Specification Languages in Algebraic
Compilers

Eric Van Wyk!

Ozford University Computing Laboratory
Wolfson Building, Parks Road
Ozford OX1 3QD, UK

Abstract

Algebraic compilers provide a powerful and convenient mechanism for specifying
language translators. With each source language operation one associates a com-
putation for constructing its target language image; these associated computations,
called derived operations, are expressed in terms of operations from the target lan-
guage. Sometimes the target language is not powerful enough to specify the required
translation and one may then need to extend the target language algebras with more
computationally expressive operations or elements. A better solution is to package
these extensions in a specification language which can be composed with the target
language to ensure that all operations and elements needed or desired for performing
the translation are provided. In the example in this paper, we show how imperative
and functional specification languages can be composed with a target language to
implement a temporal logic model checker as an algebraic compiler and show how
specification languages can be seen as components to be combined with a source
and target language to generate an algebraic compiler.

Key words: Algebraic compiler, specification languages.

1 Introduction

Language processing tools like attribute grammars [1] and algebraic compil-
ers [2-4] provide powerful and convenient mechanisms for specifying language
translators. In both, one associates with each operation of the source language
specifications for computations that construct the target language images of

! Present Address: Department of Computer Science and Engineering, University
of Minnesota, 200 SE Union St, Minneapolis, MN 55455, USA

Preprint submitted to Elsevier Science 12 February 2002

source constructs created by the operation. The complexity of these computa-
tions contributes to the complexity of the entire language translator specifica-
tion. We are interested in means of reducing the specification’s complexity by
writing these computations in languages appropriate to the translation task at
hand. These languages must be computationally expressive enough to specify
the necessary computations, and should provide convenient programming con-
structs which simplify the specification process for the translator implementer.
A specification language provides additional constructs which are used, along
with those from the target language, to specify the translation computation
associated with each source language operation. They are essential when the
target language is not expressive enough to specify the translation, but also
helpful in simplifying the specification by providing more abstract operations.
Since algebraic compilers provide a solid mathematical framework and give a
clear distinction between the target language and the language used to specify
the translation, they provide a better context in which to explore the issues
of specification languages.

In this paper we will primarily follow Rus’s model [2] of algebraic compilers in
which an algebraic compiler C : Lg — Ly is a language—to-language translator
that uses an algorithm for homomorphism computation to embed (the algebras
of) a source language Lg into (the algebras of) a target language Lp. The
computations associated with each source language operation that define an
algebraic compiler are specified as terms in the target language syntax algebra
and are called derived operations. In some cases, the operations and elements
provided by the target language algebra are not expressive enough to correctly
specify the translation or exist at such a low level of abstraction, with respect
to the source language, that the specification is excessively difficult to read
and write. There are two types of target algebra deficiencies we will address
using specification languages in this paper. The first occurs when, although
every element in the source algebra can be mapped to an element of the target
algebra, the target algebra operations are not expressive enough to implement
the mapping. The specification languages used in the model checking example
in this paper address this type of deficiency by providing more computationally
expressive operations. The second and less frequent type occurs when there are
source algebra elements which can not be expressed in the target language. If
we do intend to translate such elements then we have no choice but to extend
the target language. However, there are cases in which we only intend to
translate elements of the source algebra which do have representations in the
target but these source elements contain components (subexpressions) which
do not have target algebra representations. Thus, although the source elements
of interest can be translated to the original target algebra, the translator
can not be implemented as a (generalized) homomorphism. In this case our
translator is a partial mapping. Specification languages can be of assistance
in this case as well as we will see in the comparison to Mosses [4,5] work in
Section 6.1. In both of these cases, the target language algebras are combined

with specification language algebras which provide the additional operations
or elements to make the translation possible or more easily specifiable. In
this paper, we explore how different specification languages can be used in
conjunction with the target language to correctly and conveniently specify
translators implemented as algebraic compilers without extending the target
language.

As an example, we develop a model checker for the temporal logic CTL (com-
putation tree logic) [6] as an algebraic compiler which maps the source lan-
guage CTL into a target language of satisfiability sets. Since the operations in
the target language of sets are not powerful enough to specify general computa-
tions, we must use a specification language to provide a more computationally
expressive language in which to specify this translation. We show how both
functional and imperative style specification languages can be used in the
specification, thus giving the language implementer some choice in choosing
an appropriate specification language.

Our choice of model checking as an example is not as esoteric as it may ap-
pear. Model checking has been used to perform data flow analysis on program
control and data flow graphs [7] and to find optimization and parallelization
opportunities in program dependency and flow graphs [8,9]. In both cases,
temporal logic acts as a specification language for certain patterns in a graph
representation of the program which are found by a model checker. Thus,
temporal logic does have applications in language processing tools and can be
seen as a domain specific specification language (see Section 5.3) in algebraic
compilers and attribute grammars. An example is provided to illustrate CTL
and model checking as a program analysis tool. Since different analyses can
require unique temporal logics it is advantageous to be able to generate model
checkers for these different logics from their algebraic specifications [10].

Section 2 describes CTL and model checking. In Section 3 we define algebraic
languages and compilers and show how CTL and models can be specified as
algebraic languages. Section 4 discusses specification languages in algebraic
compilers, specifically the specification languages used to implement a model
checker as an algebraic compiler. Section 5 provides the specification of the
model checker as an algebraic compiler using both a functional and an im-
perative specification language and provides some discussion of an algebraic
programming environment supporting the development of such translators.
Section 6 contains a discussion of related work including different models of
algebraic compilers, the use of specification languages in attribute grammars,
action semantics and rewriting logics. It also includes a discussion of domain
specific language specification techniques related to what we present in this
paper. Section 7 contains the concluding remarks.

2 Model Checking

Model checking [11] is a formal technique used to verify the correctness of a
system according to a given correctness specification. Systems are represented
as labeled finite state transition systems called Kripke models [12] or simply
models. Correctness properties are defined by formulas written in a temporal
logic. In this paper, we use CTL, a propositional, branching-time temporal
logic as our example. A model checking algorithm determines which states in
a model satisfy a given temporal logic formula; this algorithm can be seen as
a language translator which maps formulas in the temporal logic language to
sets in a language defined by the model. Note that this is the “classical” view
of model checking. There are other model checking techniques for verifying the
correctness of a system, such as the CSP refinement technique of Roscoe [13].
We present the problem of model checking a temporal logic as a language
translation problem and implement two solutions as algebraic compilers using
different specification languages.

Following Clarke et al. [6], we define a model as a tuple M = (N, E, P:

AP — 2N) where N is a finite set of nodes N = {ny,ng,... ,n,}, and F
defines directed edges between nodes as a binary relation on N, E C N x N,
such that Yn € N,3n' € N, (n,n’) € E, that is, every state has a successor.
For each n € N we use the notation succ(n) = {n’ € N|(n,n') € E}. A path
is an infinite sequence of nodes (ng, n1, no, ...) such that Vi, 7 > 0, (n;, niy1) €
E. AP is a finite set of atomic propositions, AP = {p1,p2,... ,pn}, P is a
proposition labeling function that maps an atomic proposition in AP to the
set of nodes in N on which that proposition is true.

Figure 1 contains a sample program and its control flow graph which is repre-
sented as a model. Nodes correspond to program statements and are numbered
to match the statement numbers. Additional entry and ezit nodes are also
given and numbered 0 and 9 respectively. The edges in the model represent
the possible transitions through the program. The atomic propositions which
label nodes in this model are {entry, exit, def,, defy, def., useq, usey, use.}. The
proposition entry labels only the entry node; ezit labels only the exit node,
def, labels a node if it defines the program variable z and use, labels a node
if it uses x. We will see how some program analyses, like dead code detection,
can be performed by model checking a temporal logic formula on this model.

The following rules [6] define the set of well-formed CTL formulas:

(1) The logical constants, true and false are CTL formulas.

(2) Every atomic proposition, p € AP, is a CTL formula.

(3) If f; and f, are CTL formulas, then so are —f;, fi A fo and fi V fo.

(4) If f; and fy are CTL formulas, then so are azfi, exfi, a[fi u f2], and

1. read a defy, useq

2. b:=axa l 3

3. ¢c:=a+10 defe, use,

4. if a < 100 then l 4

5. a:=100—a
==

6. c¢:=10 ! 0 6

7 aimcx?
endif 7

8. write a def,, use,

G
b

extt

L

Fig. 1. Example program and control flow model.

€[f1 u fz]-

The meaning of a CTL formula is defined by the satisfaction relation, k,
presented in Table 1 [6]. By M,n | f, or n = f where M is implicit, we
denote that n satisfies the formula f in model M. The satisfiability set of f
in M is defined as {n € N | M,n = f}. The non-temporal operators defined
in rules (1.), (2.) and (3.) have the expected meaning: e.g. the formula true
holds on any node in the model and —f holds on a node if f does not hold on
that node. The satisfaction of the temporal operators in (4.) depends on more
than one node in the model. The formula ex f, respectively az f, holds on a
node if at least one, respectively all, of its successors satisfies f. The formula
elf1 u fa], respectively a[f; u f3], holds on a node n if on at least one of the,
respectively all, paths from this node eventually f; holds on a node and f;
holds on all intervening nodes.

As an example consider dead code elimination, a program transformation that
removes assignment statements which do not affect the outcome of the pro-
gram. We can use model checking to find such statements. Statement (2.)
b := a * a can be removed from the example program with out changing the
meaning of the program since the variable b is not used again. We can encode
this in the CTL formula a[—use;, u exit]. We can safely remove statement (2.)

nkEp if nelP(p),pe AP

n = true iff true
n [false iff false

nkE-f iff not n = f

n = fiAfo if nEfiandnkE=fo
niEfiVvfe iff nEfiorngEfo
n = azf iff V(n,n') € E,n' E fi
nl=exf iff 3I(n,n) € B0 Efi

n = a[fi u fo] iff ¥V paths (n =mng,n1,ne,...),
Fi[i >0An; = foAVj0<j<i=n;}= fil]
n = e[fi u fo] iff 3 a path (n =ng,n1,n2,...),

Fi[i >0An; = foAVj0<j<i=n;}= fil]
Table 1
The CTL satisfiability relation.

since 2 = a[—usep u exit]. Note that although statement (3.) could be removed
without affecting the output of the program, 3 [~ a[-use. u exit] since c is
used again, but only after it is redefined. We could refine our CTL formula
to a[—use. u (def. N —use;) V exit]. This formula states that on all paths c is
not used until either the ezit node is reached or a node which defines ¢ but
does not use c is reached. Since 3 = a[—use, u (def. A —use.) V exit] we could
therefore remove that statement.

We present both a functional and an imperative version of a CTL model
checker implemented as an algebraic compiler [2] MC : Lg — Ly where the
source language Lg is CTL and the target language Ly is a language describing
the satisfiability sets of nodes of the model M. The algebraic compiler MC
translates a CTL formula f, to the set of nodes, N’, on which the formula f
holds. That is, MC(f) = N’ where N' = {n € N|M,n = f}.

3 Algebraic compilers

3.1 Y -algebras and X -languages

An operator scheme is a tuple ¥ = (S, Op, o) where S is a set of sorts, Op
is a set of operator names, and ¢ is a mapping defining the signatures of the
operator names in Op over the sorts in S. That is, o: Op — S* x S such that
if, for example, sg, s1, and s, are sorts in S and op is an operator name in Op

which stands for operations which take an element of sort s; and an element
of sort s, and generates an element of sort sg, then o(op) = s1 X s9 — sq.

A Y-algebra is a family of non—empty sets, called the carrier sets, indexed by
the sorts S of ¥ and a set of Op named operations over the elements of these
sets whose signatures are given by ¢. There may be many different algebras
for the same operator scheme 3. These algebras are called similar and are
members of the same class of similarity, denoted C(X). An interesting member
of C(X) is the word or term algebra for ¥. This algebra is parameterized by
a family of variables V' = {V;}scs and is often denoted Wx (V). Its carrier
sets contain words formed from the variables of V' and operator names of Op
and its operators construct well formed formulas called words according to
the operation signatures defined by o [14]. Variables in V' and the nullary
operators are called generators and they are thus said to generate W (V).

A Y-language [2] L is defined as the tuple (A%™ A" L. A%™ — ASY")
where A*™ is a Y-algebra which is the language semantics, A*" is a ¥ word
algebra which is the language syntax, and £ is a partial mapping called the
language learning function [2,15]. The mapping £ maps semantic constructs
in A%™ to their expressions as syntactic constructs in A*" such that there
exists a complementary homomorphism £: A" — A%**™ where if @ € A%™
and L(«) is defined then £(L(«)) = a. The mapping & is called the language
evaluation function and maps expressions in A®*¥" to their semantic constructs
in A*¢™. £ may be a relation instead of a function, but £ is always a function
since semantic constructs in 4™ may be expressed in many ways in A4*¥" but
syntactic constructs in A" have exactly one meaning in A*™. In what follows
we will define both CTL and the model M to be checked as Y-languages.

3.1.1 CTL as a X-language.

CTL can be specified as the Y-language L.y = (A%, AY" L) [16] using
the operator scheme .4 = (Scu, Opey, ocu) where S,y = {F}, the set of
sorts containing only one sort for “formula”, Op.y = {true, false, =, A, V, az,

ex,au, eu}, and oy is defined in Table 2. As CTL formulas are written us-
syn

ing atomic propositions from a specific model M, the syntax algebra AJ" is
oenltrue) = b - F ofaz) = F — F
oc(false) = b - F oculer) = F - F
oet(7) = F —» F oifou) = FxF — F
oett(N) = FxF — F oifeu) = FxF — F
oeu(V) = FxF — F

Table 2

The signature o,y of Opy.

parameterized by the set of atomic propositions AP from M and is denoted
as Aly'(AP). For example, the formula a[—use; u ezit] shown above has vari-
ables use, and exit from AP of the above model and the — and au operations
construct the CTL formula (in the syntax word algebra) from these variables.
The algebra ALy (AP) has as its carrier set all possible CTL formulas written
using the atomic propositions in AP. The operations of this algebra construct
formulas (words) from variables and operator names. The set of variables AP

generates the algebra AJY'(AP).

syn

Just as the syntactic algebra A% (AP) is parameterized by the atomic propo-
sitions AP of the model M, the semantic algebra A" is also parameterized
by M in that the carrier set of the semantic algebra A" is the power set
of the set of nodes of the model M. The operations in this algebra, while
similar (that is, having the same signature) to those in A%, operate on sets,
not formulas, since the meaning of a CTL formula is in fact its satisfiability
set. Although the operations in the word algebra A’} (AP) are easily defined
as simply concatenating operation names and operands together, the oper-
sem

ations in the semantic algebra AJ7" are less easily defined. The operation
names {true, false, ~, A\, V, az, ex, au, eu} in Op,, are interpreted in A" by

the respective operations {N, 0, C, N, U, next a1, next some, ifo ui, Y0 some } Where

e The nullary operators N and () are, respectively, the constant set of all nodes
in M and the constant empty set.
e The unary operator C produces the complement in the set N of its argument.
e The binary operators N and U are the standard set union and intersection.
e The unary operators nezt,; and next o, are defined as
- nextq(a) = {n € N|successors(n) C a}, o € 2V
- nextsome(@) = {n € N|successors(n) Na # 0}, a € 2V
Here successors(n) denotes the successors in M of node n.
e The binary operators Ifp,; and Ifp,,,,. are defined, for o, 3 € 2%, as
- Ifp u(a, B) computes the least fixed point of the equation Z = gU(aN{n €
N|successors(n) C (N Z)})
- Ufpsome (v, B) computes the least fixed point of the equation Z = U (a N
{n € N|(successors(n) NanN Z) # 0}) [6].

Although we do have a mathematical formulation of the semantic algebra
A, language learning function L.y and the language evaluation function
Equ they are not used in constructing the model checking software artifact
which performs the actual model checking process. In Sections 5.1 and 5.2 we
will define model checkers as compositions of several functions and relations
including the semantic algebra and language learning and evaluation functions
of other Y-languages. These will be discussed as we encounter them. Even
though some components of various X-languages will not be explicitly used
they are all defined.

3.1.2 A model as a X-language.

As the target language of our algebraic model checker, we develop a -
language based on sets which is parameterized by a specific model. For a model
M, Ly = (A5 AY", Lar) using operator scheme Y3, = (S, Opar, onr)
where Sy, = {Set, Node, Boole}, Opyy = {0, N,U,N,\, suce, €,C,=,“{_}”,

insert, get_one, get_rest }, and oy is defined in Table 3. The operators in the

an () = 0 — Set
om(N) = 0 — Set
om (V) = Set x Set — Set
om(N) = Setx Set — Set
om(\) = Set x Set — Set
om(succ) = Node — Set
om({-}) = Node — Set
om(€) = Node x Set — Boole
om(Q) = Set x Set — Boole
om(=) = Set x Set — Boole
op(insert) = Node x Set — Set
om(get-one) = Set — Node
om(get_rest) = Set — Set
Table 3

The signature oas of Opyy.

syntax and semantics algebras of Ly, are mostly self-descriptive. The nullary
operators () and N generate respectively the empty set and the full set of nodes
N. The binary operators U, N, and \ are respectively set union, intersection
and difference. We also have the subset (C), set equality (=), and membership
operations (€), the successor function succ and singleton set creation function
denoted by {_}. The get_one operation returns a node from a non—empty set,
get_rest returns all but one node from a non—empty set and insert adds an
element to an existing set. They are defined such that for any non-empty set
S, insert(get_one(S), get_rest(S)) = S. These operators build set expressions
in the syntax algebra A}}" and sets in the semantic algebra A55™.

This language learning function L£j; is a relation that maps set values s to
set, expressions and &£, evaluates these set expressions to generate sets. They
are defined such that Vs € A3, Ey(Ly(s)) = s. In our model checkers in
Sections 5.1 and 5.2, L,, is used as the final step to map set values to set
expressions. It in effect acts as a “print” function for the algebra. Although it
is a relation, we will apply it as a function under the assumption that it will

generate the most compact set expression for a given set by simply listing the
set elements and not forming complex expressions. It is defined as expected.

3.2 Algebraic compilers

syn

An algebraic compiler [2,15] C: Lg — Lg that maps the language Lg = (Ag",
A¥™, Lg) into the language Ly = (AF", A5¥™, Lr) is a pair of (generalized)
homomorphisms (Hyy, : A" — AP, Heem : AF™ — A5¢™) defined such that
the diagram in Figure 2 commutes. In general, the operator schemes of the

Agem £5 Agyn 55 A‘ssem
leem lHSyn leem

Er

Lr
sem
AP ———

A ET A

Fig. 2. An algebraic compiler.

algebras in these two languages may not be similar, as is the case with the
operator schemes Y. and X, for the languages L.; and Lj;. Thus there
may not be a homomorphism between the algebras of the source and target
languages. Instead, for each source algebra operation we will compose an ap-
propriate operation from several target algebra operations. Such operations
are called derived operations. Derived operations are written using words from
the target word algebra parameterized by a set of specification? wvariables. We
will use sub-scripted versions of the sort names from the source language op-
erator scheme as specification variables. The word “N \ F}”, is a word in the
algebra A}}" ({F1}) which specifies the unary derived operation for taking the
complement of a set with respect to the full set of nodes N. The specification
variable F is the formal parameter of the derived operation. We will associate
this derived operation with the CTL operation — since given the satisfiability
set of a formula f, it will generate the satisfiability set of the formula — f.

To define a generalized homomorphism [17] H from algebra Ay, with oper-
ator scheme Y5 = (Sg, Opg, 0s) to algebra Ay, with the possibly dissimilar
operator scheme X = (Sy, Opr, or) we must define the following mappings:

(1) a sort map, sm: Ss — Sr which maps source algebra sorts to target
algebra sorts. In a generalized homomorphism, an object of sort a of ¥g
will be mapped to an object of sort sm(a) of Xr.

(2) an operator map, om: Opg — Wy, (S%), which maps operators in the
source algebra to words in the target syntax algebra with specification
variables S — the source sort names with subscripts. These words spec-
ify the derived operations used in both the syntax and semantic target

2 In previous work we have referred to these as meta variables.

10

algebras A" and AL respectively of the hybrid language Lgr defined

below.

The derived operations, which take operands from the target algebra, have
the same signatures as their counterparts in the source algebra, and thus
we implicitly create an intermediate hybrid algebra Ly = (A", A, LsT)
which has the same operator scheme Y as the source algebras, but whose
carrier sets are populated by values from the target algebras and whose oper-
ations are the derived operations specified by the operator map om. A gener-
alized homomorphism H,: A% — A5 s € {sem, syn} is thus the composition
of an embedding homomorphism from A% to the intermediate algebra A%,
(ems: Ay — ALp) with an identity injection mapping from the intermedi-
ate algebra to A%, (im,: AL — A%) [2,18]. The mappings im, are identity
mappings that map elements in sort a,a € Sg in A%, to the same value in
sort sm(a) € Sy in A%. Thus H; = em; o im,. Note that in this paper the
arguments of function composition (o) are written in diagrammatic order as
opposed to following the standard convention. Thus (f o g)(z) = g(f(x)). In
later sections where we compose several functions to define a model checker
this ordering makes it easier to “follow the path” through the commutative
diagrams. Since both the syntax and semantic generalized homomorphisms of
Figure 2 are implemented in this manner, the intermediate algebras form an
intermediate ¥-language Lgr and thus, the diagram of Figure 2 becomes the
commutative diagram in Figure 3.

L &

A:gsem S Agyn S A‘ssem
lemsem l EMgyn lemsem

A 5T BT gy
limsem lzmsyn limsem

A T g e

Fig. 3. An algebraic compiler with the intermediate language displayed.

Given a mapping H' = {H.: a — sm(a)}.css that maps generators G =
{Gi}aess of the source algebra into the target algebra, H' can be uniquely
extended to a homomorphism H: Ag — Ag [17,2]. The algorithm for imple-
menting a generalized homomorphism H from a g algebra generated by G
is

H(z) = if z € G, for some a € Sg then H,(x)
else if = = f(xy,zs,...,2,) for some f € Ops (1)
then om(f)(H(z1), H(x2),...,H(x,))

This is all made clear by examining it in the context of our model checker as

11

an algebraic compiler. For starters, the sort map sm simply maps the sort F'in
Yen to the sort Set in X,,. The generators GG are the set of atomic propositions,
Gr = AP, and H}, is the proposition modeling function P from M which maps
atomic propositions to their satisfiability sets. What is left then, is to define
the operator map om which maps CTL operators in Op. to derived operations
over satisfiability sets. We saw above how the word “N \ F}” could be used
to specify the derived operation for the CTL operation — : F} — Fj. The use
of the indexed sort name F' (F}) as the specification variable is to show the
correspondence between the parameters of the source and derived operations.
The subscripts are used to distinguish between multiple parameters of the
same sort, different sorts will have different names.

Consider now the CTL operator axz. We cannot write a correct derived oper-
ation using only the operators from the target language. We need additional
constructs with which to compose a derived operation. It is at this point that
we can begin to speak of specification languages® used in the specification
of algebraic compilers instead of just specification variables. By introducing
some functional language constructs into the language in which we write de-
rived operations, we may like to write the derived operation for ax as

om(azx: Fy — Fy) = filter ((A n . suce(n) C Fy), S)

where “filter” is a generic operation which applies a predicate (given by the \—
expression) to each element of a container type, returning a similar container
type which contains only those elements from the original which satisfy the
predicate. Where F) represents the satisfiability set of a CTL formula f, the
derived operation denoted by this term will compute the satisfiability set of
the CTL formula ax f. It does this by extracting from N those nodes that
satisfy the condition that all of their successors satisfy the formula f.

Instead of extending the target algebra with these operations, we show in
the following section how a specification language containing these constructs
can be used in conjunction with the target language to write the appropriate
derived operations. The deficiency of the target language algebras A3 and
A" is of the first variety we mentioned in the introduction. It is clear the every
formula in AY" has a representation of it satisfiability set in A" and A3™.
The operations in A}Y" however are not computationally powerful enough
to compute the set expressions representing the satisfiability sets since they
only create terms (set expressions) in A3Y" by concatenating terms together.
Similarly, the operations in A435™ perform set operations but there is no facility
for general computation and thus we do not have the facilities to compute the

satisfiability set for formulas created using the temporal operators.

The advantage of keeping the specification language separate from the target

3 In a previous work [19,20] we have referred to these as meta languages.

12

language is that we can populate an algebraic language processing environment
with several reusable specification languages which a language designer may
use to build translators.

3.3 Evaluation of derived operations

As we have seen, derived operations are specified by words from the tar-
get language syntax algebra A" (S%) over a sub-scripted set of specification
variables from the source signature set of sorts Sg. In Figure 3, the same
words from A}Y"(S%) are used to specify the operations of the syntax alge-
bra AY; and the semantics algebra A%". Thus, we could build a general-

ized homomorphism H,: A" — A" which maps words in AF" directly

to values in AZ". H. is equivalent to the composition of the embedding

morphism emy,,: A" — Ag; and the Lgr evaluation function Egr, i.e.
H, = emgy, o Esr. In the case of our model checker, such a homomorphism
would map CTL formulas directly to their satisfiability sets in the intermedi-
ate semantic algebra. For efficiency reasons this may be desirable and is often

the way we will actually implement model checkers as algebraic compilers.

4 Specification languages in algebraic compilers

A specification language as used in an algebraic compiler is a parameterized
Y-language used in conjunction with the target language to specify derived
operations. It has the additional constructs required to correctly write the
derived operations which specify the translation. In the functional instance
of the model checker, these specification language operations will include the
filter and \—expression operators we saw above. In the imperative instance,
the specification language constructs will include if, while and assignment con-
structs as well as a for each loop operation. These operations, in combination
with the target language operations of set intersection, union, membership,
etc., are used to write the derived operations specifying the model checker. In
this section we first briefly discuss macro languages as instances of specification
languages and then discuss specification languages in general and how they
are instantiated with a specific target language to provide a language which
can be used to specify the derived operations of an algebraic compiler. Fol-
lowing this we describe the functional and imperative specification languages
and their instantiations with the model target language L.

13

4.1 Macro languages as specification languages

Macro processing has long been used as a mechanism for implementing lan-
guage translators [21-25]. Our colleagues and we have used macro processing in
the framework of algebraic compilers in many different instances [26-28,18,29].
In all of these cases, the macro languages act as a kind of translator specifi-
cation language. In the realm of algebraic compilers, the macro language acts
as a specification language for specifying derived operations.

To use macro languages in specifying derived operations we specify, for each
source language operation, a macro whose actual parameters are the target
images of the components of the source language construct. Its formal pa-
rameters are the sub-scripted sorts from the signature of the source language
operation. The process of expanding this macro at compile time generates
the target language image of the source construct. Consider, for example, a
translator for an imperative programming language whose target language is a
stack machine assembly language. The source language has a binary addition
operator with signature o(add) = Expr x Ezpr — Ezpr for integer or real
number addition (without type coercion for simplicity). The target images of
expressions are assembly language code fragments which leave their result on
the top of the stack. We can thus specify the translation of add by the fol-
lowing (semantic) macro which upon macro expansion, generates the target
language code fragment consisting of the target images of the components of
add followed by the integer or real number add instruction, addi or addr re-
spectively, depending on the type of the first component. This macro expands
into code which computes the value of the expression and leaves that value on
the top of the stack.

add : Ezpr, ::= Ezpr, Ezpr,
macro : Expr
Expr,
#if Stype(Expr;) = Integer
addi
Felse
addr

#endif

(By using Maddox’s semantic macros [25] in algebraic compilers [18], we can
access semantic information such as an expression’s type, $type(Expr;), during
macro expansion.)

Of interest here is the fact that we've used the macro language #if construct

to specify the derived operation which computes the target language image,
in the target language syntax algebra, of add expressions. The #if construct

14

is the required operation — which does not exist in the target language syntax
algebra — we need to specify this derived operation. In this case, the target
language has the first type of deficiency we mentioned in the introduction;
although it contains the elements (target language programs) in the range of
the compiler, it does not, contain the operations required to correctly construct
these target language images. A subtle point to observe is that although the
target language may have a branch operation, in the target syntax algebra this
operation would only concatenate words together; it would not perform the
branch computation needed to determine which add instruction to use in the
target image. The operations in the target syntax algebra only concatenate
words together and have no computational facilities for branching. The macro
language provides the required additional capabilities.

The specification languages presented in this paper should be seen as gen-
eralizations of macro languages, but the specification languages are defined
algebraically and are independent of the target language. We are not adding
new constructs to the target language to make the translation possible, but
instead are introducing a specification language with the required constructs
that, as we will see in the following section, sits between the source and target
language and enables the translation.

4.2 Specification language instantiation

A specification language Lg, used in an algebraic compiler is essentially a pa-
rameterized X-language. To use a specification language it must be instanti-
ated with the target language of the algebraic compiler. Like all ¥-languages,
a specification language has an operator scheme Xg,, syntax and semantic
algebras A" and Ag)", and a language learning function Lg,. The opera-
tor scheme Xg, is the tuple (Sg,, Opsp, 0sp,) where Sg, and Opg, are a set
of sorts and operator names as seen above. The signatures of these operator
names, however, may include parameters as well as sorts from Sg,. That is,
osp: Opsy — PSg, X PSgp, where PSgs, = Sg, U Param and Param is a
set of parameter names. The syntax and semantic algebras of a specification
language contain carrier sets and operations as expected, but these will be
augmented with carrier sets and operations from the target language alge-
bras. Components of the target language are the actual parameters which are
used to instantiate the specification language so that it can be used in an
algebraic compiler.

To write derived operations using specification (Lg,) and target (Lr) lan-
guage operations, the instantiation of the specification language is created
(by the language processing environment) from these two languages. A spec-
ification language Lg, instantiated with a target language Ly is denoted

15

— sem syn ; ; ;
Lg,r = (AL%, ST Lg,r) with operator scheme Xg,r. To instantiate a spec-

ification language the following tasks must be performed:

(1) Instantiate the operator scheme Yig,r. YNgr = (Sg,r, Opg,r,0g,r) Where
the set of sorts Sg,r is the union of the specification and target sorts
SspUST and the operator names Opg,r are the union of specification and
target operator names Opg, U Opr. The signatures of the instantiated
operations are defined by og,r: Opg,r — Sg,v" X Sg,v. Note that there
are no parameters in these signatures. These signatures are created by
replacing parameters in og, signatures with sort names in Sr and Sg,
and adding the target languages signatures in or. In our model checker,
the target language sorts Node, Set and Boole replace the parameters in
the specification language signatures. As we will see, this may cause og,r
to be a relation instead of a function and thus the same operator name
maps to several operations on different sorts.

(2) Instantiate the syntaz algebra AY'r. The carrier sets of this algebra are
the words with sorts Sg,r. These contain more than simply the appropri-
ate union of the carrier sets of the uninstantiated specification language
and the target language, but all words created by the operations in the in-
stantiated syntax algebra. We need operations for each signature in og,r
generated above. These operations may combine words from specifica-
tion and target language sorts but these operations can be automatically
constructed from the specification and target syntax algebra operations
since they simply paste words together.

(3) Instantiate the semantic algebra Ag‘;@. We must also instantiate the op-
erations of this algebra. Either they are explicitly constructed for the new
types, a kind of ad hoc polymorphism, or, preferably, the existing speci-
fication language operations are generic (polymorphic or polytypic) [30]
and can thus automatically work on the data-types from the target alge-
bra or are defined in terms of existing operations in the specification and
target semantic algebras. This process is dependent on the specification
and target algebras and is discussed in more detail below when we present
the functional and imperative specification languages.

Derived operations for the generalized homomorphism are now written in
A;?;”T(Sg), the instantiated specification language word algebra with speci-
fication variables S§, instead of the syntax algebra A7¥"(S%) of the target
language Ly as done before. Thus, the operator map om used in defining
the generalized homomorphism has the signature om : Ops — Ag'r(Ss). It
maps source language operators to words containing operator names from the
specification and target language. These words specify the derived operations
which create the target images of source language constructs. The sort map
sm is the same as before so that target images of source language constructs
are still objects of sorts in the target language, not sorts of the specification
language.

16

When building such an algebraic compiler the hybrid intermediate language
Lgr from Figure 3 is replaced by the hybrid intermediate language Lgg,r =
(Ager, Aggrs Lsg,r) as shown in Figure 4. Like Lgr, this language has the
same operator scheme Yg as the source language, but has operations built
using the operations from L sp7- The embedding morphisms emg,,, and emen,
in Figure 4 are computed in the same manner as those in Figure 3. We also

add an extra pair of identity injection mappings between Lgg,r and Lg,r.

Ls £
sem syn S sem
A" ———— A" ———— A§
EMsem emsyn EMsem
Y Y
sem gSSPT ASZU” 'CSSPT Asem
SSpT Ssp? SSpT
istem Z'm25yn imQSem
Y Y
Asem LSPT A gSPT Asem
SpT SpT SpT
imlsem imlsyn imlsem
A;em 5T Asyn ‘CT As'em
T T T

Fig. 4. An algebraic compiler with a meta language layer.

Just as the intermediate hybrid language Lg7 in Figure 3 is automatically cre-
ated, so is Lgg,r = (A¥Pr, Agy;; 7, Lggpr). However, we do need to explicitly
create (portions of) the specification language Lg,r using the process sketched
above and employed for the functional and imperative languages below. But,
this makes sense; we should not expect to get this language entirely “for free.”
Whereas before we specified the source and target language of the algebraic
compiler and wrote derived operations in the target syntax algebra with spec-
ification variables, we must now specify the specification language we wish
to use as well. The derived operations are then written in the instantiated

specification language syntax algebra.

An appropriate set of algebraic language processing tools can automatically
instantiate much, if not all, of the specification language. Since the syntax al-
gebra operations can always be automatically instantiated, it is the semantic
algebra operations — the ones which do the actual computation in algebraic
compilers — which may in a few cases need to be done by hand. The degree
to which this process can be automated for a specification language deter-
mines the convenience of using that specification language. If the specification
language semantic algebra operations are polymorphic, polytypic (generic) or
defined in terms of existing operations in the specification and target alge-
bra then this process can be automated as is the case for the specification
languages presented here.

17

4.8 A functional specification language

As alluded to above, we can use a functional specification language in spec-
ifying our algebraic model checker MC': L.y — Ljs. This allows us to write
derived operations for the temporal logic operators az, ez, au, and eu using
functional language constructs and thus provide concise specifications for our
model checker. Although a functional specification language would have many
other higher order functions, like map and fold, we only describe here the
operations which are used in our algebraic specification of the model checker.
We do however use A expressions and higher order functions filter, limit and
iterate which are defined below.

Our functional specification language Lp = (A¥™ A¥" Lr) has operator
scheme Xr = (Sp = {Boole, Var, Func, List}, Opr = {not, and, empty,
insert, get_one, get_rest, \, fetch, limit, iterate, filter},or), where op uses
the parameter a € Param and is defined in Table 4.

or(not) = Boole — Boole
or(and) = Boole x Boole — Boole
op(empty) = 0 — List
or(insert) = a x List — List
op(get_one) = List — a
op(get_rest) = List — List
or(N) = Var xa — Func
op(fetch) = Var — a
or(limit) = List — a
op(iterate) = Func xa — List
or(filter) = Funcxa — a
Table 4

The signature o of Opp.

The Boole sort is for Boolean values and variables and corresponds to the
Boole sort from the model operator scheme ¥,,. Note that the operators not
and and above are distinct from those in CTL. Var is for variables used in
A—expressions. As indicated by their names, Func is for functions and List for
lists.

The syntax algebra A%" has operations for building words (programs) and
carrier sets which contains these words. The syntax operations are defined as
we expect.

18

The semantic algebra A3 provides an evaluation of programs in the syntactic

algebra. The carrier sets contain the values which result from the evaluation
of the specification language constructs such as not and filter. The Boole
carrier set in A¥™ contains the semantic value ¢rue and false and the semantic
operations and and not are the expected Boolean operations. The semantic
carrier set Func contains, as expected, functions. In this language, and higher
order functional languages in general, the semantic algebra operations are
first class citizens of the language which means that these operations are also

elements of the Func carrier set.

The List carrier set is slightly different since we would like to allow (possibly)
infinite lists to be represented in our specification language. Thus the List
carrier set will contain “lazy lists” implemented as list computations which
are evaluated lazily to create list values only as they are needed. One could
correctly say that all operations in this language are strict except for the
list operations which are non-strict and calculated via lazy evaluation. The
semantic operation limit is a function which lazily evaluates a list of elements,
returning the first element in the list which is followed by a element of the
same value. For example, limit[1,2,3,3,4,5,...] evaluates to 3. Even if the
elements of this operand list continue to increase and thus form an infinite
list, the limit operation is well defined since the lists are lazily evaluated.
That is, we do not first compute the entire (in this case infinite) list and pass
it to the limit operation, but pass the list computation which could potentially
build this infinite list. Since the limit operation will only query its operand
for a succeeding elements of the list if the previous two values were different
it is possible for limit to return the value 3 above without calculating the
complete value of the infinite list. On lists where there are no two adjacent
equal values, the ltmit function does not terminate and thus lzmit is a partial
function. This operation is a polymorphic operation in that it works on lists
containing elements of any sort, as long as there is an equality operation on
values of that sort.

The list manipulation operation empty creates the empty lazy list, insert
creates a new list by adding an element to the beginning of another list, get_one
returns the first element in a list, and get_rest returns the list containing all
but the first element of a list.

The filter operation applies a Boolean function to each element of a container
type, and constructs a new container type with only those original elements
which evaluate to true under the Boolean function. filter is defined as follows:

filter (f,c) = if ¢ = empty then empty
else if f(get_one(c))
then insert(get_one(c), filter(f, get_rest(c)))
else filter(f, get_rest(c))

19

Since the container List has implementations of operations =, empty, get_one,
get_rest, and insert operations, the filter operation can be applied to lists. Note
that filter examines every element of the container type and thus if it is applied
to a list, that list must be finite or the computation will not terminate.

The iterate semantic operation is also lazy and repeatedly applies a unary
function first using a given initial value and then to the value returned from
the previous application. That is, iterate(f,) = insert(x, (iterate(f, f(x)))).
For example, with an initial integer value 3 and the increment-by-one function
inc, iterate inc 3 produces an infinite lazy list that when evaluated produces
the values [3,4,5,6, ...].

4.8.1 Instantiating the functional specification language.

To use this functional specification language in our model checker specifica-
tions we must first instantiate it with the target language Lj;;. We can create
the instantiated specification language Lpn = (A3, A7y, Lpu) with the
operator scheme Y pm from the specification language Lr and the model lan-
guage Ljs using the process described above. We begin by instantiating new
operator signatures by replacing the parameter @ in or with sort names Set,
Node and Boole from the model language operator scheme 3,,. We will thus
create new signatures for operations which previously did not exist, such as

opu (filter) = Func x Set — Set.

Instantiating the operations in the syntax algebra can be done automatically
since they simply paste together words and the sorts of the component words
do not affect the operations behavior. In the case of opum (filter) = Func X
Set — Set the filter operation from the syntax algebra A" is also used to
create words of the sort Set. All syntax algebra operations can be instantiated
in this way.

We must also instantiate the operations in the semantics algebra. The seman-
tic operations from A37™ are included in A7} as they are. More interestingly,
some of the operations suggested by the instantiation of signatures by replac-
ing parameters with sort names would be invalid and would not be used in any
program. Thus, we need not concern ourselves with creating semantic oper-
ations for these signatures. For example, consider instantiating the signature
or(filter) = Func X a — a by replacing parameter a with the sort Boole. It
is invalid to apply a filter operation to a Boolean value since there are no
get_one or get_rest operations for Boole values. Thus we do not provide an
implementation for this semantic operation. In some cases, there may also be
valid operations which we do not intend to use in the derived operations of the
algebraic compiler, and therefore we do not need to instantiate them either.

We do, however, need some new operations; for example, the operations with

20

the signatures opu (filter) = Func x Set — Set and opum(iterate) = Func X
Set — List are used in our derived operations. Do we have to manually provide
implementations for this operations? No, since filter and iterate are defined
in terms of existing operations, its implementation is automatically provided.
In the case of filter over sets, since the sort Set has implementations of the
operations =, empty, get_one, get_rest, and insert the filter operation can be
applied to sets as well as lists.

Clearly, these operation names were not chosen by accident or included in the
model language without an understanding how they would ultimately be used.
This is similar to what happens in modern programming languages such as
Java [31] and Haskell [32]. In Java, an “interface” plays the role of what we
have presented above. A class is said to “implement an interface” if it provides
method definitions for the methods named in the interface. In our case, we
could have a filter interface consisting of method names =, empty, get_one,
get_rest, and insert. The filter operation could then be applied to sets if the
Set sort implements these operations. In Haskell, a similar functionality is
provided by type classes. A data type is a member of a type class if it provides
implementations for the functions named in the type class. We might define
a filter type class to contain the signatures of the required operations and
define Set to be an instance of that type class by providing definitions of these
functions.

In the case of iterate, no restrictions are placed on the parameter sort since
iterate creates lists by lazily applying the function to values of that sort to
create a list of elements of that sort. The iterate operation provided by the
uninstantiated specification language in A3¥™ is polymorphic and works with
functions and initial values of any type, assuming of course that the functions

input and output types are those of the initial value.

As we will see in Section 5.1, the language learning function £zm is not used
directly in the model checker, but the evaluation function Ega is. It executes
programs in A}%; by mapping them to their values in A3 .

4.4 An imperative specification language

We similarly design an imperative specification language L; = (Aj™, A",

L) that has operator scheme ¥; = (S, Opy, o7). The sort set contains sorts
St = {Expr, ExprList, Dcl, DclList, Var, Boole} for expressions, declarations,
variables and Boolean expressions, as are familiar in imperative languages.
For simplicity, we will not make a syntactic distinction between expressions
and statements as is normally done. Some of our expressions will have side
effects and thus change the memory state in the same manner as state-

21

ments do and others will be side effect free like traditional expressions. The
operator names Op; includes the familiar imperative language operations;
Op; = {let, begin, if , while, for each, assign, not, and,...}. The if, while and
assign operators are as expected. The for each operation executes an expres-
sion for each element of a container value. The let operation allows the intro-
duction of local variables. The “value” of a let binding is the value of the final
expression in its body. The begin operator is simply a let operation without
any declarations. These operator’s signatures, and others as defined by oy, are
shown in Table 5 where a € Param.

or(let) = DclList x ExprList — Ezpr
or(begin) = ExprList — Ezpr
or(if) = Boole x Exzpr — Expr
or(while) = Boole x Expr — Expr
or(for each) = Var x a X Ezpr — Expr
or(assign) = Var x Ezpr — Ezxpr
or(not) = Boole — Boole
or(and) = Boole x Boole — Boole
or(fetch) = Var — Expr
or(dcl) = Var x Ezpr — Dcl
or(elisty) = Ezpr — ExprList
or(elisty) = ExprList x Expr — ExprList
or(dlisty) = Dcl — DclList
or(dlisty) = DclList x Del — DclList
or(ezxpry) = a — Ezpr
or(exprs) = Expr — a

Table 5

The signature o of Opy.

As with the functional specification language Ly, the imperative syntax alge-
bra A}Y" contains words, that is programs, written in this imperative language
and its operations are defined as expected. For example, the for each syntax

operation is for eachg,,(v,e,s) = for each v in e s.

The semantic algebra A" is slightly different from the functional semantic
algebra A3™ in that carrier sets contain computations, not values, and the

22

operations build these computations. We define, in the traditional manner, a
state as a mapping State: Name — Value from variable names to values. A
computation is then a mapping of type State — (Value, State) that takes a
state and returns a value and possibly updated state.

The semantic not operation in A3™ is a function not(b) = Ast — (-w, st’)
where (v, st') = b(st). It takes a computation b, which when given the state st
returns the value v of b in state st a the possibly updated state st’. The new
computation is the function which takes st and returns the negation of v and
the state st’. The assign operator is a function assign(z,e) = Ast — (v, st')
that maps an input state st to an output state st’ that maps z to the value of e
in state st and v is also the value of e in state st. That is, assign(z,e) = Ast —
(v, st'y where (v, st") = e(st) and st' = st”"[x — v]. (The state st[z — v] is
the same as st except it maps x to v.) Similarly, fetch(v) = Ast — (st(v), st)
and dcl(v,e) = Ast — (L, st'[v — ve| where (ve, st') = e(st). (L represent the
undefined value.) The operations expr; and expry are used to shuffle values
between sorts as needed.

The for each semantic operation is defined in terms of existing operations in
the specification and target semantic algebras as follows:

for each(v,e,s) =let t; :=e,
vi=_1
in while not (¢, = empty) begin
v:=getone (e);
t, = get_rest (t;) ;
s
end
end

This operation is the imperative version of the filter function in the language
Ly and works with any container type implementing the operations empty,
=, get_one, and get_rest.

4.4.1 Instantiating the imperative specification language.

Instantiating the specification language L;jv = (A7, ASSE, L) with oper-
ator scheme Y, from L; and Lj,; proceeds in the same manner as with the
functional specification language. The new operator scheme ;v is created by
replacing the parameter ¢ in ¥; with sort names from S; and Sj,. The syntax
operations in A7} can be automatically instantiated as before.

Again, it is the instantiation of the semantics algebra A" which is most
interesting. As with the filter operation in Ly, the semantic for each operator
is defined in terms of operations in the specification and target language.

23

Since there are empty, =, get_one and get_rest operations defined on Sets the
for each construct can be instantiated to create the “set iterator” operation
with signature Var x Set X Erpr — Ezxpr.

In this case however, we can not simply include the carrier sets and operations
from the target language semantic algebra A37" as they are. In A7, the
Set, Node and Boole carrier sets must now be computations with the type
State — (Value, State) instead of simple values. In fact, Set, Node and Boole
become synonyms for State — (Value, State). The operations from A37™ must
also be modified to take such types as operands. Thus we will lift the semantics
algebra operations to take operands of type State — (Value, State). Below, we
will subscript sort names and operations with M to indicate the originals from

sem; for example, Uy represents the original set union operator and Set,,
represents the original Set carrier in A35™. Consider the set union operation
with signature oy (U) = Set x Set — Set. In AP, 51U sy = Ast — (v Uy
Vg, Sto) where (v1,st1) = si(st) and (vg, sta) = so(sty). That is, the state
transformation will compute the set value v; and (possibly new) state st;
from s; using the input state st. The state st; is used by ss to compute the
set value v, and (possibly new) state sto. The set value v; Ups v is computed
using the set union operator from A435™. The other component generated by

the state transformation is the new state sts.

As before, the learning function L£;» is not used in the implementation of the
model checker. Its existence is important in correctness proofs. The evaluation
function £;» maps programs in Ajﬁ,’} to state transforming computations in
A35T. The manner in which these computations are used in implementing the

model checker is discussed in Section 5.2.

5 Model checker specification and implementation

In this section we show the specifications for the algebraic model checker us-
ing the functional and imperative specification languages. We will write the
translation specifications for each CTL operation op € Op.y, by writing the
signature of the operation, o (op), followed by its derived operation in the
target, om(op), but we will drop the om for convenience. The operations sig-
natures are written with the output sort of each operation to the left and the
operation name split between the input sorts in a BNF notation. (In fact, some
algebraic tools like TICS [28] use this specification to generate a parser for the
source language.) The specification variables used in the derived operations
are indexed source language sorts found in the source operation signature. In
the derived operations, a specification variable for an input sort represents the
target image of the corresponding source language component. These speci-
fications are processed by an algebraic language processing environment to

24

automatically generate the model checker [16,33,10].

5.1 A functional model checker specification

With the instantiated functional specification language Lpm we can write
derived operations to implement a model checker. Figure 4 is replicated in

Figure 5 using the functional specification language Lpnm.
»Cctl Asyn gctl

sem sem

ctl ctl ctl
EMgly
EMgem EMgyn €EMsem
A Y
AsemM ESFM AsynM ‘CSFM AsemM
SF SF SF
1M24em M2y 1M24em
Y 4
sem ‘CFM syn gFM sern
F M F
imlsem /Lmlsyn imlsem
v v
sem 5M Asum L M sem
M M M

Fig. 5. An algebraic compiler with a functional specification language layer.

As before, the intermediate hybrid language Lgpn = (A%, Agpar, Lopm) is

automatically created from the source language L.; and the instantiated spec-
ification language Lzn. It has the same operator scheme as L.; but its carrier
sets contain elements from Lz and its operations are derived operations com-
posed from the operations in Lyn. The embedding morphism emy,, is defined
as before in (1) in Section 3 and specified by the derived operations given be-
low. The embedding morphism em.,, and the injection mappings im1,., and

1M2;en are simply identity mappings since the semantic algebras A", AL,

s and A37™ all contain the same sets of nodes from the model M. The in-
jection mapping ¢m2,,, is also an identity mapping. The injection mapping
imlgy, is not implemented directly since it requires mapping words/programs
in Lpu, which defines how to compute sets, to set words in Las. Thus, iml,,,

can be implemented as the composition Epam 0 imlge, © L.

The functional version of the algebraic model checker M Cr maps CTL for-
mulas in A} (AP) to their satisfiability sets in A}Y". It can be defined as
MCr = emgy, 0im2y, 0 Eprr 0tml e 0 L. A CTL formula is first mapped by
€My, to a word in Agny, and then by the identity im2,,, into A}y This word
is a program in the instantiated specification language which when executed
computes the satisfiability set of the CTL formula. The language evaluation
function £pm performs exactly this function. Since the result of this evalua-
tion is a set, it is in the domain of the partial identity mapping im1,., which

25

maps it into A37". The language learning relation £, can map this set into a
simple representation in A3Y". Here, £y, acts as a simple output mechanism to
display the set. Thus, although we do not use the language learning relation
L.y in the model checker, we do use the language learning relation £,; of the
target language. As suggested in Section 3.3 we can implement MCF in an
alternative way using the embedding em,; shown in Figure 5.

All that is left to do to specify MCr is to define the derived operations
via the operator map om: Opcy — AP (S.,). For the non—temporal oper-

ators in L.; we have the straightforward derived operations shown below:
Fy ::= true Fy = false Fy.:=-F Fy:=FiNF

N 0 N\ F, FiNF,
The operation true has the derived operation N (shown directly below it)
indicating that the satisfiability set of ¢rue is the full set of nodes N in the
model M; false has derived operation () indicating that the satisfiability set
of false is the empty set. The derived operation associated with — shows that
the satisfiability of — f is the set difference of N and the satisfiability set of
f, denoted by the sort name F3. Similarly, A is specified by the intersection of
the satisfiability sets of the two sub formulas respectively denoted F; and F5.

In the derived operation for az, seen below, we see the use of some specification
language constructs. Here, we define the satisfiability set of ax f by filtering
the set of nodes by a function which selects only those nodes such that all of
their successors are in the satisfiability set of f.

Fy == azF} filter (A n — succ(n) CF,, N)

The derived operation for au is similar, but uses the limit and iterate opera-
tions to implement a type of least fixed point operator of the function specified
by the A—expression.

Fy = a[F| u F|
limit (iterate (A z — z U filter (A n — suce(n) Cz, F1) ,Fy))

The atomic propositions, specified as variables AP in AY'(AP), are mapped
to their satisfiability set by the model labeling function P.

Fy:=p P(p)

5.2 An imperative model checker specification

With the instantiated imperative specification language L;» we can write
derived operations that will implement a CTL model checker. Figure 6 shows

26

the intermediate languages and mappings from Figure 4 using the imperative

specification language L.
*Cctl Asyn Sctl

sem sem

_— _—
ctl eMai ctl ctl
EMsem EMgyn EMsem
| 4
Ase% gSIM Asyn ‘CSIM Ase%
SI SIM SI
1M 2 sem 1M 2syn 1M 2 sem
\ L £ 4
™ syn ™
AT A AT
imlsem imlsyn imlsem
| EM »CM 4
sem syn sem
A" ———— A ————— AN

Fig. 6. An algebraic compiler with an imperative specification language layer.

As with the functional specification language, the intermediate hybrid lan-
guage Lgv = (AL, A, Lspm) is automatically created from the source
language L.y and the instantiated imperative specification language L. The
operator scheme of Lg;m is the same as L. but its carrier sets contain ele-
ments from L;» and its operations are derived operations composed from L ;um
operations. We again specify the embedding morphisms emg,, and emgen, as
in (1) by the derived operations given below. The embedding morphism em sy,
maps a satisfiability set s in A" to a state transforming computation of type
State — (Value, State) in the Set carrier set in Ag7% that maps any state st to
the pair (s, st). The injection mappings im2,, and im2,,, are simply identity
mappings. As before, the injection mapping im1,,, is not implemented directly
since it requires mapping words in Lyv to set words in Lj,; it is implemented as
1M1y, = Enoimlge, 0Ly, The injection mapping im1,.,y, is a partial mapping
which maps state transformation computations in the carrier set Set to satisfi-
ability sets in A37". The computations in the domain of im1,,, are imperative
computations that map states to value/state pairs. Thus, im1 ., maps a com-
putation c to a satisfiability set s by evaluating ¢ with an initial state sty (that
maps variables to an undefined value) and extracting the value from the re-
sulting value/state pair. That is, imle, :: (State — (Value, State)) — Set

and imlg,(c) = s where (s, st') = c(sty).

The imperative implementation of the model checker, M}, maps formulas
in A% (AP) to their satisfiability sets in A" in much the same manner as
the functional version MC. It is defined using the mappings in Figure 6
as MCr = emgy, © tm24y, 0 Erm © iMlgen, o L. Alternatively, MCr can be
implemented using the syntax to semantic embedding emg;.

In order to specify M C; we only need to define the derived operations via the
operator map om: Opey — A (SLy). Since the non-temporal CTL opera-

27

Fy = azFy Fy = a|F, u Fy]

let tl = @ let tl = (Z) y
in for each nin S ty = F,
if (succ(n) C (F7) then in while (not ¢; = t5) begin
t1:=t; U{n}; t =19 ;
t for each n in F} do
end if (suce(n) C t;) then
ty =t U{n} };
end ;
ty
end

Fig. 7. The specifications for ax and au in the imperative specification language.

tors do not use any specification language constructs in their derived opera-
tions, they are the same in the imperative specifications as in the functional
specifications in Section 5.1. We do not repeat them here and only show the
specifications for the temporal operators ax and au in Figure 7. These derived
operations are the imperative versions of the functional derived operations
given above in Section 5.1. Here, the while and for each operators are used to
implement a least fixed point operation to compute satisfiability sets.

5.8 Discussion

The specification languages described here are just the required subsets of
general purpose specification languages which would populate an algebraic
language processing environment. Specification languages should be reusable
components in such an environment so that algebraic compiler designers can
choose from a collection of existing specification languages in which to write
their translator specifications. A well-stocked environment would have func-
tional and imperative specification languages giving the language designer
some choice based on personal preference of language style.

An advantage of using a separate specification language, like Ly or L;, over
extending the target language is that the specification language can be reused
with a different target language in a different algebraic compiler. Both speci-
fication languages Ly and L; can be seen as generalizations of the macro lan-
guages discussed earlier and could be used to replace the macro languages used
in algebraic compilers for translating programming languages [18]. Because of
their generality, they could be reused in many types of algebraic compilers,
from traditional programming language translators to problems not typically
stated as translations like the model checking example presented in this paper.

We would also expect an algebraic language processing environment to con-

28

tain domain specific specification languages [19] with specialized constructs to
address issues found in specific domains commonly encountered in language
processing as well as other domains, such as temporal logic model checking,
which also have solutions as algebraic compilers. Traditional language pro-
cessing tasks with specific domains include type checking, optimization and
parallelization, and code generation. In a type checker, for example, the target
algebras would have operators for the base types and type constructors and
carrier sets containing types or type expressions. A domain specific specifi-
cation language for type checking which has specific constructs for managing
symbol tables and environments would be helpful to the implementer and
reusable in different compilers. In the case of the model checker, a domain
specific specification language would include a least fixed point operator, since
this domain would make good use of such a construct.

6 Related Work

6.1 Specification languages in other algebraic compiler models

In this paper we have concentrated on Rus’s [2] algebraic compiler model.
An important question is whether or not these ideas can be used in other
models of algebraic compilers. There are several other models described in the
literature and these works tend to concentrate on either the algebraic definition
of compilers or the algebraic construction of compilers. The work of Morris [34]
and Thatcher et al. [3] fall into the first category which provides a definition
of a compiler via mappings between the source and target languages and their
semantics and shows the compiler correctness by proving that the diagrams
created by these mappings commute [35]. The algorithm which implements the
compiler is not necessarily of interest here. The second category, the algebraic
construction of compilers, contains works which define a compiler algorithm
in an algebraic framework in which the compiler correctness can be proved.
Works by Mosses [4], Gaudel [36] and Rus [2] fall into this category. Below we
discuss how specification languages can fit into these models in these different
categories.

6.1.1 Algebraic definition of compilers

In our discussion of the algebraic definition of compilers we will focus on
the model of Thatcher et al. [3]. They present an algebraic compiler for a
source language L, target language T, source language meanings M and target
language meanings U in which all are similar heterogeneous algebras. The
mappings, shown in Figure 8, between these algebras are all homomorphisms:

29

v is the “compile” mapping, # is the “source semantics” mapping, ¢ is the
“target semantics” mapping, and ¢ is the “encode” mapping. It is Thatcher’s
proof that ¢ is a homomorphism and that the diagram in Figure 8 commutes
that provide their definition and proof of compiler correctness. (Morris has a
homomorphism 6: U — M instead of ¢.)

L 7 T
g g
M 2 U
Fig. 8. The algebraic compiler model of Thatcher et al.
r— 2 . T g
o g ¥
M 2 U e’ Us

Fig. 9. An extension of the algebraic compiler model of Thatcher et al.

The model of Thatcher et al. also has algebras Ty and Uy which are similar to
each other, but not necessarily similar to the other algebras L, M,T and U.
These algebras do not appear in their commutative diagrams. We can extend
this model with injective mappings 7' from 7" to Ty and &’ from U to Uy which
just map elements from sorts in 7" and U respectively to the same values in the
(different) sorts of Ty and Up. If we also add the mapping ¢': Ty — U, then
we have the diagram in Figure 9. We can relate this to the model in Figure 3

: LI _ syn _ sem _ sYyn _ sem
by the following equalities: L = AJ", M = A¥™, T = AJr, U = A¥",
_ sYyn —_ _ — I I 5 —

To = A7", Uy = AF™, ¥ = eMgyn, € = €Mygem, ¥ = 1Mgyn, € = 1Mgem, 0 = Esg,

Y = Esr and ¢ = Ep. The compositions yo ' and € o &’ are, respectively, the
generalized homomorphisms Hyy,, and H,, in Rus’s model in Figure 2. What
we do not find here is any of the language learning relations Lg, L7 or Lr.

Given this extension to include dissimilar algebras, we can now add a speci-
fication language layer between these languages in a manner similar to what
was done above. This is shown in Figure 10. The syntax algebra I;*" and
semantics algebra [j°™ are instantiations of the specification language using
the target language algebras 7y and U, and are created in the same manner
that we have seen previously. The algebras I°¥" and I**™ are the hybrid alge-
bras which are similar to L and M but whose carrier sets contain elements,

respectively, from I¥" and I§*™. (We can relate these algebras to those in Fig-

ure 4 by the following equalities: I*¥" = Ay, r, I**™ = A¥T, o, [i"" = A+
and I§*™ = A377r.) Recall that we need to execute the computations in I§™.

Thus, we can not simply use the mapping v o %' o 4”. This is similar to the
need to define iml,,, as the composition Epm 0 imlgey © Ly in Section 5.1.
Thus the compiler we can use is v o 7' o ¢' o £”. This maps source language
expressions in L to target language meanings in Uy, which is almost what we

30

want. A primary difference between the Rus model and that of Thatcher et

! 1

I LA e NG B L)
! n
M Eqeem £ Jem £, [,

Fig. 10. A specification-language in the Thatcher model of an algebraic compiler.

al. is Rus’s model has the language learning relations £, and thus the final
printing out of the result falls outside of these other models since we compute

the semantic value in Uy = A37™ and would like to print this out as a word in
TO == A?&n

Thus, we see that specification languages can be added to Thatcher’s model,
but this requires an extension to the model to handle algebras of different
similarity and an additional mechanism to replace the target language learning
relation to “print” the final result. Since both of these exist a prioriin the Rus
model it is easier to add these extensions there. While there has been some
debate in the literature ([35] and [37],page 231) about some of the features
of Rus’s model, we see that the dissimilar algebras and the language learning
relations incorporated in the Rus model are in fact very useful for our purposes
and it suggests that because of these added facilities the Rus model is easier
to extend.

It is interesting to note that in Thatcher et al. [3] on page 613, the authors hint
at such a layering approach when they note that the ‘correctness of a compos-
ite translation could be obtained by “pasting” commuting squares together.’
The intention there was not quite the same as what we have achieved here,
however, in that they were anticipating translations through (possibly several)
intermediate languages where each intermediate language provided a represen-
tation of the source language program in a language progressively closer to
the final target language. If these intermediate languages are I;,0 < i < n,
then a compiler v: L — T is the composition v = vy o3 o... 07, where
Yo: L — Li,v:I; - I;11,0 < i < n, and v,: I, — T. Note that all of
these mappings ; are between the syntax algebras of the languages, not the
semantics algebras.

We have also introduced an “intermediate” language in a sense, and even
though the commuting diagrams have a similar form, the function of the in-
termediate language is different. In our case, its semantics, that is, compu-
tations in this language, are used to calculate the translation; it is not used
solely as an intermediate representation for constructs in the source language.
In order to map a source text to a target text, we need to execute operations
in the intermediate (what we have called specification) language. That is, we
must involve its semantics algebra. Thus, the language learning relation £

31

in the Rus model is helpful for mapping semantics constructs back to their
representation in the syntax algebra.

6.1.2 Algebraic construction of compilers

The algebraic compiler models of Mosses [4], Gaudel [36] and Rus [2], among
others, also have notions of correctness similar to that defined by Thatcher et
al. but go further by suggesting algorithms and tools for generating compilers
from algebraic specifications of the languages and the mappings between them.

In this section we show how a specification language can be used in the model
proposed by Mosses [4]. As we will see, his extension (7Tz') to the target lan-
guage (T') of his compiler can be seen as a specification language. In this case,
the specification language addresses issues which arise when the target lan-
guage can not express all elements of the source language. That is, the target
language does not contains some required elements. Although the translator
we are interested in is partial and only maps to expressions in 7' this, we will
see, hinders our specification of the translator as a homomorphism.

Mosses provides a “constructive approach to compiler correctness” by show-
ing how the compiler from the paper by Thatcher et al. can be constructed.
Thatcher et al. provide a definition of compiler correctness, as does Mosses,
but Mosses also shows how to construct the compiler. Mosses presents the
compiler in a slightly different form in which L is the source language, S is a
standard semantics and 7' is the target language. The mappings in Mosses’s
compiler are shown in the commutative diagram in Figure 11. The semantic
algebras M and U from Thatcher et al. are not used in Mosses’s proof of cor-
rectness and the mappings incident on them are not labeled. The sem mapping

L
sem/ ymp
g mpl T
M U

Fig. 11. The algebraic compiler of Mosses.

is a generalized homomorphism which embeds L into a standard semantics S
and ¢mpl maps S into the target 7. Mosses shows that impl is injective and
thus correct in the sense that if s = s’ for s,s" € S (with respect to the equa-
tions defining equivalent semantics in S) then impl(s) = impl(s'). Now, given
a correct semantics of L in the form of sem , a correct compiler comp , in the
form of a generalized homomorphism, can be constructed by composing sem
and ¢mpl . That is, comp = sem o impl.

32

It is in the definition of #mpl that we find a possible use of specification lan-
guages. Consider an example phrase from L, z := —y, and its embedding by
sem in S, sem(x := —y) = contents, >— z.(—z)! > update,. This semantics
phrase maps via impl to the phrase contents, — — — update, in T'. Without
concerning ourselves with the meaning of the various constructs in L, S and
T we can still see that the mapping impl is not a generalized homomorphism
because the free variables (z in the example above) in S can not be repre-
sented in 7'. This does not prevent the construction of comp as a generalized
homomorphism since every phrase from L can be represented in 7.

To define impl, Mosses extends T to Tx and then to Tz’ which contains
additional operators so that the generalized homomorphism impl': S — Ta'
can be defined such that our example phrase in S can be mapped to Tz’
using a generalized homomorphism. Again without concerning ourselves with
the details of T'z' we note that impl'(contents, > z.(—z)! > update,;) =
contents, — flipt — z.(z! = —) — flip* — update,. Tz' has representations
for the free variables in S. Mosses treats a set of equivalence defining equations
for Tx' as rewrite rules which can be used to rewrite the phrases in Tz’ that
are images (via sem o impl') of phrases in L as phrases in T. We will refer
to this rewriting as impl”: Ta' — T; note that impl” is a partial map since
some phrases in Tz’ (those that are not images of constructs in L) can not be
expressed in T. Thus, impl = impl’ o impl”. These rewritten phrases are also
phrases in Tz’ since T C Tx'.

Although Tz’ is not as independent of the target language 7' as the spec-
ification languages Ly and L; are of Ly, we can still consider Tz’ to be a

specification language. In our notation, let Ly = (AT AFT = Ta', Lry).

We can define the evaluation mapping Er,: AP — A5 to perform the

rewriting done by mpl"” before mapping to the semantic values in A% and
Loy AT — AP such that Vo € A5 Epp(Lry(a)) = . Defined in this
way, impl" = Epy o L7y We also define the other languages L, S and T as -
languages as expected (L = (A3, A7" = L, L), Ls = (A¥™, A" = S, Ls)
and Ly = (A5, A¥" = T, Lr)) and place the mappings defined above into
the commutative diagram in Figure 12. We have omitted the intermediate
hybrid languages from this diagram which would sit between L; and Lg and
also between Lg and Ly, . (This same omission was made in Figure 2 but
not in Figure 3.) We see that as before sem embeds L into S and impl’ em-
beds S into Tx'. Similarly em,, embeds A3¥™ into A%¥™ and impl’, embeds
AE™ into AF7. The mapping ¢myy, is the partial identity mapping which
injects elements of Tz’ which also exist in 7" into 7. The semantic version
iMgem is also a partial identity mapping. Since impl’ may generate elements
of T'z" which are not in T but can be rewritten as elements of T by impl"” and
impl" = Epy 0 Loy, we can define impl as impl = impl’ 0 Exyr 0 Ly 0iMygyy OF
impl = impl' 0 Eppr 0iMger, © L. Thus, comp can be constructed from the com-
position of the mappings we’ve seen as comp = semoimpl' o Epyy 0 L1y 0imgyy

33

sem ‘C L syn gL sem

L L L
SEMgem sem S€Msem
Y Y
gS syn ‘CS
:s’gem ASZ/ Agem
: i : ! - !
implsm, impl imply o,
Y Y
sem ETCL" Asyn ETCL" sem
Tx' Tx! v LI g
1M sem 1Mesyn 1M sem
Y Y
Er L
sem syn T sem
e A ———— AT

Fig. 12. Mosses’s compiler with a specification language.
or comp = sem o impl' o Epyr © iMgem © L.

Of interest here is that we have used a specification language L, to implement
the (partial) mapping impl: S — T. The deficiency in T is that some elements,
the free variables, of S can not be represented in 7'. Even though the elements
of S we are interested in mapping to 7" may contain free variables they do have
a representation in 7', because the free variables are bound in these elements
of S. The problem is that this prevents the specification of the mapping impl
as a generalized homomorphism. We thus use the specification language L,
to define impl' as a generalized homomorphism and its evaluation function
Ery to rewrite elements of T2’ into elements of 7.

6.2 Specification languages in other frameworks

6.2.1 Attribute Grammars.

Specification languages within attribute grammars have a slightly different
form than in algebraic compilers. Algebraic compilers rely on an explicit def-
inition of the target language and use target language operations for writing
derived operations. These operations thus provide a starting point for adding
specification language features. Attribute grammars, to their detriment, make
no explicit mention of the target language and thus do not have a set of tar-
get language operations to provide as a starting point for writing semantic
functions for defining attribute values. Instead, they provide a single general
purpose language for writing semantic functions. This language doesn’t suffer
the expressiveness problems we saw above, but it does lock the user into a
single “specification language” for defining attribute values. We have thus ar-
gued [19] that a choice of domain specific specification languages in attribute
grammars is also desirable for many of the same reasons as they are beneficial
in algebraic compilers.

34

6.2.2 Action Semantics.

At first glance, the idea of specification languages presented here is reminiscent
of facets in Action Semantics [38,39]. A facet provides “action combinators”
whose focus is on processing at most one kind of information at a time. For
example, a declarative facet is used for processing scope information and an
imperative facet is used for processing information such as bindings and values
of storage cells. These are thus similar to domain specific specification lan-
guages [19] whose goal is to provide a specification language for an algebraic
compiler specific to a particular domain of language processing such as type
checking or optimization. These were discussed in Section 5.3. Facets however
are also very similar to aspects from aspect-oriented programming [40] for the
domain of language processing. Aspects allow a programmer to “cross cut” the
conventional program structures, in this case abstract syntax trees, to spec-
ify semantic information for a particular concern, perhaps the “environment”,
in one place or module without inter-mixing specifications for other seman-
tic concerns. Thus facets are also similar to the aspects in aspect-oriented
compilers [41].

Action semantics and algebraic compilers can be seen as striving to reach
the same goal of providing a mechanism for easily specifying provably correct
compilers but by beginning from different starting points. Mosses states [39]
that the primary design philosophy behind action semantics was to provide
a pragmatic methodology for specifying language semantics that would scale
up to realistic programming languages and avoid many of the problems of
denotational semantics. In fact, there are action semantics specifications for
Pascal [42] and the Standard ML ‘bare’ language [43]. Palsberg [44-46] has
proved the correctness of a compiler generator which he designed and im-
plemented that accepts action semantics descriptions of imperative languages
and generates code for an abstract RISC machine. As Mosses states in [39],
this may be a “first step” in developing tools which allow one to prove the
correctness of a generated compiler which is specified in a notation (action
semantics) which is easy to read. Algebraic compilers, however, begin with
a philosophy that aims to prove the correctness of compilers. The notion of
correctness is usually defined in terms of commuting diagrams [35]. Our speci-
fication languages here are aimed to make it easier to write algebraic compilers
and hopefully this work is a contribution toward moving algebraic compilers
in a more pragmatic direction. Thus the two methodologies could be said to
be heading toward the same goal, but from different starting points.

6.2.3 Rewriting Logic.

The rewriting logic system [47] of the Maude [48] language provides very gen-
eral and powerful mechanisms for implementing logics as well as a semantic

35

framework for specifying languages and systems. Many different models of
computation can be unified using rewriting logic. The semantics of functional
(specification) languages can be implemented via rewriting [49] in which dif-
ferent functional evaluation strategies, either strict or non-strict (lazy), can be
specified by changing the rewriting strategy. Imperative languages can also be
implemented via rewriting when the rewrite rules corresponds to state tran-
sitions and the rewritten term represents the program’s state. Maude also
provides a module system for specifying rewrite and equation theories. In the
case of algebraic compilers, specification languages could be composed with
target languages where both are specified in term of rewriting logics. There
are, however, no restrictions on the implementation techniques one chooses
for the specification languages in our framework. Thus, we have a bit more
freedom in that everything does not have to be specified as a rewriting logic.
Nevertheless, it would be an interesting experiment to embed the notions pre-
sented here into a rewriting logic framework.

6.3 Domain Specific Languages

Above we mentioned domain specific specification languages and here we dis-
cuss how our use of domain specific specification languages compares with
the other work on domain specific languages (DSLs) in general. We mention
only a few different approaches to DSLs here, as represented by Hudak [50],
Swierstra [51] and Neighbors [52].

In [50], Hudak discusses the importance of using domain specific embedded
languages (DSEL) in building large software systems. In this approach, new
domain specific features can be added to a language by providing definitions
for these constructs from existing constructs in the language. Similar tech-
niques are also discussed by Swierstra et al. in [51]. Both of these approaches
make use of higher order functions in Haskell [32]. These techniques have been
used to build embedded domain specific languages for parser generation, ani-
mation, table formatting and language processing to mention just a few. We
believe these technique provide powerful and convenient mechanisms for rais-
ing the level of abstraction in one’s programs and have used these ideas in
a prototype for an “intentional programming” system [53] briefly mentioned
below in Section 7.

Building on existing language features in this manner is certainly possible in
our algebraic compiler model as well. We saw an example of this in how the
filter and for each operations for sets were built using existing set operations
like get_one and get_rest. Our main goal, in the realm of algebraic compilers
however, is to provide specification language constructs that have a function-
ality not present in the target language and thus these new constructs can

36

not be built on top of existing target language operators. In the imperative
specification language, for example, the while operator could not have been
implemented on top of the existing target language set operations.

Another use of domain specific languages is found in Draco [52]. Draco is both
an approach to software engineering and a prototype implementing this ap-
proach that is broader in scope than the DESL techniques discussed above.
It envisages a hierarchy of DSLs with general purpose languages at the bot-
tom. High level specifications are written in a DSL appropriate to the task.
These specifications are then refined, both manually and automatically, to
more concrete DSLs until eventually a program in a general purpose language
is generated. In Draco, there are several DSLs and the intent is to use the
right one for the right part of the job. This is also our goal. In a proper alge-
braic language processing environment, one would find several domains specific
specification languages for the domains of type checking, program analysis and
code generation.

7 Conclusion

We have shown in this paper how specification languages can be used to ad-
dress two types of deficiencies that are possible in target language algebras
in the framework of algebraic compilers. In the main model checking example
we saw that the target model language algebras A%™ and A}7" contained as
elements the satisfiability sets of all of the CTL formulas in A}Y" but that
the operations of these target language algebras where insufficient to compute
the satisfiability sets. The specification languages Lr and L; were instanti-
ated with L,; to provide a language whose algebras contained the necessary
operations to implement the model checker. This allowed us to keep the tar-
get language as it was originally defined and choose the types of additional
computations (functional or imperative) that we wanted to use to specify the
model checker.

We also saw in the discussion of Mosses’s algebraic compiler model how spec-
ification languages could be used to address another deficiency in target lan-
guages: the inability to represent some components or sub expressions of el-
ements of the source language we want to translate. This prevented us from
implementing the translator directly as a (generalized) homomorphism. By
treating Tz’ as a specification language we saw how the specification lan-
guages could be used in other constructive models of algebraic compilers.

It is our belief that using specification languages as we have defined them
makes algebraic compilers significantly easier to specify. Common problems of
target language expressibility, as illustrated by our examples, can be cleanly

37

overcome using specification languages. Instead of extending a target language
with additional operations or elements, we can choose to reuse existing specifi-
cation languages which have the additional components required to specify the
translation. This approach allows for a more modular specification of source
and target languages and the mappings between them.

We are pursuing this work as part of an effort to find appropriate meta lan-
guages to be used for defining language constructs for the Intentional Pro-
gramming (IP) [54,53,55] system which was until recently under development
at Microsoft. IP is an extensible programming environment which allows pro-
grammers to define their own language constructs, called intentions, and add
them to their programming environment. We are interested in exploring dif-
ferent specification languages for defining such intentions. Since the same do-
mains of type checking, optimization, code generation, etc., are encountered in
IP, domain specific specification languages will be useful in this system as well.
They are especially important here since appropriate domain specific specifi-
cation languages raise the level of abstraction in which the intention designer
works and will thus make designing intentions a more reasonable process that
experienced programmers could perform to create their own language exten-
sions.

Acknowledgments: We would like to thank the anonymous reviewers for
their helpful suggestions in improving this paper and Microsoft Research for
funding this research.

References

[1] D. E. Knuth, Semantics of context-free languages, Mathematical Systems
Theory 2 (2) (1968) 127-145, corrections in 5(2):95-96, 1971.

[2] T. Rus, Algebraic construction of compilers, Theoretical Computer Science 90
(1991) 271-308.

[3] J. Thatcher, E. Wagner, J. Wright, More on advice on structuring compilers
and proving them correct, in: H. Maurer (Ed.), Automata, Languages and
Programming Proceedings, ICALP’79, Vol. 71 of Lecture Notes in Computer
Science, Springer-Verlag, 1979, pp. 596-615.

[4] P. Mosses, A constructive approach to compiler correctness, in: N. Jones (Ed.),
Proc. Semantics-directed Compiler Generation Workshop, Vol. 94 of Lecture
Notes in Computer Science, Springer-Verlag, 1980, pp. 189-210.

[6] P. Mosses, A constructive approach to compiler correctness, in: Proc.
International Conference on Automata, Languages and Programming, Vol. 85
of Lecture Notes in Computer Science, Springer-Verlag, 1980, pp. 449-469.

38

[6] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM TOPLAS 8 (2)
(1986) 244-263.

[7] B. Steffen, Generating data flow analysis algorithms from modal specifications,
Science of Computer Programming 21 (1993) 115-139.

[8] T. Rus, E. Van Wyk, Using model checking in a parallelizing compiler, Parallel
Processing Letters 8 (4) (1998) 459-471.

[9] D. Lacey, O. de Moor, Imperative program transformation by rewriting, in:
Proc. 10th International Conf. on Compiler Construction, Vol. 1113 of Lecture
Notes in Computer Science, Springer-Verlag, 2001, pp. 52—-68.

[10] T. Rus, E. Van Wyk, T. Halverson, Integrating temporal logics and model
checking algorithms, Formal Methds in System Design 20 (3) (2002) 249-284.

[11] E. Clarke, O. Grumberg, D. Peled, Model Checking, M.I.T. Press, 1999.

[12] S. Kripke, Semantical analysis of modal logic i: Normal modal propositional
calculi, Zeitschrift f. Math. Logik und Grundlagen d. Math. 9.

[13] A. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.
[14] P. Cohn, Universal Algebra, Reidel, London, 1981.

[15] T. Rus, Algebraic processing of programming languages, Theoretical Computer
Science 199 (1) (1998) 105-143.

[16] T. Rus, E. Van Wyk, Algebraic implementation of model checking algorithms,
in: Third AMAST Workshop on Real-Time Systems, Proceedings, 1996, pp.
267-279.

[17] P. Higgins, Algebras with a scheme of operators, Mathematische Nachrichten
27 (1963/64) 115-132.

[18] E. Van Wyk, Semantic processing by macro processors, Ph.D. thesis, The
University of Iowa, Iowa City, Towa, 52240 USA (July 1998).

[19] E. Van Wyk, Domain specific meta languages, in: ACM Symposium on Applied
Computing, Vol. 2, Association of Computing Machinery, Como, Italy, 2000, pp.
799-803.

[20] E. Van Wyk, Meta languages in algebraic compilers, in: T. Rus (Ed.), Eighth
International Conference on Algebraic Methodology and Software Technology,
AMAST 2000, Proceedings, Vol. 1816 of Lecture Notes in Computer Science,
Towa City, Iowa, USA, 2000, pp. 119-134.

[21] M. Mcllroy, Macro instruction extensions of compiler languages,
Communications of the A.C.M. 3 (4) (1960) 214-220.

[22] B. Leavenworth, Syntax macros and extended translations, Communications of
the ACM 9 (11) (1966) 790-793.

39

[23] T. J. Cheatham, The introduction of definitional facilities into higher level
programming languages, in: AFIPS (Fall Joint Computer Conference, 29), 1966,
pp- 623-637.

[24] D. Weise, R. Crew, Programmable syntax macros, ACM SIGPLAN Notices
28 (6).

[25] W. Maddox, Semantically-sensitive macroprocessing, Master’s thesis, The
University of California at Berkeley, Computer Science Division (EECS),
Berkeley, CA 94720 (December 1989).

[26] J. Lee, Macro-processors as compiler code generators, Master’s thesis, The
University of Towa, Iowa City, Iowa (1990).

[27] J. Knaack, An algebraic approach to language translation, Ph.D. thesis, The
University of Towa, Department of Computer Science, Towa City, TA 52242
(December 1994).

[28] T. Rus, T. Halverson, E. Van Wyk, R. Kooima, An algebraic language
processing environment, in: M. Johnson (Ed.), Sixth International Conference
on Algebraic Methodology and Software Technology, AMAST ’97, Proceedings,
Vol. 1349 of Lecture Notes in Computer Science, Sydney, Australia, 1997, pp.
581-585.

[29] T. L. Halverson, Language development by component based tools, Ph.D. thesis,
The University of Iowa, Iowa City, Iowa, 52240 USA (May 1999).

[30] R. Backhouse, P. Jansson, J. Jeuring, L. Meertens, Generic programming —
an introduction, in: Proc. Third International Summer School on Advanced
Functional Programming, Vol. 1608 of Lecture Notes in Computer Science,
Springer-Verlag, 1999, pp. 28-115.

[31] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Java Series, Sun
Microsystems, 1996.

[32] S. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,
J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, P. Wadler, Haskell
98, available at URL: http://www.haskell.org (February 1999).

[33] T. Rus, E. Van Wyk, Integrating temporal logics and model checking
algorithms, in: Fourth AMAST Workshop on Real-Time Systems, Proceedings,
Vol. 1231 of Lecture Notes in Compter Science, Springer-Verlag, 1997, pp. 95—
110.

[34] F. Morris, Advice on structuring compilers and proving them correct, in: Proc.
ACM Symposium on Principles of Programming Languages, Association of
Computing Machinery, 1973, pp. 144-152.

[35] T. Janssen, Algebraic translations, correctness and algebraic compiler
construction, Theoretical Computer Science 199 (1998) 25-56.

40

[36] M. Gaudel, Correctness proof of programming language translations, in: Formal
Description of Programming Concepts - II, North-Holland, 1982, pp. 25-43.

[37] T. Rus, Algebraic definition of programming languages, in: Proc. AMiLP2000,
Algebraic Methods in Language Processing, 2nd AMAST Workshop on
Language Processing, 2000, pp. 223-232.

[38] P. Mosses, Action Semantics, no. 26 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1992.

[39] P. Mosses, Theory and practice of action semantics, in: Proc. 21st Int. Symp.
on Mathematical Foundations of Computer Science, Vol. 1113 of Lecture Notes
in Computer Science, Springer-Verlag, 1996, pp. 37-61.

[40] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier,
J. Irwin, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (Eds.),
ECOOP’97 Object—Oriented Programming, Vol. 1241 of Lecture Notes in
Computer Science, 1997, pp. 220-242.

[41] O. de Moor, S. Peyton-Jones, E. Van Wyk, Aspect oriented compilers,
in: K. Czarnacki, U. Eisenecker (Eds.), First International Symposium on
Generative and Component-Based Software Engineering, Vol. 1799 of Lecture
Notes in Computer Science, 1999, pp. 121-133.

[42] P. Mosses, D. Watt, Pascal action semantics, version 0.6, available at URL:
ftp://ftp.brics.dk/pub/BRICS/Projects/AS/Papers/
MossesWattDRAFT.ps.Z (Mar 1993).

[43] D. Watt, An action semantics of standard ml, in: Proc. Third Workshop on
Math. Foundations of Programming Language Semantics, Vol. 298 of Lecture
Notes in Computer Science, Springer-Verlag, 1988, pp. 572-598.

[44] J. Palsberg, Provably correct compiler generation, Ph.D. thesis, University of
Aarhus (1992).

[45] J. Palsberg, An automatically generated and provably correct compiler for a
subset of Ada., in: Proc. Fourth IEEE Int. Conf on Computer Languages, IEEE,
1992, pp. 117-126.

[46] J. Palsberg, A provably correct compiler generator, in: ESOP’92, Proc.
European Symposium on Programming Languages, Vol. 582 of Lecture Notes
in Computer Science, Springer-Verlag, 1992, pp. 418-434.

[47] N. Marti-Oliet, J. Meseguer, Rewriting logic as a logical and semantic
framework, Tech. Rep. SRI-CSL-93-05, SRI International, Computer Science
Laboratory, to appear in D. Gabbay, editor, Handbook of Philosophical Logic,
Second Edition, Volume 6, Kluwer Academic Publishers, 2001 (Aug. 1993).

[48] J. Meseguer, Rewriting logic and Maude: Concepts and applications, in:
L. Bachmair (Ed.), Rewriting Techniques and Applications, 11th International
Conference, RTA 2000, Norwich, UK, July 10-12, 2000, Proceedings, Vol. 1833
of Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 1-26.

41

[49] S. Peyton-Jones, The implementation of functional programming languages,
Prentice Hall, 1992.

[50] P. Hudak, Building domain-specific embedded languages, ACM Computing
Surveys 28 (4es).

[61] S. Swierstra, P. Alcocer, J. Saraiva, Designing and implementing combinator
languages, in: Proc. Third International Summer School on Advanced
Functional Programming, Vol. 1608 of Lecture Notes in Computer Science,
Springer-Verlag, 1999, pp. 150-206.

[52] J. Neighbors, The Draco approach to constructing software from reuasable
components, IEEE Transactions on Software Engineering SE-10 (5) (1984) 564—
574.

[53] E. Van Wyk, O. de Moor, G. Sittampalam, I. Sanabria-Piretti, K. Backhouse,
P. Kwiatkowski, Intentional programming: a host of language features, Tech.
Rep. PRG-RR-01-21, Computing Laboratory, University of Oxford (2001).

[54] C. Simonyi, Intentional programming: Innovation in the legacy age, presented
at IFIP Working group 2.1 workshop. (1996).

[65] E. Van Wyk, O. de Moor, K. Backhouse, P. Kwiatkowski, Forwarding in
attribute grammars for modular language design, in: Proc. 11th International
Conf. on Compiler Construction, Lecture Notes in Computer Science, Springer-
Verlag, 2002, To appear.

42

