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1 IntrodutionThe elementary formal system (EFS, for short) was originally invented by Smullyan [39℄in early 1960s to develop his reursive funtion theory. Professor Arikawa is a pioneerto employ suh an EFS for studying formal language theory [7℄ in 1970. After about20 years later, he and his partners [8, 9℄ haraterized the EFSs as logi programs overstrings and introdued a new hierarhy of various language lasses, whih inludes thefour lasses of Chomsky hierarhy, the lass of pattern languages, and many others. Fur-thermore, he enhaned EFSs as a unifying framework for language learning, by designingindutive inferene algorithms (MIEFS) for these EFS lasses based on Shapiro's ModelInferene [34℄.Stimulated by the series of Arikawa's works, many researhers investigated the EFSson the various areas of algorithmi/omputational learning theory. Shinohara [37℄ showedthat the length-bounded EFSs belonging to the above hierarhy is inferable in the limitfrom positive examples alone. This result is a valuable extension of the previous infer-ability of bounded unions of pattern languages [1, 36, 37, 43℄. Mukouhi and Arikawa [28℄showed that the lass of length-bounded EFSs is also refutable. This notion is a newriterion introdued by them that a learner an refute eah hypothesis spae if it turnsout to be insuÆient for identi�ation. Many other researhers suh as [20, 21, 26, 27℄ en-joyed various topologial properties of EFSs on indutive inferene. Jain and Sharma [18℄analyzed the mind hange omplexity and the intrinsi omplexity of EFSs.In ontrast to the learnability of EFSs on indutive inferene, the polynomial-timelearnability is another interesting theme on learning EFSs. For this purpose, Miyanoet al. [24, 25℄ introdued the sublass hereditary EFS, denoted by HEFS. This lassinludes the lass of pattern languages and is enough to express the ontext-free languages.Furthermore, this lass exatly de�nes the lass PTIME [17℄. Miyano et al. onsider thelearnability of the hierarhy HEFS(m; k; t; r) with the parameters suh that m, k, t andr are the maximum number of lauses, the maximum number of ourrenes of variablesin the head, the maximum number of atoms in the body, and the maximum arity ofprediate symbols, respetively. They showed that the HEFS(m; k; t; r) is PAC-learnablefor every �xed m; k; t; r � 0.Other result was shown in the query learning model introdued by Angluin [4℄. Inthis learning model, an algorithm an ask the equivalene, membership, and other severalqueries. As an interesting relationship between the PAC and query models, it is knownthat if a lass is learnable in polynomial time with equivalene queries (and membershipqueries, resp.) and the membership deision is polynomial time deidable, then it isalso PAC-learnable (with membership queries, resp.) [4℄. Sakakibara [33℄ studied the1



query learnability of the sublass of HEFSs alled extended simple EFS (ESEFS, forshort). He showed that the k-bounded ESEFS is learnable in polynomial time using theequivalene and prediate membership queries. The k-bounded ESEFS is a proper sublassof HEFS�(�; k; k; 1), where HEFS�(m; k; t; r) denotes the HEFS(m; k; t; r) of whih thefats are always ground.In the present paper, we investigate the learnability of the HEFSs w.r.t. the querylearning model. Two lasses are shown to be learnable in polynomial time using thequeries mentioned below with presenting the learning algorithms. Moreover, other lassesare shown to be hard to learn in the sense of representation-independent hardness [5, 32℄.First, we extend the Sakakibara's result [33℄ to the whole lass of HEFS(�; k; t; r). Thelearning algorithm with a top-down searh strategy is based on the ontrolled generationof andidate lauses and the ontradition baktraing algorithm of Shapiro [34℄. Thisalgorithm an be regarded as a ounterpart of the MIEFS of Arikawa, Shinohara, andYamamoto [9℄ along a polynomial-time learning model. We show that this algorithmlearns all hypotheses H� of HEFS(�; k; t; r) in polynomial time using O(ptmn2k+2rtkk)equivalene queries and O(pt+1mn2k+2r(t+1)kk) prediate membership queries for everyk; t; r � 0, where p is the number of prediate symbols, m is the ardinality of H�, and nis the size of the longest ounterexample seen so far. Unfortunately, the running time isexponential in t.To overome this diÆulty, we onsider a sublass of HEFS alled terminating HEFS(THEFS, for short). Arikawa et al. [9℄ and Yamamoto [42℄ showed that the standard SLD-resolution proedure an be used as the deision proedure for EFS languages. However,this proedure may not terminate in ase of goals. Thus, we onsider the dependenyrelation of an EFS H that is a smallest transitive relation over atoms >H suh thatA >H B if A and B appear, respetively, in the head and the body of an instane of alause in H. An HEFS H is alled terminating if there exists a well-founded relation >,i.e., there exists no in�nite dereasing hain, on atoms that bounds >H . It is obvious that,for a terminating HEFSH, the SLD-resolution proedure forH j= C always terminates forevery lause C. Hene, we de�ne the hierarhy THEFS(m; k; t; r) of terminating HEFSs.We also allow a learner to use two types of additional queries for the target EFS H�.The �rst type of queries is the entailment membership query in the model of the learningfrom entailment [15, 31℄. This model is onsidered to be reasonable for learning the �rst-order logi or logi programs [10, 11, 16, 19, 31℄. The goal of a learning algorithm is to�nd a hypothesis equivalent to the target hypothesis w.r.t. the entailment semantis usingthe queries. The entailment semantis is de�ned in the next setion together with othersemantis. The seond type of queries is the dependeny query to determine whether a2



pair of atoms are in a dependeny relation.We design a learning algorithm for THEFS(�; k; �; r) with equivalene, entailmentmembership, and dependeny queries. This algorithm adopts the bottom-up searh strat-egy by ombining three generalization tehniques, namely, saturation, rewind andmaximalommon subsumer [10, 11, 15, 16, 19, 31℄. We show that for every k; r � 0, this algorithmexatly learns the lass THEFS(�; k; �; r) in polynomial time using O(pmn2r+1) equiva-lene queries, O(p2m2n4k+4r+1kk) entailment membership queries, and O(p2m2n4k+4r+1kk)dependeny queries, where m is the number of lauses and n is the length of the longestounterexample seen so far. The number O(pmn2r+1) of equivalene queries for this algo-rithm is signi�antly smaller than the number O(ptmn2k+2rtkk) for the previous top-downalgorithm for HEFS(�; k; t; r). Also we show that, by analyzing the VC-dimension, lowerbound of the queries to learn THEFS(�; k; �; r) is 
(mnr=2) for some ordering >, whihimplies that the number of equivalene queries of this algorithm is nearly optimal.Furthermore, we present the series of representation-independent hardness results ofprediting HEFSs by adopting the predition-preserving redution without or with mem-bership queries [5, 32℄. The property is known that if a lass is not polynomial-time pre-ditable (with membership queries), then it is not polynomial-time learnable with equiva-lene queries (and membership queries) [5, 32℄. We denote by RP , [mRP and [RP thelass of regular pattern languages, at most m unions of regular pattern languages, and all�nite union of regular pattern languages, respetively [12, 24, 25, 35, 36, 38℄. Shinoharaand Arimura [38℄ showed that RP and [mRP are inferable from positive data although[RP is not. On this line of studies, we show the hardness of the query learnability ofthese lasses. The RP is not polynomial-time preditable if neither are DNF formulasand the [RP is not polynomial-time preditable with membership queries if neither areDNF formulas. The [mRP is polynomial-time preditable with membership queries butit is open whether it is learnable with the equivalene and membership queries.The above results for pattern languages an be regarded as an improvement for thenon-PAC-learnability of the RP and [RP , whih is representation-dependent [25℄. Fur-thermore, the third result is an extension of the learnability of RP with membershipqueries [23℄. The RP , [mRP and [RP are orresponding to the HEFS(1; �; 0; 1),HEFS(m; �; 0; 1) and HEFS(�; �; 0; 1), respetively. Hene, we an onlude that thebound on k is neessary to eÆiently learn HEFS(�; k; t; r) with equivalene and member-ship queries. Other hardness results indiate that the HEFS�(�; k; t; r) is not polynomial-time preditable with membership queries under the ryptographi assumptions, even ifk = t = r = 1.Finally, onerning with the learnability of k-bounded ESEFSs whih is a sublass of3



HEFS�(�; k; k; 1), with the equivalene and prediate membership queries [33℄, we showthat the bound k is essential for this eÆieny, i.e., the HEFS�(�; �; �; r) is not polynomial-time preditable with the membership or prediate membership queries if neither are theDNF formulas, even if r = 1. All results in this paper are summarized in Fig. 1.2 PreliminariesIn this setion, we give the de�nitions and theorems on elementary formal systems, learn-ing models, and predition-preserving redutions neessary for the later disussion.2.1 Elementary formal systems and their languagesFor a set S, #S denotes the ardinality of S. Let � be a �nite alphabet of onstantsymbols, X be a ountable set of variables, and for every r � 0, �r be a �nite alphabetof r-ary prediate symbols. Moreover, let � = [i�0�i. We assume that �, X and � aremutually disjoint. We all the pair S = (�;�) a signature.For eah prediate symbol p 2 �r, r is alled an arity of p. We denote by arity(�) themaximum arity of the prediate symbols in �. By ��, �+ and �[n℄, we denote the sets ofall �nite strings, all nonempty �nite strings, and all strings of length n or less respetively,over �.A pattern over S is an element of (� [ X)+. A pattern over S is alled regular ifeah variable appears at most one in it. An atom over S is an expression of the formp(�1; : : : ; �r), where r � 0, p 2 �r and eah �i is a pattern over S (1 � i � n). A de�nitelause (lause, for short) over S is an expression of the form:C = A A1; : : : ; Am,where m � 0 and A;A1; : : : ; Am are atoms over S. The atom A and the set fA1; : : : ; Amgof atoms are alled the head and the body of C and denoted by hd(C) and bd(C), respe-tively. In ase that m = 0 (resp., m > 0), a lause is alled a fat (resp., rule). A lauseor an atom over S is ground if it ontains no variable.De�nition 1 Let S = (�;�) be a signature. An elementary formal system (EFS , forshort) over S is a �nite set of lauses over S.For a signature S = (�;�), AtomS and ClauseS denote the sets of all atoms and alllauses over S, respetively. In partiular, the set of all ground atoms over S is alled theHerbrand base over S and denoted by BaseS .4



Figure 1: The summary of the learnability of a hierarhy HEFS(m; k; t; r) of HEFSspresented in this paper. In the all tables, the �rst row indiates the types of queriesused. The types of queries assumed in this paper are the equivalene (EQ), membership(MQ), prediate membership (PMQ), entailment membership (EntMQ), and dependeny(DQ) queries. Eah \poly" means that the lass is polynomial-time exat learnable withEQs and the indiated queries. Eah \hard" (resp., \hard�") means that some hard lass(resp., the lass of DNF formulas) is predition-preserving reduible with the indiatedqueries to the lass. The \pred" means that the lass is polynomial-time preditable withthe indiated queries. The \PAC" and \not PAC" mean the lass is and is not polynomial-time PAC-learnable, respetively. Finally, eah arrow in the tables means that the resultof the ell ontaining the arrow is diretly derived from the neighbor pointed by the arrow.(a) Learnability of HEFSsClass EQ EQ+MQ EQ+PMQHEFS(m; k; t; r) PAC [24, 25℄   k-bounded ESEFSs (� HEFS�(�; k; k; 1)) ! hard (Th14) poly [33℄HEFS(�; k; t; r) ! hard (Th14) poly (Th5)HEFS�(�; �; �; r) ! ! hard� (Th15)
(b) Learnability of terminating HEFSsClass | EQ+MQ EQ+PMQ EQ+EntMQ EQ+EntMQ+DQTHEFS(�; k; �; r) ! hard (Th14) open open poly (Th7)

() Learnability of regular pattern languages and their unionsClass EQ EQ+MQRP (= HEFS(1; �; 0; 1)) not PAC [24, 25℄ = hard� (Th11) poly [23℄[mRP (= HEFS(m; �; 0; 1)) " = " pred (Th13)[RP (= HEFS(�; �; 0; 1)) " = " hard� (Th12)
5



A substitution is a homomorphism � : (� [X)+ ! (� [ X)+ suh that �(a) = a foreah symbol a 2 �. For a substitution � and a pattern �, the �� denotes the image of� by �. For an atom A = p(�1; : : : ; �n) and a lause C = A  A1; : : : ; Am, we de�neA� = p(�1�; : : : ; �n�) and C� = A�  A1�; : : : ; Am�. Then, we say that A� and C� areinstanes of A and C, respetively. In partiular, if A� or C� beomes ground, then � isalled a ground substitution.We end this subsetion by introduing the notion of subsumption, denoted by w whihplays an important role in Setion 3. For atoms A and B over S, we de�ne A subsumesB, denoted by A w B, if there exists a substitution � suh that A� = B, that is, B is aninstane of A.For lauses C and D over S, we de�ne C subsumes D, denoted by C w D, if thereexists a substitution � suh that hd(C�) = hd(D) and bd(C�) � bd(D). We de�ne Cproperly subsumes D, denoted by C = D, if C w D but D 6w C.For EFSs H and G over S, we de�ne H subsumes G, denoted by H w G, if forevery D 2 G, there exists a lause C 2 H suh that C w D. Then we say that H isa generalization of G or G is a re�nement of H. Furthermore, a re�nement G of H isonservative if, for every D 2 G, there exists at most one lause C 2 H suh that C w D.We de�ne H = G if H w G but G 6w H.2.2 Three semantis for EFSsIn this subsetion, we �rst introdue a model thoery for EFSs as follows for uniformlydealing with three semantis. Let us identify a given signature S = (�;�) with the�rst-order signature (�; f�g;�), where \�" is a string onatenation operator satisfyingthe assoiativity 8x8y8z[x � (y � z) = (x � y) � z℄.An interpretation I over S is a triple (U; I; �), where U is a set, I is a mapping thatmaps p 2 �r (r � 0), \�" and a 2 � to an r-ary relation over U , a binary assoiativefuntion over U and an element of U , respetively, and � is a variable-assignment to U .Then, the satisfation relation j= is de�ned in a standard manner (f., [14, 30℄). A modelof an atom A or a lause C over S is an interpretation I over S suh that I j= A andI j= C, respetively. We assume that any variable in a lause is universally quanti�ed. Amodel of an EFS H over S is a model of every lause in H over S.For an EFS H and a lause C over S, we say that H entails C, denoted by H j= C, ifevery model of H is a model of C. For EFSs H and G over S, we say that H entails G,denoted by H j= G, if every model of H is a model of G.Originally, the semantis of EFSs is de�ned by the provability relation ` de�ned [9℄.For an EFS H and a lause C over S, respetively, the relation H ` C whih means that6



C is provable from H is de�ned indutively as follows:1. If C 2 H, then H ` C.2. If H ` C, then H ` C� for a substitution �.3. If H ` A A1; : : : ; Am; Am+1 and H ` Am+1, then H ` A A1; : : : ; Am.The following lemma gives the relationship between ` and j=.Lemma 1 (Arikawa et al. [9℄) For every atom A and EFS H, H j= A i� H ` A .The language semantis is a standard semantis of EFSs (f. [8, 9, 24, 25℄). Let Hbe an EFS over S = (�;�) and p0 2 � be a distinguished prediate symbol. Then, thelanguage de�ned by H and p0 over S is the setLS(H; p0) = f w 2 �+ j H j= p0(w) g:A language L � �+ is de�nable by an EFS over S or it is an EFS language over S ifthere exists an EFS H over S and p0 2 � suh that L = LS(H; p0).The least Herbrand model semantis [9, 42℄ is based on all of the ground atoms provablefrom a given EFS. The least Herbrand model of an EFS H over S is the set MS(H) =f A 2 BaseS j H j= A g [9, 42℄.The entailment semantis is based on all lauses entailed by a given EFS. The en-tailment set of an EFS H over S, denoted by EntS(H), is the set of all lauses over Sentailed by H, i.e., EntS(H) = f C 2 ClauseS j H j= C g:Formally, a semantis for a lass H of EFSs is a pair (U; L̂(�)), where U is a set ofobjets, alled the domain, and a mapping L̂ : H ! 2U , alled the language mapping .De�nition 2 Let S be a signature (�;�) and p0 2 �1 is the distinguished prediate.� The language semantis on S is a pair (AtomS ; LS(�; p0)).� The least Herbrand model semantis on S is a pair (BaseS ;MS(�)).� The entailment semantis on S is a pair (ClauseS ;EntS(�)).We introdue a proof-DAG by extending the parse-DAG for k-bounded CFGs byAngluin [3℄ and the ground proof-DAG for EFS by Sakakibara [33℄.De�nition 3 A proof-DAG for a lause C by an EFS H is a �nite direted ayli graphT with the following properties. Nodes in T are atoms possibly ontaining variables. Thenode A is the unique node with in-degree zero, alled the root . For eah node B in T , letSu(B) be the set of nodes B0 with edges from B to B0. Then for every node B in T ,either B 2 bd(C) or (B  Su(B)) is an instane of a lause in H.7



A proof-DAG T of C by H is minimal if no proper subgraph of T is also a proof-DAGC by H. A minimal proof-DAG for a lause C by H is said to be trivial if all nodesin T are ontained in hd(C) [ bd(C), and non-trivial otherwise. We will assume that aproof-DAG is always minimal.The Skolem substitution for C w.r.t. H is a substitution � that replaes the variablesx in C with mutually distint fresh onstants x not appearing in H and C.Lemma 2 Let H be an EFS and C a lause. For the Skolem substitution � for C w.r.t. H,H j= 8(C) i� H j= C�.Lemma 3 Let S be a signature, H an EFS onsisting of ground lauses, and A 2 BaseSa ground atom. Then, H j= A i� there exists a minimal proof-DAG T for A by H.Proof. The if diretion of the lemma is easily proved by indution on the size n � 1 of theproof-DAG for A by H. Next, we will show the only-if diretion. Suppose that H j= A.Let M =MS(H). First, sine M is the smallest among the Herbrand model of H, we anshow thatM is the supported model , that is, ifM j= A then there is some C 2 H suh thatA = hd(C) and M j= bd(C). Then, we show the lemma by indution on the ardinalityn = #H. If n = 1 then H onsists of the fat A  , and thus, the lemma immediatelyfollows. Suppose that #H = n + 1 and the lemma holds for any EFS of ardinality nomore than n. By the laim shown above, there is some lause C = (A B1; : : : ; Bm) 2 Hsuh that A = hd(C) and M j= B1 ^ : : : ^ Bm. Let H 0 = H � fCg and M 0 = MS(H 0).We will show that M 0 j= B1 ^ : : : ^ Bm. Suppose to the ontrary that there is someinterpretation I suh that I j= H � fCg but I 6j= B1 ^ : : : ^ Bm. Sine B1 ^ : : : ^ Bm isthe body of C, we see that I j= C regardless the truth value of A. Therefore, I is a modelof both H � fCg and C, and thus that I j= M but I 6j= B1 ^ : : : ^ Bm. However, thisontradits the assumption. Hene, M 0 j= B1 ^ : : : ^ Bm. Sine #H 0 � n, by indutionhypothesis, we have that for every 1 � i � m, there exists a proof-DAG Ti for Bi by H 0.Hene, we have a proof-DAG for A by H by merging T1; : : : ; Tm and by adding the rootnode A and the edges f(A;Bi) j 1 � i � mg. It is not hard to see that the resulting graphT is ayli. 2The following lemma haraterizes the entailment relation j= for EFS in terms of aproof-DAG, and orresponds to the subsumption theorem in lausal logi [29℄.Lemma 4 (The subsumption theorem) Let H be an EFS and C a lause. Then,H j= C if and only if one of the following statements holds:(i) C is a tautology. 8



(ii) C is subsumed by some lause in H.(ii) There exists a non-trivial minimal proof-DAG for C by H.Proof. Let � be the Skolem substitution for C w.r.t. H. Sine C� is ground, it followsfrom Lemma 2 and the dedution theorem of �rst-order logi that H [ bd(C�) j= hd(C�).Thus from Lemma 3, there is some proof-DAG T 0 for hd(C�) by H [ bd(C�). By thede�nition of the proof-DAG, if bd(C�) is ground then this proof-DAG T 0 is also a proof-DAG for C� by H. Sine � is one-to-one and introdues only fresh onstants into C, wean obtain a proof-DAG T for C from T 0 by applying the inverse mapping ��1 to T 0. Theonverse is also true. 2In the remainder of this paper, we will omit the subsript S if it is not neessary toexpliitly disignate it. In Setion 3, a signature is expliitly given to a learner beforethe learning session starts. In Setion 4, a signature is impliitly assumed to ontain allprediate and onstant symbols ourring in EFSs.2.3 Hereditary EFSs and the other sublassesIn this subsetion, we introdue the several sublasses of EFSs, whih are developed bymany researhers [7, 8, 9, 17, 24, 25, 33, 37, 42℄.First, we prepare the notations neessary to de�ne the sublasses. The size of apattern �, denoted by j�j, is the total number of symbols from � [ X appearing in �.The variable-ourrene of �, denoted by o(�), is the total number of the ourrenesof variables from X appearing in �. For example, if � = fa; bg, X = fx; y; : : :g and� = abxbxyab, then j�j = 8 and o(�) = 3. For an atom A = p(�1; : : : ; �n), we de�nejAj = j�1j+ � � �+ j�nj and o(A) = o(�1)+ � � �+ o(�n). For a lause C = A0  A1; : : : ; Am,we de�ne jCj = jA0j + � � � + jAmj and o(C) = o(A0) + � � � + o(Am). For an EFS H, thesize of H, written jHj, is PC2H jCj.De�nition 4 We introdue the following restritions of lauses.1. A lause A  A1; : : : ; Am is alled variable-bounded [9℄ if every variable appearingin the body A1; : : : ; Am also appears in the head A.2. A lause A  A1; : : : ; Am is alled length-bounded [9℄ if jA�j � jA1�j + : : :+ jAm�jfor eah substitution �.3. A lause is alled extended simple [33℄ if it is of the form p(�) q1(x1); : : : ; qm(xm),where p; q1; : : : ; qm are unary prediate symbols and x1; : : : ; xm are all variablesappearing in �. 9



4. A lause is alled simple [9℄ if it is of the form p(�)  q1(x1); : : : ; qm(xm), wherep; q1; : : : ; qm are unary prediate symbols and x1; : : : ; xm are mutually distint vari-ables appearing in �.5. A simple lause is alled regular [7℄ if the pattern in its head is regular.6. A regular lause is alled left-linear (resp., right-linear) [7℄ if the pattern in its headis of the form wx (resp., xw) for some string w 2 ��.7. A lause is hereditary [25℄ if it is of the formp(�1; : : : ; �n) q1(�1; : : : ; �t1); q2(�t1+1; : : : ; �t2); : : : ; qm(�tm�1+1; : : : ; �tm),and eah pattern �j (1 � j � tm) is a substring of some �i (1 � i � n).The extended simple lause was introdued in the ontext of simple formal systems(SFSs) [33℄, so an extended simple lause is an extension of a simple lause in SFSs [7℄.In ontrast, the above extended simple lause is not an extension of a simple lause inEFSs. In partiular, there exists no extended simple lause that is a non-ground fat andthat has variables only ourring in the head.De�nition 5 An EFS H is alled variable-bounded (resp., length-bounded , extended sim-ple, simple, regular , left-linear , right-linear , hereditary) if eah lause in H is variable-bounded (resp., length-bounded, extended simple, simple, regular, left-linear, right-linear,hereditary).For example, let � = fp0; qg and � = fa; b; g. Then, the following simple EFS H0and HEFS H1 de�ne the languages L(H0; p0) = fw 2 fa; bg+ j w is a string of thebalaned parentheses g and L(H1; p0) = f anbnn j n � 1 g, respetively.H0 = 8><>: p0(xy) p0(x); p0(y)p0(axb) p0(x)p0(ab) 9>=>; ; H1 = 8><>: p0(xyz) q(x; y; z)q(ax; by; z) q(x; y; z)q(a; b; ) 9>=>; :We abbreviate an extended simple EFS and a hereditary EFS as an ESEFS and anHEFS, respetively. The following hierarhy HEFS(m; k; t; r) of HEFSs introdued by [25℄gives a useful framework for polynomial-time learnability.De�nition 6 (Miyano et al. [24, 25℄) For every m; k; t; r � 0, HEFS(m; k; t; r) is thelass of HEFSs onsisting of at most m lauses eah of whih satis�es the following on-ditions (a){(). HEFS�(m; k; t; r) is the sublass of HEFS(m; k; t; r) onsisting of at mostm lauses eah of whih satis�es the following onditions (a){(d).10



(a) The variable-ourrene in the head is at most k.(b) The number of atoms in the body is at most t.() The arity of eah prediate symbol is at most r.(d) All fats are ground.In this hierarhy, the symbol `�' indiates that there is no bound on this parameter.For example, the HEFSs H0 and H1 in the above example belong to HEFS�(3; 2; 2; 1)and HEFS�(3; 3; 1; 3), respetively. We an give the orrespondene of the EFS languagesto Chomsky's hierarhy and omplexity lasses.Theorem 1 The following relations hold for the EFS languages above.1. (Arikawa [7℄, Arikawa et al. [9℄) A language is reursively enumerable, (resp.,ontext-sensitive, ontext-free, regular) i� it is de�nable by a variable-bounded (resp.,length-bounded, regular, left/right-linear) EFS.2. (Ikeda, Arimura [17℄) A language is aepted by a polynomial time deterministiTuring mahine i� it is de�nable by a hereditary EFS.3. (Arikawa et al. [9℄) A regular pattern language, (resp., union of regular pat-tern language, regular language, ontext-free language) is de�nable by an EFS inHEFS(1; �; 0; 1), (resp. HEFS(�; �; 0; 1), HEFS(�; 1; 1; 1), HEFS(�; 2; 2; 1)).Finally, we formulate the termination for HEFSs, whih are motivated by the ayliityof EFSs [6, 10, 13℄.De�nition 7 Let S be a signature and H be an EFS over S. The dependeny graph ofH is a possibly in�nite direted graph GH = (AtomS; E) suh that there exists an edgefrom A to B, i.e., (A;B) 2 E, i� there exist a ground instane C of some lause in Hsuh that A = hd(C) and B 2 bd(C).De�nition 8 Let S be a signature and H be an EFS over S. The dependeny relation ofH is a binary relation >H on AtomS suh that A >H B i� there exists a path of non-zerolength from A to B in the dependeny graph GH of H.A binary relation R on S is transitive if aRb and bR implies aR for every a; b;  2S. Also R is well-founded if there exists no in�nite dereasing hain from a suh asaRa1; a1Ra2; a2Ra3; � � �, for every a 2 S. 11



De�nition 9 Let S be a signature, H be an EFS over S and > be a transitive binaryrelation on AtomS . The dependeny relation >H of H is bounded by > if A >H B impliesA > B for every atoms A;B 2 AtomS .De�nition 10 Let S be a signature and H be an EFS over S Then, H is terminatingif there exists a well-founded transitive binary relation > on AtomS that bounds thedependeny relation >H of H.Let S be a signature, H be a lass of EFSs over S, and > be a transitive binaryrelation on AtomS . We say that H is uniformly bounded by > if the dependeny relation>H is bounded by > for every H 2 H. We denote by H(>) the maximal sublass ofH whose dependeny relation is uniformly bounded by >, i.e., H(>) = f H 2 H j >His bounded by > g.As similar as HEFS(m; k; t; r), we an introdue a lass THEFS(m; k; t; r) of ter-minating HEFSs with the same parameters m, k, t and r. In partiular, we denote(THEFS(m; k; t; r))(>) by THEFS(>;m; k; t; r).2.4 Learning modelsIn this subsetion, we introdue the learning models. Here, a lass H of grammars, alleda hypothesis spae, is always assumed. If a hypothesis spae H is a lass of EFSs, then asignature is assumed to be in ommon.Let (U; L̂(�)) be the semantis for H. Eah element of U is alled an example. Thelanguage L̂(H) is also alled the onept de�ned by H. We say that two hypotheses Hand H� are equivalent under the semantis (U; L̂(�)) if L̂(H) = L̂(H�).Let H� 2 H be a target hypothesis. An example w is alled positive for H� if w 2L̂(H�) and negative otherwise. Many researhers have been developed several di�erentlearning models to apture the eÆient learnability from the viewpoints of the riterionof identi�ation and the protool of reeiving examples and queries. In this paper, weemploy the following two learning models. First, we de�ne the exat learning model, wherea learning algorithm makes the following queries to ollet the information on H� [4℄.De�nition 11 (Angluin [4℄) Let H� 2 H be a target hypothesis.1. An equivalene query for H� (EQ, for short) takes H 2 H as input, denoted byEQ(H). The answer is \yes" if L̂(H) = L̂(H�) and a ounterexample w 2 (L̂(H�)�L̂(H))[(L̂(H)�L̂(H�)) is returned otherwise. A ounterexample w is alled positiveif w 2 L̂(H�) and alled negative if w 62 L̂(H�).12



2. A membership query for H� (MQ, for short) takes w 2 �+ as input, denoted byMQ(w). The answer is \yes" if w 2 L(H�) and \no" otherwise.De�nition 12 (Angluin [4℄) A polynomial-time exat learning algorithm A for H is analgorithm that identi�es the target hypothesis H� 2 H making equivalene and member-ship queries for H�, A must halt and output a hypothesis H 2 H that is equivalent toH�, i.e., L̂(H) = L̂(H�), and, at any stage in the learning algorithm, the running time ofA must be bounded by a polynomial in the size of H� and of the longest ounterexamplereturned by equivalene queries so far. H is alled polynomial-time exat learnable if thereexists a polynomial-time exat learning algorithm for H.On the other hand, we introdue the predition model aording to Pitt and War-muth [32℄ and Angluin and Kharitonov [5℄.De�nition 13 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) A predition al-gorithm A for H is an algorithm that takes m (a bound on the size of H), n (a boundon the length of examples), " (an auray bound), a olletion of labeled examples suhthat eah positive (resp., negative) example is labeled by + (resp., �), and an unlabeledexample w of H� as input, and outputs either + or � indiating its predition for w. TheA is alled a polynomial-time predition algorithm if the running time of A is boundedby a polynomial in s; n and 1=". For some polynomial p, for all input parameters m;nand " and for all probability distributions on examples, if A is given at least p(m;n; 1=")randomly generated examples of H� and randomly generated unlabeled example w, andthe probability that A inorretly predits the label of w for H� is at most ", then we saythat A suessfully predits H. Moreover, H is alled polynomial-time preditable if thereexists a polynomial-time predition algorithm for H that suessfully predits H.The A is a predition with membership queries algorithm (pwm-algorithm, for short)is a predition algorithm that is allowed to make membership queries. The notions thatA is a polynomial-time pwm-algorithm, a pwm-algorithm A suessfully predits H, andH is polynomial-time preditable with membership queries are de�ned similarly as above.We an also de�ne a variant of PAC-learning model [41℄ in whih a learning algorithmis allowed to make membership queries in addition to random examples [5℄. There isa lose relationship among exat learning with equivalene queries, PAC-learning andpredition models without or with membership queries.Theorem 2 (Angluin [4℄, Angluin & Kharitonov [5℄) If H is polynomial-time ex-at learnable with equivalene queries, then it is polynomial-time PAC learnable. If H13



is polynomial-time PAC learnable, then it is polynomial-time preditable. Furthermore,these statements also hold with membership queries.In this paper, we also introdue the following extension of membership queries basedon the non-standard semantis of EFSs.De�nition 14 Let H� 2 H be a target hypothesis.1. (Angluin [3℄, Sakakibara [33℄) A prediate membership query for H� (PMQ, forshort) takes a ground atom A = p(w1; : : : ; wn) for p 2 � and wi 2 �+ (1 � i � n)as input, denoted by PMQ(A). The answer is \yes" if H� j= A, i.e., A 2 M(H�)and \no" otherwise.2. (Frazier & Pitt [15℄) An entailment membership query for H� (EntMQ, for short)takes a (possibly non-ground) lause C as input, denoted by EntMQ(C). The answeris \yes" if H� j= C, i.e., C 2 Ent(H�) and \no" otherwise.The PMQs and EntMQs oinide with exatly the membership queries under the leastHerbrand model semantis (Base;M(�)) and the entailment semantis (ClauseS;Ent(�)),respetively. We an observe that an MQ is simulated by a PMQ and then a PMQ is byan EntMQ.Furthermore, we an de�ne the entailment equivalene query (EntEQ, for short) asthe equivalene query under the semantis (ClauseS ;Ent(�)), where a ounterexample isa lause. The learning model with EntEQ and EntMQ, alled learning from entailment[15℄, gives a valuable framework for the eÆient learnability of �rst-order logi or logiprograms [10, 11, 16, 19, 31℄.Finally, we de�ne the query to ask about the termination information.De�nition 15 A dependeny query forH� (DQ, for short) takes a pair (A;B) of atoms asinput, denoted by DQ(A;B). The answer is \yes" if A >H� B holds and \no" otherwise.2.5 Predition-preserving redutionPitt and Warmuth [32℄ have introdued the notion of reduibility between preditionproblems. Predition-preserving reduibility is essentially a method of showing thatone hypothesis spae is no harder to predit than another. Furthermore, Angluin andKharitonov [5℄ have extended the predition-preserving redution to the notion of re-duibility between predition problems with membership queries.
14



De�nition 16 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) LetHi be a hy-pothesis spae over a domain Ui (i = 1; 2). We say that prediting H1 redues to preditingH2, denoted by H1�H2, if there exists a funtion f : N�N�U1 ! U2 (alled an instanemapping) and a funtion g : N�N�H1 ! H2 (alled a onept mapping) satisfying thefollowing onditions:1. for eah w 2 U [n℄1 and H 2 H[s℄1 , w 2 L̂(H) i� f(n; s; w) 2 L̂(g(n; s;H));2. the size omplexity of g is polynomial in the size omplexity of H;3. f(n; s; w) an be omputed in polynomial time.Furthermore, we say that prediting H1 redues to prediting H2 with membership queries(pwm-redues, for short), denoted by H1 �pwmH2, if there exists a funtion f : N�N�U1 ! U2, a funtion g : N�N�H1 !H2, and a funtion h : N�N�U2 ! U1[f>;?g(alled a membership query mapping) satisfying the above and the following onditions:4. for eah w0 2 U2 and H 2 H[s℄1 , if h(n; s; w0) = > then w0 2 L̂(g(n; s;H)); ifh(n; s; w0) = ? then w 62 L̂(g(n; s;H)); if h(n; s; w0) = w 2 U1, then it holds thatw0 2 L̂(g(n; s;H)) i� w 2 L̂(H);5. h(n; s; w0) an be omputed in polynomial time.Theorem 3 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) LetH1 andH2 behypothesis spaes, and suppose that H1�H2 (H1�pwmH2). If H2 is polynomial-time pre-ditable (with membership queries), then so is H1.We deal with the following hypothesis spaes to redue the predition problem toseveral EFS sublasses: DFA and [DFA denote the lass of all languages aepted bythe DFAs and the �nite union of DFAs, respetively. DNFn denotes the lass of all DNFformulas over n Boolean variables; Let DNF = [n�1DNFn.Theorem 4 The following statements hold.1. (Angluin [2℄) DFA is polynomial-time exatly learnable with equivalene andmembership queries.2. (Angluin & Kharitonov [5℄) [DFA is not polynomial-time preditable withmembership queries under the ryptographi assumptions that inverting the RSAenryption funtion, reognizing quadrati residues and fatoring Blum integers aresolvable in polynomial time. 15



3. (Angluin & Kharitonov [5℄) DNF is either polynomial-time preditable or notpolynomial-time preditable with membership queries, if there exist one-way fun-tions that an not be inverted by polynomial-sized iruits.3 Learning HEFSsIn this setion, we investigate the polynomial-time learnability of sublasses of HEFSsusing various types of queries. We �rst show that the lass HEFS(�; k; t; r) of HEFSsis polynomial-time exat learnable with equivalene and prediate membership queries.Next, we show that the lass THEFS(�; k; �; r) of terminating HEFSs is polynomial-timeexat learnable with equivalene, entailment membership, and dependeny queries, whihreets the termination information.3.1 The learnability of a sublass of HEFSsSakakibara [33℄ showed that, for every k � 0, the lass of k-bounded ESEFSs, whih isa sublass of HEFS�(�; k; k; 1), is polynomial-time exat learnable with equivalene andprediate membership queries. In this subsetion, we extend this result to the whole lassHEFS(�; k; t; r) for every k; t; r � 0.In general, the entailment relation is undeidable for variable-bounded EFSs [9℄ anddeterministi exponential-time omplete for HEFSs [17℄. The following lemma laims thatthe entailment relation in HEFS(�; k; �; r) is polynomial-time deidable.Lemma 5 For a lause C and an EFS H, suppose that H [ fCg 2 HEFS(�; k; �; r).Then, a proof-DAG for H j= C is polynomial-time omputable in jCj and jHj if it exists.Proof. Let � be the ground substitution that maps eah variable x in C to a new onstantx. Then, we an see that H j= C if H [ bd(C�) j= hd(C�) under the extended alphabet� [ fxgx. The result immediately follows from Miyano et al. [25℄. 2For a signature S = (�;�) and an atom A = p(�1; : : : ; �r), we de�ne the subsetAtomS(A) as:AtomS(A) = (q(�1; : : : ; �s) 2 AtomS ����� every �i(1 � i � s) is a substringof some �j(1 � j � r) ) :Then, the following series of lemmas are neessary to prove the learnability of HEFS(�; k; t; r).Lemma 6 Let S be a signature, H an HEFS over S and C a lause over S. Then, forevery atom A in a proof-DAG for H j= C, it holds that A 2 AtomS(hd(C)).16



Proedure LEARN HEFS BY CBA/* A learning algorithm for HEFS(�; k; t; r) with EQs and PMQs *//* S: a �xed signature */1 H := ;;2 while EQ(H) =\no" do begin /* L(H; p0) 6= L(H�; p0) */3 E := a ounterexample returned by the EQ; /* E is an atom. */4 if H j= E then /* E is negative, i.e., H j= E and H� 6j= E*/5 T := a proof-DAG for H j= E; A := root(T );6 while PMQ(B) =\no" for some hild B of A do7 A := B;8 fB1; : : : ; Bt0g := all hildren of A (t0 � 0);9 C := a lause in H that subsumes A B1; : : : ; Bt0 ; /* C is false in H� */10 H := H � fCg;11 else /* E is positive, i.e., H 6j= E and H� j= E */12 H := H [ Cand(E; k; t; r);13 end /* while */14 return H;Figure 2: A polynomial-time learning algorithm for HEFS(�; k; t; r) with EQs and PMQs,based on the ontradition baktraing algorithm [34, 33℄ (Lines 5 to 10).Lemma 7 Let S be a signature (�;�) and A an atom over S. Then, it holds that#AtomS(A) � q1(p; n) = pn2r, where p = #�, n = jAj and r = arity(�).Lemma 8 For every integer k � 0 and atom A, there are at most jAj2kkk atoms B withvariable-ourrene no more than k that subsumes A, i.e., B w A and o(B) � k.Let S be a signature. For integers k; t; r � 0 and an atom A over S, Cand(A; k; t; r)is the set of all hereditary lauses in HEFS(�; k; t; r) over S of the form B  B1; : : : ; Bt0suh that B w A, o(B) � k and Bi 2 AtomS(B), where 0 � i � t0 and 0 � t0 � t. Thefollowing lemma immediately follows from Lemma 7 and Lemma 8.Lemma 9 #Cand(E; k; t; r) is bounded by q2(p; n) = O(ptn2k+2rtkk), where p = #� andn = jEj. (kk reets that the same variable may our more than one.)Theorem 5 For a signature S = (�;�), the lass HEFS(�; k; t; r) is polynomial-time ex-at learnable with O(ptmn2k+2rtkk) equivalene queries and O(pt+1mn2k+2r(t+1)kk) predi-ate membership queries, where p = #�, m is the ardinality of a target HEFS, and n isthe size of the longest ounterexample reeived so far.
17



Proof. Fig. 2 shows our learning algorithm LEARN BY CBA for HEFS(�; k; t; r), whihis an extension of the algorithm given by Sakakibara [33℄. We will only state the di�erenebetween Sakakibara's algorithm and ours in the proof.Starting with H = ;, the algorithm exeutes the while loop at line 2 until EQ(H)returns \yes." If a negative ounterexample E is returned at line 3, then hypothesis His too strong, i.e., H j= E. In this ase, the algorithm tries to detet an inorret lauseC 2 H suh that H� 6j= C by searhing the proof-DAG T for E by H from lines 5 toline 10 with a ontradition baktraing algorithm (CBA) [34℄. Initially, the root is falsein the model M(H�). Starting from the root, the algorithm goes downward by followingany false hild of the urrent node. Eventually, the algorithm reahes a false node A noneof whose hildren is false in M(H�). Then, we know that there exists some lause C 2 Hthat subsumes (A  B1; : : : ; Bt0) is false in M(H�) and should be removed from H. Bythe similar disussion as [33℄ and by Lemma 6, we an show that the CBA still orretlyworks for any sublass of variable-bounded EFSs and runs in polynomial time in p and nmaking at most q1(p; n) PMQs.On the other hand, if a positive ounterexample E is returned, then hypothesis His too weak, i.e., H 6j= E. In this ase, the algorithm tries to �nd all andidate lausesused to onstrut a proof-DAG for E by H�. By Lemma 4, there exists some hereditarylause C suh that hd(C)� = hd(E) for some substitution �. Therefore, by an exeutionof the step of line 12, we an add at least one lause in H�. This step may add somefalse lauses to H, but they will be eventually removed by the CBA steps. By Lemma 9,the ardinality of the andidate set Cand(E; k; t) is bounded by q2(p; n), and the timeomplexity to onstrut Cand(E; k; t) is also at most q2(p; n). Finally, we an show thatthe exeution from lines 5 to line 10 and at line 12 are iterated at most O(m+mq2(p; n))and m times, respetively. Hene, the number of EQs and PMQs and is bounded byO(m+mq2(p; n)) = O(mptn2k+2rtkk), and O(mq1(p; n) q2(p; n)) = O(mpt+1n2k+2r(t+1)kk)respetively. 23.2 The learnability of a sublass of terminating HEFSsIn this subsetion, we present a polynomial-time learning algorithm LEARN BY GENfor THEFS(�; k; �; r) with EntEQs, EntMQs and DQs as Fig. 3.In the following, we denote by H� the target hypothesis and we assume that a �xedsignature S is given to the learner before a learning session. The algorithm starts withthe most spei� hypothesis H = ; and searhes hypothesis spae THEFS(�; k; �; r) fromspei� to general with respet to the subsumption lattie based on w. For eah positiveounterexample E returned by EntEQ, the algorithm onstruts another positive example18



Proedure: LEARN BY GEN/* A learning algorithm for THEFS(�; k; �; r) with EntEQs, EntMQs and DQs *//* S: a �xed signature */1 H := ;;2 while EntEQ(H) =\no" do begin /* Ent(H) 6= Ent(H�) */3 E := the ounterexample returned by the EntEQ;4 D := Saturate(E;H;S); /* Compute the saturant by H; See Fig. 4 */5 D := Rewind(D;S); /* Compute the prime ounterexample; See Fig. 4 */6 for eah C 2 H do begin7 if EntMQ(F )=\yes" for some F 2 MCS (C;D;S; k) then /* See Fig. 5 */8 H := (H � fCg) [ fFg and goto FOUND;9 end /* for */10 H := H [ fDg;11 FOUND:12 end /* main loop */13 return H;Figure 3: A polynomial-time learning algorithm for THEFS(�; k; �; r) with EntEQs, Ent-MQs and DQs, based on saturation, rewind and minimal ommon subsumer.D that is subsumed by some lause in H�. Then, the algorithm generalizes hypothesis Hby arefully merging the obtained example D with some lause in H so that only positiveounterexamples are provided.3.2.1 The Saturation and the Rewind proeduresThe �rst task of the algorithm is, given a positive example E, to onstruts anotherpositive example D that is subsumed by some lause in H�. From the subsumptiontheorem (Lemma 4), we know that there are three ases for the lause E, (i) E is atautology, (ii) E is diretly subsumed by some lause in H�, and (iii) there is a non-trivialproof-DAG for E by H�. The �rst ase (i) is impossible sine E is a ounterexample forH. If the seond ase (ii) holds then the task is already done. Therefore, we will dealwith the third ase (iii) by using the saturation and the rewind proedures, whih invertthe proof steps by whih positive examples are derived from lauses in H�.For a lause C, the saturation is an operation to add to the body of C all atomsderivable from the body of C and H. More formally, for a lause C and an EFSH, ClosureS;H(bd(C)) is the set of all atoms B 2 AtomS(A) suh that H j= 8(B  bd(C)). Then, the saturant of C by H, denoted by Saturant(C;H;S), is the lauseA ClosureS;H(bd(C)).Lemma 10 For every �xed k; r � 0, the saturant of any lause C by any HEFS H 219



HEFS(�; k; �; r) is unique up to renaming, of polynomial size in jCj, and polynomial-timeomputable in jCj and jHj.Lemma 11 If a lause C is a positive ounterexample of H w.r.t. H�, then the saturantof C by H is also a positive ounterexample of H w.r.t. H�.Proof. By de�nition, C subsumes its saturantD = Saturant(C;H;S). Therefore, H� j= Cimplies H� j= D. Conversely, the saturant D is obtained from C by adding to the bodyof C only the atoms entailed by H. We have H j= 8(bd(C)! bd(D)), and it follows thatH j= D implies H j= C. 2A positive example C 2 Ent(H�) for H� is alled prime w.r.t. H� if all proof-DAG forC by H� are trivial, and omposite otherwise. If a positive example C is prime then it isensured that C is subsumed by some lause in H�. The onverse does not hold in general.Lemma 12 If a positive ounterexample C is prime then C is subsumed by some lausein H�.Proof. By assumption, C is neither a tautology nor a lause with some non-trivial proof-DAG by H�. Thus, the result immediately follows from Lemma 4. 2Lemma 13 Let H� and H be EFSs in THEFS(�; k; �; r). Given any saturated positiveounterexample C for H� w.r.t. H, the algorithm Rewind in Fig. 4 �nds a prime positiveounterexample for H� w.r.t. H in polynomial time by using O(pn2r) EntMQ and O(pn2r)DQ, where n = jhd(C)j, p = #� and r = arity(�).Proof. Let C = (A  Body) be any saturated positive ounterexample for H� w.r.t. H.Let A0 = A;A1; : : : ; Ai; : : : (i � 0) be the sequene of the values of the atom A at line 2 ofthe algorithm Rewind in Fig. 4, where Ai is the value at the i-th exeution of the for-loop(the i-th stage). For every i � 0, let Ci be the lause (Ai  bd(C)). By assumption,C0 = C is a saturated positive ounterexample for H� w.r.t. H. Then, we show thefollowing laim.(Claim 1) If Ci is a saturated positive ounterexample forH� w.r.t. H, and furthermoreC is not prime, then there exists some atom B = Ai+1 2 AtomS(A) � bd(C) suh thatDQ(Ai; B) =\yes" and EntMQ(B  bd(C)) =\yes".(Proof for the laim) If Ci is not prime then there is a non-trivial proof-DAG T for Ciby H�. Suh a non-trivial proof-DAG T ontains some node B that does not appear inCi. By de�nition, B is neither the root nor an atom in bd(Ci). Sine Ci is saturated byH, we have B 2 bd(Ci) i� H j= 8(B  bd(Ci)). Therefore, if B 62 bd(Ci) then we have20



Proedure Saturate(D;H;S)1 Body := ;; Head := hd(D);2 for eah B 2 AtomS(Head) do3 Let � be the Skolem substitution for (B  bd(D)) w.r.t. H;4 if (H [ bd(D�) j= B�) then5 Body := Body [ fBg;6 return (Head Body);Proedure Rewind(C;S)1 A := hd(C); Body := bd(C); S := AtomS(A)� Body;2 while (DQ(A;B) =\yes" and EntMQ(B  Body) =\yes" for some B 2 S) do3 A := B;4 return (A Body); /* prime w.r.t. H� */Figure 4: The proedure Saturate to ompute a saturated positive ounterexample andthe proedure Rewind to ompute a prime positive ounterexample.that H 6j= 8(B  bd(Ci)). On the other hand, for any node B in a proof-DAG T for Ciby H�, H� j= 8(B  bd(Ci)) holds. Thus, we have that EntMQ(B  bd(C)) =\yes".By onstrution, B is a desendant of the root A. Thus, we also have DQ(Ai; B) =\yes".Furthermore, we know that Ci+1 = (B  bd(Ci)) is a positive ounterexample for H�w.r.t. H. (End of the proof for the laim)By the above laim, we know that if the while-loop at line 2 terminates then thelause Ci must be prime w.r.t. H�. Also, Ci is a positive ounterexample. On the otherhand, the sequene of generated atoms form the dereasing sequene A0 = A >H� A1 >H�� � � >H� Ai >H� � � � w.r.t. the dependeny relation >H� for H�. If H� is an HEFS, all Aiare members of AtomS(A) and if H� is terminating then all A0; A1; � � � must be mutuallydistint. Thus, it follows from Lemma 7 that the length of the dereasing sequene isbounded above by jAtomS(A)j = O(pn2r), where n = jAj. Hene, the time and the queryomplexities immediately follow. 2From Lemma 11, Lemma 12 and Lemma 13, we know that the proedures Saturateand Rewind �nds a prime positive ounterexample D from a given positive ounterexapleE at line 3 to line 5 of the algorithm LEARN BY GEN in Fig. 3.3.2.2 Maximal ommon subsumersOne a prime positive ounterexampleD is found, the remaining task in LEARN BY GENis to generalize the urrent hypothesis H by merging D with H. This is possibly done bytaking the least upper bound of D and some lause C 2 H w.r.t. the subsumption relation21



Proedure MCS (D1; D2;S; k)1 S := f (A; �1; �2) jA 2 AtomS ; o(A) � k; A�1 = hd(D1) and A�1 = hd(D2) g;2 CS := ;;3 for eah (A; �1; �2) 2 S do4 Body := (B 2 AtomS(A) ����� DQ(A;B) returns \yes,"B�1 2 bd(D1) and B�2 2 bd(D2) );5 CS := CS [ f(A Body)g;6 return CS ;Figure 5: The proedure to ompute minimal ommon subsumer.w [10, 15, 19, 31℄. Unfortunately, no unique upper bound w.r.t. w exists for patterns orhereditary lauses. Hene, we introdue the maximal ommon subsumers.De�nition 17 Let S be a signature, C a sublass of ClauseS , and Di a lause over S(i = 1; 2). A ommon subsumer of D1 and D2 within C is a lause C 2 C suh thatC w D1 and C w D2. A ommon subsumer C of D1 and D2 within C is maximal if thereis no ommon subsumer D of D1 and D2 in C suh that bd(C) � bd(D).Let S be a signature (�;�). Then, we denote by MCS(D1; D2;S; k) the set of allmaximal ommon subsumers of D1 and D2 in hereditary lauses over S of whih variable-ourrene is at most k.Lemma 14 Let S be a signature (�;�), Di a lause over S (i = 1; 2) and k � 0 aninteger. Then, the set MCS(D1; D2;S; k) is of ardinality q3(n) = n4kkk, of polynomialsize, and polynomial-time omputable in p = #� and n = jD1j+ jD2j.Proof. Consider the proedure as Fig. 5 that omputes the set MCS(D1; D2;S; k) usingDQ. It is not hard to see that this proedure works orretly. Furthermore, we an showthat #S � n4kkk and #Body � pn2r by Lemma 7 and Lemma 8. 23.2.3 The orretness and the time omplexityNow, we prove the orretness of the learning algorithm LEARN BY GEN in Fig. 3.In the following, let H0; H1; : : : ; Hn; : : : and E0; E1; : : : ; En; : : : (n � 0) be the sequeneof hypotheses and ounterexamples, respetively, where H0 is the initial hypothesis ;,and at eah stage i � 1, LEARN BY GEN makes the entailment equivalene queryEntEQ(Hi�1), reeives a ounterexample Ei to the query, and produes a new hypothesisHi from Ei and Hi�1. A lause is missing if it is subsumed by some lause in H� but notentailed by the present hypothesis H. 22



Lemma 15 Suppose that a positive example C subsumes another positive example D,i.e., C w D. If D is prime w.r.t. H�, then so is C.Proof. Sine C w D, there exists a substitution � suh that C� � D. If C is ompositew.r.t.H�, then we an transform a proof-DAG TC forH� j= C to a proof-DAG forH� j= D,by applying � to all atoms in TC . Sine D is omposite, this is a ontradition. 2Lemma 16 For every n � 0, H� w H0 and En is a positive ounterexample. Further-more, Hn is a onservative re�nement of H�.Proof. We show by indution on n � 0 that H� w Hn and that Hn onsists of just primelauses w.r.t H�. If n = 0, then H0 = ; and the laim trivially holds. Next, supposen > 0. By indution hypothesis, H� w Hn�1 and thus the next ounterexample E = Enat line 4 is positive. Let D be the lause obtained after exeuting lines 4 to line 8.Combining Lemma 11, Lemma 10 and Lemma 13, we an show that D is still saturatedand >-minimal w.r.t. H� by H and D 2 Ent(H�)�Ent(Hn�1). By Lemma 13 D is prime.Thus, by Lemma 12, D is subsumed by some missing lause in H�. Suppose �rst thatthere exists some C 2 Hn�1 and some F 2 MCS(C;D;S; k) suh that EntMQ(F ) returns\yes." Then, Hn = (Hn�1 � fCg) [ fFg. By indution hypothesis, C as well as D isprime. By Lemma 15, F is also prime, so it follows from Lemma 12 that F is subsumedby some lause in H�. Sine H� w Hn�1, this implies that H� w Hn. Next suppose thatthere is no suh C 2 Hn�1, and then Hn = Hn�1 [fDg. Sine D is prime, it follows fromLemma 12 that H� w Hn. A new lause F is added to Hn at line 12 only if there exists nomaximal ommon subsumer of D and C subsumed by H� for all lauses C 2 Hn. Hene,the re�nement Hn of H� is always onservative. 2Corollary 6 H� = � � � = Hn = � � � = H1 = H0 (n � 0).Lemma 17 For HEFS(�; k; �; r), there exists no inreasing sequene � � � = C1 = C0.Furthermore, its length is always bounded by O(pn2r+1), where p = #� and n = jhd(C0)j.Proof. By using the disussion in [9℄, we an show that the length of the sequene � � � wA1 = A0 of atoms is bounded by jA0j = O(n) independent from k. For a given head A,the maximum size of the body is bounded by #AtomS(A) = O(pn2r). Hene, we havethe upper bound of the length of the sequene as O(pn2r+1). 2Theorem 7 Let S = (�;�) be a signature. For every k; r � 0, the lass THEFS(>; �; k; �; r) is polynomial-time exat learnable with O(pmn2r+1) EntEQ, O(p2m2n4k+4r+1kk)EntMQ, and O(p2mn4k+4r+1kk) DQ, where m is the ardinality of a target THEFS, p =#� and n is the size of the longest ounterexample reeived so far.23



Proof. Sine the algorithm LEARN BY GEN terminates only if the EQ returns \yes," itis suÆient to show the termination in polynomial time. By Corollary 6, the sequene ofhypotheses is of the form H� = � � � = Hn = � � � = H1 = H0 (n � 0) (1). By Lemma 16,eah Hn is a onservative re�nement of H�, so #Hn � #H� = m.Fix an enumeration H� = (C�1 ; : : : ; C�m). For every n � 0, we an order Hn as them-tuple (Cn1 ; : : : ; Cnm) 2 ClausemS suh that, for eah i, Cni is the unique member of Hnsatisfying C�i w Cni if it exists and Cni = ? otherwise, where ? is a speial symbol denotingthat C w ? for every C 2 ClauseS .It follows from Lemma 17 that, for every 1 � i � m, the length of the longestsubsequene suh that � � � w C2i = C1i is bounded by O(pn2r+1). Thus, both the lengthsof the sequene (1) and the number of EntEQs are bounded by q4(p;m; n) = O(pmn2r+1).By Lemma 10, Lemma 13 and Lemma 14, the number of EntMQs is bounded by q5 =O(pmn4k+2rkk) and the running time in eah iteration of the while-loop is bounded by apolynomial in p, m and n. Hene, the total number of EntMQs is q4(p;m; n)q5(p;m; n) =O(p2m2n4k+4r+1kk) and the running time is polynomial in p, m and n. 2Sine any ounterexample in the language semantis (AtomS ; LS(�; p0)) is also a oun-terexample in the entailment semantis (ClauseS;EntS(�)), we an replae eah EntEQin Theorem 7 with EQ.Corollary 8 For every k; r � 0, the lass THEFS(�; k; �; r) is polynomial-time exatlearnable with EQ, EntMQ, and DQ.Suppose that we have an eÆiently deidable, well-founded transitive relation > overAtomS . In this ase, we an eliminate DQ to learn a sublass THEFS(>; �; k; �; r) on-sisting of the programs uniformly bounded by >. The lass of reduing programs [42℄ isan example of suh uniformly terminating EFS.Corollary 9 Let > be any well-founded transitive relation over AtomS that is polynomialtime deidable. For every k; r � 0, the lass THEFS(>; �; k; �; r) is polynomial-time exatlearnable with EQ and EntMQ.3.2.4 A lowerbound resultBy Theorem 5 and Theorem 7, note that the number O(pmn2r+1) of EQ made byLEARN BY GEN is signi�antly smaller than O(ptmn2k+2rtkk) EQ by LEARN BY CBAfor large k; t � 1. In this subsetion, we analyze the query omplexity of the lassTHEFS(>;m; k; �; r), and obtain the lower bound result, whih indiates that the queryomplexity is almost optimal in terms of m and n for EQ.24



Theorem 10 Let S be any signature with at least two letters. For every integers k; r � 0suh that k � 3r, any algorithm that exatly identi�es all hypotheses in THEFS(m; k; �; r)with EntEQ and EntMQ must make 
(mnr=2) queries in the worst ase, where m is theardinality of a target THEFS and n is the size of the longest ounterexample reeived sofar.Proof. We say that a onept lass C shatters a set U � �� if fU \  j  2 C g = 2U holds.The VC-dimension of C, denoted by V C(C), is te ardinality of the largest set U � ��that is shattered by C. From arguments in Maass and Tur�an [22℄, it is suÆient to showthat V C(THEFS(>;m; k; �; r)) = 
(mnr=2).Let p; q; r; len; bit 2 � be prediate symbols of arity r + 1; 2r; r; 2; 1, respetively. Foran integer n � 0, [n℄ denotes the set f1; : : : ; ng. Then, we enode an integer i 2 [n℄ bythe bit vetor  (i) = 0i�110n�i 2 f0; 1gn and an r-vetor (i1; : : : ; ir) 2 [n℄r by an atomp( (i1); : : : ;  (ir); 0n) 2 BaseS : Let Sr;n be the set f p( (i1); : : : ;  (ir); 0n) j (i1; : : : ; ir) 2[n℄r g of ground atoms of length (r + 1)n orresponding to all nk r-vetors in [n℄k. Notethat HT is terminating and hereditary.p(x1; : : : ; xr; 0n) V(i1;:::;ir)2T h q(x1; : : : ; xr; 0i1 ; : : : ; 0ir) i :q(x1y1z1; : : : ; xryrzr; v1; : : : ; vr) V1�j�r h len(xjyj; vj) ^ bit(yj) i ^ r(y1; : : : ; yr):r(x1; : : : ; xi�1; 0; xi+1; : : : ; xr) , for all 1 � i � r.len(�x; 0y) len(x; y),len(�; 0) ,bit(�) , for all � 2 f0; 1g.Let w 2 f0; 1gr be a bit vetor of length r. Then, it holds that, for every u 2 f0; 1g�and i 2 [n℄, HT j= len(u; 0i) i� juj = i. Also, for every i 2 [n℄ and every string w = xyz(x; y; z 2 f0; 1g�), if HT j= len(xy; 0i) ^ bit(y), then y is the i-th bit of w. Furthermore,it holds that, for every b1 � � � br 2 f0; 1gr, HT j= r(b1; : : : ; br) i� b1 � � � br 6= 1r, and HT j=q( (i1); : : : ;  (ir); 0j1; : : : ; 0jr) i� (i1; : : : ; ir) 6= (j1; : : : ; jr). Hene, it is not hard to seethat, for every (i1; : : : ; ir) 2 [n℄r, HT j= p( (i1); : : : ;  (ir); 0n) i� (i1; : : : ; ir) 62 T . Sineeah HT belongs to HEFS(r+8; 4r; �; 2r), the lass HEFS(r+8; 4r; �; 2r) shatters the setSr;n of the ardinality nr.Similarly, we an show that the lass HEFS(m+r+7; 4r; �; 2r) shatters the diret sumSm;r;n = S1r;n[� � �[Smr;n of ardinalitymnr obtained by making them opies of the prediateP . Hene, it immediately follows that V C(HEFS(m; k; �; r)) = 
((m� r� 7)n̂r=2=2rr) =
(mn̂r=2) in m and n when k � 4r, where the maximum length of the examples isn̂ = (r + 1)n. 225



4 Hardness Results for Learning HEFSsIn this setion, we present several representation-independent hardness results of predit-ing the sublasses of HEFSs, whih laim the neessity of both the types of queries andthe bounds on the parameters are neessary for their eÆient learning mentioned in theprevious setion.We �x f , g and h to an instane mapping, a onept mapping, and a membership querymapping. Also he parameters n and s denote the bounds of examples and representations,respetively. For simpliity, we assume that the length of examples of Boolean oneptsis always �xed to the upper bound n. Furthermore, a signature is always �xed and asemantis is the language semantis.4.1 Regular pattern languages revisitedWe denote by RP , [mRP and [RP regular pattern languages, at most m unions of reg-ular pattern languages, and unbounded unions of regular pattern languages, respetively(f. [12, 24, 25, 35, 36, 38℄). Sine eah regular pattern language L(�) is de�nable by theHEFS fp(�) g, we an easily observe that RP , [mRP and [RP are orresponding toHEFS(1; �; 0; 1), HEFS(m; �; 0; 1) and HEFS(�; �; 0; 1), respetively. It is known that RPand [mRP are not polynomial-time PAC-learnable unless NP=RP [24, 25℄, where theyare representation-dependent hardness results.Theorem 11 RP is not polynomial-time preditable, if DNF is not polynomial-timepreditable.Proof. It is suÆient to show that DNFn � RP for all n � 0. Let d = t1 _ � � � _ tmbe a DNF formula over the set fx1; : : : ; xng of Boolean variables. For eah vetor e =e1 � � � en 2 f0; 1gn, let ~e = 1e11e21 � � � 1en1 and let � = (01)3(2n+1). Then, onstrut f andg as follows:f(n; s; e) = e0 = (A~eA�)m�1 � A~eA;g(n; s; d) = P = AP1AP2A � � �APmA; where A is a new symbol.Here, Pj = �pj1 � pj2 � � � � � pjn�, where all � are mutually distint variables in X and pji = 1if tj ontains xi, pji = 0 if tj ontains xi, and xji otherwise.We show that, if e satis�es d, then e0 2 L(P ). The following statements hold: (a) esatis�es d i� there exists an index j (1 � j � m) suh that ~e 2 L(Pj), beause j~ej = jPjj =2n+1. (b) For eah Pj (1 � j � m), � is of the form �1�2�3 suh that j�1j; j�2j; j�3j > 0and �2 2 L(Pj). () For eah Pj (1 � j � m), it holds that both ~eA�; �A~e 2 L(Pj)26



beause of (b). From the (a) and (), it holds that e0 2 AL(P1)A � � �AL(Pi)A � � �AL(Pm)A.Hene, e0 2 L(P ).Conversely, suppose that e does not satisfy d. From the (a), it holds that (d) ~e 62 L(Pj)for every j (1 � j � m). Furthermore, (e) ~e 62 L(P 0) for any substring P 0 of P ontainingan A, beause e ontains no A. From the onditions (d) and (e), if e0 2 L(P ), then at leastone of the two A's for eah ourrene A~eA in e0 must be substituted to a variable of a Pjin P . Sine the number of A's in e0 is 2m, the remained A's in e0 to math with all A in Pare at most m. However, P ontains only m + 1 A's, so it is impossible that e0 2 L(P ).Hene, e0 62 L(P ) and we an onlude that DNFn �RP . 2Theorem 12 [RP is not polynomial-time preditable with membership queries, if DNFis not polynomial-time preditable with membership queries.Proof. It is suÆient to show that DNFn �pwm [RP for all n � 0. For a DNF formulad = t1 _ � � � _ tm, let �i (1 � i � m) and � be regular patterns pj1 � � � pjn and x1 � � �xnxn+1,respetively. Here, pji (1 � i � n; 1 � j � m) is de�ned as similar as the proof ofTheorem 11. Then, onstrut f , g and h as follows:f(n; s; e) = e;g(n; s; d) = f�1; : : : ; �m; �g;h(n; s; e0) = 8><>: e0 if je0j = n;? if je0j < n;> if je0j > n:For eah e0 2 f0; 1g�, we an hek the properties of h in De�nition 16 as follows.Sine L(�) = fw 2 f0; 1g� j jwj � n + 1g, if h(n; s; e0) = >, then e0 2 L(g(n; s; d))(=L(�1)[� � �[L(�m)[L(�)). On the other hand, sine j�jj = n (1 � j � m) and j�j = n+1,L(g(n; s; d)) ontains no strings of length< n. So, if h(n; s; e0) = ?, then e0 62 L(g(n; s; d)).If h(n; s; e0) = e0, then e0 62 L(�) beause je0j = n. Thus, e0 2 L(�1) [ � � � [ L(�m) andthere exists an index i (1 � i � m) suh that e0 2 L(�i) i� e0 is obtained by replaingthe variables in �i with 0 or 1, whih is orresponding to a truth assignment satisfying ti.Hene, e0 2 L(g(n; s; d)) i� e0 satis�es d.Furthermore, for eah e 2 f0; 1gn, e satis�es d i� f(n; s; e) 2 L(g(n; s; d)). Hene, itholds that DNFn �pwm [RP . 2Sine eah regular pattern language is regular [35℄, we an onstrut a DFA M� suhthat L(M�) = L(�) for eah regular pattern � as follows: Suppose that � is a regularpattern of the form � = x0�1x1�2 � � �xn�1�nxn,27



where xi 2 X and �i = ai1ai2 � � �aimi 2 �+. Then, the orresponding DFA M� of � is aDFA (�; Q; Æ; q0; F ) suh that:1. Q = fq0; p11; : : : ; p1m1 ; q1; p21; : : : ; p2m2 ; q2; � � � ; qn�1; pn1 ; : : : ; pnmn ; qng and F = fqng,2. Æ(qi; a) = pi+11 and Æ(qn; a) = qn for eah a 2 � and 0 � i � n� 1,3. Æ(pij; aij) = pij+1 and Æ(pimi; aimi) = qi for eah 1 � i � n and 1 � j � mi � 1,4. Æ(pij; a) = pi1 for eah a 2 � suh that a 6= aij.It is obvious that jM�j is bounded by a polynomial in j�j.By using the orresponding DFAs, we an easily shown that RP �pwm DFA by on-struting the following f , g and h for eah regular pattern �:f(n; s; e) = e;g(n; s; �) = M�;h(n; s; e0) = e0:Then, RP is polynomial-time preditable with membership queries, whih is implied bythe result of Matsumoto and Shinohara [23℄ that RP is polynomial-time learnable withequivalene and membership queries.Theorem 13 For eah m � 0, [mRP is polynomial-time preditable with membershipqueries.Proof. Sine DFA is polynomial-time preditable with membership queries [2℄, it is suf-�ient to show that [mRP �pwm DFA. Let �1; : : : ; �m be m regular patterns. Alsolet M�i = (Qi;�; Æi; qi0; Fi) be the orresponding DFA of �i. First, onstrut a DFAM�1;:::;�m = (Q1�� � ��Qm;�; Æ; (q10 ; : : : ; qm0 ); F1�� � ��Fm) suh that Æ((q1; : : : ; qm); a) =(p1; : : : ; pm) i� Æi(qi; a) = pi for eah a 2 � and i (1 � i � m). Then, onstrut f , g andh as follows: f(n; s; e) = e;g(n; s; f�1; : : : ; �mg) = M�1;:::;�m;h(n; s; e0) = e0:The size of g(n; s; f�1; : : : ; �mg) is O(sm) and m is a onstant. It is obvious thatL(�1) [ � � � [ L(�m) = L(M�1;:::;�m), whih implies the result. 2
28



4.2 Other hardness resultsBy Theorem 12 in Setion 4.1, we an onlude that HEFS(�; �; t; r) (t � 0, r � 1) is notpolynomial-time preditable with membership queries, if neither are DNF formulas. Inthis subsetion, we disuss the sublasses of HEFS�(�; k; t; r), whih are restrited thatall fats ontain no variable as in HEFSs, or in even simple EFSs (r = 1).From the learnability of k-bounded ESEFSs by Sakakibara [33℄ and HEFS(�; k; t; r) byTheorem 5, it arises a natural question whether we an replae the prediate membershipqueries with the ordinal membership queries. The next theorem laims that it is impossiblepreserving eÆient learnability.Theorem 14 For every k; t; r � 1, HEFS�(�; k; t; r) is not polynomial-time preditablewith membership queries under the ryptographi assumptions.Proof. It is suÆient to show that [DFA �pwm HEFS�(�; 1; 1; 1) by Theorem 3 and 4.Let M1; : : : ;Mr be DFAs over the same alphabet �. Suppose that  62 �. For eahMi = (Qi;�; Æi; qi0; Fi) (1 � i � r), onstrut H1(n; s;Mi) 2 HEFS�(�; 1; 1; 1) as follows:1. q(ax) r(x) 2 H1(n; s;Mi) if Æi(q; a) = r for eah q; r 2 Qi and a 2 �;2. q() 2 H1(n; s;Mi) for eah �nal state q 2 Fi.3. p(x) qi0(x) 2 H1(n; s;Mi) for eah initial state qi0 2 Qi, where p 62 Q1 [ � � � [Qr.Then, onstrut f , g and h as follows:f(n; s; w) = w;g(n; s; fM1; : : : ;Mrg) = H1(n; s;M1) [ � � � [H1(n; s;Mr);h(n; s; w0) = ( w if w0 = w;? otherwise:The size of g(n; s; fM1; : : : ;Mrg) is bounded by a polynomial in the size of all Mi's(1 � i � r). Furthermore, it holds that (1) w 2 L(M1) [ � � � [ L(Mr) i� f(n; s; w) 2L(g(n; s; d); p) for eah w 2 �[n℄, (2) if h(n; s; w0) = ?, then w0 62 L(g(n; s; d); p), and (3)if h(n; s; w0) = w, then it holds that w0 2 L(g(n; s; d); p) i� w 2 L(M1) [ � � � [ L(Mr).Hene, it holds that [DFA�pwm HEFS�(�; 1; 1; 1). 2Reall that every k-bounded ESEFSs are ontained in HEFS�(�; k; k; 1). The followingtheorem laims that, if neither the variable-ourrene nor the number of atoms in thebody are bounded, then HEFSs are not polynomial-time preditable even with prediatemembership queries. 29



Theorem 15 For every r � 1, HEFS�(�; �; �; r) is not polynomial-time preditable withprediate membership queries, if DNF is not polynomial-time preditable with membershipqueries.Proof. First, we show thatDNFn�pwmHEFS�(�; �; �; 1) for all n � 0. Let d = t1_� � �_tmbe a DNF formula. Then, onstrut the following EFS H2(n; s; d):H2(n; s; d) = 8>>>>>><>>>>>>: q(0) q(1) p(p11 � � � p1n) q(p11); : : : ; q(p1n)� � �p(pm1 : : : pmn ) q(p1m); : : : ; q(pmn )
9>>>>>>=>>>>>>;,where pji (1 � i � n; 1 � j � m) is de�ned as similar as the proof of Theorem 11.Furthermore, H 02(n; s; d) be an HEFS obtained by deleting all atoms q(0) and q(1) fromthe body of eah lause in H2(n; s; d). Then, onstrut f , g and h as follows:f(n; s; e) = e;g(n; s; d) = H 02(n; s; d);h(n; s; e0) = e0:Sine L(g(n; s; d); p) � f0; 1gn, it is easy to see that (1) e satis�es d i� f(n; s; e) 2L(g(n; s; d); p) for eah e 2 f0; 1gn, and (2) e0 2 L(g(n; s; d); p) i� h(n; s; e0) satis�es d foreah e0 2 f0; 1gn. Hene, it holds that DNFn �pwm HEFS�(�; �; �; 1).Finally, we onsider whether the same result holds even if the membership queriesare replaed with the prediate membership queries. Although we an extend pwm-reduibility to predition-preserving reduibility with prediate membership queries a-ording to De�nition 16, we only disuss the ase HEFS�(�; �; �; 1). Conerned with theabove pwm-redution DNFn �pwm HEFS�(�; �; �; 1), the di�erene between MQs andPMQs is just to ask whether H 02(n; s; d) j= q(w)  for w 2 f0; 1g�. Note that the pred-iate symbol q in H 02(n; s; d) denotes the value substituted to a Boolean variable xi in d,so an generate just 0 and 1. Then, we an extend a membership query mapping h toa prediate membership query mapping h0 as h0(n; s; p(w)) = h(w); h0(n; s; q(w)) = > ifjwj = 1; h0(n; s; q(w)) = ? if jwj > 1. Hene, the statement holds. 25 ConlusionIn this paper, we investigated the eÆient learnability of a hierarhy HEFS(m; k; t; r) ofthe HEFSs with the equivalene and other queries, where m is the maximum number oflauses, k is the maximum variable-ourrenes in the head, t is the maximum number ofatoms in the body, and r is the maximum arity of prediate symbols.30



We showed three positive results for the learnability of HEFS(m; k; t; r). First, thelass HEFS(�; k; t; r) is polynomial-time learnable with equivalene and prediate mem-bership queries. This is an extension of Sakakibara's result [33℄ for the lass ESEFSs.Seond, the more general lass is e�etively learnable if more powerful queries are allowedand the termination relation over the prediate symbols is assumed, that is the lassTHEFS(>; �; k; �; r) of terminating HEFSs with additional information on the termina-tion is learnable in polynomial time with equivalene and entailment membership queries.Third, we showed that the number of queries used in the presented learning algorithm forTHEFS(>; �; k; �; r) is nearly optimal.The negative results for the learnability of sublasses of EFSs were proved by thepredition-preserving redution (with membership query). The lass HEFS(�; k; t; r) wasshown to be learnable using the above queries but the prediate membership query annot be replaed by the membership query under the ryptographi assumptions.Moreover, the lassRP is not polynomial-time preditable if the lass of DNF formulasis not polynomial-time preditable, and the lass [RP is not polynomial-time preditablewith membership queries, if the lass of DNF formulas is not polynomial-time preditablewith membership queries. The lass [mRP of bounded union of regular pattern languagesis polynomial-time preditable with membership queries. It is a strong evidene for theeÆient learnability of the lass.Fig. 1 summarizes the results obtained in this paper. It is a future problem to study thelearnability of the lass THEFS(>; �; k; �; r) with equivalene and prediate or entailmentmembership queries but without dependeny queries. Khardon [19℄ has reently shownthat funtion-free k-variable Horn sentenes of arity r are polynomial-time learnable invarious ative learning models without using termination information. Thus, it would beinteresting to apply his method to the lasses of HEFSs.AknowledgmentFirst of all, the authors would like to thank Prof. Thomas Zeugmann, Prof. Carl Smithand Prof. Takeshi Shinohara for giving an opportunity for writing this paper, and tothank Akihiro Yamamoto, Ayumi Shinohara, Roni Khardon and Eri Martin for fruitfuldisussions on learning of logi programs. The seond author also would like to thankNoriko Sugimoto, Shinihi Shimozono and Takashi Toyoshima for the fruitful disussionson this issue in the joint work [40℄, whih partially gives a motivation of this paper.Finally, the authors would like to thank the anonymous referees for valuable ommentswhih greately improve the preliminary version of this paper.31



Referenes[1℄ D. Angluin, Finding patterns ommon to a set of strings, J. Comput. System Si.21 (1980) 46{62.[2℄ D. Angluin, Learning regular sets from queries and ounterexamples, Inform. Com-put. 75 (1987) 87{106.[3℄ D. Angluin, Learning k-bounded ontext-free grammars, Tehnial ReportYALEU/DCS/RR-557, Yale University, 1987.[4℄ D. Angluin, Queries and onept learning, Mah. Learn. 2(4) (1988) 319{342.[5℄ D. Angluin, M. Kharitonov, When won't membership queries help?, J. Comput.System Si. 50(2) (1995) 336{355.[6℄ K. Apt, M. Bezem, Ayli programs, in: Pro. 7th Internat. Conf. on Logi Pro-gramming (The MIT Press, 1990) 617{633.[7℄ S. Arikawa, Elementary formal systems and formal languages { Simple formal sys-tems, Memories of Faulty of Siene, Kyushu University, Series A., Mathematis 24(1970) 47{75.[8℄ S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, A. Yamamoto, Algorithmilearning theory with elementary formal systems, IEICE Trans. Inf. Sys. E75-D(4)(1992) 405{414.[9℄ S. Arikawa, T. Shinohara, A. Yamamoto, Learning elementary formal systems, The-oret. Comput. Si. 95(1) (1992) 97{113.[10℄ H. Arimura, Learning ayli �rst-order Horn sentenes from entailment, in:Pro. 8th Internal. Workshop on Algorithmi Learning Theory, LNAI 1316 (Springer-Verlag, 1997) 432{445.[11℄ H. Arimura, H. Ishizaka, T. Shinohara, Learning unions of tree patterns using queries,Theoret. Comput. Si. 185(1) (1997) 47{62.[12℄ H. Arimura, T. Shinohara, S. Otsuki, Finding minimal generalizations for unions ofpattern languages and its appliation to indutive inferene from positive data, in:Pro. 11st Symp. of Theoretial Aspets for Computer Siene, LNCS 775 (Springer-Verlag, 1994) 649{660. 32



[13℄ L. Cavedon, Continuity, onsisteny, and ompleteness properties for logi programs,in: Pro. 6th Internat. Conf. on Logi Programming (The MIT Press, 1989), 571{584.[14℄ H.- D. Ebbinghaus, J. Flum, W. Thomas, Mathematial logi (2nd Ed.) (Springer-Verlag, 1994).[15℄ M. Frazier, L. Pitt, Learning from entailment: An appliation to propositional Hornsentenes, in: Pro. 10th Internat. Conf. on Mahine Learning (Morgan Kaufmann,1993) 120{127.[16℄ M. Frazier, L. Pitt, Classi learning, Mah. Learn. 25(2-3) (1996) 151{193.[17℄ D. Ikeda, H. Arimura, On the omplexity of languages de�nable by hereditary EFS,in: Pro. 3rd Internat. Conf. on Development in Language Theory, Aristotle Univer-sity of Thessaloniki, 223{235, 1997.[18℄ S. Jain, A. Sharma, Elementary formal systems, intrinsi omplexity, and prorasti-nation, Inform. Comput. 132(1) (1997) 65{84.[19℄ R. Khardon, Learning funtion-free Horn expressions, Mah. Learn. 35(1) (1999)241{275.[20℄ S. Kobayashi, Iterated transdutions and eÆient learning from positive data: Aunifying view, in: Pro. 5th Internat. Colloq. on Grammatial Inferene, LNAI 1891(Springer-Verlag, 2000) 157{170.[21℄ S. Kobayashi, T. Yokomori, On approximately identifying onept lasses in thelimit, in: Pro. 6th Internat. Workshop on Algorithmi Learning Theory, LNAI 997(Springer-Verlag, 1995) 298{312.[22℄ W. Maass, G. Tur�an, Lower bound methods and separation results for on-line learn-ing models, Mah. Learn. 9 (1992) 107{145.[23℄ S. Matsumoto, A. Shinohara, Learning pattern languages using queries, in: Pro. 3rdEuro. Conf. on Computational Learning Theory, LNAI 1208 (Springer-Verlag, 1997)185{197.[24℄ S. Miyano, A. Shinohara, T. Shinohara, Whih lasses of elementary formal systemsare polynomial-time learnable?, in: Pro. 1st Workshop on Algorithmi LearningTheory (Ohmsha, 1991) 139{150.
33



[25℄ S. Miyano, A. Shinohara, T. Shinohara, Polynomial-time learning of elementaryformal systems, New Gener. Computing 18(3) (2000) 217{42.[26℄ T. Moriyama, M. Sato, Properties of language lasses with �nite elastiity, IEICETrans. Inf. Sys. E78-D(5) (1995) 532{538.[27℄ Y. Mukouhi, Indutive inferene of an approximate onept from positive data,in: Pro. 4th Internat. Conf. on Algorithmi Learning Theory, LNAI 872 (Springer-Verlag, 1994) 484{499.[28℄ Y. Mukouhi, S. Arikawa, Towards a mathematial theory of mahine disovery fromfats, Theoret. Comput. Si. 137(1) (1995) 53{84.[29℄ S.- H. Nienhuys-Cheng, R. De Wolf, Foundations of indutive logi programming,LNAI 1228 (Springer-Verlag, 1997).[30℄ C H. Papadimitriou, Computational omplexity, (Addison-Wesley, 1994).[31℄ C. D. Page Jr., A. M. Frish, Generalization and learnability: A study of onstrainedatoms, in: S. Muggleton (ed.), Indutive logi programming (Aademi Press, 1992)l29{161.[32℄ L. Pitt, M. K. Warmuth, Predition-preserving reduibility, J. Comput. SystemSi. 41(3) (1990) 430{467.[33℄ Y. Sakakibara, On learning Smullyan's elementary formal systems: Towards an eÆ-ient learning method for ontext-sensitive languages, Advanes in Soft. Si. Teh. 2(JSSST, 1990) 79{101.[34℄ E. Y. Shapiro, Algorithmi program debugging (The MIT Press, 1982).[35℄ T. Shinohara, Polynomial time inferene of extended regular pattern languages, in:Pro. RIMS Symposia on Software Siene and Engineering, LNCS 147 (Springer-Verlag, 1982) 191-209.[36℄ T. Shinohara, Studies on indutive inferene from positive data, Dotoral Thesis,Kyushu University, 1986.[37℄ T. Shinohara, Rih lasses inferable from positive data: Length-bounded elementaryformal systems, Inform. Comput. 108(2) (1994) 175{186.[38℄ T. Shinohara, H. Arimura, Indutive inferene of unbounded unions of pattern lan-guages from positive data, Theoret. Comput. Si. 241 (2000) 191{209.34



[39℄ R. M. Smullyan, Theory of formal systems (Prineton University Press, 1961).[40℄ N. Sugimoto, T. Toyoshima, S. Shimozono, K. Hirata, Construtive learning ofontext-free languages with a subpansive tree, in: Pro. 5th Internat. Colloq. onGrammatial Inferene, LNAI 1891 (Springer-Verlag, 2000) 270{283.[41℄ L. Valiant, A theory of learnable, Comm. ACM 27(11) (1984) 1134{1142.[42℄ A. Yamamoto, Proedural semantis and negative information of elementary formalsystem, J. Logi Program. 13(1) (1992) 89{97.[43℄ K. Wright, Identi�ation of unions of languages drawn from an identi�able lass. in:Pro. 2nd Ann. Workshop on Computational Learning Theory (ACM, 1989) 328{333.

35


