability of terms.

Lemma 4.8,
In the domain-free polymorphic M-caleulus, if we have TU{x : T} F K : 0 andT + L : 7, then
it follows thet T + K|z .= L) : 0.

Proof. This lemma is proved by induction on the proof of TU{x: 7} F K: 0. O

Theorem 4.7.
For any term M, type o, and contexts T, A, if T; A+ M : o holds in Ay p, then the following
hold in the A-calenlus.
(DTYU-AYF M —-o?
(2 TU-ATU{(k: o} F{M: k)L
(3) TPU-ATE (M) : 0® (M iz a value).

Proof. This theorem is proved by simultaneous Induction on the proof of DA Fy, , M : o,
Yhen M is a value, we prove only (3), since (1) and {2) follows from (3) immediately. When A
is not & value, we prove only (2), since (1) follows from (2) immediately.
(Case 1) {ass). If the proofis TU{z: 0}; AL 2 : o, we have to show P U {{z : 09)} U-ATF
x : o9, which trivially holds. FAR M CALN
. M =T H o
{Case 2} (— E). Suppese that the proof ends with FAFMN:T

we don't have to consider (3) in this case, gince MV iz not a value.

{Case 2.1) If both Af and N are values, MV : k = &(M)P(N)k holds. From TH {3}, we have
MIU-AY F (M) : 07 = o9 and T U SAP F (N} : o9 Therefore, we bave T LU —AY |
D(AYB(N) : >~1¢ Hence we have [T U AU {(k: —r9}} - S(M)}B(N)k : L.

(Case 2.2) If M is not a value and NV is a value, MN : k= M : dm.om®(N)k holds. We have
reu-A? - §(N} : o® from IH (3), therefore, T*U-AU{(k : =79} F Am.m®B(N)k : ~(09 — ——1%)
is provable. Note that —~{¢? — —--1%) = —(o —= 7)? On the cther hand, from IH (2), we
have T¢ U-ATU{{l : —(c — 7))} F (M : I} :1. Therelore, from the lemma 4.6, we have
[U-A? - (M : D)= dAmm®@(N)K] iL, where (M : D[l := dm.m@(N)k] = Af : Am.m®(N)k
from the Jemma 4.5 (5}.

Other cases are similarly proved. O

. Note that

5 Soundness of the modified CPS-translation

In this section, we define the class of the reductions of Ay u whose strictiness is preserved by the
modified CPS-translation.

It was proved in {10] that the modified CPS-translation preserves the reduction relation o
By this, we can reduce the proof of the streng normalizability of Ay to the strong pormalizability
of the A-calculus. However, even if we use this idea, the proof of the strong nermalizability of Ay p
is not simple, since the modified CPS-translation does not necessarily preserve the strictness of
the reduction, that is, there are Ap-terms M and N such that Af * N and & = N hold. This
fact is one of the obstacles to the proof of the strong normalizability of Ay, since that suggests

- 11 -

E‘E possibility of existence of an infinite reduction sequence of Ag-terms Afy > My ¢> ... such that
M Hzp". .. isnot infinite in A-caleutus. So, in this section, we clarify the class of the reductions
whose strictness are preserved by the modified CPS-translation, and by using this result, we prove
the strong normalizebility in the following sections.

The reason why the modified CPS-translation does not necessarily preserve the strictness is that
it eliminates the information of "redundant” parts of Ap-terms. For example, if we take P = ua.z,
then for any term N, PN = Ak.(fz)jo 1= (N, k)] = M.z does not contain any information of
N. 8o if we have N > N’, then PN b PN holds, but PN and PN’ are the same term Ak.Jz.
We introduce the following new notions to clarify such a situation. An eliminator is the term A
such that M : K does not have the information of K. An inessential subterm occurrence is the
subtetm occurrence N of a term M whose information does not remasin after translating M to

M. In the above example, P is an eliminator, and ¥ is an inessential subterm occurrence in PN.
These notions are formally defined as follows.

Deflnition 5.1. (Eliminators and inessential subterm occurrences)

We simultaneously define elininators, the relation ; between a term and its subterm oceur-
rence, and the relation ¢; between a p-variable occurrence and a term as follows. We call ¥ an
inessentia] subterm occurrence of M if N C; M, and we call a an inessential variable occurrence
of M ifaeg; M '

(1} Eliminators

(i) If o €, M holds for any occurrence of « in M, then ua M is an eliminator. Note that
this condition includes the case of @ ¢ FV{M), that is, if « does not occur in M then pa. M is an
eliminator.

{ii) If M is an eliminator, M N, NM, Mo are eliminators. Note that, even if N is not a
value, N M is an eliminstor when M is an eliminator. '

(2) Inecssential subterm occurrénces

GYNCide.MifNC M.

(N, MMAENC M.

D NCpaMif N M

(iv) N Cq [e]M i N C; M.

(Vi) NC; Mo if NC; M.

{vil) When M, is an eliminator, N C; My Mo if either N C; My or N C Mo,

(viil) When Afy is a value and M is an eliminator, N <; Ay Mz if either N C M or
N Cy Ma.

() When Ay is not an ellminator and either My is not & value or My is not an eliminator,
N C; My Mo if either VW <, My or N C; Ma.

{3) o €; M if o is a free p-varinble occurrence in M and, for the subterm occurrence [a}N in
M which named with this e, either jo]N C; M holds or N is an etiminator.

N c M and N ¢, M, we call N an essential subterm occurrence of M, N C, M denotes
that N is an essential subterm occurrence of M. If a is a p-varlable occurrence in M and o ¢; M,
we ¢all or an essential y-variable occurrence of M. Note that, a free p-variable occurrence o in M
is essential iff the subtertn occurrence [N in Af which named with this a occurs essentlally in Af
and A is not an eliminator. o €, M denotes that cx is an essential p-variable occurrence of M.

The notion of eliminators is characterized in the following lemma 5.8. Nate that if Af includes
o ¢, then pce. M is an eliminator, that is, in term of [10], vacucus u-abstractions are eliminstors.
The reason why we separate the definition of essentiality of subterms and p-variables is that
even if M hLas [o]N as its essential subterm occurrence, this o is inessential occurrence in Af
when NV is an eliminator. For example, M = [o](p5.7) is essential occurrence in Af itself, but
M = Mek(pBa o) = Akk(IT)[:= of does not contain a, so the cccurrence of o in M s not

esgential.
We classify the reductions of Avu as follows.

Definition 5.2.
{1) Suppose that Af & N. M £° N denotes that the redex is an essential subterm occurrence

in A{. M ! N denotes that the redex is an inessential subterm occurrence in Af. Similarly, for
any symbol a = X, 41, 8, 7, Ay, sA or &, we define D and o).

-12 -

(2) Suppose that M t, N aud its redex is (ua.P)Q. M b, N denotes thet P has an a-named
value o)V as its subterm, M ©,- N denotes that P has no a-named value [a]V as its subterm.

(3) Suppose that M By N and its redex is (uoP)Q. M & N denotes that there ic an
a-named value [V which is an essential subterm accurrence in E" A ol N denates that any

oceurrence of a-named value [a]V in P is inessential.

Note that. if the redex (po.P)A oF a reduction does not have any a-named subterm in P, the
reduction is u~-reduction.
The main result of this section is the following theorem.

Theorem 5.3. _ .
If either M >, N orMb:: N then Hb‘;u'ﬁ. IfejtherMb;"; N, M Df‘_ Nodp*N then

M=T.

The soundness of the modified CPS-translatlon follows immedistely from the theorem 5.3.

Theorem 5.4. (Soundness of the modified CPS-translation}
It M N in Avp, then M 03, N in the domain-free polymorphic A-caleulus.

The soundness of the modified CPS-translation has been already proved by Fujita in [10].
Hawever, the class of reductions of Ayu-caleulus whose strictness is preserved by the modified CPS-
trenslation was not precisely defined. So, in the following, we prove the theorem 5.3.

Firstly, we show the next lemma.

Lemma 5.5. FV(M: 1) (if M Is an eliminator)
: an eliminetor),
(1) FV{M : K) = { FV(M:D)UFV(K) (otherwise).
(2) Suppose v ¢ FV(K). If there is an essential occurrence of o in M, then o € FV(B(M}) N
FV(M : K)nFV(M). Otherwiss o ¢ FV(®(M)) U FV(M : K}u FV(M).

Proof. These are proved by induction on Af simultaneously.

{1) Suppose that M = po. My. Note that uee. My ; K = (M, : Ije := K] from the definition.

If po.My is an eliminator, then My has no essential occurrence of o, therefore, @ ¢ FV{M, : I)
from I (2). Hence we have (M, : I[oe := K] = (M, : Dla:= I) = (po. M : 1),

If por Ay is not an eliminator, then there is an essential occurrence of o in M, therefore,
& € FV(My : I) from IH (2). Then we have FV (M1 : Do := K]} = (FV(Afy : I) - {cPUFV(K)
and FV(pce My 2 1) = FV((M, : Do := 1)) = FV(M, : I) — {a}. Hence we have FV{{M; :
Nee:= K]) = (FV(My : I} ~ {a}} U FV(K) = (FV(pa.M; : I}) U FV(K).

Other cases ave proved in a straightforward way.

(2) {Case 1) M = o],

{Case 1.1) There is an essential occurrence of o in [a)Afy. Note that @ € FV{[a]My : K) 0
FV({a]M/} is immediately proved from a € FV(®([a)M:)), 20 we show a € FV(®([o}M1)) in the
following. In this case, either Afy is not an eliminator or ab & occurs essentially in M. If Af, is
not an eliminator, we have o € FV(Ay : o) = FV(®{|a]My)) from IH (1). If there is an essential
accurvence of o in Afy, we have & € FV/(Afy :) from IH (2). Since FV(M, : I) C FV (M, :)
from IH (1), we have @ € FV{Afy : a) = FV(®{[o|M1)).

(Case 1.2) There is no essentlal occurrence of o in {a)Afy. Similarly to the above case, we show
only a ¢ FV($(la]df1)). In this case, Ay is an eliminator and there is no essential occurrence
of a in Afy. Since Afy is an eliminater, we have FV(M; - o) = FV{AL; : I) from IH (1). Since
My has no essential o, we have & ¢ FV(Ay : I) from IH (2). Hence we have o ¢ FV(Af; : o) =
FV(®{[a]dh)).

(Case 2) M = A Mz. We show only the case where neither Ay nor Mp is a valve, since other
cases are similarly provel.

(Case 2.1) Al is an eliminator, In this case, any subterm accurrence in Afp is inessential in
A2, so there is an & € Afy ALy iff there is an o €, Afy. If there is an o €, My, from IH (2),
we have a € FV(My : I}, which is a subset of FV{Af1Af; : I} from the definition aud IH (1). If

-13 -

there is wo o €, M;, from IH (2), we have & ¢ FV(M; : I). Since Afy is su eliminator, we have
FV(My : I) = FV (MM : K) from IH (1).

(Case 2.2) My is not an eliminator. From the definitlon sand IH {1), we have FV(MyMz :
K) = FV{My : dm.(Ms : dnannK)) = FV(afy : YU FV(dm.(Mz : An.mnK)). When there is
an o €, M Mp, o occurs essentially in either A4y or Mg, then we have either o € FV(My : I} or
a € FV{Mz : \n.mnK) from TH (2). Therefore, we have & € FV(M Mz : K). When there is no
a € My Afz, o occurs essentinlly in neither Ay nor M, then o § FV(My : TUFV{M; : dnmnK)
from IH (2). Hence we have o« ¢ FV{M My : K).

Other cases are similarly proved. O

By thiz lemma, we characterize the notion of the eliminatorg as follows.

Lemma 5.6.
{1) If M s an eliminator, M : K = M : L for any A-terms K, L.
{2} If M is not an eliminator and K 3. L in the A-calculus, then M : K L"Bq M:L

Proof. Let x be a fresh variable. From the lemma 4.5 {5), Af : K = (M : 1)z := K] for any
A-term I, By the lemma 5.5 (1), If M is an eliminator, = ¢ FV(M :). Then (M : z}|r = K] =
(M : z)[x = L], so (1) s proved. If M is not an eliminator, x € FV(M : z). Hence we have
(A . 2|2 = K] &g, (M :z)|x:= L}, s0 (2) is proved. O

Furthermaore we show the next lermma.

Lemma 5.7.
For any M in which there is po a-named vahie ag its essential subterm occurrence and any
extended argument A, M is an eliminator iff Mo <= A is an eliminstor.

Proof. For any M in which there is no a-named value as its essential subterm occurrence, we
prove the following two claims by induction on M slmulteneonsly.

(1) For any subterm occurrence N in M, N ¢, M iff N[a « A) C. M[a « A),

(2) M is an eliminator iff M[a < A] is an eliminator.

Note that we use the notation N C M to express occurrences of subterme, so Nla <= 4] &,
M|a «= A] in (1} denotes the subterm occurrence N|a «= A] in Mo « A] corresponding to the
subterm occurrence IV in M.

(1) (Case 1) Af = [o]M). By the assumption, M is not & velue. If N C; (o], then
N C; My holds. Theyefore, we have N[+= A] C; Mi|a <= A] from TH (1). Hence we have
Nix = 4] C, la]Mi[ax <= AJA. If N C, [o|My, then either N = o]y or N C. Afy. When
N = |a]Ady, we have to show N[o & A] C, N[= A), which tiivislly holds. When N C. My,
we have N|a < A] Cc Mila = A] from IH (1). Since My is not a velue, we have N <= 4] C,
Mija < A]A, therefore, N[a < A] C, [a]Mi]a «= A)A.

(Case 2) M = My M and N C; MiAfa.

(Case 2.1) N C M. In this case, either N' C; Afy or both M; i5 a value and Af is an eliminator.
If N C; Ay, the claim is proved from IH (1), Otherwise, Afz[a <= A] is an eliminator from IH (2),
and My[o & A] is a value. Hence we have Nla += A] C; My[a & AlMz[or <= A).

{(Case 2.2) N € M. In this case, either N C, M or M is an eliminator. ¥ N C; M3, the
claim is proved from [H (1). Otherwise, Afj[or <= A] is an eliminator fram 1H {2), therefore, the
claim is proved.

Other cases are similarly proved.

(2) {Case 1) M = pf.M.

{Case 1.1) uS.My is en eliminator. Note that, we may suppose that § ¢ FV(4) by renaming
bound variables. In this case, we have to show that any oceurvence of 5 in Al (o < A is inessential.
Suppose that [A]Q is an arbitrary S-named subterm occurrence in Afifa < A]. Then {Q has
the form of [f]Pla < A) for some F-named subterm occurrence |[S|P C My. Since pS.M is
an eliminater, we have either [5]P C; My or P is an eliminator. If [8]P C; Afy, then we have
[B]Q Cs Ao+ A] from [H (1). If P is an eliminator, then @ is an eliminator from IH (2) since
Q = Pla < AJ. Therefore, any occurrence of 4 in Afy [a « A] is inessential.

- 14 -

(Case 1.2) uB.M is not an eliminator. In this case, there i an essential occurrence of # in
My, that is, there is » S-named subterm eccurrence [8]P C. Ay such that P is not an eliminator.
From IH (1) and (2), we have that [§] Pl < 4] €, M| < A] and Pl < A] is not an eliminator.
Hence .01 o <= A) is not an eliminator.

Other cases are similarly proved. O

By the lemmas 5.6 and 5.7, we prove the follgwing property.

Proposition 5.8,
(1} For any Ap-term M, value V, and A-term K, the following hold.
(i) ®(M)[z := &(V)] = &(M[z := V]} {if M i5 a value).
(#) (M : Kz := #(V)] = Mz := V] : K[z := §(V)].
(i) Mlz = 2(V)] = M|z := V].
(2) For any Ap-term M, type o, and M-term K, the following hold.
(i) (M) := 09 = $(M[t := o]) (if M is 2 value).
(i) (M : K}t = 0] = Mt := 0] : K[z := o).
(iif) Mt := 0% = M[t = o).
(3) For any Au-term M, type o, y-variables o, 8 and M-term K, the following hold.
(i} (M) := f] = B(M[a :=]} (if M i a value).
(it) (M: K)fee:= 8] = Mla:= §] : K|a:= §].
{iii} M[oe = §] = M := f).
(4) For any Ay-term M, extended argument A, and A-term K, if o ¢ FV(A) U FV(K), then
the following hald.
(1) P(M)|a = $A, K)o pr O(M[a <= A))[er 1= K] (if M is a value).
(i) (M : L){a := $(A, K)] Ban (Mla + A]: Lla = ¢(4, K)])[e = K].
(1ii) Mo == ¢(A, K)] Baae Me = Al := K.
B o n denotes = if M hag no a-named value as its essentinl subterm, and denotes DB‘? otherwise.

Proof. We show only {4), since (1), (2) and (3) are more simply proved in a similar way. In the
proof of (4}, we must be careful about whether 2, 3t s b} or=

{i} (Cage 1) . It is clear that z has no any a-named \ﬂue as its-essential subterm, therefore,
what we have to show is &(2)[a 1= ¢(A, K)] = B(z][a « A|}|a := K], which means » = r.

{Case 2) M = Az.My. MNote that Az.Afy has no a-named value ss its essential subterm
iff My has no a-named value as its essential aubterm, therefore, B2, x. pr, = o ay,. From IH
(iii), we have M 1= ¢(4, K)| Bar, Mila < A]la := K], hence (Ax.M}a := $(A,K)) Boan
(Az. Mo = A} := K]

(Case 3) M = [a|My. In this case, Bg [gay, 38 g, if My is a value, and B raan, 15 By
otherwise. This case is proved as follows.

LHS = (M) : a)fa == ¢(A, K]

Boas (M| <= A) : oA, K))[a:= K] (from IH {ii)}

g & [= A)A : K)o := K]

= (Mo <= A4 o)fe := K] (since o ¢ FV(K))

= #(([a]M)lo = Al = K|

= RHS.
In the third line, from the lemma 4.5 (7}, we have that 5y 18 B gy if Afy i3 a value, and that it is
= ptherwise.

(Case 4) M = At.My. This case is similarly proved.

(i) {Case 1) Af is a value. This case is proved as follows.

LHS = (L®(M))[a == ¢{A, K)]
B ar Dl o= ¢4, K)| @M = Al)[o = K] (from (1))
= (Ma < A : Lo := ¢(A, K)|)[a:= K] (since a ¢ FV{L[or := ¢(4, K)]))
= RHS.
(Case 2} Af = pf.My. In this case, B ua.ar, 15 B4 0y, This case is proved as follaws.
LHS = {M; : I)[8 = L][e := ¢(A, K)]

— 15—

= (M Mo := (A, K))[B := L] := ¢(A, K| (since £ § and 3 ¢ FV(g(A, K))}
Boar, (Mi[ex & A : o= K][8:= L]o = ${A, K)]] (from IH (ii))

= (Mila = A]: DB 1= Lia' = A K)]llo = K] {since ¢ FV(Llor:= (4, K)])

= RHS.

(Case 3) ALy M.

(Case 3.1) Afy is not a value and Mz is a value. In this case, we have the following.

LHS = (M : dom.m®(Mz)L)jo 1= ¢{A, K)]
Bty (Mi [<= A] : dmm®(Ma)oe := $(A, K)|L)[or == K] (from IH (ii})
E’{I;-’g [x <= A] : mmB(Ma[o < A))L)[or:= K] (from IH (i))
= 3,
where, by the lemma 5.6, ' in the third line is By s, if Mo <= A] is ot an eliminator, and it
is = otherwise. We prove LHSE, as, as, RHS as follows.

{Case 3.1.1) My hes no a-named value as its essential subterm. In this case, since >, py, is =,
we have LHSE'RHS.

{Case 3.1.1.1) M, is an eliminator. In thls case, since any subterm occurrence in My is inessen-
tial, My M has no a-named value as its essential subterm. Therefore, we have to show LHS=RHS.
Since, from the lemma 5.7, Mi|a < A] is an eliminstor, ' is =. Hence we have LHS=RHS.

{Case 3.1.1.2} M/ is not an eliminator. In this case, My Az has no a-named value as its essential
subterm iff Af; has no a-named value as its esgential subterm, so we have to show LEStr, 39, RHS.
Since, from the lemma 5.7, Mo < A) is not an eliminator, B’ is 2, as,, 50 this case is proved.

{Case 3.1.2) M, inctudes an a-named value as its essential subterm. In this case, since My Mz
includes an c-named velue es its essential subterm, we heve to show LHSe>j, RHS. Since ©4,p, is
b;,,, this case is proved.

Dther cases are gimilarly proved. O

The theotrem 5.3 iz proved from the proposition 5.8 as follows.

Proof of the theorem 5.3 We prove the proposition by showing the following by induction cn
M > N simultanecusly: if M > N, then
(i) (M) l::-ﬁ.E (N} (if M is a value),
{ii) M+ K B> B B: K (for arbitrary h-term K),
(i} 7T Dﬂﬂ W,
where g, is 03, if either M 5, N or MD;:, and it is = otherwise.
At first, note that, (iii) is easily proved from (ii) by taking variable & as K in {ii), and i M is
a value t.hen (ii) is easily proved from (i). So we prave only (i) if M is a value, and otherwize we
prove only (ii}.
(Case 1) Af is a redex. It shouid be noted that, in this case, the redex is always essential in M.
(Case 1.1) (F) : (Az. M)V & My[z := V] We show (ii), since (Ax.M1)V is not a value. Since
this reduction is 1>€,, what we have to show is ({Az.My)V : K) DE,, (Ml == V] : K) for any
Atermn K. It is proved as follows.
(MY : K = 80 M)B(VIK
= (e IRVIK
[ﬁnE[:c = B(V)|K
= Mi[x:=V]R (by the proposition 5.8 (1))
= (A (M [= V] DK
bapMy[z:=V]: K (from the lemma 4.5 (5), since k ¢ FV(.M1 [:=V])).
(Case 1.2} () : Az Va2 V Wha.t we have to show is #(Az.Vz) 5, B(V). Since x € FV(V),
we have z ¢ FV(&(V)), therefore, P(Ax.Vir) = Axk.®(V)ak 1> gy Az Qﬂ?’)r trpn B(V).
{Case 1.3) (8) : (At.A)a > M, [t »== @], This case is similarly proved by the proposition 5.8
2).
@ (Case 1.4) (rn) : [o){p8-V) 1> V|8 := a]. This is proved by the proposition 5.8 (3) as follows.
‘I'([ﬁ]{#ﬁV J=(V:I)[B:=a]
= (V[#:=a]:T) (by the propesition 5.8 (3})
= 1o(V|A =)

-1G -

B, ®(V[8 = a]).
(Case 1.5) (un) : por.Ja] My & My, This case is proved as follows.
polalMy = I(A, : oo = K]
= I(My 1 K} (since a @ FV(AL})
D’ﬂ,_.ﬂ.ﬁ : K.

(Case 1.6) {u) : (e M)A o po.My[o <= A). Since (poAy)A e oMy 4= A] holds iff
Afy contains an r-named value as its essentisl subterm, we have to show ({pa.Afi)A : K) Pa g,
(po. Myl <= 4] : K), where the symbol B ay, is that of the proposition 5.8. This cese is proved
as follows,

(po M)A : K = (M : Do = ¢{A4,K)]
Baddy (Milor = A): D)o := K] {by the proposition 5.8 (4))
= pa Mo €« 4] K.

(Case 2) MMzt Ny Mo, From IH, we have &(M;)= &(Ny) if Ay is a value, and My : K BNy ¢
K, where B’ is B3, if M; 05, Ny or My b, Ny, and It is = otherwise. Note that, if Myisa
value and Mz is an eliminator, then we have to show M AMp : K = NyMp : K since the redex is
inessential in M Mz, otherwise we heve to show MMz : K&’ NjAp : K.

(Cese 2.1) Both My and M; are values. We have My Mp 1 K = ®(M)P(M) K" 8(N JB(Ma) K
from IH.

{Case 2.2) M, is a value and A is not a value, In this case, we have MiMy : K = My :
An@(MinK. From the lemma 5.6, we have Adp : An.@{My)nK = Mz : An.O{N }JnX if Afz is an
eliminator, otherwise My @ An.O(My)JnK &' Mz : dn.®{NynK from IH.

(Case 2.3) M; isnot a value. From TH, we have MM, : K = M, : (Mo, K)B'Ny - ¢(Mp, K) =
MNiMz: K,

Other cases are similarly proved from IH (ii) or (iii). O

6 Strong normalizability of t>,-
In this section, we prove the strong normalizability of b, for untyped terms.

Proposition 6.1. (Strong normalizability of t-,-)
There is no infinite sequence of terms My, My,. .. such that M; =, M. for any i.

The strong normalizability of p-reduction is very complicated to prove. For example, let Ay be
(uee. ... [o]V.. (8. N), then My reduces to My = per.. .. [a]V{(pB.N) ... by p* -reduction. Then
the subterm uf.N is an “argument” of the p-redex in M4y, and it is also & "function™ of the p-
redex in A, so it can be considered that p+ -reduction produces a new "function™ That makes
the proof of the strong normslizebility of -, difficult. On the other hand, the ™ -reduction does
not increase such new "functions”, so the strong normalizability of gy~ -reduction can be proved
more easily than that of g-reduction,

In fact, by the result of the previous section, the strong normalizability of > ,- is sufficient to
prove the strong novmalizability of &-. That is proved in the next section.

Definitlon 6.2.
Firstly, we define the maps ¥ and | - | simultaneously, then we define the map #.
{1) For a term M and an occurrence of subterrn /N in M, the natural number w(N, A1) is defined
as follows.
(i) #{(M M) =1.
(i) If N C M, then w(N, Ax. M) = n(N, A}
(iil) If N C M, then n{N, At Af) = w(N, M).
(iv) If N C M, then n(N, Mo) = n{N, A},
(v} If N C M, then «(N, pv. M) = (N, M).
(vi) If N < M, then (N, [o]M) = =(N, M)
(vii) I N C M, then w{N, LAf) = {L| - #(N, Al),
(viii) If ¥ < Af and AS is a value, then w{N, M L} = |L] - w(N, AL}
{ix) If N C M and M is not a value, then a{N, AL} = w(N, Af).

-17-

(2) For a term Af, the natural number |A{] is defined as follows.
(i) If M has an a-named subterm, |(pe. M)Al = Y #([a]P, 21} |P), which is the sum
[e] P A
for all c-named subterm oceurrences in M. -
(i5) If M bas no o-named subterm, |(xa. M)Al = 1.
{iii) If M does not have the form of (pe.N)A, |M| = 1.
(3) #Af iz defined ag follows.
(i) If there is a p-abstraction as subterm of M, #M = Y #{pa.P, M), which is the
. PCM
sum for all subterm occurrences in M that are p-abstractions.
(ii) Otherwise #Af = 0.

Flrstly we show some propertiea of the functions defined above. Then we show that M >,- N
implies #M > £N.

Lemma 6.3.
Suppose that A is an arbitrary extended argument.
(1) If M is not & value and N C M, then we have
() 1M4] = |M],
{ii} #(N,MA) = n(N,M).
(2) If N ¢ M and M does not include any o-named value as its subterm, then we have
() |M[e «= 4] = M,
{ii} #{N[a < A], M|a <= A]) = x(N, M).
(3) If Mg C Mz C My, then w(Ms, M) = #(Ma, M2) - w{ Mz, My).
(4) If both N and N' are values, or neither N nor N' is a value, n(N, M[N]) = =(N', M|N'])
for any context M[]. The context M| | is defined as follows.
M1 = [} Az) | ALQ[) | pee(MD)) [(MO | NOILT) | (M Do | fo)(M()).

Proof. (1} (i) By the lemma 2.9, if M is not a value, M is either (ua.N)B, (UV)EB or (Vo)B.
If M = {se.N)B, we have |(pa.NVBA| = lun.N| = |{pa.N)E| by the definition.

{ii) If A is an underlined value V, we have LHS= (N, VM) = |V| «(N, M) =RHS since
|[V]| = 1, and otherwise x{N, A A) = w(N, M) is as the definition.

(2) (1) and (i) are proved by induction on A simultaneously.

(i) We show ouly the non-trivial case, where M = (ug.M")5 and 8 € FV(A{'). Sup-
pose that [A]P,...,[]P, are all of the S-named subterm occurrences in Af* Then [fA[x «
A},....[8]Pule < A] are all of the S-named subterm accurrences in M'[or <= A]. S0 we have

RHS = [(8.M")B) = 3" ={{8]P,, M) - R,
=1

LHS = [(z8.M'|a < A)Bla « 4] = Z:r([ﬂ]!—’,[a = A|,M'[a < A]) - |B o« A

For each 1 € i < n, we have |Fj| = IP,[a: <= Al{ from IH (i) snd #{[8)5;, M") = x([f1P[e «
A), M'[a = A)) from [H (ii). Hence we have LHS=REHS.

(ii} We show only the non-trivial case, where M = [a]M’ and N C Af" Note that M’ is not a
value from the assumption. This case is proved as follows,

RHS = #(N, [o]M) = =(N,AL")
= a{N[o = A, M|« A)]) (from IH (ii))
(N[< A, Mo = AJA) (from (1))
m{Nla & Al o] Mo < A]4)
= RHS.

(3) is proved by induction on Mj in a straightiorward way.
(4) is proved by inducticn on Af[] Note that Af[N] is a value iff M[N'] is a value. D

- 18 -

The next definitions are only supplementary notious to make explicit of the subterm occurrences
we consider.

Definition 6.4,
(1) The *-iarked terms are defined as follows.
(i) If M is & term, Af and M* are +-marked terms.
(i) 1f Af is & *-marked term and Af does not have the form of N*, then M* is a #-marked
term.
{iii) If M and N ave +-marked terms, Az .M, At.M, uo.M, MN, Mo and [o] M are »-marked
terms,
(2) For & »-marked tenm A, E(M) denotes the term obtained by eliminating all «’s from Af.
(3) A +-marked term M is a value if E{Af) is a value. Extended arguments for #-inarked terms
are defined in a similar way to those for terms.
{4) The p-reduction for +-marked tetms sre defined from the following rules.
() (po. M)A poMa « A).
(6") (s MY A > (oMo + A,
where the substitution [<= A] is defined in & similar way to thet for ordinary terms with the
additional definition
M'[a « 4] = (Mla +« A"
The notions of the pf -reduction, the p] -reduction and the ™ -reduction are similedly defined for
s-marked terms,
(8) For +-marked term M and its subterm occurrence P, the map w is defined as w{P, M} =
£{E(P), E(M)). The other maps |- | and # are defined in a similar way.

Any =-marked term is obtained from » term by marking séme subterm occurrences of the term
with . It is easily shown that If M t=,, ¥ and M’ is the -marked subterm such that E(A") = A
then there is a unique +-marked term N* such that M’ b, N’ and E(N") = N.

Lemma 6.5,
If M is 8 »-marked terin which has only one %, and P iz the subterip ogcurrence in M wiich is
marked with =, then «{P* M) > Z w{(F*, N}, where RHS is the sum for all *-marked subterm
QTN
occurrerces in N, and RHS= 0 if there is no % in N.

Proof. We prove the following two claims for +-marked teyms M and N: if we have M >, N,
the following hold.
(1) |AM] 2 |N].
{2) If M is a +-marked term which has ouly one *, and P is the subterm oceurrence in M
which is marked with », then «(P*, M} > 3" ={(Q*, N).
Q' CN

These are proved by induction on M p,— N simultaneonsly.

(1} We may suppose that M contains no « since we define [Af| = |E(A)| for +-marked terms,
We consider only non-triviel cases, where M bas the form of (po. M1]A gince {M] = |N| =
ctherwise. - .

(Case 1) (po-My)AB B, (po Mo <= A])B. Since |(pa. 1) AB| = |ua.Ay] and [(po M for =
ADB! = |paMife <= A]l, we ignore B in this case. If @ ¢ FV(Afy) then LHS=RHS=1,
s0 we suppose o € FV{Mi). Suppose that [a]P,...,[a]P, are all of the a-named sub-
term occurrences in My, Then all of the a-named subterm occurrences in Afifer 4= A are
[Py [ﬂ: = AA,... [0Pile < A]A 50, in this case, we have to show

Ew([a]ﬂ,m} 1P| = Ew([ﬂ]P o= A)A, My &= A} - |Bi[e = AlA

=1
Note that, since we consider the p~-reduction, any F; is not a value and any P has ne o-named

value as its subterm. For each 1 < i < m, we have that |P| = |PiJa < AJA| from the Jemma 6.3
(1) (i} and (2) (i), and that #{[o}F;, M) = n{[e]Filo & A]4, M;[o & A)) from the lemma 6.3 (2}
(ii}. Hence we have LHS=RHS.

-10-

(Case 2) (na.M(}d t>,- (uoe.Nq)A. Similarly we can ignore A, and we suppose o € FV(M,).
Suppose that the redex in My is {u8.M2)B, and that [a]P,...,[a]B, are all of the a-named
subtertn occurrences In My. For each 1 £ i < w, if My; denotes the +-marked term obtained
from My by marking [o]P; with *, then we can find a unique Ny, such that A &,- Ny, and
E{Ny ;) = Ny. We suppose that ([a)P1)", .., ([a)Pm,)* are all of the subterm occurrences in

Ny that are marked with =. Then, from IH (2), we have
my

([P Mag) 2 3 ([0l Pig)* Nrd)
j=1
for each 4. If we ignore all +'s, we have

™
x(lal B, M) 2 3 wl[a] Py, M).
1

=
Furthexmore, we can show |B| = | P ;| for any i sad j as follows. If [a]F € Mz, then m; =1 and
F; 4 has the form of F;[3 <= B], and we have |P,4| = |P,[8 <= B]| = |F| from the lemma 6.3 (2)
{i), since the subterm F; of Mp has no F-named value. If (240208 C [o P, then we have m; = 1
and F;t>,- P:1, 60 we have |F;| = |Fi,1| from IH (1). Otherwise, since we have P, ; = P for any
J» we have || = |F; 1|. Thevefore, we have
m

w([0]P, My) - |B] 23 wl[o]Pigi Ne) - | Pisl

=1
for each 1 < i £ n. Note that, if there is no such P;;, then we consider my; = 0 and RHS of this
inequality 35 0. Hence, we have
n

n "
LHS = uaddi] = 3 n([a}P 1) [R1 2 33 w({alPes, N1) - [Prgl = Ny | = RES,
=1 Emy ey
since [2]Pyq,. .., [a)Pam, are all of the a-named suﬂ_t.erm occurrences in Ny.

(Case 3) (. M)A > - (poM1)B. We have |(uc M) A| = |pa M| = [(pa. M) B,

{2) We show only non-trivial cases, where M is the redex (po. M)A, since other cases are easily
proved IH (1) and TH (2). Nete that there is no a-named value in My.

{Case 1) {{uo.M1)A)* b,- (pa.Mi|e < A))* In this case, what we have to show is
m({poe MYA, (po. MA) 2 7lpo Mo < A), poMy[a <= A}, which holds since LHS=RHS=1.

(Cose 2) {(uaMy)'A O, (podble + A Since 7((uah)(poMi)"4) =
w{pa. My, po M) = 1 by the lemma 6.3 (1) {ii), this case is proved.

(Case 3) P* C M;. In this case, N = pun.Mi[o0 < A] haz the only one mibterm occurrence
marked with %, which is (P{a < A])* C N. So we have to show «(P*, (uo.Mq)A) = m{(Pla <
Aly*, poeMila 4= A]), but we can show LHS= x(F, A,) =RHS from the lemma 6.3 (1} (ii) and {2)
{1i).

(Cose 4} P* C A. I o ¢ FV{My) then N = po.Mifo += A] has no +, and the proof is
finighed since RHS= 0. So we consider the case where @ € FV{M;) in the following. Suppose that
[@]@Q1,-- ., [a]@~ are ail of the c-nemed subterm occurrences in Ay, and that, for each 1 < < 0,
A; C Mila = A] denotes the occwrrence of A applied to Qile < A] in My[e < A). Then any
subterm marked with # in N has the same form with P~ and occurs in 4; for some £, so we suppose
that P denotes the subterm oceurrence marked with * in A; for each . Then what we have to

show is w{P*, (uo.M1)A) 2 3 w(F;, poMyfer = A]), but we can show LHS=RHS as follows. By
=1
the definition, we have }
LHS = |uo M| - w(P*, A} = 3 w{(0]Qu,) - Qi - (P", A).

=1

On the other hand, for each ¢, since P} C A; C la]Qila <= A)4d: C pa.rh|a « A, we have
w(Fr poMila < A]) = 7P, AY - w(As |olQile < Al4) - w{[o]Q:le < Al4i, padfi[or < A))
from the lemima 6.3 (3). Furthermore, we have

a(d;, [a]Qlor = AJA) = |Qulo = Al 7(As, Ar) = Q4]

#([a]Qile < AlA,, poc My [0 = A]) = a(([0]Q:) o = A, Mi[o < A]) = w{fa]Q, A1)
from the lemma 6.3 {2). Since #(P?, A;) = a(P*, A), we have

(P uoc Ao = A)) = a(P’ A) |G| #{[e)@y, M)

—a9p—

for each 1 < i < n. Therefore, we have
n ”n
RHS = 3" (P} poMifa = A]) = 3 7(P*, A) - |Qi] - 7o) Qs M)

im1

=1
Hence, LHS=RHS is proved. D

Fromn the previous lemma, we can show the following property.

Lemma 6.6.
IFMp,- N, then #M > #N

Proof. Suppose that P,,..., P, are all of the subterm occurrences of M that are p-abstractions.
For each 1 £ i < n, if M; is the »~marked term obtained from M by marking the subterm F;
with *, then we ¢an find a unique N, such that M; 1>, N; and E(N;} = N. We suppose thai
Blyeo s P, arve all of subterm occurrence In N; that are marked with =, If there is no such »-
marked subterm oceurrence in N;, we define m; = 0. Note that, since F* in M; is a u-abstraction,
any Py, in N; is a p-abstraction, and P, 1,...,FPam, areall of the subterm occurrences in & that
are y-al ra.l::t.mns Then we have

#M = Zﬂ(H,M}, and #N = EE#(HJ.NL
i=14=1

where, if m; = 0 then we consider E?‘I‘[P‘a-, N =06. Fiom the lemma 6.5, we have,
=1

M) 2 Z (P
for each 2. If we 1gnore all #’s, we have
(B, M) > Zw{ﬁ,j,m.
This inequality a.]sj=01holds for i such that m; = 0, since RHS= 0. Hence we have #M > #N. O

Furthermore, we need to define another map || - || from a type or a term to a finite sequence of
natural number. Finite sequences are defined ss maps @ frem natural numbers to natural numbers
such that there exists a number n and #({) = 0 holds for any £ > n.

Definition 6.7.

(1) @52, ... denote infinite sequences of natural numbers. &(:) denotes the i-th element of @
for any watural number i > 0. O denotes the sequence such that 0{i) = 0 for any i. If there is n
such that #{i) = Q helds for any ¢ = n, & is called a finite sequence. For any finite sequence &, we
define the length i(Z) of & as the maximuwn natural number n such that @(n — 1) # 0. We define
{0)=0.

-}(2) For a natural number n and a sequence &, n :: @ denotes the sequence such that (n :: @)(0) =

n and (n :: @){f +1) = @(4) holds for any ¢. For sequences & and B, &+ b denotes the sequence such
that (% + b)(4) = @(#) + b(i) holds for any i.

(3) @ > b iff there is n such that @(n) > b(n) and @(i) = b(i) for any i < n.

Definition 6.8.
The map || - || from a type or a term to an sequence of natural numbers is defined as follows.

(i) llo]l =0 and ||z]| = 0.
() [2fll = A1), 122N = ||27]) and ()M || = | A]]).

(iii) Il A AY = (s(A) = 1) + Z 1431
() V)AL= I+ IVI+ D2 141
))AL = 101+ 1A,

where we define 3{A) = n fo: A=(Ay,..., A

-9 -

Note that, if we consider all of finite sequences, > s not well-founded, but if the length of finite
gequence is bounded by a natural number, »~ is well-founded.

Lemma 6.9,
(1) For any tern M, we have I(||M|)) < #M.
(2) If M >~ N, then | M| > |N].

Proof. (1) We define n,(}M) as the pumber of the symbols g in A, Then we can prove (i)
HNM) < ru (M) end (if) n,{M} < #M as follows. (ii) is clear from the definition of # and (i) is
proved by induction on M in a straightforward way. Suppose that A = (sa.N)4 and s(5) = .
Then we have I{[|(ua.NYA|}) < mesc{Z(IN]) + 1,4} 4]}, . ., 3{[4nll}}. On the other hand, we
have n,((poN) A} = 1+m,(N) +n,{A1)+ -+ +n,(Ap). Since, from IH, we have I{||[N|) < n,(N)
and I{|4])) < nu{dy) for any 1 < i < n, U [|(uer N)A|)) < nu({uc.N)A) holds. i

{2} This is proved by induction on M >,- N. Note that if > b then n =¥ » n 2 b for any u,
and 42> b+ Efor any &

In the case where M = (po.M)AB and N = (sa.M'[or += A B, we have

M = fi{ee MYAB = ((n + 1) = (M) + A} + 37 (1B:f,

i=1
INI = I pce. M'[ex = ADB)| = (n 2 | M = A + > 4Bl
=1

where n = s(B). Then we have ||M|[{0) > | N¥||(0). Hence | M| = J|N|| holds.
Other cases are proved more simply. O

From the lammas 6.6 and 6.9, the proposition 6.1 is proved as follows.

Proof of the propasition 6.1 For any Au-texms M and N, if M-} N, we have NNV < #M
from the lemma 8.6 and the lemma 6.9 (1). Therefore, for any NV such that M =% N, [|V] is
the finite sequence of the length < #M. From the lemma 6.9 (2], if there is an infinite sequence
M, Myp,- Map>,— ..., there is an infinite decreasing sequence of finite sequences whose length
is bounded by #2M, but it is contradictory. O

7 Strong normalizability of Aypu

In this section, we prove the strong normalizability of Ayu.

We prove the following claims to ptove the strong normelizability: (1) &, is strongly nornal-
izable for untyperd terms, (2) t> . can be postponed if the term is typable, and {3) t=3,, is strongly
normalizable for typable terms, and If (1) and {2) hold and we assume that there is an infinite
reduction sequence of a typable term in Ay i, we can find an infinite sequence of t> 3, by postponing
[gy, 80 that contradicts (3).

Flrstly, we prove (1) and {2}, then we prove (3) by the results of the previous sections.

Lemma T7.1.
£ on is strongly normslizabie,

Proof. We define nps by (the number of symbols & in Af)+(the number of symbels g in AS).
Then it is clear that if M g N then ny; > ny. O

Lemma 7.2.
If M is typable aiid M >sq Dy N, then M &3, - >3, N.

Proof. This is proved in a straightforward way except the case of

(|o)uB.(Ay-M))N &g (Ay-M[B 1= a)N 0y, M[F = o[y := N].
But there is no such case, since if ([o]uf.(Ay. A)IN is typable then the subterm Ay.Af must have
the type L, but it is impossible. O

-99 _

Then we prove the strong normalizability of t>»,. Firstly we define augmentations of terms,
which have no inessential subterm occurrences, since they contain no eliminator. Then it is proved
that any Ap-reduction sequence of typable terms gives a Au-reduction sequence of typable augmen-
tations with the same length. Therefore, if we auppose the existence of an infinite Ap-reduction
sequence of a typable term, it gives an infinite Au-reduction sequence of augmentations. However,
since any reduction from an augmentation is either >¢,, By 0T L, that contradicts with the
results of the sections 5 and & of this paper.

Definition 7.3. {Augmentations)
For a Ap-term M, the sugmentations of A are defined inductively as follows. In the followlng,

Aug{M) denotes the set of augmentations of M.

(1) For any A-variable =, Aug(z} = {z}.

(2) If M* & Aug(M), then Az. M’ € Aug{Az.M).

(3) If M’ € Aug{M), then At.M’ € Aug(AL.M).

(4) If M’ € Aug(M), then |a]M’ € Aug{[a]M).

(5) If M’ € Aug(M) snd N’ & Aug(NV), then M’N* € Aug(MN).

(6) If Af* € Aug(M), then M'c € Aug(Mo).

(7) If M’ € Aug{M)}, P is a term which includes no eliminator s its subterm and z is a fresh
variable, then por.(As.M'Y[a] P) € Aug{ua.M).

Lemma 7.4.

(1) FT; A - M : o holds, then there is an augmentation M’ of M such that T,c: VEE A F
M': o, where ¢ is 8 variable which does not occur in M.

(2) IF M’ € Aug(M) for some M, then every subterm of M' iz essential.

Proof. (1) This claim is proved by induction on the proof of T A F M : g.
{2) It is easily shown by induction on M that M’ includes no eliminator. Then the assertion is
immediately proved. O

Lemma 7.5.
Suppose that M’ € Aug{M), V' € Aug(V) and A’ € Aug(A). Then we bave the following.
(1) M'[x := V'] is an augmentation of Mz := V]
(2) M'[t := o] is an augmentation of M[t := o].
{3) M'[e := f) is an augmentation of M|a = 4].
{4) M'[c <= A'] is an sugmentation of Mo + A).

Proof. These are proved by induction en M in a straightforward way. O

Lemma 7.8,
Suppose that M’ € Aug(M) and M 1>, I¥, then there is an sugmentation N' of N such that

M By, N

Proof. By induction on M > N.

(Case 1) M is n redex.

(Cose 11) (8,) : (Az.N)V b Nl = V]. We have M’ = (Ae.N)V" b, N[z i= V7], and we
have N'[x := V'] € Aug(N[x := V]) from the lemme 7.5.

{Case 1.2} (p) : (o M)A pordMa += A. We bave M' = {po{Az.N'){[o]P)A &y,
pr.(Az. N += A){|o]Plo « AA"). From the lemma 7.5, N'la < 4] € Aug(N[a « A])
holds, therefore, we have that Pla <= A1A’ Includes no eliminator since so do P and A’

(Case 2) pae. A > pox N. From TH, we have M’ N' for some N' € Aug{N). Hence, we have
po. (A M) {[6)P) & pon(AeN)([o) P).

Othet cases are similatly proved. O

Proposition 7.7. (Strong normalizability of i)
If M is a typable term, there is no infinite sequence M = Mp, My,... such that A, oy, My s

for any i.

_93 -

Proof. Frotn the lemma 7.4 (1), there is & typable augmentation AZ' of M. If we suppose that
M = Myp s, My, ... is an infinite sequence, then, by the lemma 7.8, we can find an infinite
sequence My, A,... such that M} ¢ Aug(M;) and A >3, ML, , for any i. From the lemma 7.4
(2), the redex of the reduction M; 1>y, Mj, 1 is essential in M and the reduction is not &>+ for
any 1, so any reduction M >, M/, , is >¢,, bt or &}, Therefore, from the proposition 5.3, we
have '

T Wiy (i M5y M,),

Mt M (otherwise),

Slnoe the p~-reduction is strongly normalizable, the reduction A >3, M}, { is not x~-reduction
for infinitely many 1, so we can find an infinite reduction sequence of M7 in the domain-free
polymorphic A-calculus. We have alse that M’y is typable from the proposition 4.7. Therefore,
that contradicts the strong normalizability of typable A-terms. O

Theorem 7.8. (Strong normalizability of Ay i)
Every typable My yi-term is strongly normslizable.

Proof. Suppose that M is a typeble term and there is an infinite sequence M = Ay > My &
Mz > From the lemma 7.1, infinitely many [>’s in the sequence above are t~),. Furthermore
from the lemma 7.2, we can find an infinite sequence M = Mo 0>y, M{ By M3 5y ..., but this
contradicts the propesition 7.7. O

8 Concluding remarks

In thie paper, we proved the confluency and the strong normalizability of the call-by-value Au-
calculus which hes the domain-free style, However, we can consider variants of Ap-calculus.

For example, a5 a reduction rule of iy In Au-calculus, we can consider the additional rule

() At.VieV (ift is not free in V).
In fact, we can prove the confluency and the strong normalizability of the system with the rule
{m) by using the method in this paper, But we should note that, we must take the demain-
free polymorphic typed A-calculus with the same w-rule as the codomain of the modified CPS-
translation to prove the soundness of the modified CP5-translation. If we consider A-caleculus with
ne-rule, the reduction relation At.Vie V in Ay-calculus is proved to be preserved by the modified
CPS-translation as fallows.

B(AL. VL) = AL A GV)k D> g ALB(V) & gy B(V),
where we use the mp-rule in A-calcnlus at the last step.

Another variant is the Church-style systemi. The Church-style call-by-value Ay-calewlus is defined
as follows. The pseudo-terms are defined as
M o= z|dz:oM | AtM | pa® M | MM | Mo | [o] M.
The terms of the Church-style Ap-calculus are defined as the pseudo-terms which are typable by
the following axicms and rules.

T:AFx:T(z) (ass)

F'y{z:o};AFM:T T:AFM:097 I5AFN: o

AR M:oMia—T (=1) iaAFMN:r (= E)
TAFM:o TiAF M Yo
;AR ALM Vi ¥7) AR Mroft =1 (VE)
; I: Ao e} A
CAFA : g wn {o°} MJ'(J.E]

CAU{o®}F oA 0 AR pa® A o

- 94 -

And the reduction rules of the Church-style call-by-value Ap-calculus are defined from the following
axlom schemes,

(Bu} (Az:o. M)V Mz :=V],

(B:) (AtM)or Mt:= g,

(M) Az:oVaxpV (if z ¢ FV(V)),

(#e) {uo=" M)N° > po’ M|a «= N|,

() Vo7 (ua MYt po™ MV = al,

(#e) (™. M7 patt=7] Mla < 7],

(k) po")M M (i a ¢ FV(M)),

(rn) [@®)(uB° V) B V[8 := o).

The confluency for this system can be proved in the same way by the method in this paper.
The strong normalizability can be proved easily from the result of this paper by using the following
fact. If we define the map || from Church-style terms to domain-free-style terms such that

Az : o M| = Az | M,
Lue® M| = por | M),
then it is clear that M o N iff [M] > | ¥ | for any Church-style terms M and V.

Aclknowledgements I wish to thank Makoto Tatsuta, Ken-etsu Fujita and the referees for their
helpful comments and advises,

References

[1] K. Baba, 3. Hirckewa and K. Fujita, Paraliel reduction in type free An-calculus, Electronic
Notes in Theorstical Computer Science 42 (2001) 52-66.

[2] F. Barbanera and 5. Berardi, A strong normalization result for classical logic, Annals of Pure
and Applied Logic 76 (1995) 99-116.

[3] H.P. Barendregt, Lambda calculi with types, in: S. Abramsky, Dov M. Gabbay and T.5.E.
Maibaum, eds., Handbook of Logic In Computer Science Vol.IT (Oxford University Press 1992).

[4] G. Barthe and M.H. Sdrensen, Domain-free pure type systems, in: S. Adian and A. Nerode,
eds., Logical Foundations of Computer Science, Lecture Notes in Computer Science 1234 {1997)
0-20.

[5] R. David axd W, Py, Ap-calenlus and Bdhm's theorem, Journal of Symbolic Logic 66 (1) (2001}
407413,

[6] P. de Groote, A CPS-translation for the Ap-caleulus, in: 8. Tison, ed., Trees in Algebra and
Programming, Lecture Notes in Computer Science 787 {1994) 85-99.

|7) P.de Groote, A simple cafeulus of exception handling, in: M. Dezani-Ciancnglini and G. Plotkin,
eds., Typed Lambda Caleuli and Applications, Lecture Notes in Computer Science 902 {1995)
201-215.

[8] M. Felleisen, D.P. Friedman, E. Kohlbecker and B. Duba, A syntactic theory of sequential
control, Theoretical Computer Science 52 {1987) 205-237.

[9] K. Fujita, Explicitly typed Ag-calculus for polymorphism and call-hy-value, in: J.-Y, Girard,
ed., Typed Lambda Calculi and Applications, Lecture Notes in Computer Science 1581 {1999)
162-176.

(10] K. Fujita, Domain-free Ag-calculus, Theoretical Informatics and Applications 34 (2000) 433-
466,

[11] 1-Y. Girard, The system F of variable types, fifteen years later, Theoretical Computer Science
45 (1086) 159-192. _

[12] 1-Y. Girard, P. Taylor and Y. Lafont, Proofs And Types (Cambridge University Press 1089).

E13] C.-H.L. Ong and C.A. Stewart, A Curry-Howard foundation for functional computation with
cantrol, Proc. 24th Annual ACM symposiuin of Principles of Programming Languages (1997)
215-227.

- 25—

[14] M. Parigot, Au-Calculus: An algorithmic interpretation of natural deduction, in: A. Voronkov,
ed., Proceedings of the International Conference on Logic Programming and Automated Rea-
soning, Lecture Notes in Computer Science 624 (1992) 190-201. ,

(15] M. Parigot, Proofs of strong normalization for second order classical natural deduction, Journal
of Symbolic Logic 62 {4) (1997) 1481.1479.

[16] G.D. Plotkin, Call-by-name, call-by-value and the l-calculus, Theoretical Computer Science
1 (1875) 126-156.

— 26 -

	R047_0
	R047a

