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Abstract

We prove a new combinatorial characterization of polynomial learnability from equiva


lence queries� and state some of its consequences relating the learnability of a class with

the learnability via equivalence and membership queries of its subclasses obtained by

restricting the instance space� Then we propose and study two models of query learning

in which there is a probability distribution on the instance space� both as an applica


tion of the tools developed from the combinatorial characterization and as models of

independent interest�
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� Introduction

The main models of learning via queries were introduced by Angluin ��� ��� In these mod�
els� the learning algorithm obtains information about the target concept asking queries to
a teacher or expert� The algorithm has to output an exact representation of the target
concept in polynomial time� Target concepts are formalized as languages over an alphabet�
Frequently� it is assumed that the teacher can answer correctly two kinds of questions from
the learner� membership queries and equivalence queries�� Unless otherwise speci	ed� all our
discussions are in the 
proper learning� framework where the hypotheses come from the same
class as the target concept� A combinatorial notion� called approximate 	ngerprints� turned
out to characterize precisely those concept classes that can be learned from polynomially
many equivalence queries of polynomial size ��� 
��
The essential intuition behind that fact is that the existence of queries that eliminate an

inverse polynomial factor of the number of possibilities for the target concept at every step�
is not only clearly su�cient� but also necessary to learn� if no such queries are available then
adversaries can be designed that force any learner to spend too many queries in order to
identify the target� This intuition can be fully formalized along the lines of the cited works�
the formalization can be found in ����
Hellerstein et al� gave a beautiful characterization of polynomially �EQ�MQ��learnable

representation classes ���� They introduced the notion of polynomial certi	cates for a repre�
sentation class R and proved that R is polynomially learnable from equivalence and mem�
bership queries i� it has polynomial certi	cates�
The 	rst main contribution of this paper is to propose a new combinatorial character�

ization of learnability from equivalence queries� surprisingly close to certi	cates� and quite
di�erent �and also simpler to handle� than the approximate 	ngerprints� the strong consis�
tency dimension�
Angluin ��� �� showed that� when only approximate identi	cation is required� equivalence

queries can be replaced by a random sample� Thus� a PAC learning algorithm can be ob�
tained from an exact learning algorithm that makes equivalence queries� In PAC learning�
introduced by Valiant ���� one has to learn a target concept with high probability� in poly�
nomial time �and� a fortiori� from a polynomial number of examples�� within a certain error�
under all probability distributions on the examples� Because of this last requirement� to
learn under all distributions� PAC learning is also called distribution�free� or distribution�
independent� learning� Distribution�independent learning is a strong requirement� but it can
be relaxed to de	ne PAC learning under speci	c distributions� or families of distributions�
Indeed� several concept classes that are not known to be polynomially learnable� or known
not to be polynomially learnable if RP �� NP� turn out to be polynomially learnable under
some 	xed distribution or families of distributions�
In comparison to PAC learning� one drawback of the query models is that they do not

have this added �exibility of relaxing the 
distribution�free� condition� The standard trans�
formation sets them automatically at the 
distribution�free� level� The second main contri�
bution of this paper is the proposal of two learning models in which counterexamples are not
adaptatively provided by a �helpful or treacherous� teacher� but instead are nonadaptatively

�Such a teacher is called sometimes �minimally adequate��
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sampled according to a probability distribution�
We prove that the distribution�free form of one of these models exactly coincides with

standard learning from equivalence queries� while the other model is captured by the ran�
domized version of the standard model� This allows us to extend� in a natural way� the query
learning model to an explicit 
distribution�free� setting where this restrictive condition can
be naturally relaxed� Some of the facts that we prove of these new models make use of the
consistency dimension characterization proved earlier as the 	rst contribution of the paper�
Our notation and terminology is standard� We assume familiaritywith the query�learning

model� Most de	nitions will be given in the same section where they are needed� Generally�
let X be a set� called instance space or domain in the sequel� A concept is a subset of X�
where we prefer sometimes to regard C as a function from X to f�� �g� A concept class
is a set C � �X of concepts� An element of X is called an instance� A pair �x� b�� where
b � f�� �g is a binary label� is called example for concept C if C�x� � b� A sample is a
collection of labeled instances� Concept C is said to be consistent with sample S if C�x� � b
for all �x� b� � S�
A representation class is a four�tuple R � ����� R� ��� where � and � are 	nite alpha�

bets� Strings of characters in � are used to describe elements of the domain X� and strings
of characters in � are used to encode representations of concepts� We denote by R � ��

the set of strings that are valid concept encodings or representations� Let � � R �� ��
�

be a function that maps these representations into concepts over �� For ease of technical
exposition� we assume that� for each r � R there exists some n � � such that ��r� � �n�
Thus each concept with a representation in R has a domain of the form �n �as opposed to
domain ����� The set C � f��r� � r � Rg is the concept class associated with R�
We de	ne the size of concept C � �n � f�� �g w�r�t� representation class R as the length

of the shortest string r � R such that C � ��r�� or as � if C is not representable within
R� This quantity is denoted by jCjR� With these de	nitions� C is a 
doubly parameterized
class�� that is� it is partitioned into sets Cn�m containing all concepts from C with domain
�n and size at most m� The kind of query�learning considered in this paper is proper in the
sense that concepts and hypotheses are picked from the same class C� We will however allow
that the size of an hypothesis exceeds the size of the target concept� The number of queries
needed in the worst case to obtain an a�rmative answer from the teacher� or 
learning
complexity�� given that the target concept belongs to Cn�m and that the hypotheses of the
learner may be picked from Cn�M � is denoted by LC

O
R�n�m�M�� where O speci	es the allowed

query types� In this paper� either O � EQ or O � �EQ�MQ�� We speak of polynomial
O�learnability if LCOR�n�m�M� is polynomially bounded in n�m�M �
We close this section with the de	nition of a version space� At any intermediate stage

of a query�learning process� the learner knows �from the teacher�s answers received so far� a
sample S for the target concept� The current version space V is the set of all concepts from
Cn�m which are consistent with S� These are all concepts being still conceivable as target
concepts� Therefore� a learning algorithm is a strategy that reduces the version space by
stages until it becomes a singleton set�

�This is a purely technical restriction that allows us to present the main ideas in the most convincing
way� It is easy to generalize the results in this paper to the case of domains with strings of varying length�
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� The Strong Consistency Dimension and its Applica�

tions

The proof� as it was given in ���� of the characterization of �EQ�MQ��learning in terms of
polynomial certi	cates implicitly contains concrete lower and upper bounds on the number
of queries needed to learn R� In Subsection ���� we make these bounds more explicit by
introducing the so�called consistency dimension of R and writing the bounds in terms of this
dimension �and some other parameters associated with R�� In Subsection ���� we de	ne the
notions of a 
strong certi	cate� and of the 
strong consistency dimension� and show that they
	t the same purpose for EQ�learning as the former notions did for �EQ�MQ��learning� we
derive lower and upper bounds on the number of EQs needed to learnR in terms of the strong
consistency dimension and conclude thatR is polynomially EQ�learnable i� it has polynomial
strong certi	cates� In Subsection ���� we prove that the strong consistency dimension of a
class equals the maximum of the consistency dimensions taken over all subclasses �induced
by a restriction of the domain�� This implies that the number of EQs needed to learn a
concept class roughly equals the total number of EQs and MQs needed to learn the hardest
subclass�
For ease of technical exposition� we need the following de	nitions� A partially de�ned

concept C on domain �n is a function from �n to f�� �� 	g� where 
	� stands for 
unde	ned��
Since partially de	ned concepts and samples can be identi	ed in the obvious manner� we
use the terms 
partially de	ned concept� and 
sample� interchangeably in the sequel� The
support of C is de	ned as supp�C� � fx � �n � C�x� � f�� �gg� The breadth of C is de	ned
as the cardinality of its support and denoted as jCj� The size of C is de	ned as the smallest
size of a concept that is consistent with C� It is denoted as jCjR� Note that this de	nition
coincides with the previous de	nition of size when C has full support �n� Sample Q is called
subsample of sample C �denoted as Q v C� if supp�Q� � supp�C� and Q�C coincide on
supp�Q�� Throughout this section� R � ����� R� �� denotes a representation class de	ning
a doubly parameterized concept class C�

��� Certi�cates and Consistency Dimension

R has polynomial certi�cates if there exist two�variable polynomials p and q� such that for
all m�n � �� and for all C � �n � f�� �g the following condition is valid�

jCjR � p�n�m�
 ��Q v C � jQj � q�m�n� 
 jQjR � m� ���

The consistency dimension ofR is the following three�variable function� cdimR�n�m�M��
whereM � m � � and n � �� is the smallest number d � � such that for all C � �n � f�� �g
the following condition is valid�

jCjR � M 
 ��Q v C � jQj � d 
 jQjR � m� ���

An obviously equivalent but quite useful reformulation of Condition ��� is

��Q v C � jQj � d
 jQjR � m�
 jCjR �M� ���
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In words� if each subsample of C � �n � f�� �g of breadth at most d has a consistent
representation of size at most m� then C has a consistent representation of size at most M �
The following result is �more or less� implicit in ����

Theorem � cdimR�n�m�M� � LCEQ�MQ
R �n�m�M� � dcdimR�n�m�M� � log jCn�mje� ��

Note that the lower and the upper bound are polynomially related because

log jCn�mj � m � log�� � j�j�� ���

Clearly� Theorem � implies that R is polynomially �EQ�MQ��learnable i� it has polynomial
certi	cates� We omit the proof of Theorem �� it is quite straightforward after ����

��� Strong Certi�cates and Strong Consistency Dimension

We want to adapt the notions 
certi	cate� and 
consistency dimension� to the framework
of EQ�learning� Surprisingly� we can use syntactically almost the same notions� except for a
subtle but striking di�erence� the universe of C will be extended from the set of all concepts
over domain �n to the corresponding set of partially de	ned concepts� This leads to the
following de	nitions�

R has polynomial strong certi�cates if there exist two�variable polynomials p and q� such
that for all m�n � �� and for all C � �n � f�� �� 	g Condition ��� is valid�
Accordingly� the strong consistency dimension of R is the following three�variable func�

tion� scdimR�n�m�M�� where M � m � � and n � �� is the smallest number d � � such
that for all C � �n � f�� �� 	g Condition ��� is valid� Again� instead of Condition ���� we
can use the equivalent Condition ���� In words� if each subsample of C � �n � f�� �� 	g of
breadth at most d has a consistent representation of size at most m� then C has a consistent
representation of size at most M �

Theorem � scdimR�n�m�M� � LCEQ
R �n�m�M� � dscdimR�n�m�M� � ln jCn�mje� ��

Proof� For the sake of brevity� let q � � � LCEQR �n�m�M� and d � scdimR�n�m�M��
We prove the 	rst inequality by exhibiting an adversary that forces any learner to spend

as many queries as given by the strong consistency dimension� The minimality of d implies
that there is a sample C such that ��Q v C � jQj � d� �
 jQjR � m�� but still jCjR � M �
Thus� any learner� issuing up to d � � equivalence queries with hypotheses of size at most
M � fails to be consistent with C� and a counterexample from C can be provided such that
there is still at least one consistent concept of size at most m �a potential target concept��
Hence� at least d queries go by until an a�rmative answer is obtained�
In order to prove q � dd ln jCn�mje� we describe an appropriate EQ�learner A� A keeps

track of the current version space V �which is Cn�m initially�� For i � �� �� let

Si
V � fx � �

n � the fraction of concepts C � V with C�x� � � � i is smaller than ��dg�

In other words� a very large fraction �at least �� ��d� of the concepts in V votes for output
label i on instances from Si

V� Let CV be the sample assigning label i � f�� �g to all instances






from Si
V and label 
	� to all remaining instances �those without a so clear majority�� Let Q

be an arbitrary but 	xed subsample of CV such that jQj � d� The de	nition of Si
V implies

�through some easy�to�check counting� that there exists a concept C � V � Cn�m that is
consistent with Q� Applying Condition ���� we conclude that jCVjR � M � i�e�� there exists
an H � Cn�M that is consistent with CV� The punchline of this discussion is� if A issues the
EQ with hypothesis H� then the next counterexample will shrink the current version space
by the factor �� ��d �or by a smaller factor�� Since the initial version space contains jCn�mj
concepts� we will obtain a singleton version space �jVj � �� making q equivalence queries�
by solving for q the following inequality�

��� ��d�qjCn�mj � e�q�djCn�mj � �

Clearly� q � dd ln jCn�mje is su�ciently large� Note that a single extra equivalence query will
force an a�rmative answer� �

Since the lower and the upper bound in Theorem � are polynomially related according to
Inequality ���� we obtain

Corollary � R is polynomially EQ�learnable i� it has polynomial strong certi�cates�

��� EQs Alone versus EQs and MQs

The goal of this subsection is to show that the number of EQs needed to learn a concept
class is closely related to the total number of EQs and MQs needed to learn the hardest
subclass� The formal statement of the main result requires the following de	nitions�
Let S � �Sn�n�� with Sn � �n be a family of subdomains� The restriction of a concept

C � �n � f�� �g to Sn is the partially de	ned concept �sample� with support Sn which
coincides with C on its support� The class containing all restrictions of concepts from C to
the corresponding subdomain from S is called the subclass of C induced by S and denoted
as CjS�
The notions of polynomial certi	cates� consistency dimension� and learning complexity

are adapted to the subclass of C induced by S in the obvious way� RjS �in words� R
restricted to S� has polynomial certi�cates if there exist two�variable polynomials p and
q� such that for all m�n � �� and for all C � �n � f�� �� 	g such that supp�C� � Sn�
Condition ��� is valid� The consistency dimension of RjS is the following three�variable
function� cdimR�Sn�m�M� is the smallest number d � � such that for allM � m � �� n � ��
and for all C � �n � f�� �� 	g such that supp�C� � Sn� Condition ��� is valid� Again� instead
of Condition ���� we can use the equivalent Condition ����
Quantity LCEQ�MQ

R �Sn�m�M� is de	ned as the smallest total number of EQs and MQs
needed to learn the class of concepts from Cn�m restricted to Sn with hypotheses from Cn�M
restricted to Sn� Quantity LC

EQ
R �Sn�m�M� is understood analogously� Note that

LCEQR �Sn�m�M� � LC
EQ
R �n�m�M� �
�

is valid in general� because EQs becomemore powerful �as opposed to MQs which become less
powerful� when we pass from the full domain to a subdomain �for the obvious reasons�� We
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have the analogous inequality for the strong consistency dimension� but no such statement
can be made for LCEQ�MQ

R or the consistency dimension�
The following result is a straightforward generalization of Theorem ��

Theorem �

cdimR�Sn�m�M� � LCEQ�MQ
R �Sn�m�M� � dcdimR�Sn�m�M� � log j�CjS�n�mje� ��

We now turn to the main results of this section� The 	rst one states that the strong
consistency dimension of a class is the maximum of the consistency dimensions taken over
all induced subclasses�

Theorem � scdimR�n�m�M� � maxS��n cdimR�S�m�M��

Proof� Let d� be the smallest d � � which makes Condition ��� valid for all C � �
n �

f�� �� 	g� Let d��S� be the corresponding quantity when C ranges only over all samples with
support S� It is evident that d� � maxS��n d��S�� The theorem now follows� because by
de	nition d� � scdimR�n�m�M� and d��S� � cdimR�S�m�M�� �

Corollary � �� A representation class R has polynomial strong certi�cates i� all its
induced subclasses have polynomial certi�cates�

�� A representation class is polynomially EQ�learnable i� all its induced subclasses are
polynomially �EQ	MQ
�learnable�

The next result states that the number of EQs needed to learn a class equals roughly the
total number of EQs and MQs needed to learn the hardest induced subclass�

Corollary 	

max
S��n

LCEQ�MQ
R �S�m�M� � LCEQ

R �n�m�M� �
�
ln jCn�mj � max

S��n
LCEQ�MQ

R �S�m�M�
�
� �

Proof� The 	rst inequality is obtained from �
� as follows�

max
S��n

LCEQ�MQ
R �S�m�M� � max

S��n
LCEQR �S�m�M� � LC

EQ
R �n�m�M��

Putting Theorems �� 
� and � together� we get�

LCEQR �n�m�M� � dln jCn�mj � scdimR�n�m�M�e� �

� dln jCn�mj � max
S��n

cdimR�S�m�M�e� �

� dln jCn�mj � max
S��n

LCEQ�MQ
R �S�m�M�e� ��

�

Remember that the gap ln jCn�mj is bounded above by m � ln�� � j�j��
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� Equivalence queries with a probability distribution

Let now D denote a class of probability distributions on X� the instance space for a computa�
tional learning framework� The two subsections of this section introduce respective variants
of equivalence query learning that somehow take such distributions into account�
We brie�y describe now the 	rst one� In the ordinary model of EQ�learning C� with

hypotheses from H� the counterexamples for incorrect hypotheses are arbitrarily chosen�
and we can think of an intelligent adversary making these choices� EQ�learning C from D�
teachers �still with hypotheses from H� proceeds as ordinary EQ�learning� except for the
following important di�erences�

�� Each run of the learning algorithm refers to an arbitrary but 	xed pair �C�D� such
that C � C and D � D� and to a given con	dence parameter � � � � ��

�� The goal is to learn C from the D�teacher� i�e�� C is considered as target concept �as
usual�� and the counterexample to an incorrect hypothesis H is randomly chosen ac�
cording to the conditional distribution D��jC � H�� where � denotes the symmetric
di�erence of sets� Success is de	ned when this symmetric di�erence has zero probabil�
ity� The learner must achieve a success probability of at least � � ��

Clearly� the more restricted the class D of probability distributions� the easier the task for
the learner� In this extended abstract� we focus on the following three choices of D�

� Dall denotes the class of all probability distributions on X� This is the most general
case�

� Dunif denotes the class of distributions that are uniform on a subdomain S � X and
assign zero probability to instances from X n S� This case will be relevant in a later
section�

� D � fDg is the most speci	c case� where D constains only a single probability distri�
bution D� We use it only brie�y in the last section�

Loosely speaking� the main results of this section are as follows�

� The next subsection proves that� for D � Dall� EQ�learning from D�teachers is exactly
as hard �same number of queries� as the standard model� �This result is only established
for deterministic learners��

Thus� we are not actually introducing yet one more learning model� but characterizing
an existing� widely accepted� one in a manner that provides the additional �exibility
of the probability distribution parameter� Thus we obtain a sensible de	nition of
distribution�dependent equivalence�query learning�

� In the next section� we introduce a combinatorial quantity� called the sphere num�
ber� and show that it represents an information�theoretic barrier in the model of EQ�
learning from Dunif �teachers �even for randomized learning algorithms�� However� this
barrier is overcome for each 	xed distribution D in the model of EQ�learning from the
D�teacher�
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��� Random versus Arbitrary Counterexamples

We use upper index EQ�D� to indicate that the D�teacher for some D � D plays the role
of the EQ�oracle� For instance� LCEQ�D��C�H� �� denotes the number of queries needed to
achieve a success probability of at least � � � when EQ�learning C with hypotheses from H
from D�teachers�

Theorem 
 For all � � � � �	 LCEQ�Dall��C�H� �� � LCEQ�C�H��

Proof� Direction � is obvious� We prove the converse direction� Let A be an algorithm
which EQ�learns C from D�teachers with hypotheses from H� Let l � LCEQ�C�H� be
the largest number of EQs needed by A when we allow an adversary to return arbitrary
counterexamples to hypotheses�� Since LCEQ�C� is de	ned taking all algorithms into account�
we loose no generality in assuming that A always queries hypotheses that are consistent
with previous counterexamples� so that all the counterexamples received along any run are
di�erent� There must exist a concept C � C� hypotheses H�� � � � �Hl�� � C and instances
x�� � � � � xl�� � X� such that the learner issues the l�� incorrect hypotheses Hi when learning
target concept C� and the xi are the counterexamples returned to these hypotheses by
the adversary� respectively� We claim that there exists a distribution D such that� with
probability at least ���� theD�teacher returns the same counterexamples� This is technically
achieved by setting D�xi� � �� � 	�	i� for i � �� � � � � l � �� and D�xl��� � 	l��� An easy
computation shows that the probability that the D�teacher presents another sequence of
counterexamples as the adversary is at most �l � ��	� Setting 	 � ���l � ��� the proof is
complete� �

Therefore� the distribution�free case of our model coincides with standard EQ�learning�

Corollary � Let R � ����� R� �� be a representation class de�ning a doubly parameterized

concept class C� Then LC
EQ�Dall�
R �n�m�M� � LCEQ

R �n�m�M� for all M � m � �� n � ��

This obviously implies that learners for the distribution�free equivalence model can be
transformed� through the standard EQ model� into distribution�free PAC learners� We note
in passing that� applying the standard techniques directly on our model� we can prove the
somewhat stronger fact that� for each individual distribution D� a learner from D�teachers
can be transformed into an algorithm that PAC�learns over D�

��� EQ�Learning from Random Samples

In this subsection� we discuss another variant of the ordinary EQ�learning model� Given a
representation class C� EQ�learning from D�samples of size p and with hypotheses from H
proceeds as ordinary EQ�learning� except for the following di�erences�

�For the time being� there is no guarantee that A succeeds at all� because it expects the counterexamples
to be given from a D�teacher� We will however see subsequently that there exists a distribution which sort
of simulates the adversary�
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�� Each run of the learning algorithm refers to an arbitrary but 	xed pair �C�D� such
that C � C and D � D� and to a given con	dence parameter � � � � ��

�� The goal of the learner is to learn C from a sample P consisting of p examples drawn
independently at random according to D and labeled correctly according to C� and
using a special type of EQ�queries where the teacher can choose any counterexample
only if the symmetric di�erence has positive D�probability� In other words� instead of
EQ�learning C from scratch� the learner gets P as additional input and the teacher must
give an a�rmative answer when the set of counterexamples has zero probability under
the distribution D� The learner must obtain an a�rmative answer with a probability
at least �� � of success�

Again the goal is to output a hypothesis for which the probability of disagreement with the
target concept is zero� this time� the information about the distribution does not come from
the counterexamples� but rather from the initial additional sample� Observe that the teacher
can choose a zero probability counterexample as long as there is another counterexample with
positive probability� One may wonder if this model is totally arti	cial� but we note that there
are some learning algorithms in the literature that 	t perfectly on it� for instance ����
We will show in this section that� for certain distributions� this model is strictly weaker

than the model of EQ�learning from D�teachers� However� in the distribution�free sense� it
corresponds to the randomized version of the model described previously�
We 	rst show that each algorithm for EQ�learning from D�samples can be converted

into a randomized algorithm for EQ�learning from D�teachers� such as those of the previous
subsection� at the cost of a moderate overhead in the number of queries�

Theorem �� Let q��� be the number of EQs needed to learn C from D�samples of size p and
with hypothesis fromH �and probability at least ��� of success
� It holds	 LCEQ�D��C�H� �� �
�p � ���p� q�����

Proof� Let A be a learning from D�samples of size p algorithm that shows that q � q���
EQs are enough to learn C with hypothesis from H� Let us consider a randomized learning
from D�teachers algorithm B that simulates A in the way explained below�
First� B builds samples S�� � � � � Sp� doing repetitively equivalence queries with the empty

and total concepts and after that� it simulates the computation of A on these samples�
Sample Si is constructed asking for i counterexamples to the empty concept and p � i
counterexamples to the total concept� So� Si contains exactly i positive examples� The
order of the examples in Si is de	ned by the choice of i random positions between � and p
where positive examples are located� The relative order of positive �respectively negative�
examples is the order in which they were obtained�
Let C be the target concept and let D be an arbitrary but 	xed distribution in D� Let

hx�� � � � � xpi be a sample with i positive examples� It will be generated by algorithm B with
probability

ProbB�Si � hx�� � � � � xpi� �
D�x�� � � �D�xp�

D�C�i�� �D�C��p�i
�
p
i

� �

��



In the denominator D�C� and � � D�C� are respectively the normalization factors of the
positive and negative counterexamples� and the combinatorial factor comes from the ran�
domized process of B that de	nes the order in Si� We note that this number is exactly
the probability of obtaining hx�� � � � � xpi when a sample with i positive examples is drawn
according to D� In other words� if �i denotes the event formed by the samples of size p with
i positive examples�

ProbB�Si � hx�� � � � � xpi� � ProbA�Si � hx�� � � � � xpij�i��

The simulation carried out by B fails only if S�� S�� � � � � Sp are all of them samples where
algorithm A fails� We can write the probability of failure of B as the product

pY
i��

ProbB�A fails on Si��

By the discussion above� this product can be rewritten as

pY
i��

ProbA�A fails on Sij�i��

By Lemma �� below� this product can be bounded by the following sum

pX
i��

ProbA�A fails on Sij�i�ProbA��i� �
pX
i��

ProbA�A fails on �i� � ProbA�A fails��

As we wanted to show� this probability is� by hypothesis� less than �� �

The following lemma used in the proof states a well known property of real numbers�

Lemma �� Let x�� � � � � xn and 
�� � � � � 
n be real numbers in ��� �� with 
� � � � � � 
n � ��
Then	

nY
i��

xi �
nX
i��


ixi

We show next an example that has an identi	cation learning algorithm in the EQ from
D�teachers learning model� but does not have such algorithm in the EQ learning from D�
samples model�
A DNFn formula is any sum t� � t� � � � � � tk of monomials� where each monomial ti is

the product of some literals chosen from fx�� � � � � xn� x�� � � � � xng� Let DNF � �n DNFn be
the representation class of disjunctive normal form formulas�
Let us consider the class D of distributions D de	ned in the following way� Assume that

two di�erent words xn and yn have been chosen for each n � �� Consider the associated
distribution D de	ned by�

D�xn� � �������n� � ���n�

D�yn� � ������n�

D�zn� � � for any word zn of length n di�erent from xn and yn�

��



D is obtained by letting xn and yn run over all pairs of di�erent words of length n�
Let C be now any class able to represent concepts consisting of pairs fxn� yng within a

reasonable size� for concreteness� pick DNF formulas consisting of complete minterms� A
very easy algorithm learns them in our model of EQ from D�teachers� The algorithm has to
do at most two equivalence queries to know the value of the target formula f on xn and yn�
First� it asks whether f is identically zero� If a counterexample e is given  e must be xn or
yn it will make a second query f � te!� where te is the monomial that only evaluates to
one on e �the minterm�� Thus we 	nd whether either or both of f�xn� and f�yn� are �� and
if so we also know xn and"or yn themselves� Now the target formula is identi	ed� the value
of the formula on other points does not matter because they have zero probability�
However� it is not di�cult to see that there is a distribution D � D such that DNF

formulas are not identi	able in the model of learning from EQ and D�samples� Here we
refer to learning DNF�s of size polynomial in n from polynomially many equivalence queries
of polynomial size� and with an extra initial sample of polynomial breadth� First we note
that sampling according to Dn � D��j�n��D � D� there is a non�negligible probability of
obtaining a sample that only contains copies of xn�

Lemma �� For any polynomial q and � � � � �	 there exists an integer k� such that for
all n � k� the probability that a Dn�sample S of size q�n� ���� does not contain yn is greater
than ��

Proof� The probability that yn does not appear in S is �� � n���n�q	n����
� By using the
inequality � � x � ex�	x��
 for x � �� this probability is at least

e
q�n�����

���n�n� �

Fixed q and � this quantity is close to one for large enough n� �

Then� the following negative result follows�

Theorem �� There exists a distribution D in D such that DNF is not EQ learnable from
D�samples�

Proof� The essential idea of the proof is that� after an initial sample revealing a single
word� the algorithm is left with a task close enough to that of learning DNFs in the standard
model with equivalence queries� which is impossible ����
Formally� let us consider M��M�� � � � an enumeration of the equivalence queries algo�

rithms� where Ma has running time bounded by a polynomial pa� Note that negative results
for equivalence queries remain true if learning algorithms know the value of the target con�
cept on a point� for example �n� As DNF is not identi	able by this kind of algorithms ����
for each algorithm Ma there exists an integer number na � max�na��� k��pa� ���  where
k��pa� �� is as in lemma �� � fa � DNFna and a consistent teacher Ta such thatMa does not
identify fa when teacher Ta is considered� By the previous note� without loss of generality
we can assume algorithm Ma knows the value of fa��na�� Let ga be the hypothesis returned
by �Ma� Ta� and yna a word di�erent from �

na such that ga�yna� �� fa�yna��

��



Now� we de	ne the distribution D � D as follows�

D��na � � �������n� � ���n�

D�yna� � ������n�

D�zna� � � for any word of length na di�erent from �
na and yna�

for the integer na as in the paragraph above� If n is an integer that does not correspond to
any na� distribution D is de	ned in a similar way by interchanging yn by �n�
We show that DNF is not EQ learnable fromD�samples� By lemma �� given a polynomial

q and � � � � �� for any integer n � k��q� �� and with probability greater than �� it holds
that a sample S of size q�n� ���� drawn according to Dn � D��j�n� only contains copies of
�n� If M is a polynomial time equivalence queries algorithm that tries to learn DNF from
D�samples� thenM �Ma for some a� So� by construction� when the consistent teacher Ta for
the target formula fa is considered� M will output the wrong hypothesis ga if a sample that
only contains copies of �na is provided as input� As that kind of samples have probability
greater than � the error probability of M is greater than �� �

� The Sphere Number and its Applications

The remainder of the paper uses the machinery developed in Section � to obtain stronger
results relating the models of the previous section� under one more technical condition� that
the learning algorithm knows the size of the target concept� and never queries hypotheses
longer than that� Some important learning algorithms do not have this property� but there
are still quite a few �among the exact learners from equivalence queries only� that work in
sort of an incremental fashion that leads to this property� The results become interesting
because they lead to a precise characterization of randomized learners from D�teachers�
We 	rst rewrite our combinatorial material of the previous section in an extremely useful�

geometrically intuitive form ���spheres�� and prove that for m �M these structures capture
clearly the strong consistency dimension� Applications follow in the next subsection�

��� Strong Consistency Dimension and ��Spheres

A popular method for getting lower bounds on the number of queries is to show that the class
of target concepts contains a basic 
hard�to�learn� combinatorial structure� For instance� if
the empty set is not representable but N singletons are� then the number of EQs� needed to
identify a particular singleton� is at least N � In this Subsection� we consider a conceptually
similarly simple structure� the so�called ��spheres� They are actually a disguised �read
isomorphic� version of sets of singletons� with the empty set simultaneously forbidden� Then
we show that the strong consistency dimension is lower bounded by the size of the largest
��sphere that can be represented by C� Moreover� for M � m both quantities coincide�
To make the last statements precise� we need several de	nitions� Let S be a 	nite set�

and S� � S� The ��sphere with support S around center S�� denoted as H�
S�S�� in the sequel�

is the collection of sets S� � S such that jS� � S�j � �� where � denotes the symmetric
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di�erence of sets� In other words� S� � S belongs to H�
S�S�� if the Hamming distance

between S� and S� is �� Thus� it is formed by all the points at distance �radius� � from the
center in Hamming space�
Let us now assume that S � �n� Let S� be an arbitrary subset of S� The sample

C � � �n � f�� �� 	g which represents S� �as a subset of S
 is the sample with support S that
assigns label � to all instances from S�� and label � to all instances from S n S�� We say that
H�
S�S�� is representable by Cn��m�M � if the following two conditions are valid�


A� Let C� be the sample with support S which represents S�� Then� jC�jR � M �


B� Each sample C� with support S� which represents a set S� � H�
S�S��� satis	es jC�jR �

m�

Thus� for the particular case of M � m� all points in Hamming space on the surface of the
sphere are representable within size m but the center is not� just as the above�mentioned
use of singletons� which form the ��sphere centered on the empty set� The size of H�

S�S�� is
de	ned as jSj� We de	ne the three�variable function sphR�n�m�M�� called sphere number
of R in the sequel� as the size of the largest ��sphere which is representable by Cn��m�M ��
We now turn to the main result of this subsection� which implies that the sphere number

is another lower bound on LCEQR �n�m�M��

Theorem �� sphR�n�m�M� � scdimR�n�m�M� with equality for M � m�

Proof� For the sake of brevity� let d � scdimR�n�m�M� and s � sphR�n�m�M��
Let H�

S�S�� be a largest ��sphere that is representable by Cn��m�M �� Thus� jSj � s� In order
to prove d � s� we assume for sake of contradiction d � s� Consider the sample C� with
support S that represents S�� By Condition �A�� jC�jR � M � According to Condition ���
applied to C�� there exists a subsample Q v C� such that jQj � d � s and jQjR � m� Let
SQ � supp�Q� � S� Let Q� be a sample with support S that totally coincides with Q �and
thus with C�� on SQ� and coincides with C� on S n SQ except for one instance� Clearly� Q�

represents a set S� � H�
S�S��� By Condition �B�� jQ�jR � m� Since jQjR � jQ�jR� we arrived

at a contradiction�
We prove s � d for the special case that M � m� It follows from the minimality of d and

Condition ��� that there exists a sample C � �n � f�� �� 	g such that the following holds�

�� jCjR � m�

�� �Q� v C � jQ�j � d 
 jQ�jR � m

�� �Q v C � �jQj � d� �
 jQjR � m��

Let S denote the support of Q�� Note that jSj � d �because otherwise the last two conditions
become contradictory�� Let S� � S be the set represented by Q�� We claim that H�

S�S��
is representable by Cn��m�m� �which would conclude the proof�� Condition �A� is obvious
because jQ�jR � m� Condition �B� can be seen as follows� For each x � S� de	ne Qx as the
subsample of C with support S n fxg� and Q�

x as the sample with support S that coincides
with C on S n fxg� but disagrees on x� Because each Qx is a subsample of C of breadth

��



d� �� it follows that jQxjR � m for all x � S� We conclude that the same remark applies to
samples Q�

x� since a concept that is consistent with Qx� but inconsistent with Q�� must be
consistent with Q�

x� Finally note that the samples Q
�
x� x � S� are exactly the representations

of the sets in H�
S�S��� respectively�

�

It is possible to capture the strong consistency dimension� even when M � m� with the
aid of a kind of structures that combines ��spheres� We say that sample C is k�singular if
the following two conditions hold�

�� jCjR � k�

�� �Q v C � Q �� C 
 jQjR � k�

Note that H�
S�S�� is representable by Cn��m�m� i� the sample with support S that assigns label

� to instances from S� and label � to instances from S n S� is m�singular� We de	ne the
singular number singR�n�m�M� as the following maximum�

max
C is M�singular

n
min

Q is m�singular fjQj j Q v Cg
o

We show now that the singular number coincides with the strong consistency dimension�

Theorem �� singR�n�m�M� � scdimR�n�m�M��

Proof� For the sake of brevity� let d � scdimR�n�m�M� and s � singR�n�m�M��
Let us assume d � s and let C be aM �singular sample where the maximum s is achieved�

Then� jCjR � M and any m�singular subsample of C has size greater than d� Therefore� any
sample Q� with Q v C and jQj � d� has jQjR � m #otherwise C would contain a m�singular
subsample of size at most d#� This contradicts the de	nition of d�
Now� we assume d � s� Let C be a minimal sample with the following properties�

�� jCjR � M �

�� �Q v C � jQj � s
 jQjR � m�

This minimal sample C exists by the de	nition of d� As any subsample of C sati	es the
second condition� by minimality� C must be M �singular� Moreover� by the second condition�
all m�singular subsamples of C have size greater than s� This contradicts the de	nition of
s� �

�




��� Applications of the sphere number

In this subsection� C denotes a concept class� The main results of this section are derived
without referring to a representation class R� We will however sometimes apply a general
theorem to the special case where the concept class consists of concepts with a representation
of size at most m�
It will be convenient to adapt some of our notations accordingly� For instance� we say

that ��sphere H�
S�S�� is representable by C if S � X and the following two conditions are

valid�


A� C does not contain a hypothesis H that assigns label � to all instances in S� and label
� to all instances in S n S��


B� For each S� � H�
S�S��� there exists a concept C

� � C that assigns label � to all instances
in S� and label � to all instances in S n S��

The following notation will be used in the sequel� If S � fx�� � � � � xsg� then Si � S� � fxig
for i � �� � � � � s� Thus� S�� � � � � Ss are the sets belonging to H�

S�S��� The concept from C
which represents Si in the sense of Condition �B� is denoted as Ci�
The sphere number associated with C� denoted as sph�C�� is the size of the largest ��sphere

that is representable by C� Similar conventions are made for the learning complexitymeasure
LC�

Theorem �� Let C � H�
S�S�� be a ��sphere and D an arbitrary but �xed distribution on S�

Then	 LCEQ�D��C� �� � � � dlog�����e�

Proof� Let S � fx�� � � � � xsg� and let C�� � � � � Cs be the concepts from C used to represent
S�� � � � � Ss � H�

S�S��� respectively� Let H�� � � � �Hs be a permutation of C�� � � � � Cs sorted
according to increasing values of D�xi�� Consider the EQ�learner which issues its hypotheses
in this order� It follows that as long as there exist counterexamples of a strictly positive
probability� the probability that the teacher returns the counterexample xj associated with
the target concept Cj is at least ��� per query� Thus� the probability that the target is not
known after dlog�����e EQs is at most �� Thus� with probability at least � � �� one more
query su�ces to receive answer YES� �

As the number of EQs needed to learn ��spheres from arbitrary counterexamples equals
the size s of the ��sphere� and the upper bound in Theorem �� does not depend on s at all�
the model of EQ�learning from the D�teacher for a 	xed distribution D is� in general� more
powerful than the ordinary model� The gap between the number of EQs needed in both
models can be made arbitrarily large�
Recall that Dunif denotes the class of distributions that are uniform on a subdomain

S � X and assign zero probability to instances from X n S�

Theorem �	 The following lower bound even holds for randomized learners�

LCEQ�C� � LCEQ�Dunif ��C� �� � �� � ��sph�C��
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Proof� The 	rst inequality is trivial� We prove the second one� Let s � sph�C� and
H�
S�S�� be the ��sphere of size s that is representable by C� Let S � fx�� � � � � xsg� and let

C�� � � � � Cs be the concepts from C used to represent S�� � � � � Ss � H�
S�S��� respectively� For

j � �� � � � � s� let Dj be the probability distribution that assigns zero probability to xj and is
uniform on the remaining instances from S� Clearly� Dj � Dunif �
A learner must receive answer YES with probability at least � � � of success for each

pair �C�D�� where C � C is the target concept� and counterexamples are returned randomly
according to D � D� It follows that� if target concept Cj is drawn uniformly at random
from fC�� � � � � Csg� and counterexamples are subsequently returned according to Dj � answer
YES is still obtained with probability at least �� � of success� Note that we randomize over
the uniform distribution on the ��sphere �random selection of the target concept�� over the
drawings of distribution Dj conditioned to the current sets of counterexamples� respectively�
and over the internal coin tosses of the learner�
Assume w�l�o�g� that all hypotheses are consistent with the counterexamples received so

far� Let C � be the next hypothesis� and S� � S the subset of instances from S being labeled �
by C �� Because H�

S�S�� is representable by C� S� must di�er from S� on at least one element
of S� If S� � Sj � then the learner receives answer YES� Otherwise� the set U � �S��Sj�nfxjg
is not empty� Note that the counterexample xi to C � is picked from U uniformly at random�
This leads to the removal of only Ci from the current version space V�
The punchline of this discussion is that the following holds after the returnal of q coun�

terexamples�

�� The current version space V contains s�q candidate concepts from fC�� � � � � Csg� They
are �by symmetry� statistically indistinguishable to the learner�

�� The next hypothesis is essentially a random guess in V� that is� the chance to receive
answer YES is exactly ��jVj� The reason is that� from the perspective of the learner�
all candidate target concepts in V are equally likely��

If answer YES is received before s EQs were issued� then only because it was guessed within
V by chance� We can illustrate this by thinking of two players� Player � determines at
random a number between � and s �the hidden target concept�� Player � starts random
guesses� The probability that the target number was determined after q guesses is exactly
q�s� Thus� at least ��� ��s guesses are required to achieve probability � � � of success� �

Corollary �
 Let R � ����� R� �� be a representation class de�ning a doubly parameterized
concept class C� The following lower bound holds for all m and n	 even for randomized
learners�

LCEQ
R �n�m�m� � LC

EQ�Dunif �
R �n�m�m� �� � �� � ��sphR�n�m�m� � ��� ��scdimR�n�m�m�

�This might look unintuitive at 
rst glance� because the learner does not necessarily draw the next
hypothesis at random from V according to the uniform distribution� But notice that a random bit cannot be
guessed with a probability of success larger than 	�� no matter which procedure for �guessing� is applied�
This is the kind of argument that we used�
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Considering learning algorithms that do not make queries longer than the size of the
target concept� Corollary �� and Theorem � imply the following somewhat surprising result�
A representation class is �determnistically� polynomially EQ�learnable �with answers given
by an adversary� i� it is �probabilistically� polynomially learnable fromDunif �teachers� Thus
passing from deterministic to probabilistic learners and from the adversary�oracle to Dunif �
teachers does not signi	cantly increase the learning power� This negative result applies as
well to the model of EQ�learning from Dunif �samples� which has been proved earlier to be
subsumed by randomized learners from Dunif �teachers�
It is an open problem whether the learning power signi	cantly increases when Dunif �

teachers are combined with learners that do make queries longer than the size of the target
concept�


We 	nally would like to mention that the lower bound for randomized learners from
arbitrary counterexamples in Corollary �� is as good as the result from ��� �Theorem ����
which relates the learning complexity with deterministic and randomized algorithms�
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