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Abstract

We prove a new combinatorial characterization of polynomial learnability from equiva-
lence queries, and state some of its consequences relating the learnability of a class with
the learnability via equivalence and membership queries of its subclasses obtained by
restricting the instance space. Then we propose and study two models of query learning
in which there is a probability distribution on the instance space, both as an applica-
tion of the tools developed from the combinatorial characterization and as models of
independent interest.
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1 Introduction

The main models of learning via queries were introduced by Angluin [1, 2]. In these mod-
els, the learning algorithm obtains information about the target concept asking queries to
a teacher or expert. The algorithm has to output an exact representation of the target
concept in polynomial time. Target concepts are formalized as languages over an alphabet.
Frequently, it is assumed that the teacher can answer correctly two kinds of questions from
the learner: membership queries and equivalence queries!. Unless otherwise specified, all our
discussions are in the “proper learning” framework where the hypotheses come from the same
class as the target concept. A combinatorial notion, called approximate fingerprints, turned
out to characterize precisely those concept classes that can be learned from polynomially
many equivalence queries of polynomial size [3, 5].

The essential intuition behind that fact is that the existence of queries that eliminate an
inverse polynomial factor of the number of possibilities for the target concept at every step,
is not only clearly sufficient, but also necessary to learn: if no such queries are available then
adversaries can be designed that force any learner to spend too many queries in order to
identify the target. This intuition can be fully formalized along the lines of the cited works;
the formalization can be found in [6].

Hellerstein et al. gave a beautiful characterization of polynomially (EQ,MQ)-learnable
representation classes [7]. They introduced the notion of polynomial certificates for a repre-
sentation class R and proved that R is polynomially learnable from equivalence and mem-
bership queries iff it has polynomial certificates.

The first main contribution of this paper is to propose a new combinatorial character-
ization of learnability from equivalence queries, surprisingly close to certificates, and quite
different (and also simpler to handle) than the approximate fingerprints: the strong consis-
tency dimension.

Angluin [1, 2] showed that, when only approximate identification is required, equivalence
queries can be replaced by a random sample. Thus, a PAC learning algorithm can be ob-
tained from an exact learning algorithm that makes equivalence queries. In PAC learning,
introduced by Valiant [9], one has to learn a target concept with high probability, in poly-
nomial time (and, a fortiori, from a polynomial number of examples), within a certain error,
under all probability distributions on the examples. Because of this last requirement, to
learn under all distributions, PAC learning is also called distribution-free, or distribution-
independent, learning. Distribution-independent learning is a strong requirement, but it can
be relaxed to define PAC learning under specific distributions, or families of distributions.
Indeed, several concept classes that are not known to be polynomially learnable, or known
not to be polynomially learnable if RP # NP, turn out to be polynomially learnable under
some fixed distribution or families of distributions.

In comparison to PAC learning, one drawback of the query models is that they do not
have this added flexibility of relaxing the “distribution-free” condition. The standard trans-
formation sets them automatically at the “distribution-free” level. The second main contri-
bution of this paper is the proposal of two learning models in which counterexamples are not
adaptatively provided by a (helpful or treacherous) teacher, but instead are nonadaptatively

1Such a teacher is called sometimes “minimally adequate”.



sampled according to a probability distribution.

We prove that the distribution-free form of one of these models exactly coincides with
standard learning from equivalence queries, while the other model is captured by the ran-
domized version of the standard model. This allows us to extend, in a natural way, the query
learning model to an explicit “distribution-free” setting where this restrictive condition can
be naturally relaxed. Some of the facts that we prove of these new models make use of the
consistency dimension characterization proved earlier as the first contribution of the paper.

Our notation and terminology is standard. We assume familiarity with the query-learning
model. Most definitions will be given in the same section where they are needed. Generally,
let X be a set, called instance space or domain in the sequel. A concept is a subset of X,
where we prefer sometimes to regard C as a function from X to {0,1}. A concept class
is a set C C 2% of concepts. An element of X is called an instance. A pair (x,b), where
b € {0,1} is a binary label, is called ezample for concept C if C(x) = b. A sample is a
collection of labeled instances. Concept C is said to be consistent with sample S if C(x) =b
for all (x,b) € S.

A representation class is a four-tuple R = (X, A, R, i), where ¥ and A are finite alpha-
bets. Strings of characters in ¥ are used to describe elements of the domain X, and strings
of characters in A are used to encode representations of concepts. We denote by R C A~
the set of strings that are valid concept encodings or representations. Let p : R — 2%
be a function that maps these representations into concepts over ¥. For ease of technical
exposition, we assume that, for each r € R there exists some n > 1 such that u(r) C ™.
Thus each concept with a representation in R has a domain of the form X" (as opposed to
domain ¥*).2 The set C = {u(r) : v € R} is the concept class associated with R.

We define the size of concept C : " — {0,1} w.r.t. representation class R as the length
of the shortest string r € R such that C = u(r), or as oo if C is not representable within
R. This quantity is denoted by |C|g. With these definitions, C is a “doubly parameterized
class”, that is, it is partitioned into sets C, ,, containing all concepts from C with domain
Y™ and size at most m. The kind of query-learning considered in this paper is proper in the
sense that concepts and hypotheses are picked from the same class C. We will however allow
that the size of an hypothesis exceeds the size of the target concept. The number of queries
needed in the worst case to obtain an affirmative answer from the teacher, or “learning
complexity”, given that the target concept belongs to C, ., and that the hypotheses of the
learner may be picked from C,, as, 1s denoted by LCg(n, m, M), where O specifies the allowed
query types. In this paper, either O = EQ or O = (EQ,MQ). We speak of polynomial
O-learnability if LCQ(n,m, M) is polynomially bounded in n,m, M.

We close this section with the definition of a version space. At any intermediate stage
of a query-learning process, the learner knows (from the teacher’s answers received so far) a
sample S for the target concept. The current version space V is the set of all concepts from
Cn,m which are consistent with 5. These are all concepts being still conceivable as target
concepts. Therefore, a learning algorithm is a strategy that reduces the version space by
stages until it becomes a singleton set.

2This is a purely technical restriction that allows us to present the main ideas in the most convincing
way. It is easy to generalize the results in this paper to the case of domains with strings of varying length.



2 The Strong Consistency Dimension and its Applica-
tions

The proof, as it was given in [7], of the characterization of (EQ,MQ)-learning in terms of
polynomial certificates implicitly contains concrete lower and upper bounds on the number
of queries needed to learn R. In Subsection 2.1, we make these bounds more explicit by
introducing the so-called consistency dimension of R and writing the bounds in terms of this
dimension (and some other parameters associated with R). In Subsection 2.2, we define the
notions of a “strong certificate” and of the “strong consistency dimension” and show that they
fit the same purpose for EQ-learning as the former notions did for (EQ,MQ)-learning: we
derive lower and upper bounds on the number of EQs needed to learn R in terms of the strong
consistency dimension and conclude that R is polynomially EQ-learnable iff it has polynomial
strong certificates. In Subsection 2.3, we prove that the strong consistency dimension of a
class equals the maximum of the consistency dimensions taken over all subclasses (induced
by a restriction of the domain). This implies that the number of EQs needed to learn a
concept class roughly equals the total number of EQs and MQs needed to learn the hardest
subclass.

For ease of technical exposition, we need the following definitions. A partially defined
concept C on domain X" is a function from ¥" to {0, 1, *}, where “*” stands for “undefined”.
Since partially defined concepts and samples can be identified in the obvious manner, we
use the terms “partially defined concept” and “sample” interchangeably in the sequel. The
support of C is defined as supp(C) = {x € ¥" : C(x) € {0,1}}. The breadth of C is defined
as the cardinality of its support and denoted as |C|. The size of C is defined as the smallest
size of a concept that is consistent with C. It is denoted as |C|g. Note that this definition
coincides with the previous definition of size when C' has full support ¥". Sample @) is called
subsample of sample C (denoted as @ T C) if supp(Q) C supp(C) and @, C coincide on
supp(Q). Throughout this section, R = (X, A, R, i) denotes a representation class defining
a doubly parameterized concept class C.

2.1 Certificates and Consistency Dimension

R has polynomial certificates if there exist two-variable polynomials p and ¢, such that for
all m,n > 0, and for all C : ¥" — {0,1} the following condition is valid:

[Clr > p(n,m) = (3Q E C :[Q] < g(m,n) A|Q[r > m) (1)

The consistency dimension of R is the following three-variable function: cdimg (n,m, M),
where M > m > 0 and n > 0, is the smallest number d > 0 such that for all C : ¥* — {0,1}
the following condition is valid:

IClr>M=(AQCC:|Q| <dN|Q|r >m) (2)
An obviously equivalent but quite useful reformulation of Condition (2) is

VREC:[Q]<d=[Qr <m)=|Clr <M. (3)



In words: if each subsample of C : ¥* — {0,1} of breadth at most d has a consistent
representation of size at most m, then C has a consistent representation of size at most M.
The following result is (more or less) implicit in [7].

Theorem 1 cdimg(n,m, M) < LCR2M(n,m, M) < [edimg(n,m, M) -1og |Com|] + 1.
Note that the lower and the upper bound are polynomially related because
log |Crim| < m - log(1 + |A]). (4)

Clearly, Theorem 1 implies that R is polynomially (EQ,MQ)-learnable iff it has polynomial
certificates. We omit the proof of Theorem 1: it is quite straightforward after [7].

2.2 Strong Certificates and Strong Consistency Dimension

We want to adapt the notions “certificate” and “consistency dimension” to the framework
of EQ-learning. Surprisingly, we can use syntactically almost the same notions, except for a
subtle but striking difference: the universe of C' will be extended from the set of all concepts
over domain X" to the corresponding set of partially defined concepts. This leads to the
following definitions.

R has polynomial strong certificates if there exist two-variable polynomials p and ¢, such
that for all m,n > 0, and for all C : " — {0, 1, *} Condition (1) is valid.

Accordingly, the strong consistency dimension of R is the following three-variable func-
tion: scdimg(n,m, M), where M > m > 0 and n > 0, is the smallest number d > 0 such
that for all C : ¥ — {0,1,%} Condition (2) is valid. Again, instead of Condition (2), we
can use the equivalent Condition (3). In words: if each subsample of C' : £" — {0,1,x} of
breadth at most d has a consistent representation of size at most m, then C has a consistent
representation of size at most M.

Theorem 2 scdimg(n,m, M) < LC%Q(n,m,M) < [sedimg(n,m, M) - 1n |Cpm|] + 1.

Proof. For the sake of brevity, let ¢+ 1 = LC%Q(n, m, M) and d = scdimg(n, m, M).

We prove the first inequality by exhibiting an adversary that forces any learner to spend
as many queries as given by the strong consistency dimension. The minimality of d implies
that there is a sample C such that (VQ C C : Q| < d—1 = |Q|r < m), but still |C|g > M.
Thus, any learner, issuing up to d — 1 equivalence queries with hypotheses of size at most
M fails to be consistent with C, and a counterexample from C can be provided such that
there is still at least one consistent concept of size at most m (a potential target concept).
Hence, at least d queries go by until an affirmative answer is obtained.

In order to prove ¢ < [dIn|Cpm|], we describe an appropriate EQ-learner A. A keeps
track of the current version space V (which is C, ,, initially). For ¢ = 0,1, let

1, = {x € X" : the fraction of concepts C € V with C(z) = 1 — i is smaller than 1/d}.

In other words, a very large fraction (at least 1 — 1/d) of the concepts in V votes for output
label i on instances from S5,. Let Cy be the sample assigning label 7 € {0,1} to all instances
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from S5, and label “x” to all remaining instances (those without a so clear majority). Let Q
be an arbitrary but fixed subsample of Cy such that |Q| < d. The definition of S}, implies
(through some easy-to-check counting) that there exists a concept C € V C C,,, that is
consistent with . Applying Condition (3), we conclude that |Cy|g < M, i.e., there exists
an H € C, p that is consistent with Cy. The punchline of this discussion is: if A issues the
EQ with hypothesis H, then the next counterexample will shrink the current version space
by the factor 1 —1/d (or by a smaller factor). Since the initial version space contains |C,, |
concepts, we will obtain a singleton version space (|V| = 1) making ¢ equivalence queries,
by solving for ¢ the following inequality,

(1= 1/d)|Crm| < €V Cppn| < 1

Clearly, ¢ = [d1n |Cp || is sufficiently large. Note that a single extra equivalence query will
force an affirmative answer. o

Since the lower and the upper bound in Theorem 2 are polynomially related according to
Inequality (4), we obtain

Corollary 3 R is polynomually EQ-learnable iff it has polynomial strong certificates.

2.3 EQs Alone versus EQs and MQs

The goal of this subsection is to show that the number of EQs needed to learn a concept
class is closely related to the total number of EQs and MQs needed to learn the hardest
subclass. The formal statement of the main result requires the following definitions.

Let S = (Sn)n>1 with S, C X" be a family of subdomains. The restriction of a concept
C :¥" — {0,1} to S, is the partially defined concept (sample) with support S, which
coincides with C on its support. The class containing all restrictions of concepts from C to
the corresponding subdomain from & is called the subclass of C induced by S and denoted
as C|S.

The notions of polynomial certificates, consistency dimension, and learning complexity
are adapted to the subclass of C induced by S in the obvious way. R|S (in words: R
restricted to S) has polynomial certificates if there exist two-variable polynomials p and
q, such that for all m,n > 0, and for all C : ¥" — {0,1,%} such that supp(C) = S,,
Condition (1) is valid. The consistency dimension of R|S is the following three-variable
function: cdimg (S, m, M) is the smallest number d > 0 such that for all M > m > 0,n > 0,
and for all C' : ¥" — {0, 1, %} such that supp(C) = S,,, Condition (2) is valid. Again, instead
of Condition (2), we can use the equivalent Condition (3).

Quantity LC%Q’MQ(Sn,m, M) is defined as the smallest total number of EQs and MQs
needed to learn the class of concepts from C, ,, restricted to S,, with hypotheses from C, as
restricted to 5,. Quantity LC%Q(S,” m, M) is understood analogously. Note that

LCRY (Snym, M) < LCZ? (n,m, M) (5)

is valid in general, because EQs become more powerful (as opposed to MQs which become less
powerful) when we pass from the full domain to a subdomain (for the obvious reasons). We
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have the analogous inequality for the strong consistency dimension, but no such statement

can be made for LC%Q’MQ or the consistency dimension.

The following result is a straightforward generalization of Theorem 1.

Theorem 4
cdimp(Sn,m, M) < LCRPMO(S,,m, M) < [cdimg(Sn, m, M) -1og |(C|S)nm|] + 1.

We now turn to the main results of this section. The first one states that the strong
consistency dimension of a class is the maximum of the consistency dimensions taken over
all induced subclasses:

Theorem 5 scdimg(n,m, M) = maxgcxn cdimg (S, m, M).
Proof. Let d. be the smallest d > 0 which makes Condition (2) valid for all C' : ¥" —
{0,1,%}. Let d.(S) be the corresponding quantity when C ranges only over all samples with

support S. It is evident that d, = maxgcsn di(S). The theorem now follows, because by
definition d. = scdimg(n,m, M) and d.(S) = cdimg (S, m, M). o

Corollary 6 1. A representation class R has polynomial strong certificates iff all its
induced subclasses have polynomial certificates.

2. A representation class is polynomially EQ-learnable iff all its induced subclasses are

polynomially (EQ,MQ))-learnable.

The next result states that the number of EQs needed to learn a class equals roughly the
total number of EQs and MQs needed to learn the hardest induced subclass.

Corollary 7

max LCR*M(S,m, M) < LR (n,m, M) < [m [Covn| - maxy LORZMO(S,m, M)] +1

Proof. The first inequality is obtained from (5) as follows:

max LCROMO(S,m, M) < max LCL?(S,m, M) < LCR%(n,m, M).

Putting Theorems 2, 5, and 4 together, we get:

LCﬁQ(n,m, M) < [In|Cum| - scdimg(n, m, M)] + 1
= [In|Chml- max cdimg (S, m, M)| + 1

< I [Com] - max LCR(S,m, M)] + 1.

Remember that the gap In|C, | is bounded above by m - In(1 + |A|).
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3

Equivalence queries with a probability distribution

Let now D denote a class of probability distributions on X, the instance space for a computa-

tional learning framework. The two subsections of this section introduce respective variants

of equivalence query learning that somehow take such distributions into account.
We briefly describe now the first one. In the ordinary model of EQ-learning C, with

hypotheses from H, the counterexamples for incorrect hypotheses are arbitrarily chosen,
and we can think of an intelligent adversary making these choices. EQ-learning C from D-
teachers (still with hypotheses from #H) proceeds as ordinary EQ-learning, except for the
following important differences:

1.

Each run of the learning algorithm refers to an arbitrary but fixed pair (C, D) such
that C € C and D € D, and to a given confidence parameter 0 < § < 1.

. The goal is to learn C from the D-teacher, i.e., C is considered as target concept (as

usual), and the counterexample to an incorrect hypothesis H is randomly chosen ac-
cording to the conditional distribution D(-|C & H), where & denotes the symmetric
difference of sets. Success is defined when this symmetric difference has zero probabil-
ity. The learner must achieve a success probability of at least 1 — 4.

Clearly, the more restricted the class D of probability distributions, the easier the task for
the learner. In this extended abstract, we focus on the following three choices of D.

D, denotes the class of all probability distributions on X. This is the most general
case.

Dynis denotes the class of distributions that are uniform on a subdomain S C X and
assign zero probability to instances from X \ S. This case will be relevant in a later
section.

D = {D} is the most specific case, where D constains only a single probability distri-
bution D. We use it only briefly in the last section.

Loosely speaking, the main results of this section are as follows:

The next subsection proves that, for D = D,y, EQ-learning from D-teachers is exactly
as hard (same number of queries) as the standard model. (This result is only established
for deterministic learners).

Thus, we are not actually introducing yet one more learning model, but characterizing
an existing, widely accepted, one in a manner that provides the additional flexibility
of the probability distribution parameter. Thus we obtain a sensible definition of
distribution-dependent equivalence-query learning.

In the next section, we introduce a combinatorial quantity, called the sphere num-
ber, and show that it represents an information-theoretic barrier in the model of EQ-
learning from D, s-teachers (even for randomized learning algorithms). However, this
barrier is overcome for each fixed distribution D in the model of EQ-learning from the
D-teacher.



3.1 Random versus Arbitrary Counterexamples

We use upper index EQ[D] to indicate that the D-teacher for some D € D plays the role
of the EQ-oracle. For instance, LCEQ[D](C,H,5) denotes the number of queries needed to
achieve a success probability of at least 1 — § when EQ-learning C with hypotheses from H
from D-teachers.

Theorem 8 For all 0 < § < 1, LCPPl(C . §) = LCEY(C, H).

Proof. Direction < is obvious. We prove the converse direction. Let A be an algorithm
which EQ-learns C from D-teachers with hypotheses from H. Let [ > LCEQ(C,H) be
the largest number of EQs needed by A when we allow an adversary to return arbitrary
counterexamples to hypotheses.® Since LCF¢ (C) is defined taking all algorithms into account,
we loose no generality in assuming that A always queries hypotheses that are consistent
with previous counterexamples, so that all the counterexamples received along any run are
different. There must exist a concept C' € C, hypotheses Hy,..., H;_o € C and instances
Tg,...,r_9 € X, such that the learner issues the [ — 1 incorrect hypotheses H; when learning
target concept C, and the z; are the counterexamples returned to these hypotheses by
the adversary, respectively. We claim that there exists a distribution D such that, with
probability at least 1—¢, the D-teacher returns the same counterexamples. This is technically
achieved by setting D(z;) = (1 — a)a’, for 1 = 0,...,l — 3, and D(x;_3) = o'72. An easy
computation shows that the probability that the D-teacher presents another sequence of
counterexamples as the adversary is at most (I — 2)a. Setting oo = 6/(I — 2), the proof is
complete. °

Therefore, the distribution-free case of our model coincides with standard EQ-learning.

Corollary 9 Let R = (X, A, R, i) be a representation class defining a doubly parameterized
concept class C. Then LC‘sz[D“”](n,m, M) = LC%Q(n,m, M) for all M > m > 0,n > 0.

This obviously implies that learners for the distribution-free equivalence model can be
transformed, through the standard EQ model, into distribution-free PAC learners. We note
in passing that, applying the standard techniques directly on our model, we can prove the
somewhat stronger fact that, for each individual distribution D, a learner from D-teachers
can be transformed into an algorithm that PAC-learns over D.

3.2 EQ-Learning from Random Samples

In this subsection, we discuss another variant of the ordinary EQ-learning model. Given a
representation class C, EQ-learning from D-samples of size p and with hypotheses from H
proceeds as ordinary EQ-learning, except for the following differences:

3For the time being, there is no guarantee that A succeeds at all, because it expects the counterexamples
to be given from a D-teacher. We will however see subsequently that there exists a distribution which sort
of simulates the adversary.



1. Each run of the learning algorithm refers to an arbitrary but fixed pair (C, D) such
that C € C and D € D, and to a given confidence parameter 0 < § < 1.

2. The goal of the learner is to learn C from a sample P consisting of p examples drawn
independently at random according to D and labeled correctly according to C', and
using a special type of EQ-queries where the teacher can choose any counterexample
only if the symmetric difference has positive D-probability. In other words, instead of
EQ-learning C from scratch, the learner gets P as additional input and the teacher must
give an affirmative answer when the set of counterexamples has zero probability under
the distribution D. The learner must obtain an affirmative answer with a probability
at least 1 — § of success.

Again the goal is to output a hypothesis for which the probability of disagreement with the
target concept is zero; this time, the information about the distribution does not come from
the counterexamples, but rather from the initial additional sample. Observe that the teacher
can choose a zero probability counterexample as long as there is another counterexample with
positive probability. One may wonder if this model is totally artificial; but we note that there
are some learning algorithms in the literature that fit perfectly on it, for instance [4].

We will show in this section that, for certain distributions, this model is strictly weaker
than the model of EQ-learning from D-teachers. However, in the distribution-free sense, it
corresponds to the randomized version of the model described previously.

We first show that each algorithm for EQ-learning from D-samples can be converted
into a randomized algorithm for EQ-learning from D-teachers, such as those of the previous
subsection, at the cost of a moderate overhead in the number of queries.

Theorem 10 Let ¢() be the number of EQs needed to learn C from D-samples of size p and
with hypothesis from H (and probability at least 1 —§ of success). It holds, LCPeP (C,H,0) <

(p+1)(p+q(d)).

Proof. Let A be a learning from D-samples of size p algorithm that shows that ¢ = ¢(d)
EQs are enough to learn C with hypothesis from H. Let us consider a randomized learning
from D-teachers algorithm B that simulates A in the way explained below.

First, B builds samples S, ..., 5,, doing repetitively equivalence queries with the empty
and total concepts and after that, it simulates the computation of A on these samples.
Sample §; is constructed asking for ¢ counterexamples to the empty concept and p — ¢
counterexamples to the total concept. So, S; contains exactly ¢ positive examples. The
order of the examples in 5; is defined by the choice of ¢ random positions between 1 and p
where positive examples are located. The relative order of positive (respectively negative)
examples is the order in which they were obtained.

Let C be the target concept and let D be an arbitrary but fixed distribution in D. Let
(1,...,2p) be a sample with ¢ positive examples. It will be generated by algorithm B with
probability
D(z1)--- D(zp)

D(C)i(1— D(C)p~ (%)

2

Probp(S; = (x1,...,2p)) =

10



In the denominator D(C) and 1 — D(C) are respectively the normalization factors of the
positive and negative counterexamples, and the combinatorial factor comes from the ran-
domized process of B that defines the order in 5;. We note that this number is exactly
the probability of obtaining (1,...,2,) when a sample with ¢ positive examples is drawn
according to D. In other words, if II; denotes the event formed by the samples of size p with
1 positive examples,

Probg(S; = (x1,...,2,)) = Prob4(S; = (x1,...,x,)|IL;).

The simulation carried out by B fails only if So, 51, ...,5, are all of them samples where
algorithm A fails. We can write the probability of failure of B as the product

P
H Probpg(A fails on S;).

=0

By the discussion above, this product can be rewritten as

P
H Prob4(A fails on S;|IL,).

=0

By Lemma 11 below, this product can be bounded by the following sum

P P
ZProbA(A fails on S;|IL;)Prob4(1I;) = Z Prob 4 (A fails on II;) = Prob 4(A fails).

As we wanted to show, this probability is, by hypothesis, less than 4. .

The following lemma used in the proof states a well known property of real numbers.

Lemma 11 Let xq,...,x, and A,..., A, be real numbers in [0,1] with A\ + -+ A, = 1.
Then,

Iz <> Niay

i=1 i=1

We show next an example that has an identification learning algorithm in the EQ from
D-teachers learning model, but does not have such algorithm in the EQ learning from D-
samples model.

A DNF,, formula is any sum t; + t5 + - - - + t; of monomials, where each monomial ¢; is
the product of some literals chosen from {xy,...,2,,7,...,%T,}. Let DNF = U, DNF,, be
the representation class of disjunctive normal form formulas.

Let us consider the class D of distributions D defined in the following way. Assume that
two different words x,, and y, have been chosen for each n > 1. Consider the associated

distribution D defined by:

D(z,) = 6/7*(1/n*—1/2")
D(y.) = 6/(7"2")

D(z,) = 0 for any word z, of length n different from x, and y,,.

11



D is obtained by letting z,, and y,, run over all pairs of different words of length n.

Let C be now any class able to represent concepts consisting of pairs {x,,y,} within a
reasonable size; for concreteness, pick DNF formulas consisting of complete minterms. A
very easy algorithm learns them in our model of EQ from D-teachers. The algorithm has to
do at most two equivalence queries to know the value of the target formula f on x,, and y,.
First, it asks whether f is identically zero. If a counterexample e is given —e must be x,, or
Ynp— it will make a second query f = t.7, where t. is the monomial that only evaluates to
one on e (the minterm). Thus we find whether either or both of f(z,) and f(y,) are 1, and
if so we also know z,, and/or y,, themselves. Now the target formula is identified: the value
of the formula on other points does not matter because they have zero probability.

However, it is not difficult to see that there is a distribution D € D such that DNF
formulas are not identifiable in the model of learning from E(Q) and D-samples. Here we
refer to learning DNF's of size polynomial in n from polynomially many equivalence queries
of polynomial size, and with an extra initial sample of polynomial breadth. First we note
that sampling according to D,, = D(-|X"),D € D, there is a non-negligible probability of
obtaining a sample that only contains copies of z,,.

Lemma 12 For any polynomial ¢ and 0 < § < 1, there exists an integer ko such that for
all n > ko the probability that a D,,-sample S of size q(n,1/d8) does not contain y, is greater
than 4.

Proof. The probability that y, does not appear in S is (1 — n?27")21/9)_ By using the
inequality 1 — 2 > e*/(*=1 for & < 1, this probability is at least

a(n,1/9)
el—27/n?

Fixed ¢ and ¢ this quantity is close to one for large enough n. .
Then, the following negative result follows:

Theorem 13 There exists a distribution D in D such that DNF is not EQ learnable from
D-samples.

Proof. The essential idea of the proof is that, after an initial sample revealing a single
word, the algorithm is left with a task close enough to that of learning DNFs in the standard
model with equivalence queries, which is impossible [3].

Formally, let us consider M, M,,... an enumeration of the equivalence queries algo-
rithms, where M, has running time bounded by a polynomial p,. Note that negative results
for equivalence queries remain true if learning algorithms know the value of the target con-
cept on a point, for example 0". As DNF is not identifiable by this kind of algorithms [3],
for each algorithm M, there exists an integer number n, > max(nq_1, ko(pa,d)) —where
Eo(pa,d) is as in lemma 12—, f, € DNF,,, and a consistent teacher T, such that M, does not
identify f, when teacher T, is considered. By the previous note, without loss of generality
we can assume algorithm M, knows the value of f,(0"). Let g, be the hypothesis returned
by (M,,T,) and y,, a word different from 0™ such that ¢,(yn,) # fa(Yn,)-
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Now, we define the distribution D € D as follows,

D(0") = 6/7*(1/n*—1/2")
D(yn,) = 6/(x*2")
D(z,,) = 0 for any word of length n, different from 0" and y,,,

for the integer n, as in the paragraph above. If n is an integer that does not correspond to
any ng,, distribution D is defined in a similar way by interchanging y,, by 1.

We show that DNF is not EQ) learnable from D-samples. By lemma 12 given a polynomial
g and 0 < ¢ < 1, for any integer n > ko(g, ) and with probability greater than ¢, it holds
that a sample S of size ¢(n,1/§) drawn according to D, = D(-|¥") only contains copies of
0". If M is a polynomial time equivalence queries algorithm that tries to learn DNF from
D-samples, then M = M, for some a. So, by construction, when the consistent teacher T, for
the target formula f, is considered, M will output the wrong hypothesis g, if a sample that
only contains copies of 0" is provided as input. As that kind of samples have probability
greater than § the error probability of M is greater than 4. )

4 The Sphere Number and its Applications

The remainder of the paper uses the machinery developed in Section 2 to obtain stronger
results relating the models of the previous section, under one more technical condition: that
the learning algorithm knows the size of the target concept, and never queries hypotheses
longer than that. Some important learning algorithms do not have this property, but there
are still quite a few (among the exact learners from equivalence queries only) that work in
sort of an incremental fashion that leads to this property. The results become interesting
because they lead to a precise characterization of randomized learners from D-teachers.

We first rewrite our combinatorial material of the previous section in an extremely useful,
geometrically intuitive form (1-spheres), and prove that for m = M these structures capture
clearly the strong consistency dimension. Applications follow in the next subsection.

4.1 Strong Consistency Dimension and 1-Spheres

A popular method for getting lower bounds on the number of queries is to show that the class
of target concepts contains a basic “hard-to-learn” combinatorial structure. For instance, if
the empty set is not representable but NV singletons are, then the number of EQs, needed to
identify a particular singleton, is at least N. In this Subsection, we consider a conceptually
similarly simple structure: the so-called l-spheres. They are actually a disguised (read
isomorphic) version of sets of singletons, with the empty set simultaneously forbidden. Then
we show that the strong consistency dimension is lower bounded by the size of the largest
1-sphere that can be represented by C. Moreover, for M = m both quantities coincide.

To make the last statements precise, we need several definitions. Let S be a finite set,
and So C S. The I-sphere with support S around center Sy, denoted as HE(.Sp) in the sequel,
is the collection of sets S; C S such that |So @ Si| = 1, where @ denotes the symmetric
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difference of sets. In other words, Sy C S belongs to Hi(So) if the Hamming distance
between Sy and Sp is 1. Thus, it is formed by all the points at distance (radius) 1 from the
center in Hamming space.

Let us now assume that S C X". Let S’ be an arbitrary subset of S. The sample
C': X" — {0,1, x} which represents S’ (as a subset of S) is the sample with support S that
assigns label 1 to all instances from §’; and label 0 to all instances from S\ S’. We say that
HL(Sy) is representable by Cp [m:m if the following two conditions are valid:

(A) Let Cy be the sample with support S which represents So. Then, |Co|lr > M.

(B) Each sample C; with support S, which represents a set Sy € Hi(Sp), satisfies |C|g <
m.

Thus, for the particular case of M = m, all points in Hamming space on the surface of the
sphere are representable within size m but the center is not; just as the above-mentioned
use of singletons, which form the 1-sphere centered on the empty set. The size of H&(Sy) is
defined as |S|. We define the three-variable function sphyg(n,m, M), called sphere number
of R in the sequel, as the size of the largest 1-sphere which is representable by C,, [.:a]-

We now turn to the main result of this subsection, which implies that the sphere number
is another lower bound on LC%Q(n, m, M).

Theorem 14 sphg(n,m, M) < sedimg(n,m, M) with equality for M = m.

Proof. For the sake of brevity, let d = scdimg(n, m, M) and s = sphg(n,m, M).

Let H3(So) be a largest 1-sphere that is representable by Cp, ). Thus, |S| = s. In order
to prove d > s, we assume for sake of contradiction d < s. Consider the sample Cy with
support S that represents Sy. By Condition (A), |Colr > M. According to Condition (2)
applied to Cy, there exists a subsample @ C Cy such that |Q| < d < s and |Q|g > m. Let
So = supp(Q) C S. Let @1 be a sample with support S that totally coincides with ¢ (and
thus with Cp) on Sg, and coincides with Cy on S\ S except for one instance. Clearly, Q4
represents a set Sy € HL(Sp). By Condition (B), |@Q1|r < m. Since |Q|r < |Q1|r, we arrived
at a contradiction.

We prove s > d for the special case that M = m. It follows from the minimality of d and
Condition (2) that there exists a sample C : ¥" — {0, 1, *} such that the following holds:

1. |C|R>m.
2. EIQOEC:|Q0|§d/\|Qo|R>m
3.VQL C:(|Q]<d—1= [Qlr < m).

Let S denote the support of Qo. Note that |S| = d (because otherwise the last two conditions
become contradictory). Let So C S be the set represented by Jg. We claim that H$(Sp)
is representable by Cy i) (Which would conclude the proof). Condition (A) is obvious
because |Qo|lr > m. Condition (B) can be seen as follows. For each « € S, define @, as the
subsample of C with support S\ {x}, and @', as the sample with support S that coincides
with C on S\ {z}, but disagrees on x. Because each @, is a subsample of C of breadth
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d —1, it follows that |Q.|r < m for all € S. We conclude that the same remark applies to
samples ()., since a concept that is consistent with )., but inconsistent with ¢, must be
consistent with @)’ . Finally note that the samples Q! , € 5, are exactly the representations
of the sets in H5(Sp), respectively.

o

It is possible to capture the strong consistency dimension, even when M > m. with the
aid of a kind of structures that combines 1-spheres. We say that sample C is k-singular if
the following two conditions hold:

1. |C|R > k.
2. VQLC:Q+C=|Ql <k

Note that H§(So) is representable by Cy, fn:m] iff the sample with support S that assigns label
1 to instances from Sy and label 0 to instances from S\ Sy is m-singular. We define the
singular number singg (n, m, M) as the following maximum.

aXe is m-singular {minQ is m-singular {lelf@C C}}

We show now that the singular number coincides with the strong consistency dimension.

Theorem 15 singg(n,m, M) = sedimg(n,m, M).

Proof. For the sake of brevity, let d = scdimg(n, m, M) and s = singg (n, m, M).

Let us assume d < s and let C be a M-singular sample where the maximum s is achieved.
Then, |C|g > M and any m-singular subsample of C has size greater than d. Therefore, any
sample @), with @ C C and |Q] < d, has |Q|g < m —otherwise C would contain a m-singular
subsample of size at most d—. This contradicts the definition of d.

Now, we assume d > s. Let C' be a minimal sample with the following properties,

1. |C|R>M.
2. ¥QE C:1Q| < 5= [Qlr < m.

This minimal sample C exists by the definition of d. As any subsample of C satifies the
second condition, by minimality, C' must be M-singular. Moreover, by the second condition,
all m-singular subsamples of C have size greater than s. This contradicts the definition of
s. o
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4.2 Applications of the sphere number

In this subsection, C denotes a concept class. The main results of this section are derived
without referring to a representation class R. We will however sometimes apply a general
theorem to the special case where the concept class consists of concepts with a representation
of size at most m.

It will be convenient to adapt some of our notations accordingly. For instance, we say
that I-sphere HL(Sy) is representable by C if S C X and the following two conditions are
valid:

(A) C does not contain a hypothesis H that assigns label 1 to all instances in Sy and label
0 to all instances in S\ Sp.

(B) For each S' € Hi(Sy), there exists a concept C’ € C that assigns label 1 to all instances
in S’ and label 0 to all instances in S\ S’

The following notation will be used in the sequel. If S = {zy,...,z:}, then S; = So & {z;}
for i = 1,...,s. Thus, Sy,...,5, are the sets belonging to Hi(Sy). The concept from C
which represents S; in the sense of Condition (B) is denoted as C;.

The sphere number associated with C, denoted as sph(C), is the size of the largest 1-sphere
that is representable by C. Similar conventions are made for the learning complexity measure

LC.

Theorem 16 Let C = HL(So) be a I-sphere and D an arbitrary but fized distribution on S.
Then, LCWPN(C §) <1 4 [log(1/6)].

Proof. Let § = {zy,...,2,}, and let Cy,...,C; be the concepts from C used to represent
Siy..., S € Hi(So), respectively. Let Hy,...,Hs be a permutation of Cj,...,C, sorted
according to increasing values of D(x;). Consider the EQ-learner which issues its hypotheses
in this order. It follows that as long as there exist counterexamples of a strictly positive
probability, the probability that the teacher returns the counterexample x; associated with
the target concept C; is at least 1/2 per query. Thus, the probability that the target is not
known after [log(1/d)] EQs is at most 6. Thus, with probability at least 1 — §, one more
query suffices to receive answer YES. °

As the number of EQs needed to learn 1-spheres from arbitrary counterexamples equals
the size s of the 1-sphere, and the upper bound in Theorem 16 does not depend on s at all,
the model of EQ-learning from the D-teacher for a fixed distribution D is, in general, more
powerful than the ordinary model. The gap between the number of EQ)s needed in both
models can be made arbitrarily large.

Recall that D,,;; denotes the class of distributions that are uniform on a subdomain
S C X and assign zero probability to instances from X \ S.

Theorem 17 The following lower bound even holds for randomized learners:

LCPR(C) > LCFOPwisl(C §) > (1 — §)sph(C).
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Proof. The first inequality is trivial. We prove the second one. Let s = sph(C) and
HL(Sy) be the 1-sphere of size s that is representable by C. Let S = {xy,...,z.}, and let
Cy,...,Cs be the concepts from C used to represent Sy,..., S, € HE(Sy), respectively. For
J=1,...,s, let D; be the probability distribution that assigns zero probability to z; and is
uniform on the remaining instances from S. Clearly, D; € Dyyiy.

A learner must receive answer YES with probability at least 1 — ¢ of success for each
pair (C, D), where C € C is the target concept, and counterexamples are returned randomly
according to D € D. It follows that, if target concept C; is drawn uniformly at random
from {Cy,...,Cs}, and counterexamples are subsequently returned according to D;, answer
YES is still obtained with probability at least 1 — ¢ of success. Note that we randomize over
the uniform distribution on the l-sphere (random selection of the target concept), over the
drawings of distribution D; conditioned to the current sets of counterexamples, respectively,
and over the internal coin tosses of the learner.

Agssume w.l.o.g. that all hypotheses are consistent with the counterexamples received so
far. Let C’ be the next hypothesis, and S’ C S the subset of instances from S being labeled 1
by C’. Because H§(Sy) is representable by C, S’ must differ from Sy on at least one element
of S. If §" = S, then the learner receives answer YES. Otherwise, the set U = (S"&®5;)\{z,}
is not empty. Note that the counterexample x; to C’ is picked from U uniformly at random.
This leads to the removal of only C; from the current version space V.

The punchline of this discussion is that the following holds after the returnal of ¢ coun-
terexamples:

1. The current version space V contains s — g candidate concepts from {Cy,...,Cs}. They
are (by symmetry) statistically indistinguishable to the learner.

2. The next hypothesis is essentially a random guess in V, that is, the chance to receive
answer YES is exactly 1/|V|. The reason is that, from the perspective of the learner,
all candidate target concepts in V are equally likely.*

If answer YES is received before s EQs were issued, then only because it was guessed within
V by chance. We can illustrate this by thinking of two players. Player 1 determines at
random a number between 1 and s (the hidden target concept). Player 2 starts random
guesses. The probability that the target number was determined after ¢ guesses is exactly
q/s. Thus, at least (1 — §)s guesses are required to achieve probability 1 — § of success. e

Corollary 18 Let R = (X, A, R, j1) be a representation class defining a doubly parameterized
concept class C. The following lower bound holds for all m and n, even for randomized
learners:

LC%Q(n,m,m) > LCgQ[D“"”](n,m,m,(S) > (1 = d)sphg(n,m,m) = (1 — §)sedimp(n,m,m)

*This might look unintuitive at first glance, because the learner does not necessarily draw the next
hypothesis at random from V according to the uniform distribution. But notice that a random bit cannot be
guessed with a probability of success larger than 1/2 no matter which procedure for “guessing” is applied.
This is the kind of argument that we used.
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Considering learning algorithms that do not make queries longer than the size of the
target concept, Corollary 18 and Theorem 2 imply the following somewhat surprising result:
A representation class is (determnistically) polynomially EQ-learnable (with answers given
by an adversary) iff it is (probabilistically) polynomially learnable from D, s-teachers. Thus
passing from deterministic to probabilistic learners and from the adversary-oracle to Dy -
teachers does not significantly increase the learning power. This negative result applies as
well to the model of EQ-learning from D, s-samples, which has been proved earlier to be
subsumed by randomized learners from D,,,; ;-teachers.

It is an open problem whether the learning power significantly increases when Dy, f-
teachers are combined with learners that do make queries longer than the size of the target
concept.”

We finally would like to mention that the lower bound for randomized learners from
arbitrary counterexamples in Corollary 18 is as good as the result from [8] (Theorem 3.3)
which relates the learning complexity with deterministic and randomized algorithms.
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