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1 Introdu
tionThe elementary formal system (EFS, for short) was originally invented by Smullyan [39℄in early 1960s to develop his re
ursive fun
tion theory. Professor Arikawa is a pioneerto employ su
h an EFS for studying formal language theory [7℄ in 1970. After about20 years later, he and his partners [8, 9℄ 
hara
terized the EFSs as logi
 programs overstrings and introdu
ed a new hierar
hy of various language 
lasses, whi
h in
ludes thefour 
lasses of Chomsky hierar
hy, the 
lass of pattern languages, and many others. Fur-thermore, he enhan
ed EFSs as a unifying framework for language learning, by designingindu
tive inferen
e algorithms (MIEFS) for these EFS 
lasses based on Shapiro's ModelInferen
e [34℄.Stimulated by the series of Arikawa's works, many resear
hers investigated the EFSson the various areas of algorithmi
/
omputational learning theory. Shinohara [37℄ showedthat the length-bounded EFSs belonging to the above hierar
hy is inferable in the limitfrom positive examples alone. This result is a valuable extension of the previous infer-ability of bounded unions of pattern languages [1, 36, 37, 43℄. Mukou
hi and Arikawa [28℄showed that the 
lass of length-bounded EFSs is also refutable. This notion is a new
riterion introdu
ed by them that a learner 
an refute ea
h hypothesis spa
e if it turnsout to be insuÆ
ient for identi�
ation. Many other resear
hers su
h as [20, 21, 26, 27℄ en-joyed various topologi
al properties of EFSs on indu
tive inferen
e. Jain and Sharma [18℄analyzed the mind 
hange 
omplexity and the intrinsi
 
omplexity of EFSs.In 
ontrast to the learnability of EFSs on indu
tive inferen
e, the polynomial-timelearnability is another interesting theme on learning EFSs. For this purpose, Miyanoet al. [24, 25℄ introdu
ed the sub
lass hereditary EFS, denoted by HEFS. This 
lassin
ludes the 
lass of pattern languages and is enough to express the 
ontext-free languages.Furthermore, this 
lass exa
tly de�nes the 
lass PTIME [17℄. Miyano et al. 
onsider thelearnability of the hierar
hy HEFS(m; k; t; r) with the parameters su
h that m, k, t andr are the maximum number of 
lauses, the maximum number of o

urren
es of variablesin the head, the maximum number of atoms in the body, and the maximum arity ofpredi
ate symbols, respe
tively. They showed that the HEFS(m; k; t; r) is PAC-learnablefor every �xed m; k; t; r � 0.Other result was shown in the query learning model introdu
ed by Angluin [4℄. Inthis learning model, an algorithm 
an ask the equivalen
e, membership, and other severalqueries. As an interesting relationship between the PAC and query models, it is knownthat if a 
lass is learnable in polynomial time with equivalen
e queries (and membershipqueries, resp.) and the membership de
ision is polynomial time de
idable, then it isalso PAC-learnable (with membership queries, resp.) [4℄. Sakakibara [33℄ studied the1



query learnability of the sub
lass of HEFSs 
alled extended simple EFS (ESEFS, forshort). He showed that the k-bounded ESEFS is learnable in polynomial time using theequivalen
e and predi
ate membership queries. The k-bounded ESEFS is a proper sub
lassof HEFS�(�; k; k; 1), where HEFS�(m; k; t; r) denotes the HEFS(m; k; t; r) of whi
h thefa
ts are always ground.In the present paper, we investigate the learnability of the HEFSs w.r.t. the querylearning model. Two 
lasses are shown to be learnable in polynomial time using thequeries mentioned below with presenting the learning algorithms. Moreover, other 
lassesare shown to be hard to learn in the sense of representation-independent hardness [5, 32℄.First, we extend the Sakakibara's result [33℄ to the whole 
lass of HEFS(�; k; t; r). Thelearning algorithm with a top-down sear
h strategy is based on the 
ontrolled generationof 
andidate 
lauses and the 
ontradi
tion ba
ktra
ing algorithm of Shapiro [34℄. Thisalgorithm 
an be regarded as a 
ounterpart of the MIEFS of Arikawa, Shinohara, andYamamoto [9℄ along a polynomial-time learning model. We show that this algorithmlearns all hypotheses H� of HEFS(�; k; t; r) in polynomial time using O(ptmn2k+2rtkk)equivalen
e queries and O(pt+1mn2k+2r(t+1)kk) predi
ate membership queries for everyk; t; r � 0, where p is the number of predi
ate symbols, m is the 
ardinality of H�, and nis the size of the longest 
ounterexample seen so far. Unfortunately, the running time isexponential in t.To over
ome this diÆ
ulty, we 
onsider a sub
lass of HEFS 
alled terminating HEFS(THEFS, for short). Arikawa et al. [9℄ and Yamamoto [42℄ showed that the standard SLD-resolution pro
edure 
an be used as the de
ision pro
edure for EFS languages. However,this pro
edure may not terminate in 
ase of goals. Thus, we 
onsider the dependen
yrelation of an EFS H that is a smallest transitive relation over atoms >H su
h thatA >H B if A and B appear, respe
tively, in the head and the body of an instan
e of a
lause in H. An HEFS H is 
alled terminating if there exists a well-founded relation >,i.e., there exists no in�nite de
reasing 
hain, on atoms that bounds >H . It is obvious that,for a terminating HEFSH, the SLD-resolution pro
edure forH j= C always terminates forevery 
lause C. Hen
e, we de�ne the hierar
hy THEFS(m; k; t; r) of terminating HEFSs.We also allow a learner to use two types of additional queries for the target EFS H�.The �rst type of queries is the entailment membership query in the model of the learningfrom entailment [15, 31℄. This model is 
onsidered to be reasonable for learning the �rst-order logi
 or logi
 programs [10, 11, 16, 19, 31℄. The goal of a learning algorithm is to�nd a hypothesis equivalent to the target hypothesis w.r.t. the entailment semanti
s usingthe queries. The entailment semanti
s is de�ned in the next se
tion together with othersemanti
s. The se
ond type of queries is the dependen
y query to determine whether a2



pair of atoms are in a dependen
y relation.We design a learning algorithm for THEFS(�; k; �; r) with equivalen
e, entailmentmembership, and dependen
y queries. This algorithm adopts the bottom-up sear
h strat-egy by 
ombining three generalization te
hniques, namely, saturation, rewind andmaximal
ommon subsumer [10, 11, 15, 16, 19, 31℄. We show that for every k; r � 0, this algorithmexa
tly learns the 
lass THEFS(�; k; �; r) in polynomial time using O(pmn2r+1) equiva-len
e queries, O(p2m2n4k+4r+1kk) entailment membership queries, and O(p2m2n4k+4r+1kk)dependen
y queries, where m is the number of 
lauses and n is the length of the longest
ounterexample seen so far. The number O(pmn2r+1) of equivalen
e queries for this algo-rithm is signi�
antly smaller than the number O(ptmn2k+2rtkk) for the previous top-downalgorithm for HEFS(�; k; t; r). Also we show that, by analyzing the VC-dimension, lowerbound of the queries to learn THEFS(�; k; �; r) is 
(mnr=2) for some ordering >, whi
himplies that the number of equivalen
e queries of this algorithm is nearly optimal.Furthermore, we present the series of representation-independent hardness results ofpredi
ting HEFSs by adopting the predi
tion-preserving redu
tion without or with mem-bership queries [5, 32℄. The property is known that if a 
lass is not polynomial-time pre-di
table (with membership queries), then it is not polynomial-time learnable with equiva-len
e queries (and membership queries) [5, 32℄. We denote by RP , [mRP and [RP the
lass of regular pattern languages, at most m unions of regular pattern languages, and all�nite union of regular pattern languages, respe
tively [12, 24, 25, 35, 36, 38℄. Shinoharaand Arimura [38℄ showed that RP and [mRP are inferable from positive data although[RP is not. On this line of studies, we show the hardness of the query learnability ofthese 
lasses. The RP is not polynomial-time predi
table if neither are DNF formulasand the [RP is not polynomial-time predi
table with membership queries if neither areDNF formulas. The [mRP is polynomial-time predi
table with membership queries butit is open whether it is learnable with the equivalen
e and membership queries.The above results for pattern languages 
an be regarded as an improvement for thenon-PAC-learnability of the RP and [RP , whi
h is representation-dependent [25℄. Fur-thermore, the third result is an extension of the learnability of RP with membershipqueries [23℄. The RP , [mRP and [RP are 
orresponding to the HEFS(1; �; 0; 1),HEFS(m; �; 0; 1) and HEFS(�; �; 0; 1), respe
tively. Hen
e, we 
an 
on
lude that thebound on k is ne
essary to eÆ
iently learn HEFS(�; k; t; r) with equivalen
e and member-ship queries. Other hardness results indi
ate that the HEFS�(�; k; t; r) is not polynomial-time predi
table with membership queries under the 
ryptographi
 assumptions, even ifk = t = r = 1.Finally, 
on
erning with the learnability of k-bounded ESEFSs whi
h is a sub
lass of3



HEFS�(�; k; k; 1), with the equivalen
e and predi
ate membership queries [33℄, we showthat the bound k is essential for this eÆ
ien
y, i.e., the HEFS�(�; �; �; r) is not polynomial-time predi
table with the membership or predi
ate membership queries if neither are theDNF formulas, even if r = 1. All results in this paper are summarized in Fig. 1.2 PreliminariesIn this se
tion, we give the de�nitions and theorems on elementary formal systems, learn-ing models, and predi
tion-preserving redu
tions ne
essary for the later dis
ussion.2.1 Elementary formal systems and their languagesFor a set S, #S denotes the 
ardinality of S. Let � be a �nite alphabet of 
onstantsymbols, X be a 
ountable set of variables, and for every r � 0, �r be a �nite alphabetof r-ary predi
ate symbols. Moreover, let � = [i�0�i. We assume that �, X and � aremutually disjoint. We 
all the pair S = (�;�) a signature.For ea
h predi
ate symbol p 2 �r, r is 
alled an arity of p. We denote by arity(�) themaximum arity of the predi
ate symbols in �. By ��, �+ and �[n℄, we denote the sets ofall �nite strings, all nonempty �nite strings, and all strings of length n or less respe
tively,over �.A pattern over S is an element of (� [ X)+. A pattern over S is 
alled regular ifea
h variable appears at most on
e in it. An atom over S is an expression of the formp(�1; : : : ; �r), where r � 0, p 2 �r and ea
h �i is a pattern over S (1 � i � n). A de�nite
lause (
lause, for short) over S is an expression of the form:C = A A1; : : : ; Am,where m � 0 and A;A1; : : : ; Am are atoms over S. The atom A and the set fA1; : : : ; Amgof atoms are 
alled the head and the body of C and denoted by hd(C) and bd(C), respe
-tively. In 
ase that m = 0 (resp., m > 0), a 
lause is 
alled a fa
t (resp., rule). A 
lauseor an atom over S is ground if it 
ontains no variable.De�nition 1 Let S = (�;�) be a signature. An elementary formal system (EFS , forshort) over S is a �nite set of 
lauses over S.For a signature S = (�;�), AtomS and ClauseS denote the sets of all atoms and all
lauses over S, respe
tively. In parti
ular, the set of all ground atoms over S is 
alled theHerbrand base over S and denoted by BaseS .4



Figure 1: The summary of the learnability of a hierar
hy HEFS(m; k; t; r) of HEFSspresented in this paper. In the all tables, the �rst row indi
ates the types of queriesused. The types of queries assumed in this paper are the equivalen
e (EQ), membership(MQ), predi
ate membership (PMQ), entailment membership (EntMQ), and dependen
y(DQ) queries. Ea
h \poly" means that the 
lass is polynomial-time exa
t learnable withEQs and the indi
ated queries. Ea
h \hard" (resp., \hard�") means that some hard 
lass(resp., the 
lass of DNF formulas) is predi
tion-preserving redu
ible with the indi
atedqueries to the 
lass. The \pred" means that the 
lass is polynomial-time predi
table withthe indi
ated queries. The \PAC" and \not PAC" mean the 
lass is and is not polynomial-time PAC-learnable, respe
tively. Finally, ea
h arrow in the tables means that the resultof the 
ell 
ontaining the arrow is dire
tly derived from the neighbor pointed by the arrow.(a) Learnability of HEFSsClass EQ EQ+MQ EQ+PMQHEFS(m; k; t; r) PAC [24, 25℄   k-bounded ESEFSs (� HEFS�(�; k; k; 1)) ! hard (Th14) poly [33℄HEFS(�; k; t; r) ! hard (Th14) poly (Th5)HEFS�(�; �; �; r) ! ! hard� (Th15)
(b) Learnability of terminating HEFSsClass | EQ+MQ EQ+PMQ EQ+EntMQ EQ+EntMQ+DQTHEFS(�; k; �; r) ! hard (Th14) open open poly (Th7)

(
) Learnability of regular pattern languages and their unionsClass EQ EQ+MQRP (= HEFS(1; �; 0; 1)) not PAC [24, 25℄ = hard� (Th11) poly [23℄[mRP (= HEFS(m; �; 0; 1)) " = " pred (Th13)[RP (= HEFS(�; �; 0; 1)) " = " hard� (Th12)
5



A substitution is a homomorphism � : (� [X)+ ! (� [ X)+ su
h that �(a) = a forea
h symbol a 2 �. For a substitution � and a pattern �, the �� denotes the image of� by �. For an atom A = p(�1; : : : ; �n) and a 
lause C = A  A1; : : : ; Am, we de�neA� = p(�1�; : : : ; �n�) and C� = A�  A1�; : : : ; Am�. Then, we say that A� and C� areinstan
es of A and C, respe
tively. In parti
ular, if A� or C� be
omes ground, then � is
alled a ground substitution.We end this subse
tion by introdu
ing the notion of subsumption, denoted by w whi
hplays an important role in Se
tion 3. For atoms A and B over S, we de�ne A subsumesB, denoted by A w B, if there exists a substitution � su
h that A� = B, that is, B is aninstan
e of A.For 
lauses C and D over S, we de�ne C subsumes D, denoted by C w D, if thereexists a substitution � su
h that hd(C�) = hd(D) and bd(C�) � bd(D). We de�ne Cproperly subsumes D, denoted by C = D, if C w D but D 6w C.For EFSs H and G over S, we de�ne H subsumes G, denoted by H w G, if forevery D 2 G, there exists a 
lause C 2 H su
h that C w D. Then we say that H isa generalization of G or G is a re�nement of H. Furthermore, a re�nement G of H is
onservative if, for every D 2 G, there exists at most one 
lause C 2 H su
h that C w D.We de�ne H = G if H w G but G 6w H.2.2 Three semanti
s for EFSsIn this subse
tion, we �rst introdu
e a model thoery for EFSs as follows for uniformlydealing with three semanti
s. Let us identify a given signature S = (�;�) with the�rst-order signature (�; f�g;�), where \�" is a string 
on
atenation operator satisfyingthe asso
iativity 8x8y8z[x � (y � z) = (x � y) � z℄.An interpretation I over S is a triple (U; I; �), where U is a set, I is a mapping thatmaps p 2 �r (r � 0), \�" and a 2 � to an r-ary relation over U , a binary asso
iativefun
tion over U and an element of U , respe
tively, and � is a variable-assignment to U .Then, the satisfa
tion relation j= is de�ned in a standard manner (
f., [14, 30℄). A modelof an atom A or a 
lause C over S is an interpretation I over S su
h that I j= A andI j= C, respe
tively. We assume that any variable in a 
lause is universally quanti�ed. Amodel of an EFS H over S is a model of every 
lause in H over S.For an EFS H and a 
lause C over S, we say that H entails C, denoted by H j= C, ifevery model of H is a model of C. For EFSs H and G over S, we say that H entails G,denoted by H j= G, if every model of H is a model of G.Originally, the semanti
s of EFSs is de�ned by the provability relation ` de�ned [9℄.For an EFS H and a 
lause C over S, respe
tively, the relation H ` C whi
h means that6



C is provable from H is de�ned indu
tively as follows:1. If C 2 H, then H ` C.2. If H ` C, then H ` C� for a substitution �.3. If H ` A A1; : : : ; Am; Am+1 and H ` Am+1, then H ` A A1; : : : ; Am.The following lemma gives the relationship between ` and j=.Lemma 1 (Arikawa et al. [9℄) For every atom A and EFS H, H j= A i� H ` A .The language semanti
s is a standard semanti
s of EFSs (
f. [8, 9, 24, 25℄). Let Hbe an EFS over S = (�;�) and p0 2 � be a distinguished predi
ate symbol. Then, thelanguage de�ned by H and p0 over S is the setLS(H; p0) = f w 2 �+ j H j= p0(w) g:A language L � �+ is de�nable by an EFS over S or it is an EFS language over S ifthere exists an EFS H over S and p0 2 � su
h that L = LS(H; p0).The least Herbrand model semanti
s [9, 42℄ is based on all of the ground atoms provablefrom a given EFS. The least Herbrand model of an EFS H over S is the set MS(H) =f A 2 BaseS j H j= A g [9, 42℄.The entailment semanti
s is based on all 
lauses entailed by a given EFS. The en-tailment set of an EFS H over S, denoted by EntS(H), is the set of all 
lauses over Sentailed by H, i.e., EntS(H) = f C 2 ClauseS j H j= C g:Formally, a semanti
s for a 
lass H of EFSs is a pair (U; L̂(�)), where U is a set ofobje
ts, 
alled the domain, and a mapping L̂ : H ! 2U , 
alled the language mapping .De�nition 2 Let S be a signature (�;�) and p0 2 �1 is the distinguished predi
ate.� The language semanti
s on S is a pair (AtomS ; LS(�; p0)).� The least Herbrand model semanti
s on S is a pair (BaseS ;MS(�)).� The entailment semanti
s on S is a pair (ClauseS ;EntS(�)).We introdu
e a proof-DAG by extending the parse-DAG for k-bounded CFGs byAngluin [3℄ and the ground proof-DAG for EFS by Sakakibara [33℄.De�nition 3 A proof-DAG for a 
lause C by an EFS H is a �nite dire
ted a
y
li
 graphT with the following properties. Nodes in T are atoms possibly 
ontaining variables. Thenode A is the unique node with in-degree zero, 
alled the root . For ea
h node B in T , letSu

(B) be the set of nodes B0 with edges from B to B0. Then for every node B in T ,either B 2 bd(C) or (B  Su

(B)) is an instan
e of a 
lause in H.7



A proof-DAG T of C by H is minimal if no proper subgraph of T is also a proof-DAGC by H. A minimal proof-DAG for a 
lause C by H is said to be trivial if all nodesin T are 
ontained in hd(C) [ bd(C), and non-trivial otherwise. We will assume that aproof-DAG is always minimal.The Skolem substitution for C w.r.t. H is a substitution � that repla
es the variablesx in C with mutually distin
t fresh 
onstants 
x not appearing in H and C.Lemma 2 Let H be an EFS and C a 
lause. For the Skolem substitution � for C w.r.t. H,H j= 8(C) i� H j= C�.Lemma 3 Let S be a signature, H an EFS 
onsisting of ground 
lauses, and A 2 BaseSa ground atom. Then, H j= A i� there exists a minimal proof-DAG T for A by H.Proof. The if dire
tion of the lemma is easily proved by indu
tion on the size n � 1 of theproof-DAG for A by H. Next, we will show the only-if dire
tion. Suppose that H j= A.Let M =MS(H). First, sin
e M is the smallest among the Herbrand model of H, we 
anshow thatM is the supported model , that is, ifM j= A then there is some C 2 H su
h thatA = hd(C) and M j= bd(C). Then, we show the lemma by indu
tion on the 
ardinalityn = #H. If n = 1 then H 
onsists of the fa
t A  , and thus, the lemma immediatelyfollows. Suppose that #H = n + 1 and the lemma holds for any EFS of 
ardinality nomore than n. By the 
laim shown above, there is some 
lause C = (A B1; : : : ; Bm) 2 Hsu
h that A = hd(C) and M j= B1 ^ : : : ^ Bm. Let H 0 = H � fCg and M 0 = MS(H 0).We will show that M 0 j= B1 ^ : : : ^ Bm. Suppose to the 
ontrary that there is someinterpretation I su
h that I j= H � fCg but I 6j= B1 ^ : : : ^ Bm. Sin
e B1 ^ : : : ^ Bm isthe body of C, we see that I j= C regardless the truth value of A. Therefore, I is a modelof both H � fCg and C, and thus that I j= M but I 6j= B1 ^ : : : ^ Bm. However, this
ontradi
ts the assumption. Hen
e, M 0 j= B1 ^ : : : ^ Bm. Sin
e #H 0 � n, by indu
tionhypothesis, we have that for every 1 � i � m, there exists a proof-DAG Ti for Bi by H 0.Hen
e, we have a proof-DAG for A by H by merging T1; : : : ; Tm and by adding the rootnode A and the edges f(A;Bi) j 1 � i � mg. It is not hard to see that the resulting graphT is a
y
li
. 2The following lemma 
hara
terizes the entailment relation j= for EFS in terms of aproof-DAG, and 
orresponds to the subsumption theorem in 
lausal logi
 [29℄.Lemma 4 (The subsumption theorem) Let H be an EFS and C a 
lause. Then,H j= C if and only if one of the following statements holds:(i) C is a tautology. 8



(ii) C is subsumed by some 
lause in H.(ii) There exists a non-trivial minimal proof-DAG for C by H.Proof. Let � be the Skolem substitution for C w.r.t. H. Sin
e C� is ground, it followsfrom Lemma 2 and the dedu
tion theorem of �rst-order logi
 that H [ bd(C�) j= hd(C�).Thus from Lemma 3, there is some proof-DAG T 0 for hd(C�) by H [ bd(C�). By thede�nition of the proof-DAG, if bd(C�) is ground then this proof-DAG T 0 is also a proof-DAG for C� by H. Sin
e � is one-to-one and introdu
es only fresh 
onstants into C, we
an obtain a proof-DAG T for C from T 0 by applying the inverse mapping ��1 to T 0. The
onverse is also true. 2In the remainder of this paper, we will omit the subs
ript S if it is not ne
essary toexpli
itly disignate it. In Se
tion 3, a signature is expli
itly given to a learner beforethe learning session starts. In Se
tion 4, a signature is impli
itly assumed to 
ontain allpredi
ate and 
onstant symbols o

urring in EFSs.2.3 Hereditary EFSs and the other sub
lassesIn this subse
tion, we introdu
e the several sub
lasses of EFSs, whi
h are developed bymany resear
hers [7, 8, 9, 17, 24, 25, 33, 37, 42℄.First, we prepare the notations ne
essary to de�ne the sub
lasses. The size of apattern �, denoted by j�j, is the total number of symbols from � [ X appearing in �.The variable-o

urren
e of �, denoted by o(�), is the total number of the o

urren
esof variables from X appearing in �. For example, if � = fa; bg, X = fx; y; : : :g and� = abxbxyab, then j�j = 8 and o(�) = 3. For an atom A = p(�1; : : : ; �n), we de�nejAj = j�1j+ � � �+ j�nj and o(A) = o(�1)+ � � �+ o(�n). For a 
lause C = A0  A1; : : : ; Am,we de�ne jCj = jA0j + � � � + jAmj and o(C) = o(A0) + � � � + o(Am). For an EFS H, thesize of H, written jHj, is PC2H jCj.De�nition 4 We introdu
e the following restri
tions of 
lauses.1. A 
lause A  A1; : : : ; Am is 
alled variable-bounded [9℄ if every variable appearingin the body A1; : : : ; Am also appears in the head A.2. A 
lause A  A1; : : : ; Am is 
alled length-bounded [9℄ if jA�j � jA1�j + : : :+ jAm�jfor ea
h substitution �.3. A 
lause is 
alled extended simple [33℄ if it is of the form p(�) q1(x1); : : : ; qm(xm),where p; q1; : : : ; qm are unary predi
ate symbols and x1; : : : ; xm are all variablesappearing in �. 9



4. A 
lause is 
alled simple [9℄ if it is of the form p(�)  q1(x1); : : : ; qm(xm), wherep; q1; : : : ; qm are unary predi
ate symbols and x1; : : : ; xm are mutually distin
t vari-ables appearing in �.5. A simple 
lause is 
alled regular [7℄ if the pattern in its head is regular.6. A regular 
lause is 
alled left-linear (resp., right-linear) [7℄ if the pattern in its headis of the form wx (resp., xw) for some string w 2 ��.7. A 
lause is hereditary [25℄ if it is of the formp(�1; : : : ; �n) q1(�1; : : : ; �t1); q2(�t1+1; : : : ; �t2); : : : ; qm(�tm�1+1; : : : ; �tm),and ea
h pattern �j (1 � j � tm) is a substring of some �i (1 � i � n).The extended simple 
lause was introdu
ed in the 
ontext of simple formal systems(SFSs) [33℄, so an extended simple 
lause is an extension of a simple 
lause in SFSs [7℄.In 
ontrast, the above extended simple 
lause is not an extension of a simple 
lause inEFSs. In parti
ular, there exists no extended simple 
lause that is a non-ground fa
t andthat has variables only o

urring in the head.De�nition 5 An EFS H is 
alled variable-bounded (resp., length-bounded , extended sim-ple, simple, regular , left-linear , right-linear , hereditary) if ea
h 
lause in H is variable-bounded (resp., length-bounded, extended simple, simple, regular, left-linear, right-linear,hereditary).For example, let � = fp0; qg and � = fa; b; 
g. Then, the following simple EFS H0and HEFS H1 de�ne the languages L(H0; p0) = fw 2 fa; bg+ j w is a string of thebalan
ed parentheses g and L(H1; p0) = f anbn
n j n � 1 g, respe
tively.H0 = 8><>: p0(xy) p0(x); p0(y)p0(axb) p0(x)p0(ab) 9>=>; ; H1 = 8><>: p0(xyz) q(x; y; z)q(ax; by; 
z) q(x; y; z)q(a; b; 
) 9>=>; :We abbreviate an extended simple EFS and a hereditary EFS as an ESEFS and anHEFS, respe
tively. The following hierar
hy HEFS(m; k; t; r) of HEFSs introdu
ed by [25℄gives a useful framework for polynomial-time learnability.De�nition 6 (Miyano et al. [24, 25℄) For every m; k; t; r � 0, HEFS(m; k; t; r) is the
lass of HEFSs 
onsisting of at most m 
lauses ea
h of whi
h satis�es the following 
on-ditions (a){(
). HEFS�(m; k; t; r) is the sub
lass of HEFS(m; k; t; r) 
onsisting of at mostm 
lauses ea
h of whi
h satis�es the following 
onditions (a){(d).10



(a) The variable-o

urren
e in the head is at most k.(b) The number of atoms in the body is at most t.(
) The arity of ea
h predi
ate symbol is at most r.(d) All fa
ts are ground.In this hierar
hy, the symbol `�' indi
ates that there is no bound on this parameter.For example, the HEFSs H0 and H1 in the above example belong to HEFS�(3; 2; 2; 1)and HEFS�(3; 3; 1; 3), respe
tively. We 
an give the 
orresponden
e of the EFS languagesto Chomsky's hierar
hy and 
omplexity 
lasses.Theorem 1 The following relations hold for the EFS languages above.1. (Arikawa [7℄, Arikawa et al. [9℄) A language is re
ursively enumerable, (resp.,
ontext-sensitive, 
ontext-free, regular) i� it is de�nable by a variable-bounded (resp.,length-bounded, regular, left/right-linear) EFS.2. (Ikeda, Arimura [17℄) A language is a

epted by a polynomial time deterministi
Turing ma
hine i� it is de�nable by a hereditary EFS.3. (Arikawa et al. [9℄) A regular pattern language, (resp., union of regular pat-tern language, regular language, 
ontext-free language) is de�nable by an EFS inHEFS(1; �; 0; 1), (resp. HEFS(�; �; 0; 1), HEFS(�; 1; 1; 1), HEFS(�; 2; 2; 1)).Finally, we formulate the termination for HEFSs, whi
h are motivated by the a
y
li
ityof EFSs [6, 10, 13℄.De�nition 7 Let S be a signature and H be an EFS over S. The dependen
y graph ofH is a possibly in�nite dire
ted graph GH = (AtomS; E) su
h that there exists an edgefrom A to B, i.e., (A;B) 2 E, i� there exist a ground instan
e C of some 
lause in Hsu
h that A = hd(C) and B 2 bd(C).De�nition 8 Let S be a signature and H be an EFS over S. The dependen
y relation ofH is a binary relation >H on AtomS su
h that A >H B i� there exists a path of non-zerolength from A to B in the dependen
y graph GH of H.A binary relation R on S is transitive if aRb and bR
 implies aR
 for every a; b; 
 2S. Also R is well-founded if there exists no in�nite de
reasing 
hain from a su
h asaRa1; a1Ra2; a2Ra3; � � �, for every a 2 S. 11



De�nition 9 Let S be a signature, H be an EFS over S and > be a transitive binaryrelation on AtomS . The dependen
y relation >H of H is bounded by > if A >H B impliesA > B for every atoms A;B 2 AtomS .De�nition 10 Let S be a signature and H be an EFS over S Then, H is terminatingif there exists a well-founded transitive binary relation > on AtomS that bounds thedependen
y relation >H of H.Let S be a signature, H be a 
lass of EFSs over S, and > be a transitive binaryrelation on AtomS . We say that H is uniformly bounded by > if the dependen
y relation>H is bounded by > for every H 2 H. We denote by H(>) the maximal sub
lass ofH whose dependen
y relation is uniformly bounded by >, i.e., H(>) = f H 2 H j >His bounded by > g.As similar as HEFS(m; k; t; r), we 
an introdu
e a 
lass THEFS(m; k; t; r) of ter-minating HEFSs with the same parameters m, k, t and r. In parti
ular, we denote(THEFS(m; k; t; r))(>) by THEFS(>;m; k; t; r).2.4 Learning modelsIn this subse
tion, we introdu
e the learning models. Here, a 
lass H of grammars, 
alleda hypothesis spa
e, is always assumed. If a hypothesis spa
e H is a 
lass of EFSs, then asignature is assumed to be in 
ommon.Let (U; L̂(�)) be the semanti
s for H. Ea
h element of U is 
alled an example. Thelanguage L̂(H) is also 
alled the 
on
ept de�ned by H. We say that two hypotheses Hand H� are equivalent under the semanti
s (U; L̂(�)) if L̂(H) = L̂(H�).Let H� 2 H be a target hypothesis. An example w is 
alled positive for H� if w 2L̂(H�) and negative otherwise. Many resear
hers have been developed several di�erentlearning models to 
apture the eÆ
ient learnability from the viewpoints of the 
riterionof identi�
ation and the proto
ol of re
eiving examples and queries. In this paper, weemploy the following two learning models. First, we de�ne the exa
t learning model, wherea learning algorithm makes the following queries to 
olle
t the information on H� [4℄.De�nition 11 (Angluin [4℄) Let H� 2 H be a target hypothesis.1. An equivalen
e query for H� (EQ, for short) takes H 2 H as input, denoted byEQ(H). The answer is \yes" if L̂(H) = L̂(H�) and a 
ounterexample w 2 (L̂(H�)�L̂(H))[(L̂(H)�L̂(H�)) is returned otherwise. A 
ounterexample w is 
alled positiveif w 2 L̂(H�) and 
alled negative if w 62 L̂(H�).12



2. A membership query for H� (MQ, for short) takes w 2 �+ as input, denoted byMQ(w). The answer is \yes" if w 2 L(H�) and \no" otherwise.De�nition 12 (Angluin [4℄) A polynomial-time exa
t learning algorithm A for H is analgorithm that identi�es the target hypothesis H� 2 H making equivalen
e and member-ship queries for H�, A must halt and output a hypothesis H 2 H that is equivalent toH�, i.e., L̂(H) = L̂(H�), and, at any stage in the learning algorithm, the running time ofA must be bounded by a polynomial in the size of H� and of the longest 
ounterexamplereturned by equivalen
e queries so far. H is 
alled polynomial-time exa
t learnable if thereexists a polynomial-time exa
t learning algorithm for H.On the other hand, we introdu
e the predi
tion model a

ording to Pitt and War-muth [32℄ and Angluin and Kharitonov [5℄.De�nition 13 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) A predi
tion al-gorithm A for H is an algorithm that takes m (a bound on the size of H), n (a boundon the length of examples), " (an a

ura
y bound), a 
olle
tion of labeled examples su
hthat ea
h positive (resp., negative) example is labeled by + (resp., �), and an unlabeledexample w of H� as input, and outputs either + or � indi
ating its predi
tion for w. TheA is 
alled a polynomial-time predi
tion algorithm if the running time of A is boundedby a polynomial in s; n and 1=". For some polynomial p, for all input parameters m;nand " and for all probability distributions on examples, if A is given at least p(m;n; 1=")randomly generated examples of H� and randomly generated unlabeled example w, andthe probability that A in
orre
tly predi
ts the label of w for H� is at most ", then we saythat A su

essfully predi
ts H. Moreover, H is 
alled polynomial-time predi
table if thereexists a polynomial-time predi
tion algorithm for H that su

essfully predi
ts H.The A is a predi
tion with membership queries algorithm (pwm-algorithm, for short)is a predi
tion algorithm that is allowed to make membership queries. The notions thatA is a polynomial-time pwm-algorithm, a pwm-algorithm A su

essfully predi
ts H, andH is polynomial-time predi
table with membership queries are de�ned similarly as above.We 
an also de�ne a variant of PAC-learning model [41℄ in whi
h a learning algorithmis allowed to make membership queries in addition to random examples [5℄. There isa 
lose relationship among exa
t learning with equivalen
e queries, PAC-learning andpredi
tion models without or with membership queries.Theorem 2 (Angluin [4℄, Angluin & Kharitonov [5℄) If H is polynomial-time ex-a
t learnable with equivalen
e queries, then it is polynomial-time PAC learnable. If H13



is polynomial-time PAC learnable, then it is polynomial-time predi
table. Furthermore,these statements also hold with membership queries.In this paper, we also introdu
e the following extension of membership queries basedon the non-standard semanti
s of EFSs.De�nition 14 Let H� 2 H be a target hypothesis.1. (Angluin [3℄, Sakakibara [33℄) A predi
ate membership query for H� (PMQ, forshort) takes a ground atom A = p(w1; : : : ; wn) for p 2 � and wi 2 �+ (1 � i � n)as input, denoted by PMQ(A). The answer is \yes" if H� j= A, i.e., A 2 M(H�)and \no" otherwise.2. (Frazier & Pitt [15℄) An entailment membership query for H� (EntMQ, for short)takes a (possibly non-ground) 
lause C as input, denoted by EntMQ(C). The answeris \yes" if H� j= C, i.e., C 2 Ent(H�) and \no" otherwise.The PMQs and EntMQs 
oin
ide with exa
tly the membership queries under the leastHerbrand model semanti
s (Base;M(�)) and the entailment semanti
s (ClauseS;Ent(�)),respe
tively. We 
an observe that an MQ is simulated by a PMQ and then a PMQ is byan EntMQ.Furthermore, we 
an de�ne the entailment equivalen
e query (EntEQ, for short) asthe equivalen
e query under the semanti
s (ClauseS ;Ent(�)), where a 
ounterexample isa 
lause. The learning model with EntEQ and EntMQ, 
alled learning from entailment[15℄, gives a valuable framework for the eÆ
ient learnability of �rst-order logi
 or logi
programs [10, 11, 16, 19, 31℄.Finally, we de�ne the query to ask about the termination information.De�nition 15 A dependen
y query forH� (DQ, for short) takes a pair (A;B) of atoms asinput, denoted by DQ(A;B). The answer is \yes" if A >H� B holds and \no" otherwise.2.5 Predi
tion-preserving redu
tionPitt and Warmuth [32℄ have introdu
ed the notion of redu
ibility between predi
tionproblems. Predi
tion-preserving redu
ibility is essentially a method of showing thatone hypothesis spa
e is no harder to predi
t than another. Furthermore, Angluin andKharitonov [5℄ have extended the predi
tion-preserving redu
tion to the notion of re-du
ibility between predi
tion problems with membership queries.
14



De�nition 16 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) LetHi be a hy-pothesis spa
e over a domain Ui (i = 1; 2). We say that predi
ting H1 redu
es to predi
tingH2, denoted by H1�H2, if there exists a fun
tion f : N�N�U1 ! U2 (
alled an instan
emapping) and a fun
tion g : N�N�H1 ! H2 (
alled a 
on
ept mapping) satisfying thefollowing 
onditions:1. for ea
h w 2 U [n℄1 and H 2 H[s℄1 , w 2 L̂(H) i� f(n; s; w) 2 L̂(g(n; s;H));2. the size 
omplexity of g is polynomial in the size 
omplexity of H;3. f(n; s; w) 
an be 
omputed in polynomial time.Furthermore, we say that predi
ting H1 redu
es to predi
ting H2 with membership queries(pwm-redu
es, for short), denoted by H1 �pwmH2, if there exists a fun
tion f : N�N�U1 ! U2, a fun
tion g : N�N�H1 !H2, and a fun
tion h : N�N�U2 ! U1[f>;?g(
alled a membership query mapping) satisfying the above and the following 
onditions:4. for ea
h w0 2 U2 and H 2 H[s℄1 , if h(n; s; w0) = > then w0 2 L̂(g(n; s;H)); ifh(n; s; w0) = ? then w 62 L̂(g(n; s;H)); if h(n; s; w0) = w 2 U1, then it holds thatw0 2 L̂(g(n; s;H)) i� w 2 L̂(H);5. h(n; s; w0) 
an be 
omputed in polynomial time.Theorem 3 (Pitt & Warmuth [32℄, Angluin & Kharitonov [5℄) LetH1 andH2 behypothesis spa
es, and suppose that H1�H2 (H1�pwmH2). If H2 is polynomial-time pre-di
table (with membership queries), then so is H1.We deal with the following hypothesis spa
es to redu
e the predi
tion problem toseveral EFS sub
lasses: DFA and [DFA denote the 
lass of all languages a

epted bythe DFAs and the �nite union of DFAs, respe
tively. DNFn denotes the 
lass of all DNFformulas over n Boolean variables; Let DNF = [n�1DNFn.Theorem 4 The following statements hold.1. (Angluin [2℄) DFA is polynomial-time exa
tly learnable with equivalen
e andmembership queries.2. (Angluin & Kharitonov [5℄) [DFA is not polynomial-time predi
table withmembership queries under the 
ryptographi
 assumptions that inverting the RSAen
ryption fun
tion, re
ognizing quadrati
 residues and fa
toring Blum integers aresolvable in polynomial time. 15



3. (Angluin & Kharitonov [5℄) DNF is either polynomial-time predi
table or notpolynomial-time predi
table with membership queries, if there exist one-way fun
-tions that 
an not be inverted by polynomial-sized 
ir
uits.3 Learning HEFSsIn this se
tion, we investigate the polynomial-time learnability of sub
lasses of HEFSsusing various types of queries. We �rst show that the 
lass HEFS(�; k; t; r) of HEFSsis polynomial-time exa
t learnable with equivalen
e and predi
ate membership queries.Next, we show that the 
lass THEFS(�; k; �; r) of terminating HEFSs is polynomial-timeexa
t learnable with equivalen
e, entailment membership, and dependen
y queries, whi
hre
e
ts the termination information.3.1 The learnability of a sub
lass of HEFSsSakakibara [33℄ showed that, for every k � 0, the 
lass of k-bounded ESEFSs, whi
h isa sub
lass of HEFS�(�; k; k; 1), is polynomial-time exa
t learnable with equivalen
e andpredi
ate membership queries. In this subse
tion, we extend this result to the whole 
lassHEFS(�; k; t; r) for every k; t; r � 0.In general, the entailment relation is unde
idable for variable-bounded EFSs [9℄ anddeterministi
 exponential-time 
omplete for HEFSs [17℄. The following lemma 
laims thatthe entailment relation in HEFS(�; k; �; r) is polynomial-time de
idable.Lemma 5 For a 
lause C and an EFS H, suppose that H [ fCg 2 HEFS(�; k; �; r).Then, a proof-DAG for H j= C is polynomial-time 
omputable in jCj and jHj if it exists.Proof. Let � be the ground substitution that maps ea
h variable x in C to a new 
onstant
x. Then, we 
an see that H j= C if H [ bd(C�) j= hd(C�) under the extended alphabet� [ f
xgx. The result immediately follows from Miyano et al. [25℄. 2For a signature S = (�;�) and an atom A = p(�1; : : : ; �r), we de�ne the subsetAtomS(A) as:AtomS(A) = (q(�1; : : : ; �s) 2 AtomS ����� every �i(1 � i � s) is a substringof some �j(1 � j � r) ) :Then, the following series of lemmas are ne
essary to prove the learnability of HEFS(�; k; t; r).Lemma 6 Let S be a signature, H an HEFS over S and C a 
lause over S. Then, forevery atom A in a proof-DAG for H j= C, it holds that A 2 AtomS(hd(C)).16



Pro
edure LEARN HEFS BY CBA/* A learning algorithm for HEFS(�; k; t; r) with EQs and PMQs *//* S: a �xed signature */1 H := ;;2 while EQ(H) =\no" do begin /* L(H; p0) 6= L(H�; p0) */3 E := a 
ounterexample returned by the EQ; /* E is an atom. */4 if H j= E then /* E is negative, i.e., H j= E and H� 6j= E*/5 T := a proof-DAG for H j= E; A := root(T );6 while PMQ(B) =\no" for some 
hild B of A do7 A := B;8 fB1; : : : ; Bt0g := all 
hildren of A (t0 � 0);9 C := a 
lause in H that subsumes A B1; : : : ; Bt0 ; /* C is false in H� */10 H := H � fCg;11 else /* E is positive, i.e., H 6j= E and H� j= E */12 H := H [ Cand(E; k; t; r);13 end /* while */14 return H;Figure 2: A polynomial-time learning algorithm for HEFS(�; k; t; r) with EQs and PMQs,based on the 
ontradi
tion ba
ktra
ing algorithm [34, 33℄ (Lines 5 to 10).Lemma 7 Let S be a signature (�;�) and A an atom over S. Then, it holds that#AtomS(A) � q1(p; n) = pn2r, where p = #�, n = jAj and r = arity(�).Lemma 8 For every integer k � 0 and atom A, there are at most jAj2kkk atoms B withvariable-o

urren
e no more than k that subsumes A, i.e., B w A and o(B) � k.Let S be a signature. For integers k; t; r � 0 and an atom A over S, Cand(A; k; t; r)is the set of all hereditary 
lauses in HEFS(�; k; t; r) over S of the form B  B1; : : : ; Bt0su
h that B w A, o(B) � k and Bi 2 AtomS(B), where 0 � i � t0 and 0 � t0 � t. Thefollowing lemma immediately follows from Lemma 7 and Lemma 8.Lemma 9 #Cand(E; k; t; r) is bounded by q2(p; n) = O(ptn2k+2rtkk), where p = #� andn = jEj. (kk re
e
ts that the same variable may o

ur more than on
e.)Theorem 5 For a signature S = (�;�), the 
lass HEFS(�; k; t; r) is polynomial-time ex-a
t learnable with O(ptmn2k+2rtkk) equivalen
e queries and O(pt+1mn2k+2r(t+1)kk) predi-
ate membership queries, where p = #�, m is the 
ardinality of a target HEFS, and n isthe size of the longest 
ounterexample re
eived so far.
17



Proof. Fig. 2 shows our learning algorithm LEARN BY CBA for HEFS(�; k; t; r), whi
his an extension of the algorithm given by Sakakibara [33℄. We will only state the di�eren
ebetween Sakakibara's algorithm and ours in the proof.Starting with H = ;, the algorithm exe
utes the while loop at line 2 until EQ(H)returns \yes." If a negative 
ounterexample E is returned at line 3, then hypothesis His too strong, i.e., H j= E. In this 
ase, the algorithm tries to dete
t an in
orre
t 
lauseC 2 H su
h that H� 6j= C by sear
hing the proof-DAG T for E by H from lines 5 toline 10 with a 
ontradi
tion ba
ktra
ing algorithm (CBA) [34℄. Initially, the root is falsein the model M(H�). Starting from the root, the algorithm goes downward by followingany false 
hild of the 
urrent node. Eventually, the algorithm rea
hes a false node A noneof whose 
hildren is false in M(H�). Then, we know that there exists some 
lause C 2 Hthat subsumes (A  B1; : : : ; Bt0) is false in M(H�) and should be removed from H. Bythe similar dis
ussion as [33℄ and by Lemma 6, we 
an show that the CBA still 
orre
tlyworks for any sub
lass of variable-bounded EFSs and runs in polynomial time in p and nmaking at most q1(p; n) PMQs.On the other hand, if a positive 
ounterexample E is returned, then hypothesis His too weak, i.e., H 6j= E. In this 
ase, the algorithm tries to �nd all 
andidate 
lausesused to 
onstru
t a proof-DAG for E by H�. By Lemma 4, there exists some hereditary
lause C su
h that hd(C)� = hd(E) for some substitution �. Therefore, by an exe
utionof the step of line 12, we 
an add at least one 
lause in H�. This step may add somefalse 
lauses to H, but they will be eventually removed by the CBA steps. By Lemma 9,the 
ardinality of the 
andidate set Cand(E; k; t) is bounded by q2(p; n), and the time
omplexity to 
onstru
t Cand(E; k; t) is also at most q2(p; n). Finally, we 
an show thatthe exe
ution from lines 5 to line 10 and at line 12 are iterated at most O(m+mq2(p; n))and m times, respe
tively. Hen
e, the number of EQs and PMQs and is bounded byO(m+mq2(p; n)) = O(mptn2k+2rtkk), and O(mq1(p; n) q2(p; n)) = O(mpt+1n2k+2r(t+1)kk)respe
tively. 23.2 The learnability of a sub
lass of terminating HEFSsIn this subse
tion, we present a polynomial-time learning algorithm LEARN BY GENfor THEFS(�; k; �; r) with EntEQs, EntMQs and DQs as Fig. 3.In the following, we denote by H� the target hypothesis and we assume that a �xedsignature S is given to the learner before a learning session. The algorithm starts withthe most spe
i�
 hypothesis H = ; and sear
hes hypothesis spa
e THEFS(�; k; �; r) fromspe
i�
 to general with respe
t to the subsumption latti
e based on w. For ea
h positive
ounterexample E returned by EntEQ, the algorithm 
onstru
ts another positive example18



Pro
edure: LEARN BY GEN/* A learning algorithm for THEFS(�; k; �; r) with EntEQs, EntMQs and DQs *//* S: a �xed signature */1 H := ;;2 while EntEQ(H) =\no" do begin /* Ent(H) 6= Ent(H�) */3 E := the 
ounterexample returned by the EntEQ;4 D := Saturate(E;H;S); /* Compute the saturant by H; See Fig. 4 */5 D := Rewind(D;S); /* Compute the prime 
ounterexample; See Fig. 4 */6 for ea
h C 2 H do begin7 if EntMQ(F )=\yes" for some F 2 MCS (C;D;S; k) then /* See Fig. 5 */8 H := (H � fCg) [ fFg and goto FOUND;9 end /* for */10 H := H [ fDg;11 FOUND:12 end /* main loop */13 return H;Figure 3: A polynomial-time learning algorithm for THEFS(�; k; �; r) with EntEQs, Ent-MQs and DQs, based on saturation, rewind and minimal 
ommon subsumer.D that is subsumed by some 
lause in H�. Then, the algorithm generalizes hypothesis Hby 
arefully merging the obtained example D with some 
lause in H so that only positive
ounterexamples are provided.3.2.1 The Saturation and the Rewind pro
eduresThe �rst task of the algorithm is, given a positive example E, to 
onstru
ts anotherpositive example D that is subsumed by some 
lause in H�. From the subsumptiontheorem (Lemma 4), we know that there are three 
ases for the 
lause E, (i) E is atautology, (ii) E is dire
tly subsumed by some 
lause in H�, and (iii) there is a non-trivialproof-DAG for E by H�. The �rst 
ase (i) is impossible sin
e E is a 
ounterexample forH. If the se
ond 
ase (ii) holds then the task is already done. Therefore, we will dealwith the third 
ase (iii) by using the saturation and the rewind pro
edures, whi
h invertthe proof steps by whi
h positive examples are derived from 
lauses in H�.For a 
lause C, the saturation is an operation to add to the body of C all atomsderivable from the body of C and H. More formally, for a 
lause C and an EFSH, ClosureS;H(bd(C)) is the set of all atoms B 2 AtomS(A) su
h that H j= 8(B  bd(C)). Then, the saturant of C by H, denoted by Saturant(C;H;S), is the 
lauseA ClosureS;H(bd(C)).Lemma 10 For every �xed k; r � 0, the saturant of any 
lause C by any HEFS H 219



HEFS(�; k; �; r) is unique up to renaming, of polynomial size in jCj, and polynomial-time
omputable in jCj and jHj.Lemma 11 If a 
lause C is a positive 
ounterexample of H w.r.t. H�, then the saturantof C by H is also a positive 
ounterexample of H w.r.t. H�.Proof. By de�nition, C subsumes its saturantD = Saturant(C;H;S). Therefore, H� j= Cimplies H� j= D. Conversely, the saturant D is obtained from C by adding to the bodyof C only the atoms entailed by H. We have H j= 8(bd(C)! bd(D)), and it follows thatH j= D implies H j= C. 2A positive example C 2 Ent(H�) for H� is 
alled prime w.r.t. H� if all proof-DAG forC by H� are trivial, and 
omposite otherwise. If a positive example C is prime then it isensured that C is subsumed by some 
lause in H�. The 
onverse does not hold in general.Lemma 12 If a positive 
ounterexample C is prime then C is subsumed by some 
lausein H�.Proof. By assumption, C is neither a tautology nor a 
lause with some non-trivial proof-DAG by H�. Thus, the result immediately follows from Lemma 4. 2Lemma 13 Let H� and H be EFSs in THEFS(�; k; �; r). Given any saturated positive
ounterexample C for H� w.r.t. H, the algorithm Rewind in Fig. 4 �nds a prime positive
ounterexample for H� w.r.t. H in polynomial time by using O(pn2r) EntMQ and O(pn2r)DQ, where n = jhd(C)j, p = #� and r = arity(�).Proof. Let C = (A  Body) be any saturated positive 
ounterexample for H� w.r.t. H.Let A0 = A;A1; : : : ; Ai; : : : (i � 0) be the sequen
e of the values of the atom A at line 2 ofthe algorithm Rewind in Fig. 4, where Ai is the value at the i-th exe
ution of the for-loop(the i-th stage). For every i � 0, let Ci be the 
lause (Ai  bd(C)). By assumption,C0 = C is a saturated positive 
ounterexample for H� w.r.t. H. Then, we show thefollowing 
laim.(Claim 1) If Ci is a saturated positive 
ounterexample forH� w.r.t. H, and furthermoreC is not prime, then there exists some atom B = Ai+1 2 AtomS(A) � bd(C) su
h thatDQ(Ai; B) =\yes" and EntMQ(B  bd(C)) =\yes".(Proof for the 
laim) If Ci is not prime then there is a non-trivial proof-DAG T for Ciby H�. Su
h a non-trivial proof-DAG T 
ontains some node B that does not appear inCi. By de�nition, B is neither the root nor an atom in bd(Ci). Sin
e Ci is saturated byH, we have B 2 bd(Ci) i� H j= 8(B  bd(Ci)). Therefore, if B 62 bd(Ci) then we have20



Pro
edure Saturate(D;H;S)1 Body := ;; Head := hd(D);2 for ea
h B 2 AtomS(Head) do3 Let � be the Skolem substitution for (B  bd(D)) w.r.t. H;4 if (H [ bd(D�) j= B�) then5 Body := Body [ fBg;6 return (Head Body);Pro
edure Rewind(C;S)1 A := hd(C); Body := bd(C); S := AtomS(A)� Body;2 while (DQ(A;B) =\yes" and EntMQ(B  Body) =\yes" for some B 2 S) do3 A := B;4 return (A Body); /* prime w.r.t. H� */Figure 4: The pro
edure Saturate to 
ompute a saturated positive 
ounterexample andthe pro
edure Rewind to 
ompute a prime positive 
ounterexample.that H 6j= 8(B  bd(Ci)). On the other hand, for any node B in a proof-DAG T for Ciby H�, H� j= 8(B  bd(Ci)) holds. Thus, we have that EntMQ(B  bd(C)) =\yes".By 
onstru
tion, B is a des
endant of the root A. Thus, we also have DQ(Ai; B) =\yes".Furthermore, we know that Ci+1 = (B  bd(Ci)) is a positive 
ounterexample for H�w.r.t. H. (End of the proof for the 
laim)By the above 
laim, we know that if the while-loop at line 2 terminates then the
lause Ci must be prime w.r.t. H�. Also, Ci is a positive 
ounterexample. On the otherhand, the sequen
e of generated atoms form the de
reasing sequen
e A0 = A >H� A1 >H�� � � >H� Ai >H� � � � w.r.t. the dependen
y relation >H� for H�. If H� is an HEFS, all Aiare members of AtomS(A) and if H� is terminating then all A0; A1; � � � must be mutuallydistin
t. Thus, it follows from Lemma 7 that the length of the de
reasing sequen
e isbounded above by jAtomS(A)j = O(pn2r), where n = jAj. Hen
e, the time and the query
omplexities immediately follow. 2From Lemma 11, Lemma 12 and Lemma 13, we know that the pro
edures Saturateand Rewind �nds a prime positive 
ounterexample D from a given positive 
ounterexapleE at line 3 to line 5 of the algorithm LEARN BY GEN in Fig. 3.3.2.2 Maximal 
ommon subsumersOn
e a prime positive 
ounterexampleD is found, the remaining task in LEARN BY GENis to generalize the 
urrent hypothesis H by merging D with H. This is possibly done bytaking the least upper bound of D and some 
lause C 2 H w.r.t. the subsumption relation21



Pro
edure MCS (D1; D2;S; k)1 S := f (A; �1; �2) jA 2 AtomS ; o(A) � k; A�1 = hd(D1) and A�1 = hd(D2) g;2 CS := ;;3 for ea
h (A; �1; �2) 2 S do4 Body := (B 2 AtomS(A) ����� DQ(A;B) returns \yes,"B�1 2 bd(D1) and B�2 2 bd(D2) );5 CS := CS [ f(A Body)g;6 return CS ;Figure 5: The pro
edure to 
ompute minimal 
ommon subsumer.w [10, 15, 19, 31℄. Unfortunately, no unique upper bound w.r.t. w exists for patterns orhereditary 
lauses. Hen
e, we introdu
e the maximal 
ommon subsumers.De�nition 17 Let S be a signature, C a sub
lass of ClauseS , and Di a 
lause over S(i = 1; 2). A 
ommon subsumer of D1 and D2 within C is a 
lause C 2 C su
h thatC w D1 and C w D2. A 
ommon subsumer C of D1 and D2 within C is maximal if thereis no 
ommon subsumer D of D1 and D2 in C su
h that bd(C) � bd(D).Let S be a signature (�;�). Then, we denote by MCS(D1; D2;S; k) the set of allmaximal 
ommon subsumers of D1 and D2 in hereditary 
lauses over S of whi
h variable-o

urren
e is at most k.Lemma 14 Let S be a signature (�;�), Di a 
lause over S (i = 1; 2) and k � 0 aninteger. Then, the set MCS(D1; D2;S; k) is of 
ardinality q3(n) = n4kkk, of polynomialsize, and polynomial-time 
omputable in p = #� and n = jD1j+ jD2j.Proof. Consider the pro
edure as Fig. 5 that 
omputes the set MCS(D1; D2;S; k) usingDQ. It is not hard to see that this pro
edure works 
orre
tly. Furthermore, we 
an showthat #S � n4kkk and #Body � pn2r by Lemma 7 and Lemma 8. 23.2.3 The 
orre
tness and the time 
omplexityNow, we prove the 
orre
tness of the learning algorithm LEARN BY GEN in Fig. 3.In the following, let H0; H1; : : : ; Hn; : : : and E0; E1; : : : ; En; : : : (n � 0) be the sequen
eof hypotheses and 
ounterexamples, respe
tively, where H0 is the initial hypothesis ;,and at ea
h stage i � 1, LEARN BY GEN makes the entailment equivalen
e queryEntEQ(Hi�1), re
eives a 
ounterexample Ei to the query, and produ
es a new hypothesisHi from Ei and Hi�1. A 
lause is missing if it is subsumed by some 
lause in H� but notentailed by the present hypothesis H. 22



Lemma 15 Suppose that a positive example C subsumes another positive example D,i.e., C w D. If D is prime w.r.t. H�, then so is C.Proof. Sin
e C w D, there exists a substitution � su
h that C� � D. If C is 
ompositew.r.t.H�, then we 
an transform a proof-DAG TC forH� j= C to a proof-DAG forH� j= D,by applying � to all atoms in TC . Sin
e D is 
omposite, this is a 
ontradi
tion. 2Lemma 16 For every n � 0, H� w H0 and En is a positive 
ounterexample. Further-more, Hn is a 
onservative re�nement of H�.Proof. We show by indu
tion on n � 0 that H� w Hn and that Hn 
onsists of just prime
lauses w.r.t H�. If n = 0, then H0 = ; and the 
laim trivially holds. Next, supposen > 0. By indu
tion hypothesis, H� w Hn�1 and thus the next 
ounterexample E = Enat line 4 is positive. Let D be the 
lause obtained after exe
uting lines 4 to line 8.Combining Lemma 11, Lemma 10 and Lemma 13, we 
an show that D is still saturatedand >-minimal w.r.t. H� by H and D 2 Ent(H�)�Ent(Hn�1). By Lemma 13 D is prime.Thus, by Lemma 12, D is subsumed by some missing 
lause in H�. Suppose �rst thatthere exists some C 2 Hn�1 and some F 2 MCS(C;D;S; k) su
h that EntMQ(F ) returns\yes." Then, Hn = (Hn�1 � fCg) [ fFg. By indu
tion hypothesis, C as well as D isprime. By Lemma 15, F is also prime, so it follows from Lemma 12 that F is subsumedby some 
lause in H�. Sin
e H� w Hn�1, this implies that H� w Hn. Next suppose thatthere is no su
h C 2 Hn�1, and then Hn = Hn�1 [fDg. Sin
e D is prime, it follows fromLemma 12 that H� w Hn. A new 
lause F is added to Hn at line 12 only if there exists nomaximal 
ommon subsumer of D and C subsumed by H� for all 
lauses C 2 Hn. Hen
e,the re�nement Hn of H� is always 
onservative. 2Corollary 6 H� = � � � = Hn = � � � = H1 = H0 (n � 0).Lemma 17 For HEFS(�; k; �; r), there exists no in
reasing sequen
e � � � = C1 = C0.Furthermore, its length is always bounded by O(pn2r+1), where p = #� and n = jhd(C0)j.Proof. By using the dis
ussion in [9℄, we 
an show that the length of the sequen
e � � � wA1 = A0 of atoms is bounded by jA0j = O(n) independent from k. For a given head A,the maximum size of the body is bounded by #AtomS(A) = O(pn2r). Hen
e, we havethe upper bound of the length of the sequen
e as O(pn2r+1). 2Theorem 7 Let S = (�;�) be a signature. For every k; r � 0, the 
lass THEFS(>; �; k; �; r) is polynomial-time exa
t learnable with O(pmn2r+1) EntEQ, O(p2m2n4k+4r+1kk)EntMQ, and O(p2mn4k+4r+1kk) DQ, where m is the 
ardinality of a target THEFS, p =#� and n is the size of the longest 
ounterexample re
eived so far.23



Proof. Sin
e the algorithm LEARN BY GEN terminates only if the EQ returns \yes," itis suÆ
ient to show the termination in polynomial time. By Corollary 6, the sequen
e ofhypotheses is of the form H� = � � � = Hn = � � � = H1 = H0 (n � 0) (1). By Lemma 16,ea
h Hn is a 
onservative re�nement of H�, so #Hn � #H� = m.Fix an enumeration H� = (C�1 ; : : : ; C�m). For every n � 0, we 
an order Hn as them-tuple (Cn1 ; : : : ; Cnm) 2 ClausemS su
h that, for ea
h i, Cni is the unique member of Hnsatisfying C�i w Cni if it exists and Cni = ? otherwise, where ? is a spe
ial symbol denotingthat C w ? for every C 2 ClauseS .It follows from Lemma 17 that, for every 1 � i � m, the length of the longestsubsequen
e su
h that � � � w C2i = C1i is bounded by O(pn2r+1). Thus, both the lengthsof the sequen
e (1) and the number of EntEQs are bounded by q4(p;m; n) = O(pmn2r+1).By Lemma 10, Lemma 13 and Lemma 14, the number of EntMQs is bounded by q5 =O(pmn4k+2rkk) and the running time in ea
h iteration of the while-loop is bounded by apolynomial in p, m and n. Hen
e, the total number of EntMQs is q4(p;m; n)q5(p;m; n) =O(p2m2n4k+4r+1kk) and the running time is polynomial in p, m and n. 2Sin
e any 
ounterexample in the language semanti
s (AtomS ; LS(�; p0)) is also a 
oun-terexample in the entailment semanti
s (ClauseS;EntS(�)), we 
an repla
e ea
h EntEQin Theorem 7 with EQ.Corollary 8 For every k; r � 0, the 
lass THEFS(�; k; �; r) is polynomial-time exa
tlearnable with EQ, EntMQ, and DQ.Suppose that we have an eÆ
iently de
idable, well-founded transitive relation > overAtomS . In this 
ase, we 
an eliminate DQ to learn a sub
lass THEFS(>; �; k; �; r) 
on-sisting of the programs uniformly bounded by >. The 
lass of redu
ing programs [42℄ isan example of su
h uniformly terminating EFS.Corollary 9 Let > be any well-founded transitive relation over AtomS that is polynomialtime de
idable. For every k; r � 0, the 
lass THEFS(>; �; k; �; r) is polynomial-time exa
tlearnable with EQ and EntMQ.3.2.4 A lowerbound resultBy Theorem 5 and Theorem 7, note that the number O(pmn2r+1) of EQ made byLEARN BY GEN is signi�
antly smaller than O(ptmn2k+2rtkk) EQ by LEARN BY CBAfor large k; t � 1. In this subse
tion, we analyze the query 
omplexity of the 
lassTHEFS(>;m; k; �; r), and obtain the lower bound result, whi
h indi
ates that the query
omplexity is almost optimal in terms of m and n for EQ.24



Theorem 10 Let S be any signature with at least two letters. For every integers k; r � 0su
h that k � 3r, any algorithm that exa
tly identi�es all hypotheses in THEFS(m; k; �; r)with EntEQ and EntMQ must make 
(mnr=2) queries in the worst 
ase, where m is the
ardinality of a target THEFS and n is the size of the longest 
ounterexample re
eived sofar.Proof. We say that a 
on
ept 
lass C shatters a set U � �� if fU \ 
 j 
 2 C g = 2U holds.The VC-dimension of C, denoted by V C(C), is te 
ardinality of the largest set U � ��that is shattered by C. From arguments in Maass and Tur�an [22℄, it is suÆ
ient to showthat V C(THEFS(>;m; k; �; r)) = 
(mnr=2).Let p; q; r; len; bit 2 � be predi
ate symbols of arity r + 1; 2r; r; 2; 1, respe
tively. Foran integer n � 0, [n℄ denotes the set f1; : : : ; ng. Then, we en
ode an integer i 2 [n℄ bythe bit ve
tor  (i) = 0i�110n�i 2 f0; 1gn and an r-ve
tor (i1; : : : ; ir) 2 [n℄r by an atomp( (i1); : : : ;  (ir); 0n) 2 BaseS : Let Sr;n be the set f p( (i1); : : : ;  (ir); 0n) j (i1; : : : ; ir) 2[n℄r g of ground atoms of length (r + 1)n 
orresponding to all nk r-ve
tors in [n℄k. Notethat HT is terminating and hereditary.p(x1; : : : ; xr; 0n) V(i1;:::;ir)2T h q(x1; : : : ; xr; 0i1 ; : : : ; 0ir) i :q(x1y1z1; : : : ; xryrzr; v1; : : : ; vr) V1�j�r h len(xjyj; vj) ^ bit(yj) i ^ r(y1; : : : ; yr):r(x1; : : : ; xi�1; 0; xi+1; : : : ; xr) , for all 1 � i � r.len(�x; 0y) len(x; y),len(�; 0) ,bit(�) , for all � 2 f0; 1g.Let w 2 f0; 1gr be a bit ve
tor of length r. Then, it holds that, for every u 2 f0; 1g�and i 2 [n℄, HT j= len(u; 0i) i� juj = i. Also, for every i 2 [n℄ and every string w = xyz(x; y; z 2 f0; 1g�), if HT j= len(xy; 0i) ^ bit(y), then y is the i-th bit of w. Furthermore,it holds that, for every b1 � � � br 2 f0; 1gr, HT j= r(b1; : : : ; br) i� b1 � � � br 6= 1r, and HT j=q( (i1); : : : ;  (ir); 0j1; : : : ; 0jr) i� (i1; : : : ; ir) 6= (j1; : : : ; jr). Hen
e, it is not hard to seethat, for every (i1; : : : ; ir) 2 [n℄r, HT j= p( (i1); : : : ;  (ir); 0n) i� (i1; : : : ; ir) 62 T . Sin
eea
h HT belongs to HEFS(r+8; 4r; �; 2r), the 
lass HEFS(r+8; 4r; �; 2r) shatters the setSr;n of the 
ardinality nr.Similarly, we 
an show that the 
lass HEFS(m+r+7; 4r; �; 2r) shatters the dire
t sumSm;r;n = S1r;n[� � �[Smr;n of 
ardinalitymnr obtained by making them 
opies of the predi
ateP . Hen
e, it immediately follows that V C(HEFS(m; k; �; r)) = 
((m� r� 7)n̂r=2=2rr) =
(mn̂r=2) in m and n when k � 4r, where the maximum length of the examples isn̂ = (r + 1)n. 225



4 Hardness Results for Learning HEFSsIn this se
tion, we present several representation-independent hardness results of predi
t-ing the sub
lasses of HEFSs, whi
h 
laim the ne
essity of both the types of queries andthe bounds on the parameters are ne
essary for their eÆ
ient learning mentioned in theprevious se
tion.We �x f , g and h to an instan
e mapping, a 
on
ept mapping, and a membership querymapping. Also he parameters n and s denote the bounds of examples and representations,respe
tively. For simpli
ity, we assume that the length of examples of Boolean 
on
eptsis always �xed to the upper bound n. Furthermore, a signature is always �xed and asemanti
s is the language semanti
s.4.1 Regular pattern languages revisitedWe denote by RP , [mRP and [RP regular pattern languages, at most m unions of reg-ular pattern languages, and unbounded unions of regular pattern languages, respe
tively(
f. [12, 24, 25, 35, 36, 38℄). Sin
e ea
h regular pattern language L(�) is de�nable by theHEFS fp(�) g, we 
an easily observe that RP , [mRP and [RP are 
orresponding toHEFS(1; �; 0; 1), HEFS(m; �; 0; 1) and HEFS(�; �; 0; 1), respe
tively. It is known that RPand [mRP are not polynomial-time PAC-learnable unless NP=RP [24, 25℄, where theyare representation-dependent hardness results.Theorem 11 RP is not polynomial-time predi
table, if DNF is not polynomial-timepredi
table.Proof. It is suÆ
ient to show that DNFn � RP for all n � 0. Let d = t1 _ � � � _ tmbe a DNF formula over the set fx1; : : : ; xng of Boolean variables. For ea
h ve
tor e =e1 � � � en 2 f0; 1gn, let ~e = 1e11e21 � � � 1en1 and let � = (01)3(2n+1). Then, 
onstru
t f andg as follows:f(n; s; e) = e0 = (A~eA�)m�1 � A~eA;g(n; s; d) = P = AP1AP2A � � �APmA; where A is a new symbol.Here, Pj = �pj1 � pj2 � � � � � pjn�, where all � are mutually distin
t variables in X and pji = 1if tj 
ontains xi, pji = 0 if tj 
ontains xi, and xji otherwise.We show that, if e satis�es d, then e0 2 L(P ). The following statements hold: (a) esatis�es d i� there exists an index j (1 � j � m) su
h that ~e 2 L(Pj), be
ause j~ej = jPjj =2n+1. (b) For ea
h Pj (1 � j � m), � is of the form �1�2�3 su
h that j�1j; j�2j; j�3j > 0and �2 2 L(Pj). (
) For ea
h Pj (1 � j � m), it holds that both ~eA�; �A~e 2 L(Pj)26



be
ause of (b). From the (a) and (
), it holds that e0 2 AL(P1)A � � �AL(Pi)A � � �AL(Pm)A.Hen
e, e0 2 L(P ).Conversely, suppose that e does not satisfy d. From the (a), it holds that (d) ~e 62 L(Pj)for every j (1 � j � m). Furthermore, (e) ~e 62 L(P 0) for any substring P 0 of P 
ontainingan A, be
ause e 
ontains no A. From the 
onditions (d) and (e), if e0 2 L(P ), then at leastone of the two A's for ea
h o

urren
e A~eA in e0 must be substituted to a variable of a Pjin P . Sin
e the number of A's in e0 is 2m, the remained A's in e0 to mat
h with all A in Pare at most m. However, P 
ontains only m + 1 A's, so it is impossible that e0 2 L(P ).Hen
e, e0 62 L(P ) and we 
an 
on
lude that DNFn �RP . 2Theorem 12 [RP is not polynomial-time predi
table with membership queries, if DNFis not polynomial-time predi
table with membership queries.Proof. It is suÆ
ient to show that DNFn �pwm [RP for all n � 0. For a DNF formulad = t1 _ � � � _ tm, let �i (1 � i � m) and � be regular patterns pj1 � � � pjn and x1 � � �xnxn+1,respe
tively. Here, pji (1 � i � n; 1 � j � m) is de�ned as similar as the proof ofTheorem 11. Then, 
onstru
t f , g and h as follows:f(n; s; e) = e;g(n; s; d) = f�1; : : : ; �m; �g;h(n; s; e0) = 8><>: e0 if je0j = n;? if je0j < n;> if je0j > n:For ea
h e0 2 f0; 1g�, we 
an 
he
k the properties of h in De�nition 16 as follows.Sin
e L(�) = fw 2 f0; 1g� j jwj � n + 1g, if h(n; s; e0) = >, then e0 2 L(g(n; s; d))(=L(�1)[� � �[L(�m)[L(�)). On the other hand, sin
e j�jj = n (1 � j � m) and j�j = n+1,L(g(n; s; d)) 
ontains no strings of length< n. So, if h(n; s; e0) = ?, then e0 62 L(g(n; s; d)).If h(n; s; e0) = e0, then e0 62 L(�) be
ause je0j = n. Thus, e0 2 L(�1) [ � � � [ L(�m) andthere exists an index i (1 � i � m) su
h that e0 2 L(�i) i� e0 is obtained by repla
ingthe variables in �i with 0 or 1, whi
h is 
orresponding to a truth assignment satisfying ti.Hen
e, e0 2 L(g(n; s; d)) i� e0 satis�es d.Furthermore, for ea
h e 2 f0; 1gn, e satis�es d i� f(n; s; e) 2 L(g(n; s; d)). Hen
e, itholds that DNFn �pwm [RP . 2Sin
e ea
h regular pattern language is regular [35℄, we 
an 
onstru
t a DFA M� su
hthat L(M�) = L(�) for ea
h regular pattern � as follows: Suppose that � is a regularpattern of the form � = x0�1x1�2 � � �xn�1�nxn,27



where xi 2 X and �i = ai1ai2 � � �aimi 2 �+. Then, the 
orresponding DFA M� of � is aDFA (�; Q; Æ; q0; F ) su
h that:1. Q = fq0; p11; : : : ; p1m1 ; q1; p21; : : : ; p2m2 ; q2; � � � ; qn�1; pn1 ; : : : ; pnmn ; qng and F = fqng,2. Æ(qi; a) = pi+11 and Æ(qn; a) = qn for ea
h a 2 � and 0 � i � n� 1,3. Æ(pij; aij) = pij+1 and Æ(pimi; aimi) = qi for ea
h 1 � i � n and 1 � j � mi � 1,4. Æ(pij; a) = pi1 for ea
h a 2 � su
h that a 6= aij.It is obvious that jM�j is bounded by a polynomial in j�j.By using the 
orresponding DFAs, we 
an easily shown that RP �pwm DFA by 
on-stru
ting the following f , g and h for ea
h regular pattern �:f(n; s; e) = e;g(n; s; �) = M�;h(n; s; e0) = e0:Then, RP is polynomial-time predi
table with membership queries, whi
h is implied bythe result of Matsumoto and Shinohara [23℄ that RP is polynomial-time learnable withequivalen
e and membership queries.Theorem 13 For ea
h m � 0, [mRP is polynomial-time predi
table with membershipqueries.Proof. Sin
e DFA is polynomial-time predi
table with membership queries [2℄, it is suf-�
ient to show that [mRP �pwm DFA. Let �1; : : : ; �m be m regular patterns. Alsolet M�i = (Qi;�; Æi; qi0; Fi) be the 
orresponding DFA of �i. First, 
onstru
t a DFAM�1;:::;�m = (Q1�� � ��Qm;�; Æ; (q10 ; : : : ; qm0 ); F1�� � ��Fm) su
h that Æ((q1; : : : ; qm); a) =(p1; : : : ; pm) i� Æi(qi; a) = pi for ea
h a 2 � and i (1 � i � m). Then, 
onstru
t f , g andh as follows: f(n; s; e) = e;g(n; s; f�1; : : : ; �mg) = M�1;:::;�m;h(n; s; e0) = e0:The size of g(n; s; f�1; : : : ; �mg) is O(sm) and m is a 
onstant. It is obvious thatL(�1) [ � � � [ L(�m) = L(M�1;:::;�m), whi
h implies the result. 2
28



4.2 Other hardness resultsBy Theorem 12 in Se
tion 4.1, we 
an 
on
lude that HEFS(�; �; t; r) (t � 0, r � 1) is notpolynomial-time predi
table with membership queries, if neither are DNF formulas. Inthis subse
tion, we dis
uss the sub
lasses of HEFS�(�; k; t; r), whi
h are restri
ted thatall fa
ts 
ontain no variable as in HEFSs, or in even simple EFSs (r = 1).From the learnability of k-bounded ESEFSs by Sakakibara [33℄ and HEFS(�; k; t; r) byTheorem 5, it arises a natural question whether we 
an repla
e the predi
ate membershipqueries with the ordinal membership queries. The next theorem 
laims that it is impossiblepreserving eÆ
ient learnability.Theorem 14 For every k; t; r � 1, HEFS�(�; k; t; r) is not polynomial-time predi
tablewith membership queries under the 
ryptographi
 assumptions.Proof. It is suÆ
ient to show that [DFA �pwm HEFS�(�; 1; 1; 1) by Theorem 3 and 4.Let M1; : : : ;Mr be DFAs over the same alphabet �. Suppose that 
 62 �. For ea
hMi = (Qi;�; Æi; qi0; Fi) (1 � i � r), 
onstru
t H1(n; s;Mi) 2 HEFS�(�; 1; 1; 1) as follows:1. q(ax) r(x) 2 H1(n; s;Mi) if Æi(q; a) = r for ea
h q; r 2 Qi and a 2 �;2. q(
) 2 H1(n; s;Mi) for ea
h �nal state q 2 Fi.3. p(x) qi0(x) 2 H1(n; s;Mi) for ea
h initial state qi0 2 Qi, where p 62 Q1 [ � � � [Qr.Then, 
onstru
t f , g and h as follows:f(n; s; w) = w
;g(n; s; fM1; : : : ;Mrg) = H1(n; s;M1) [ � � � [H1(n; s;Mr);h(n; s; w0) = ( w if w0 = w
;? otherwise:The size of g(n; s; fM1; : : : ;Mrg) is bounded by a polynomial in the size of all Mi's(1 � i � r). Furthermore, it holds that (1) w 2 L(M1) [ � � � [ L(Mr) i� f(n; s; w) 2L(g(n; s; d); p) for ea
h w 2 �[n℄, (2) if h(n; s; w0) = ?, then w0 62 L(g(n; s; d); p), and (3)if h(n; s; w0) = w, then it holds that w0 2 L(g(n; s; d); p) i� w 2 L(M1) [ � � � [ L(Mr).Hen
e, it holds that [DFA�pwm HEFS�(�; 1; 1; 1). 2Re
all that every k-bounded ESEFSs are 
ontained in HEFS�(�; k; k; 1). The followingtheorem 
laims that, if neither the variable-o

urren
e nor the number of atoms in thebody are bounded, then HEFSs are not polynomial-time predi
table even with predi
atemembership queries. 29



Theorem 15 For every r � 1, HEFS�(�; �; �; r) is not polynomial-time predi
table withpredi
ate membership queries, if DNF is not polynomial-time predi
table with membershipqueries.Proof. First, we show thatDNFn�pwmHEFS�(�; �; �; 1) for all n � 0. Let d = t1_� � �_tmbe a DNF formula. Then, 
onstru
t the following EFS H2(n; s; d):H2(n; s; d) = 8>>>>>><>>>>>>: q(0) q(1) p(p11 � � � p1n) q(p11); : : : ; q(p1n)� � �p(pm1 : : : pmn ) q(p1m); : : : ; q(pmn )
9>>>>>>=>>>>>>;,where pji (1 � i � n; 1 � j � m) is de�ned as similar as the proof of Theorem 11.Furthermore, H 02(n; s; d) be an HEFS obtained by deleting all atoms q(0) and q(1) fromthe body of ea
h 
lause in H2(n; s; d). Then, 
onstru
t f , g and h as follows:f(n; s; e) = e;g(n; s; d) = H 02(n; s; d);h(n; s; e0) = e0:Sin
e L(g(n; s; d); p) � f0; 1gn, it is easy to see that (1) e satis�es d i� f(n; s; e) 2L(g(n; s; d); p) for ea
h e 2 f0; 1gn, and (2) e0 2 L(g(n; s; d); p) i� h(n; s; e0) satis�es d forea
h e0 2 f0; 1gn. Hen
e, it holds that DNFn �pwm HEFS�(�; �; �; 1).Finally, we 
onsider whether the same result holds even if the membership queriesare repla
ed with the predi
ate membership queries. Although we 
an extend pwm-redu
ibility to predi
tion-preserving redu
ibility with predi
ate membership queries a
-
ording to De�nition 16, we only dis
uss the 
ase HEFS�(�; �; �; 1). Con
erned with theabove pwm-redu
tion DNFn �pwm HEFS�(�; �; �; 1), the di�eren
e between MQs andPMQs is just to ask whether H 02(n; s; d) j= q(w)  for w 2 f0; 1g�. Note that the pred-i
ate symbol q in H 02(n; s; d) denotes the value substituted to a Boolean variable xi in d,so 
an generate just 0 and 1. Then, we 
an extend a membership query mapping h toa predi
ate membership query mapping h0 as h0(n; s; p(w)) = h(w); h0(n; s; q(w)) = > ifjwj = 1; h0(n; s; q(w)) = ? if jwj > 1. Hen
e, the statement holds. 25 Con
lusionIn this paper, we investigated the eÆ
ient learnability of a hierar
hy HEFS(m; k; t; r) ofthe HEFSs with the equivalen
e and other queries, where m is the maximum number of
lauses, k is the maximum variable-o

urren
es in the head, t is the maximum number ofatoms in the body, and r is the maximum arity of predi
ate symbols.30



We showed three positive results for the learnability of HEFS(m; k; t; r). First, the
lass HEFS(�; k; t; r) is polynomial-time learnable with equivalen
e and predi
ate mem-bership queries. This is an extension of Sakakibara's result [33℄ for the 
lass ESEFSs.Se
ond, the more general 
lass is e�e
tively learnable if more powerful queries are allowedand the termination relation over the predi
ate symbols is assumed, that is the 
lassTHEFS(>; �; k; �; r) of terminating HEFSs with additional information on the termina-tion is learnable in polynomial time with equivalen
e and entailment membership queries.Third, we showed that the number of queries used in the presented learning algorithm forTHEFS(>; �; k; �; r) is nearly optimal.The negative results for the learnability of sub
lasses of EFSs were proved by thepredi
tion-preserving redu
tion (with membership query). The 
lass HEFS(�; k; t; r) wasshown to be learnable using the above queries but the predi
ate membership query 
annot be repla
ed by the membership query under the 
ryptographi
 assumptions.Moreover, the 
lassRP is not polynomial-time predi
table if the 
lass of DNF formulasis not polynomial-time predi
table, and the 
lass [RP is not polynomial-time predi
tablewith membership queries, if the 
lass of DNF formulas is not polynomial-time predi
tablewith membership queries. The 
lass [mRP of bounded union of regular pattern languagesis polynomial-time predi
table with membership queries. It is a strong eviden
e for theeÆ
ient learnability of the 
lass.Fig. 1 summarizes the results obtained in this paper. It is a future problem to study thelearnability of the 
lass THEFS(>; �; k; �; r) with equivalen
e and predi
ate or entailmentmembership queries but without dependen
y queries. Khardon [19℄ has re
ently shownthat fun
tion-free k-variable Horn senten
es of arity r are polynomial-time learnable invarious a
tive learning models without using termination information. Thus, it would beinteresting to apply his method to the 
lasses of HEFSs.A
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