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Abstract

The elementary formal system (EFS) is a kind of logic programs which directly
manipulates strings, and the learnability of the subclass called hereditary EFSs
(HEFSs) has been investigated in the frameworks of the PAC-learning, query-
learning, and inductive inference models. The hierarchy of HEFS is expressed by
HEFS(m, k., t,r), where m, k, t and r denote the number of clauses, occurrences of
variables in the head, atoms in the body, and arity of predicate symbols. The present
paper deals with the learnability of HEFS in the query learning model using equiv-
alence queries and additional queries such as membership, predicate membership,
entailment membership, and dependency queries. We show that the HEFS(x, k, ¢, r)
is polynomial-time learnable with the equivalence and predicate membership queries
and the HEFS(x, k, *, ) with termination property is polynomial-time learnable with
the equivalence, entailment membership, and dependency queries for the unbounded
parameter *. A lowerbound on the number of queries is presented. We also show
that the HEFS(x, k,¢,7) is hard to learn with the equivalence and membership
queries under the cryptographic assumptions. Furthermore, the learnability of the
class of unions of regular pattern languages, which is a subclass of HEFSs, is in-
vestigated. The bounded unions of regular pattern languages are polynomial-time
predictable with membership query. However, all the finite unions of regular pattern
languages are not polynomial-time predictable with membership query if neither
are the DNF formulas.

Keywords: elementary formal systems, query learning, prediction-preserving
reduction, pattern languages, polynomial-time learning.

*Corresponding author



1 Introduction

The elementary formal system (EFS, for short) was originally invented by Smullyan [39]
in early 1960s to develop his recursive function theory. Professor Arikawa is a pioneer
to employ such an EFS for studying formal language theory [7] in 1970. After about
20 years later, he and his partners [8, 9] characterized the EFSs as logic programs over
strings and introduced a new hierarchy of various language classes, which includes the
four classes of Chomsky hierarchy, the class of pattern languages, and many others. Fur-
thermore, he enhanced EFSs as a unifying framework for language learning, by designing
inductive inference algorithms (MIEFS) for these EFS classes based on Shapiro’s Model
Inference [34].

Stimulated by the series of Arikawa’s works, many researchers investigated the EFSs
on the various areas of algorithmic/computational learning theory. Shinohara [37] showed
that the length-bounded EFSs belonging to the above hierarchy is inferable in the limit
from positive examples alone. This result is a valuable extension of the previous infer-
ability of bounded unions of pattern languages [1, 36, 37, 43]. Mukouchi and Arikawa [28]
showed that the class of length-bounded EFSs is also refutable. This notion is a new
criterion introduced by them that a learner can refute each hypothesis space if it turns
out to be insufficient for identification. Many other researchers such as [20, 21, 26, 27] en-
joyed various topological properties of EFSs on inductive inference. Jain and Sharma [18]
analyzed the mind change complexity and the intrinsic complexity of EFSs.

In contrast to the learnability of EFSs on inductive inference, the polynomial-time
learnability is another interesting theme on learning EFSs. For this purpose, Miyano
et al. [24, 25] introduced the subclass hereditary EFS, denoted by HEFS. This class
includes the class of pattern languages and is enough to express the context-free languages.
Furthermore, this class exactly defines the class PTIME [17]. Miyano et al. consider the
learnability of the hierarchy HEFS(m, k,¢,r) with the parameters such that m, k, ¢ and
r are the maximum number of clauses, the maximum number of occurrences of variables
in the head, the maximum number of atoms in the body, and the maximum arity of
predicate symbols, respectively. They showed that the HEFS(m, k, ¢, r) is PAC-learnable
for every fixed m, k,t,r > 0.

Other result was shown in the query learning model introduced by Angluin [4]. In
this learning model, an algorithm can ask the equivalence, membership, and other several
queries. As an interesting relationship between the PAC and query models, it is known
that if a class is learnable in polynomial time with equivalence queries (and membership
queries, resp.) and the membership decision is polynomial time decidable, then it is
also PAC-learnable (with membership queries, resp.) [4]. Sakakibara [33] studied the



query learnability of the subclass of HEFSs called extended simple EFS (ESEFS, for
short). He showed that the k-bounded ESEFS is learnable in polynomial time using the
equivalence and predicate membership queries. The k-bounded ESEFS is a proper subclass
of HEFS™ (x,k, k,1), where HEFS™ (m, k,t,r) denotes the HEFS(m, k,t,r) of which the
facts are always ground.

In the present paper, we investigate the learnability of the HEFSs w.r.t. the query
learning model. Two classes are shown to be learnable in polynomial time using the
queries mentioned below with presenting the learning algorithms. Moreover, other classes
are shown to be hard to learn in the sense of representation-independent hardness [5, 32].

First, we extend the Sakakibara’s result [33] to the whole class of HEFS(x, k,t,7). The
learning algorithm with a top-down search strategy is based on the controlled generation
of candidate clauses and the contradiction backtracing algorithm of Shapiro [34]. This
algorithm can be regarded as a counterpart of the MIEFS of Arikawa, Shinohara, and
Yamamoto [9] along a polynomial-time learning model. We show that this algorithm
learns all hypotheses H, of HEFS(x, k,t,r) in polynomial time using O(p'mn2k+2rtgk)
equivalence queries and O(pt“mn%”’"(t“)kk) predicate membership queries for every
k,t,r > 0, where p is the number of predicate symbols, m is the cardinality of H,, and n
is the size of the longest counterexample seen so far. Unfortunately, the running time is
exponential in ¢.

To overcome this difficulty, we consider a subclass of HEFS called terminating HEF'S
(THEFS, for short). Arikawa et al. [9] and Yamamoto [42] showed that the standard SLD-
resolution procedure can be used as the decision procedure for EFS languages. However,
this procedure may not terminate in case of goals. Thus, we consider the dependency
relation of an EFS H that is a smallest transitive relation over atoms >p such that
A >y B if A and B appear, respectively, in the head and the body of an instance of a
clause in H. An HEFS H is called terminating if there exists a well-founded relation >,
i.e., there exists no infinite decreasing chain, on atoms that bounds > . It is obvious that,
for a terminating HEFS H, the SLD-resolution procedure for H = C always terminates for
every clause C. Hence, we define the hierarchy THEFS(m, k, ¢, r) of terminating HEFSs.

We also allow a learner to use two types of additional queries for the target EFS H,.
The first type of queries is the entailment membership query in the model of the learning
from entailment [15, 31]. This model is considered to be reasonable for learning the first-
order logic or logic programs [10, 11, 16, 19, 31]. The goal of a learning algorithm is to
find a hypothesis equivalent to the target hypothesis w.r.t. the entailment semantics using
the queries. The entailment semantics is defined in the next section together with other

semantics. The second type of queries is the dependency query to determine whether a



pair of atoms are in a dependency relation.

We design a learning algorithm for THEFS(x, k, %, r) with equivalence, entailment
membership, and dependency queries. This algorithm adopts the bottom-up search strat-
egy by combining three generalization techniques, namely, saturation, rewind and mazimal
common subsumer [10, 11, 15, 16, 19, 31]. We show that for every k,r > 0, this algorithm
exactly learns the class THEFS(x, k, *,7) in polynomial time using O(pmn® ') equiva-
lence queries, O(p?m?n** 17 +1kk) entailment membership queries, and O (p?m?n**+ir+1Ek)
dependency queries, where m is the number of clauses and n is the length of the longest

2r+])

counterexample seen so far. The number O(pmn of equivalence queries for this algo-

2k2rt kY for the previous top-down

rithm is significantly smaller than the number O(p'mn
algorithm for HEFS(x, k, ¢, 7). Also we show that, by analyzing the VC-dimension, lower
bound of the queries to learn THEFS(x, k, *, 1) is Q(mn’/?) for some ordering >, which
implies that the number of equivalence queries of this algorithm is nearly optimal.

Furthermore, we present the series of representation-independent hardness results of
predicting HEFSs by adopting the prediction-preserving reduction without or with mem-
bership queries [5, 32]. The property is known that if a class is not polynomial-time pre-
dictable (with membership queries), then it is not polynomial-time learnable with equiva-
lence queries (and membership queries) [5, 32]. We denote by RP, U,,RP and URP the
class of regular pattern languages, at most m unions of regular pattern languages, and all
finite union of regular pattern languages, respectively [12, 24, 25, 35, 36, 38]. Shinohara
and Arimura [38] showed that RP and U,,RP are inferable from positive data although
URP is not. On this line of studies, we show the hardness of the query learnability of
these classes. The RP is not polynomial-time predictable if neither are DNF formulas
and the URP is not polynomial-time predictable with membership queries if neither are
DNF formulas. The U,,RP is polynomial-time predictable with membership queries but
it is open whether it is learnable with the equivalence and membership queries.

The above results for pattern languages can be regarded as an improvement for the
non-PAC-learnability of the RP and URP, which is representation-dependent [25]. Fur-
thermore, the third result is an extension of the learnability of RP with membership
queries [23]. The RP, U,RP and URP are corresponding to the HEFS(1,x,0,1),
HEFS(m, %,0,1) and HEFS(x, *,0,1), respectively. Hence, we can conclude that the
bound on k is necessary to efficiently learn HEFS(x, k, ¢, 7) with equivalence and member-
ship queries. Other hardness results indicate that the HEFS™ (x, k, ¢, r) is not polynomial-
time predictable with membership queries under the cryptographic assumptions, even if
k=t=r=1.

Finally, concerning with the learnability of k-bounded ESEFSs which is a subclass of



HEFS™ (*, k, k, 1), with the equivalence and predicate membership queries [33], we show
that the bound £ is essential for this efficiency, i.e., the HEFS™ (x, %, %, ) is not polynomial-
time predictable with the membership or predicate membership queries if neither are the

DNF formulas, even if » = 1. All results in this paper are summarized in Fig. 1.

2 Preliminaries

In this section, we give the definitions and theorems on elementary formal systems, learn-

ing models, and prediction-preserving reductions necessary for the later discussion.

2.1 Elementary formal systems and their languages

For a set S, #S denotes the cardinality of S. Let ¥ be a finite alphabet of constant
symbols, X be a countable set of variables, and for every r > 0, II, be a finite alphabet
of r-ary predicate symbols. Moreover, let II = U;>oIl;. We assume that ¥, X and II are
mutually disjoint. We call the pair § = (3, I1) a signature.

For each predicate symbol p € TI,., r is called an arity of p. We denote by arity(II) the
maximum arity of the predicate symbols in II. By £*, ©* and £, we denote the sets of
all finite strings, all nonempty finite strings, and all strings of length n or less respectively,
over ..

A pattern over S is an element of (3 U X)*. A pattern over S is called reqular if
each variable appears at most once in it. An atom over § is an expression of the form
p(m, ..., m), where r > 0, p € T, and each m; is a pattern over S (1 < i < n). A definite

clause (clause, for short) over S is an expression of the form:
C=Ae Ay, ... A,

where m > 0 and A, Ay, ..., A, are atoms over S. The atom A and the set {Aq,..., A}
of atoms are called the head and the body of C and denoted by hd(C') and bd(C'), respec-
tively. In case that m = 0 (resp., m > 0), a clause is called a fact (resp., rule). A clause

or an atom over S is ground if it contains no variable.

Definition 1 Let § = (X,1I) be a signature. An elementary formal system (EFS, for

short) over § is a finite set of clauses over S.

For a signature S = (3, II), Atoms and Clauses denote the sets of all atoms and all
clauses over S, respectively. In particular, the set of all ground atoms over § is called the

Herbrand base over S and denoted by Baseg.



Figure 1: The summary of the learnability of a hierarchy HEFS(m, k,t,7) of HEFSs
presented in this paper. In the all tables, the first row indicates the types of queries
used. The types of queries assumed in this paper are the equivalence (EQ), membership
(MQ), predicate membership (PMQ), entailment membership (EntMQ), and dependency
(DQ) queries. Each “poly” means that the class is polynomial-time exact learnable with
EQs and the indicated queries. Each “hard” (resp., “hard~”) means that some hard class
(resp., the class of DNF formulas) is prediction-preserving reducible with the indicated
queries to the class. The “pred” means that the class is polynomial-time predictable with
the indicated queries. The “PAC” and “not PAC” mean the class is and is not polynomial-
time PAC-learnable, respectively. Finally, each arrow in the tables means that the result
of the cell containing the arrow is directly derived from the neighbor pointed by the arrow.

(a) Learnability of HEFSs

Class EQ EQ+MQ EQ+PMQ
HEFS(m, k,t,r) PAC [24, 25] — —
k-bounded ESEFSs (C HEFS (x,k, k, 1)) — hard (Th14) poly [33]
HEFS(x, k., t,r) — hard (Th14) | poly (Thb)
HEFS™ (x, %, %, 1) — — hard™ (Th15)

(b) Learnability of terminating HEFSs

Class — | EQ+MQ | EQ+PMQ | EQ+EntMQ | EQ+EntMQ+DQ

THEFS(x, k,*,r) | — | hard (Th14) open open poly (Th7)

(c) Learnability of regular pattern languages and their unions

Class EQ EQ+MQ

RP  (=HEFS(1,%,0,1)) | not PAC [24, 25] / hard™ (Thll) poly [23]
UnRP (= HEFS(m,*,0,1)) /1 pred (Th13)
URP (= HEFS(x,%,0,1)) /1 hard™ (Th12)




A substitution is a homomorphism 6 : (X U X)™ — (X U X)* such that (a) = a for
each symbol a € 3. For a substitution # and a pattern 7, the w6 denotes the image of
7 by 6. For an atom A = p(my,...,m,) and a clause C = A < Ay, ..., A, we define
AO = p(mb,...,m,0) and CO = Af < A0,..., A,0. Then, we say that Af and C6 are
instances of A and C, respectively. In particular, if A0 or C'f becomes ground, then 6 is
called a ground substitution.

We end this subsection by introducing the notion of subsumption, denoted by - which
plays an important role in Section 3. For atoms A and B over S, we define A subsumes
B, denoted by A O B, if there exists a substitution # such that A = B, that is, B is an
instance of A.

For clauses C' and D over S, we define C' subsumes D, denoted by C' J D, if there
exists a substitution 6 such that hd(C#) = hd(D) and bd(CH) C bd(D). We define C
properly subsumes D, denoted by C 2 D, it C 2 D but D 2 C.

For EFSs H and G over S, we define H subsumes G, denoted by H J G, if for
every D € (G, there exists a clause C' € H such that C' J D. Then we say that H is
a generalization of G or G is a refinement of H. Furthermore, a refinement G of H is

conservative if, for every D € G, there exists at most one clause C' € H such that C' 2 D.

We define H 3G it H 3G but G 4 H.

2.2 Three semantics for EFSs

In this subsection, we first introduce a model thoery for EFSs as follows for uniformly
dealing with three semantics. Let us identify a given signature § = (X,II) with the
first-order signature (X,{-},II), where “” is a string concatenation operator satisfying
the associativity VaVyVz[z - (y - 2) = (2 - y) - z].

An interpretation Z over S is a triple (U, I, ), where U is a set, I is a mapping that
maps p € II, (r > 0), “” and a € ¥ to an r-ary relation over U, a binary associative
function over U and an element of U, respectively, and « is a variable-assignment to U.
Then, the satisfaction relation = is defined in a standard manner (cf., [14, 30]). A model
of an atom A or a clause C over § is an interpretation Z over S such that Z = A and
T |= C, respectively. We assume that any variable in a clause is universally quantified. A
model of an EFS H over § is a model of every clause in H over S.

For an EFS H and a clause C over S, we say that H entails C, denoted by H |= C, if
every model of H is a model of C. For EFSs H and GG over S, we say that H entails G,
denoted by H | G, if every model of H is a model of G.

Originally, the semantics of EFSs is defined by the provability relation - defined [9].
For an EFS H and a clause C' over S, respectively, the relation H = C which means that



C is provable from H is defined inductively as follows:

1. If C € H, then H - C.
2. It H+F C, then H = (8 for a substitution 6.

3. Ile_A%AI;---;Am;Am—FI andHl—Am+1,thenHl—A%Al,...,Am.

The following lemma gives the relationship between F and =.

Lemma 1 (Arikawa et al. [9]) For every atom A and EFS H, H = A iff H+ A <.

The language semantics is a standard semantics of EFSs (cf. [8, 9, 24, 25]). Let H
be an EFS over § = (X,11) and py € II be a distinguished predicate symbol. Then, the
language defined by H and py over § is the set

Ls(H,po) = {w € X7 | H = po(w) }.

A language L C X7 is definable by an EFS over S or it is an EFS language over S if
there exists an EFS H over § and py € II such that L = Ls(H, po).

The least Herbrand model semantics [9, 42] is based on all of the ground atoms provable
from a given EFS. The least Herbrand model of an EFS H over § is the set Ms(H) =
{A€ Bases | Hl=A} |9, 42].

The entailment semantics is based on all clauses entailed by a given EFS. The en-
tailment set of an EFS H over S, denoted by Ents(H), is the set of all clauses over S
entailed by H, i.e., Ents(H) = { C € Clauses | H = C'}.

Formally, a semantics for a class # of EFSs is a pair (U, L(-)), where U is a set of

objects, called the domain, and a mapping L:H— 2V called the language mapping.

Definition 2 Let S be a signature (X, I1) and py € I1; is the distinguished predicate.

e The language semantics on S is a pair (Atoms, Ls(+, po)).
e The least Herbrand model semantics on S is a pair (Bases, Ms(+)).

e The entailment semantics on S is a pair (Clauses, Ents(-)).

We introduce a proof-DAG by extending the parse-DAG for k-bounded CFGs by
Angluin [3] and the ground proof-DAG for EFS by Sakakibara [33].

Definition 3 A proof-DAG for a clause C by an EFS H is a finite directed acyclic graph
T with the following properties. Nodes in 7" are atoms possibly containing variables. The
node A is the unique node with in-degree zero, called the root. For each node B in T, let
Succ(B) be the set of nodes B' with edges from B to B'. Then for every node B in T,
either B € bd(C') or (B < Succ(B)) is an instance of a clause in H.



A proof-DAG T of C by H is minimal if no proper subgraph of T is also a proof-DAG
C by H. A minimal proof-DAG for a clause C' by H is said to be trivial if all nodes
in T are contained in hd(C') U bd(C), and non-trivial otherwise. We will assume that a
proof-DAG is always minimal.

The Skolem substitution for C w.r.t. H is a substitution ¢ that replaces the variables

2 in C' with mutually distinct fresh constants ¢, not appearing in H and C.

Lemma 2 Let H be an EFS and C a clause. For the Skolem substitution o for C' w.r.t. H,
HEVYQC) iff HE=Co.

Lemma 3 Let S be a signature, H an EFS consisting of ground clauses, and A € Baseg
a ground atom. Then, H = A iff there exists a minimal proof-DAG T for A < by H.

Proof. The if direction of the lemma is easily proved by induction on the size n > 1 of the
proof-DAG for A by H. Next, we will show the only-if direction. Suppose that H = A.
Let M = Mg(H). First, since M is the smallest among the Herbrand model of H, we can
show that M is the supported model, that is, if M = A then there is some C' € H such that
A = hd(C) and M = bd(C). Then, we show the lemma by induction on the cardinality
n=#H. If n =1 then H consists of the fact A +—, and thus, the lemma immediately
follows. Suppose that #H = n + 1 and the lemma holds for any EFS of cardinality no
more than n. By the claim shown above, there is some clause C' = (A < By,...,B,,) € H
such that A = hd(C) and M = By A... AN B,,. Let H = H — {C} and M' = Ms(H").
We will show that M' = By A ... A B,,. Suppose to the contrary that there is some
interpretation I such that [ = H — {C} but I - By A... A B,,. Since By A ...\ B, is
the body of C, we see that I |= C regardless the truth value of A. Therefore, I is a model
of both H — {C'} and C, and thus that [ = M but I =~ By A... A\ B,,. However, this
contradicts the assumption. Hence, M' = By A ... A B,,. Since #H' < n, by induction
hypothesis, we have that for every 1 < i < m, there exists a proof-DAG T; for B; by H'.
Hence, we have a proof-DAG for A by H by merging T}, ...,7T,, and by adding the root
node A and the edges {(A, B;) | 1 <i < m}. It is not hard to see that the resulting graph
T is acyclic. O

The following lemma characterizes the entailment relation = for EFS in terms of a

proof-DAG, and corresponds to the subsumption theorem in clausal logic [29].

Lemma 4 (The subsumption theorem) Let H be an EFS and C a clause. Then,
H | C if and only if one of the following statements holds:

(i) C is a tautology.



(i1) C is subsumed by some clause in H.
(i1) There exists a non-trivial minimal proof-DAG for C' by H.

Proof. Let o be the Skolem substitution for C' w.r.t. H. Since C'o is ground, it follows
from Lemma 2 and the deduction theorem of first-order logic that HUbd(Co) = hd(Co).
Thus from Lemma 3, there is some proof-DAG T" for hd(Co) by H U bd(Co). By the
definition of the proof-DAG, if bd(Co) is ground then this proof-DAG T" is also a proof-
DAG for Co by H. Since o is one-to-one and introduces only fresh constants into C', we
can obtain a proof-DAG T for C from T” by applying the inverse mapping 0! to 7”. The

converse is also true. O

In the remainder of this paper, we will omit the subscript § if it is not necessary to
explicitly disignate it. In Section 3, a signature is explicitly given to a learner before
the learning session starts. In Section 4, a signature is implicitly assumed to contain all

predicate and constant symbols occurring in EF'Ss.

2.3 Hereditary EFSs and the other subclasses

In this subsection, we introduce the several subclasses of EFSs, which are developed by
many researchers [7, 8, 9, 17, 24, 25, 33, 37, 42].

First, we prepare the notations necessary to define the subclasses. The size of a
pattern 7, denoted by ||, is the total number of symbols from ¥ U X appearing in .
The wvariable-occurrence of m, denoted by o(7), is the total number of the occurrences
of variables from X appearing in 7. For example, if ¥ = {a,b}, X = {z,y,...} and
m = abxbryab, then |7| = 8 and o(7) = 3. For an atom A = p(m,...,7,), we define
|A| = |m|+- -+ |m,] and 0o(A) = o(m) +- - -+ 0(m,). For a clause C = Ay < Ay, ..., Ay,
we define |C| = |Ag| + -+ - + |An| and o(C) = 0(Ay) + - - + 0o(A,,). For an EFS H, the
size of H, written |H|, is Y ccp |C/.

Definition 4 We introduce the following restrictions of clauses.

1. A clause A <+ Ay, ..., A, is called variable-bounded [9] if every variable appearing

in the body A;,..., A,, also appears in the head A.

2. A clause A < Ay, ..., A, is called length-bounded [9] if |Af] > |A10| + ...+ |An0)

for each substitution 6.

3. A clause is called extended simple [33] if it is of the form p(7) < ¢1(x1), ..., ¢m(zm),
where p,q,...,q, are unary predicate symbols and z,,..., 2, are all variables

appearing in 7.



4. A clause is called simple [9] if it is of the form p(7) + ¢1(z1), ..., gm(2m), Where
D,q1,---,qm are unary predicate symbols and 1, ..., x,, are mutually distinct vari-

ables appearing in 7.
5. A simple clause is called regular [7] if the pattern in its head is regular.

6. A regular clause is called left-linear (resp., right-linear) [7] if the pattern in its head

is of the form wx (resp., xw) for some string w € X*.

7. A clause is hereditary [25] if it is of the form

p(ﬂ—]a B aﬂ—n) — 1 (7_]7 B 17—t1)a q2(7_t1+17 B 17—t2)a s 7qm(7_tm71+]a s 77_tm)7
and each pattern 7; (1 < j <'t,,) is a substring of some m; (1 < i < n).

The extended simple clause was introduced in the context of simple formal systems
(SFSs) [33], so an extended simple clause is an extension of a simple clause in SFSs [7].
In contrast, the above extended simple clause is not an extension of a simple clause in
EFSs. In particular, there exists no extended simple clause that is a non-ground fact and

that has variables only occurring in the head.

Definition 5 An EFS H is called variable-bounded (resp., length-bounded, extended sim-
ple, simple, reqular, left-linear, right-linear, hereditary) if each clause in H is variable-
bounded (resp., length-bounded, extended simple, simple, regular, left-linear, right-linear,

hereditary).

For example, let IT = {py, ¢} and ¥ = {a,b,c}. Then, the following simple EFS H,

and HEFS H; define the languages L(Hy,py) = {w € {a,b}" | w is a string of the
balanced parentheses } and L(H;,po) = { a"b"c™ | n > 1}, respectively.

po(zy) < po(z), po(y) po(ryz) < q(z,y,2)
Hy =< po(axb) < po(x) , Hi =< qlax, by, cz) « q(z,y, 2)
po(ab) < q(a, b, c)

We abbreviate an extended simple EFS and a hereditary EFS as an ESEFS and an
HEFS, respectively. The following hierarchy HEFS(m, k, ¢, r) of HEFSs introduced by [25]

gives a useful framework for polynomial-time learnability.

Definition 6 (Miyano et al. [24, 25]) For every m, k,t,r > 0, HEFS(m, k,t,r) is the
class of HEFSs consisting of at most m clauses each of which satisfies the following con-
ditions (a)—(c). HEFS™ (m, k,t,r) is the subclass of HEFS(m, k, t,7) consisting of at most

m clauses each of which satisfies the following conditions (a)—(d).
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(a) The variable-occurrence in the head is at most k.
(b) The number of atoms in the body is at most ¢.
(c) The arity of each predicate symbol is at most r.
(d) All facts are ground.

In this hierarchy, the symbol ‘x’ indicates that there is no bound on this parameter.

For example, the HEFSs Hj and H; in the above example belong to HEFS™(3,2,2, 1)
and HEFS™ (3, 3,1, 3), respectively. We can give the correspondence of the EFS languages

to Chomsky’s hierarchy and complexity classes.

Theorem 1 The following relations hold for the EFS languages above.

1. (Arikawa [7], Arikawa et al. [9]) A language is recursively enumerable, (resp.,
context-sensitive, context-free, reqular) iff it is definable by a variable-bounded (resp.,
length-bounded, reqular, left/right-linear) EFS.

2. (Ikeda, Arimura [17]) A language is accepted by a polynomial time deterministic

Turing machine iff it is definable by a hereditary FFS.

3. (Arikawa et al. [9]) A regular pattern language, (resp., union of reqular pat-
tern language, reqular language, context-free language) is definable by an EFS in
HEFS(1,%,0,1), (resp. HEFS(x,%,0,1), HEFS(x,1,1,1), HEFS(x,2,2,1)).

Finally, we formulate the termination for HEFSs, which are motivated by the acyclicity
of EFSs [6, 10, 13].

Definition 7 Let S be a signature and H be an EFS over §. The dependency graph of
H is a possibly infinite directed graph Gy = (Atoms, F) such that there exists an edge
from A to B, i.e., (A, B) € E, iff there exist a ground instance C' of some clause in H
such that A = hd(C) and B € bd(C).

Definition 8 Let S be a signature and H be an EFS over §. The dependency relation of
H is a binary relation >g on Atomgs such that A >y B iff there exists a path of non-zero

length from A to B in the dependency graph Gy of H.

A binary relation R on S is transitive if aRb and bRc implies aRc for every a,b,c €
S. Also R is well-founded if there exists no infinite decreasing chain from a such as

aRay, a1 Ras, asRagz, - - -, for every a € S.

11



Definition 9 Let S be a signature, H be an EFS over § and > be a transitive binary
relation on Atoms. The dependency relation >y of H is bounded by > if A >y B implies
A > B for every atoms A, B € Atomgs.

Definition 10 Let § be a signature and H be an EFS over & Then, H is terminating
if there exists a well-founded transitive binary relation > on Atoms that bounds the

dependency relation >y of H.

Let & be a signature, H be a class of EFSs over §, and > be a transitive binary
relation on Atoms. We say that H is uniformly bounded by > if the dependency relation
>y is bounded by > for every H € H. We denote by H(>) the maximal subclass of
‘H whose dependency relation is uniformly bounded by >, ie., H(>) ={ H € H| >g
is bounded by > }.

As similar as HEFS(m, k,t,7), we can introduce a class THEFS(m, k,t,r) of ter-
minating HEFSs with the same parameters m, k, ¢ and r. In particular, we denote
(THEFS(m, k,t,7))(>) by THEFS(>,m, k,t,r).

2.4 Learning models

In this subsection, we introduce the learning models. Here, a class H of grammars, called
a hypothesis space, is always assumed. If a hypothesis space H is a class of EFSs, then a
signature is assumed to be in common.

Let (U, L(-)) be the semantics for 7. Each element of U is called an ezample. The
language [A/(H) is also called the concept defined by H. We say that two hypotheses H
and H, are equivalent under the semantics (U, L(-)) if L(H) = L(H,).

Let H, € H be a target hypothesis. An example w is called positive for H, if w €
f/(H*) and negative otherwise. Many researchers have been developed several different
learning models to capture the efficient learnability from the viewpoints of the criterion
of identification and the protocol of receiving examples and queries. In this paper, we
employ the following two learning models. First, we define the exact learning model, where

a learning algorithm makes the following queries to collect the information on H, [4].

Definition 11 (Angluin [4]) Let H. € H be a target hypothesis.

1. An equivalence query for H, (EQ, for short) takes H € # as input, denoted by
EQ(H). The answer is “yes” if L(H) = L(H,) and a counterezample w € (L(H,) —
L(H))U(L(H)—L(H,)) is returned otherwise. A counterexample w is called positive
if we L(H,) and called negative if w ¢ L(H.,).
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2. A membership query for H, (MQ, for short) takes w € X7 as input, denoted by
MQ(w). The answer is “yes” if w € L(H,) and “no” otherwise.

Definition 12 (Angluin [4]) A polynomial-time exact learning algorithm A for H is an
algorithm that identifies the target hypothesis H, € H making equivalence and member-
ship queries for H,, A must halt and output a hypothesis H € H that is equivalent to
H,, ie., [A/(H) = [A,(H*), and, at any stage in the learning algorithm, the running time of
A must be bounded by a polynomial in the size of H, and of the longest counterexample
returned by equivalence queries so far. H is called polynomial-time exact learnable if there

exists a polynomial-time exact learning algorithm for .

On the other hand, we introduce the prediction model according to Pitt and War-
muth [32] and Angluin and Kharitonov [5].

Definition 13 (Pitt & Warmuth [32], Angluin & Kharitonov [5]) A prediction al-
gorithm A for H is an algorithm that takes m (a bound on the size of #), n (a bound
on the length of examples), € (an accuracy bound), a collection of labeled examples such
that each positive (resp., negative) example is labeled by + (resp., —), and an unlabeled
example w of H, as input, and outputs either + or — indicating its prediction for w. The
A is called a polynomial-time prediction algorithm if the running time of A is bounded
by a polynomial in s,n and 1/e. For some polynomial p, for all input parameters m,n
and € and for all probability distributions on examples, if A is given at least p(m,n, 1/¢)
randomly generated examples of H, and randomly generated unlabeled example w, and
the probability that A incorrectly predicts the label of w for H, is at most €, then we say
that A successfully predicts H. Moreover, H is called polynomial-time predictable if there
exists a polynomial-time prediction algorithm for H that successfully predicts H.

The A is a prediction with membership queries algorithm (pwm-algorithm, for short)
is a prediction algorithm that is allowed to make membership queries. The notions that
A is a polynomial-time pwm-algorithm, a pwm-algorithm A successfully predicts H, and

H is polynomial-time predictable with membership queries are defined similarly as above.

We can also define a variant of PAC-learning model [41] in which a learning algorithm
is allowed to make membership queries in addition to random examples [5]. There is
a close relationship among exact learning with equivalence queries, PAC-learning and

prediction models without or with membership queries.

Theorem 2 (Angluin [4], Angluin & Kharitonov [5]) If H is polynomial-time ex-

act learnable with equivalence queries, then it is polynomial-time PAC learnable. If H
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is polynomial-time PAC learnable, then it is polynomial-time predictable. Furthermore,

these statements also hold with membership queries.

In this paper, we also introduce the following extension of membership queries based

on the non-standard semantics of EFSs.

Definition 14 Let H, € H be a target hypothesis.

1. (Angluin [3], Sakakibara [33]) A predicate membership query for H, (PMQ, for
short) takes a ground atom A = p(wy,...,w,) for p € Il and w; € ¥t (1 < i < n)
as input, denoted by PMQ(A). The answer is “yes” if H, = A, i.e., A € M(H,)

and “no” otherwise.

2. (Frazier & Pitt [15]) An entailment membership query for H, (EntMQ), for short)
takes a (possibly non-ground) clause C as input, denoted by EntMQ(C'). The answer
is “yes” if H, = C, i.e., C € Ent(H,) and “no” otherwise.

The PMQs and EntMQs coincide with exactly the membership queries under the least
Herbrand model semantics (Base, M(-)) and the entailment semantics (Clauses, Ent(-)),
respectively. We can observe that an MQ is simulated by a PMQ and then a PMQ is by
an EntMQ.

Furthermore, we can define the entailment equivalence query (EntEQ, for short) as
the equivalence query under the semantics (Clauses, Ent(+)), where a counterexample is
a clause. The learning model with EntEQ and EntMQ), called learning from entailment
[15], gives a valuable framework for the efficient learnability of first-order logic or logic
programs [10, 11, 16, 19, 31].

Finally, we define the query to ask about the termination information.

Definition 15 A dependency query for H, (DQ, for short) takes a pair (A, B) of atoms as
input, denoted by DQ(A, B). The answer is “yes” if A >, B holds and “no” otherwise.

2.5 Prediction-preserving reduction

Pitt and Warmuth [32] have introduced the notion of reducibility between prediction
problems.  Prediction-preserving reducibility is essentially a method of showing that
one hypothesis space is no harder to predict than another. Furthermore, Angluin and
Kharitonov [5] have extended the prediction-preserving reduction to the notion of re-

ducibility between prediction problems with membership queries.

14



Definition 16 (Pitt & Warmuth [32], Angluin & Kharitonov [5]) Let H; be a hy-
pothesis space over a domain U; (i = 1,2). We say that predicting H, reduces to predicting
Ho, denoted by H; IH,, if there exists a function f : N x N xU; — U, (called an instance
mapping) and a function g : N x N x H; — Ho (called a concept mapping) satisfying the

following conditions:
1. for each w € Ul[n} and H € ”H[ls}, w e L(H) iff f(n,s,w) e L(g(n,s, H));
2. the size complexity of ¢ is polynomial in the size complexity of H;
3. f(n,s,w) can be computed in polynomial time.

Furthermore, we say that predicting H, reduces to predicting Ho with membership queries
(pwm-reduces, for short), denoted by Hy pwm Ho, if there exists a function f : N x N x
Uy — Uy, a function g : N x N x H; — Hy, and a function h : Nx N x Uy — U; U{T, L}

(called a membership query mapping) satisfying the above and the following conditions:

4. for each w' € U, and H € ’HE’”, if h(n,s,w') = T then w' € i(g(n,s,H)); if
h(n,s,w') = L then w ¢ i(g(n,s,H)); if h(n,s,w') = w € Uy, then it holds that
w' € L(g(n,s, H)) iff w e L(H);

5. h(n,s,w') can be computed in polynomial time.

Theorem 3 (Pitt & Warmuth [32], Angluin & Kharitonov [5]) Let H; and H, be
hypothesis spaces, and suppose that Hi <Ho (Hi Lpwm Ha). If Ho is polynomial-time pre-

dictable (with membership queries), then so is H;.

We deal with the following hypothesis spaces to reduce the prediction problem to
several EFS subclasses: DF.A and UDF A denote the class of all languages accepted by
the DFAs and the finite union of DFAs, respectively. DN F,, denotes the class of all DNF
formulas over n Boolean variables; Let DN F = U, DN F,,.

Theorem 4 The following statements hold.

1. (Angluin [2]) DFA is polynomial-time exactly learnable with equivalence and

membership queries.

2. (Angluin & Kharitonov [5]) UDFA is not polynomial-time predictable with
membership queries under the cryptographic assumptions that inverting the RSA
encryption function, recognizing quadratic residues and factoring Blum integers are

solvable in polynomial time.
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3. (Angluin & Kharitonov [5]) DN F is either polynomial-time predictable or not
polynomial-time predictable with membership queries, if there exist one-way func-

tions that can not be tnverted by polynomial-sized circuits.

3 Learning HEF'Ss

In this section, we investigate the polynomial-time learnability of subclasses of HEFSs
using various types of queries. We first show that the class HEFS(x, k,t,7) of HEFSs
is polynomial-time exact learnable with equivalence and predicate membership queries.
Next, we show that the class THEFS(x, k, *, ) of terminating HEFSs is polynomial-time
exact learnable with equivalence, entailment membership, and dependency queries, which

reflects the termination information.

3.1 The learnability of a subclass of HEFSs

Sakakibara [33] showed that, for every & > 0, the class of k-bounded ESEFSs, which is
a subclass of HEFS™ (x, k, k, 1), is polynomial-time exact learnable with equivalence and
predicate membership queries. In this subsection, we extend this result to the whole class
HEFS(x, k, t,r) for every k,t,r > 0.

In general, the entailment relation is undecidable for variable-bounded EFSs [9] and
deterministic exponential-time complete for HEFSs [17]. The following lemma claims that

the entailment relation in HEFS(x, k, ,r) is polynomial-time decidable.

Lemma 5 For a clause C' and an EFS H, suppose that H U {C} € HEFS(x, k,x,r).
Then, a proof-DAG for H |= C is polynomial-time computable in |C| and |H| if it exists.

Proof. Let 6 be the ground substitution that maps each variable z in C' to a new constant
¢;- Then, we can see that H = C if H U bd(C#8) | hd(C8) under the extended alphabet
Y U {cz}z. The result immediately follows from Miyano et al. [25]. O

For a signature § = (X,II) and an atom A = p(m,...,n), we define the subset
Atomg(A) as:

(1 <i1<s)i :
Atomg(A) = {q(ﬁ’ ..., T,) € Atomsg every 7;(1 < i < s) is a substring }

of some 7;(1 < j <)

Then, the following series of lemmas are necessary to prove the learnability of HEFS(x, k, ¢, r).

Lemma 6 Let S be a signature, H an HEFS over § and C a clause over S. Then, for
every atom A in a proof-DAG for H = C, it holds that A € Atomgs(hd(C)).
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Procedure LEARN_HEFS_BY_CBA

/* A learning algorithm for HEFS(x, k, ¢, ) with EQs and PMQs */
/* S: a fixed signature */

1 H:=(;

2 while EQ(H) =“no” do begin /* L(H,py) # L(H.,py) */

3 E := a counterexample returned by the EQ; /* F is an atom. */
4 if H = F then /* E is negative, i.e., H E E and H, = E*/

5 T := a proof-DAG for H = E; A :=root(T);

6 while PMQ(B) =“no” for some child B of A do

7 A= B;

8 {B,..., By} = all children of A (¢ > 0);

9 C := a clause in H that subsumes A < By,..., By; /* C is false in H, */
10 H:=H - {C};

11 else /* E is positive, i.e., H %= E and H, = E */

12 H:=HU Cand(E, k,t,r);

13 end /* while */

14 return H;

Figure 2: A polynomial-time learning algorithm for HEFS(x, k, ¢, r) with EQs and PMQs,
based on the contradiction backtracing algorithm [34, 33] (Lines 5 to 10).

Lemma 7 Let S be a signature (X,11) and A an atom over S. Then, it holds that
#Atoms(A) < q1(p,n) = pn?, where p = #11, n = |A| and r = arity(II).

Lemma 8 For every integer k > 0 and atom A, there are at most |A|**k* atoms B with

variable-occurrence no more than k that subsumes A, i.e., B 1 A and o(B) < k.

Let S be a signature. For integers k,¢,7 > 0 and an atom A over S, Cand (A, k,t,r)
is the set of all hereditary clauses in HEFS(x, k,t,7) over S of the form B « By,..., By
such that B J A, o(B) < k and B; € Atomgs(B), where 0 < i < t' and 0 < ¢’ < ¢. The

following lemma immediately follows from Lemma 7 and Lemma 8.

Lemma 9 # Cand(E, k,t,r) is bounded by qo(p,n) = O(p'n?*+2r'kk) where p = #I1 and

n = |E|. (k¥ reflects that the same variable may occur more than once.)

Theorem 5 For a signature S = (X, 11), the class HEFS(x, k, t,r) is polynomial-time ex-
act learnable with O(p'm n* 2 k*) equivalence queries and O(p'*'m n2F+2rU+DER) predi-
cate membership queries, where p = #I1, m is the cardinality of a target HEFS, and n is

the size of the longest counterexample received so far.
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Proof. Fig. 2 shows our learning algorithm LEARN_BY_CBA for HEFS(x, k, ¢, r), which
is an extension of the algorithm given by Sakakibara [33]. We will only state the difference
between Sakakibara’s algorithm and ours in the proof.

Starting with H = (), the algorithm executes the while loop at line 2 until EQ(H)
returns “yes.” If a negative counterexample E is returned at line 3, then hypothesis H
is too strong, i.e., H = E. In this case, the algorithm tries to detect an incorrect clause
C € H such that H, % C by searching the proof-DAG T for E by H from lines 5 to
line 10 with a contradiction backtracing algorithm (CBA) [34]. Initially, the root is false
in the model M (H,). Starting from the root, the algorithm goes downward by following
any false child of the current node. Eventually, the algorithm reaches a false node A none
of whose children is false in M (H,). Then, we know that there exists some clause C € H
that subsumes (A < By,..., By) is false in M (H,) and should be removed from H. By
the similar discussion as [33] and by Lemma 6, we can show that the CBA still correctly
works for any subclass of variable-bounded EFSs and runs in polynomial time in p and n
making at most ¢; (p, n) PMQs.

On the other hand, if a positive counterexample E is returned, then hypothesis H
is too weak, i.e., H [~ E. In this case, the algorithm tries to find all candidate clauses
used to construct a proof-DAG for F by H,. By Lemma 4, there exists some hereditary
clause C' such that hd(C)f# = hd(E) for some substitution §. Therefore, by an execution
of the step of line 12, we can add at least one clause in H,. This step may add some
false clauses to H, but they will be eventually removed by the CBA steps. By Lemma 9,
the cardinality of the candidate set Cand(FE,k,t) is bounded by ¢2(p,n), and the time
complexity to construct Cand(FE, k,t) is also at most ¢a(p, n). Finally, we can show that
the execution from lines 5 to line 10 and at line 12 are iterated at most O(m+m gs(p, n))
and m times, respectively. Hence, the number of EQs and PMQs and is bounded by
O(m+maqa(p,n)) = O(mp'n®*+2EF) and O(m qi(p, n) g2(p, n)) = O(mp'+H k21 k)

respectively. O

3.2 The learnability of a subclass of terminating HEF'Ss

In this subsection, we present a polynomial-time learning algorithm LEARN_BY_GEN
for THEFS(x, k, ,7) with EntEQs, EntMQs and DQs as Fig. 3.

In the following, we denote by H, the target hypothesis and we assume that a fixed
signature S is given to the learner before a learning session. The algorithm starts with
the most specific hypothesis H = () and searches hypothesis space THEFS(x, k, %, ) from
specific to general with respect to the subsumption lattice based on . For each positive

counterexample F returned by EntEQ), the algorithm constructs another positive example
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Procedure: LEARN_BY _GEN

/* A learning algorithm for THEFS(x, k, %, ) with EntEQs, EntMQs and DQs */

/* S: a fixed signature */

1 H:=(;

2 while EntEQ(H) =“no” do begin /* Ent(H) # Ent(H,) */

E .= the counterexample returned by the EntEQ);

D := Saturate(E, H,S); /* Compute the saturant by H; See Fig. 4 */

D := Rewind(D, S); /* Compute the prime counterexample; See Fig. 4 */

for each C € H do begin

if EntMQ(F)="“yes” for some F' € MCS(C, D, S, k) then /* See Fig. 5 */

H = (H — {C})U{F} and goto FOUND;

9 end /* for */

10 H := HU{D};

11 FOUND:

12 end /* main loop */

13 return H;

o~ O Ot = W

Figure 3: A polynomial-time learning algorithm for THEFS(x, k, *, r) with EntEQs, Ent-
MQ@Qs and DQs, based on saturation, rewind and minimal common subsumer.

D that is subsumed by some clause in H,. Then, the algorithm generalizes hypothesis H
by carefully merging the obtained example D with some clause in H so that only positive

counterexamples are provided.

3.2.1 The Saturation and the Rewind procedures

The first task of the algorithm is, given a positive example F, to constructs another
positive example D that is subsumed by some clause in H,. From the subsumption
theorem (Lemma 4), we know that there are three cases for the clause E, (i) E is a
tautology, (ii) £ is directly subsumed by some clause in H,, and (iii) there is a non-trivial
proof-DAG for E by H,. The first case (i) is impossible since F is a counterexample for
H. If the second case (ii) holds then the task is already done. Therefore, we will deal
with the third case (iii) by using the saturation and the rewind procedures, which invert
the proof steps by which positive examples are derived from clauses in H,.

For a clause C, the saturation is an operation to add to the body of C' all atoms
derivable from the body of C' and H. More formally, for a clause C' and an EFS
H, Closures u(bd(C)) is the set of all atoms B € Atomgs(A) such that H | V(B «+
bd(C)). Then, the saturant of C' by H, denoted by Saturant(C,H,S), is the clause
A < Closures 1 (bd(C)).

Lemma 10 For every fixed k,r > 0, the saturant of any clause C' by any HEFS H €
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HEFS(x, k, *,7) is unique up to renaming, of polynomial size in |C|, and polynomial-time

computable in |C| and |H|.

Lemma 11 If a clause C' is a positive counterexample of H w.r.t. H,, then the saturant

of C by H 1is also a positive counterexample of H w.r.t. H,.

Proof. By definition, C' subsumes its saturant D = Saturant(C, H,S). Therefore, H, = C
implies H, = D. Conversely, the saturant D is obtained from C' by adding to the body
of C only the atoms entailed by H. We have H = V(bd(C) — bd(D)), and it follows that
H = D implies H |= C. O

A positive example C' € Ent(H,) for H, is called prime w.r.t. H, if all proof-DAG for
C by H, are trivial, and composite otherwise. If a positive example C' is prime then it is

ensured that C' is subsumed by some clause in H,. The converse does not hold in general.

Lemma 12 If a positive counterezample C' is prime then C is subsumed by some clause

Proof. By assumption, C' is neither a tautology nor a clause with some non-trivial proof-

DAG by H,. Thus, the result immediately follows from Lemma 4. O

Lemma 13 Let H, and H be EFSs in THEFS(x, k,x,r). Given any saturated positive
counterexample C' for H, w.r.t. H, the algorithm Rewind in Fig. / finds a prime positive

counterezample for H, w.r.t. H in polynomial time by using O(pn*") EntM@Q and O(pn*")
D@, where n = |hd(C)|, p = #I1 and r = arity(II).

Proof. Let C = (A < Body) be any saturated positive counterexample for H, w.r.t. H.
Let Ag= A, Ay,..., A;, ... (i > 0) be the sequence of the values of the atom A at line 2 of
the algorithm Rewind in Fig. 4, where A; is the value at the i-th execution of the for-loop
(the i-th stage). For every i > 0, let C; be the clause (A4; < bd(C)). By assumption,
Cy = C is a saturated positive counterexample for H, w.r.t. H. Then, we show the
following claim.

(Claim 1) If C; is a saturated positive counterexample for H, w.r.t. H, and furthermore
C' is not prime, then there exists some atom B = A,;; € Atomgs(A) — bd(C) such that
DQ(A;, B) =“yes” and EntMQ(B <+ bd(C)) =“yes”.

(Proof for the claim) If C; is not prime then there is a non-trivial proof-DAG T for C;
by H,. Such a non-trivial proof-DAG T contains some node B that does not appear in
C;. By definition, B is neither the root nor an atom in bd(C;). Since C; is saturated by
H, we have B € bd(C;) iff H |= V(B <« bd(C;)). Therefore, if B ¢ bd(C;) then we have
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Procedure Saturate(D, H, S)

1 Body :=(; Head := hd(D);

2 for each B € Atoms(Head) do

3 Let o be the Skolem substitution for (B < bd(D)) w.r.t. H;
4 if (HUbd(Do) = Bo) then

5 Body := Body U {B};

6 return (Head < Body);

Procedure Rewind(C,S)

1 A:=hd(C); Body :=bd(C); S := Atoms(A) — Body;

2 while (DQ(A, B) =“yes” and EntMQ(B «+ Body) =“yes” for some B € S) do
3 A= B;

4 return (A < Body); /* prime w.r.t. H, */

Figure 4: The procedure Saturate to compute a saturated positive counterexample and
the procedure Rewind to compute a prime positive counterexample.

that H = Y(B < bd(C};)). On the other hand, for any node B in a proof-DAG T for C;
by H,, H, = ¥Y(B < bd(C;)) holds. Thus, we have that EntMQ(B < bd(C)) =“yes”.
By construction, B is a descendant of the root A. Thus, we also have DQ(A;, B) =“yes”.
Furthermore, we know that C;,; = (B <« bd(C;)) is a positive counterexample for H,
w.r.t. H. (End of the proof for the claim)

By the above claim, we know that if the while-loop at line 2 terminates then the
clause C; must be prime w.r.t. H,. Also, C; is a positive counterexample. On the other
hand, the sequence of generated atoms form the decreasing sequence Ay = A >y, A} >y,
<o >pg. A; >p. - w.r.t. the dependency relation >p, for H,. If H, is an HEFS, all A;
are members of Atomg(A) and if H, is terminating then all Ay, A;, - -+ must be mutually
distinct. Thus, it follows from Lemma 7 that the length of the decreasing sequence is
bounded above by |Atoms(A)| = O(pn®"), where n = |A|. Hence, the time and the query

complexities immediately follow. O

From Lemma 11, Lemma 12 and Lemma 13, we know that the procedures Saturate

and Rewind finds a prime positive counterexample D from a given positive counterexaple
E at line 3 to line 5 of the algorithm LEARN_BY_GEN in Fig. 3.

3.2.2 Maximal common subsumers

Once a prime positive counterexample D is found, the remaining task in LEARN_BY_GEN
is to generalize the current hypothesis H by merging D with H. This is possibly done by

taking the least upper bound of D and some clause C' € H w.r.t. the subsumption relation
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Procedure MCS(D,, D,, S, k)
S = { (A, 9],92) |A € At()mg,O(A) S k,AH] = hd(D]) and AH] = hd(Dg) },
CS = 0;

1
2
3 for each (A, 6;,05) € S do
DQ(A, B) returns “yes,”
4 Body :=< B € AtOmS(A) 391(6 bd)(D]) and B, € bd(Dg) }
5 CS := CS U {(A < Body)};
6 return CS;

Figure 5: The procedure to compute minimal common subsumer.

3 [10, 15, 19, 31]. Unfortunately, no unique upper bound w.r.t. J exists for patterns or

hereditary clauses. Hence, we introduce the maximal common subsumers.

Definition 17 Let S§ be a signature, C a subclass of Clauses, and D; a clause over S
(1 = 1,2). A common subsumer of D; and D, within C is a clause C' € C such that
C 3 Dy and C 1 Dy. A common subsumer C of D; and Dy within C is mazimal if there
is no common subsumer D of D; and D, in C such that bd(C) C bd(D).

Let S be a signature (3,IT). Then, we denote by MCS(Dy, Dy, S, k) the set of all
maximal common subsumers of DD; and Ds in hereditary clauses over § of which variable-

occurrence is at most k.

Lemma 14 Let S be a signature (3,11), D; a clause over S (i = 1,2) and k > 0 an
integer. Then, the set MCS(Dy, Dy, S, k) is of cardinality gs(n) = n**kk, of polynomial
size, and polynomial-time computable in p = #I1 and n = |Dq| + |Dy|.

Proof. Consider the procedure as Fig. 5 that computes the set MCS(Dy, Dy, S, k) using
DQ. Tt is not hard to see that this procedure works correctly. Furthermore, we can show
that #S < n* k¥ and #Body < pn?" by Lemma 7 and Lemma 8. O

3.2.3 The correctness and the time complexity

Now, we prove the correctness of the learning algorithm LEARN_BY_GEN in Fig. 3.
In the following, let Hy, Hy,..., H,,... and Ey, Ey,..., E,,... (n > 0) be the sequence
of hypotheses and counterexamples, respectively, where H, is the initial hypothesis 0,
and at each stage i > 1, LEARN_BY_GEN makes the entailment equivalence query
EntEQ(H; 1), receives a counterexample E; to the query, and produces a new hypothesis
H; from E; and H;_;. A clause is missing if it is subsumed by some clause in H, but not

entailed by the present hypothesis H.
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Lemma 15 Suppose that a positive ezample C subsumes another positive example D,
t.e., C 3 D. If D s prime w.r.t. H,, then so is C.

Proof. Since C' J D, there exists a substitution § such that C6 C D. If C' is composite
w.r.t. H,, then we can transform a proof-DAG T¢ for H, = C to a proof-DAG for H, = D,

by applying 6 to all atoms in T. Since D is composite, this is a contradiction. O

Lemma 16 For every n > 0, H, J Hy and E, is a positive counterexample. Further-

more, H, is a conservative refinement of H.,.

Proof. We show by induction on n > 0 that H, 3 H,, and that H, consists of just prime
clauses w.r.t H,. If n = 0, then Hy = () and the claim trivially holds. Next, suppose
n > 0. By induction hypothesis, H, O H, ; and thus the next counterexample £ = F,
at line 4 is positive. Let D be the clause obtained after executing lines 4 to line 8.
Combining Lemma 11, Lemma 10 and Lemma 13, we can show that D is still saturated
and >-minimal w.r.t. H, by H and D € Ent(H,)— Ent(H,_,). By Lemma 13 D is prime.
Thus, by Lemma 12, D is subsumed by some missing clause in H,. Suppose first that
there exists some C' € H,_; and some F' € MCS(C, D, S, k) such that EntMQ(F') returns
“yes.” Then, H, = (H, 1 — {C}) U{F}. By induction hypothesis, C' as well as D is
prime. By Lemma 15, F' is also prime, so it follows from Lemma 12 that F' is subsumed
by some clause in H,. Since H, J H, 1, this implies that H, J H,. Next suppose that
there is no such C' € H,, 1, and then H, = H, ;U{D}. Since D is prime, it follows from
Lemma 12 that H, J H,,. A new clause F'is added to H,, at line 12 only if there exists no
maximal common subsumer of D and C' subsumed by H, for all clauses C' € H,,. Hence,

the refinement H,, of H, is always conservative. O
Corollary 6 H, J--- 3 H, 2J--- 3 H; 2 Hy (n>0).

Lemma 17 For HEFS(x, k, x,1), there ezxists no increasing sequence --- 1 Cy 3 Cj.

Furthermore, its length is always bounded by O(pn®" ™), where p = #11 and n = |hd (Cy)].

Proof. By using the discussion in [9], we can show that the length of the sequence --- J
Ay O Ap of atoms is bounded by |Ay| = O(n) independent from k. For a given head A,
the maximum size of the body is bounded by #Atoms(A) = O(pn®"). Hence, we have
the upper bound of the length of the sequence as O(pn*+1). O

Theorem 7 Let § = (X,11) be a signature. For every k,r > 0, the class THEFS(>
%, k, %, 1) is polynomial-time ezact learnable with O(pmn? ') EntEQ, O (p>m?n'FHir+1Ek)
EntMQ, and O(p*>mn** 1 kE) DQ, where m is the cardinality of a target THEFS, p =

#I1 and n is the size of the longest counterexample received so far.

23



Proof. Since the algorithm LEARN_BY_GEN terminates only if the EQ returns “yes,” it
is sufficient to show the termination in polynomial time. By Corollary 6, the sequence of
hypotheses is of the form H, 71 --- 3 H, 3 --- 1 H;y 3 Hy (n > 0) (1). By Lemma 16,
each H,, is a conservative refinement of H,, so #H, < #H, = m.

Fix an enumeration H, = (Cy,...,C}). For every n > 0, we can order H, as the
m-tuple (C7,...,C!) € Clause§ such that, for each i, C! is the unique member of H,
satisfying C; 3 C7' if it exists and C]' = L otherwise, where L is a special symbol denoting
that C' 3 L for every C' € Clauses.

It follows from Lemma 17 that, for every 1 < 7 < m, the length of the longest
subsequence such that --- J C? 3 C} is bounded by O(pn**'). Thus, both the lengths
of the sequence (1) and the number of EntEQs are bounded by g4(p, m,n) = O(pmn?*+1).
By Lemma 10, Lemma 13 and Lemma 14, the number of EntMQs is bounded by ¢5; =

4+2r k) and the running time in each iteration of the while-loop is bounded by a

O(pmn
polynomial in p, m and n. Hence, the total number of EntMQs is q4(p, m, n)gs(p, m,n) =

O(p*m?2n*+4+1Ek) and the running time is polynomial in p, m and n. O

Since any counterexample in the language semantics (Atoms, Ls(-, po)) is also a coun-
terexample in the entailment semantics (Clauses, Ents(-)), we can replace each EntEQ
in Theorem 7 with EQ.

Corollary 8 For every k,r > 0, the class THEFS(x, k,*,r) is polynomial-time exact
learnable with EQ, EntM@, and DQ).

Suppose that we have an efficiently decidable, well-founded transitive relation > over
Atomg. In this case, we can eliminate DQ to learn a subclass THEFS(>, %, k, %, r) con-
sisting of the programs uniformly bounded by >. The class of reducing programs [42] is

an example of such uniformly terminating EFS.

Corollary 9 Let > be any well-founded transitive relation over Atoms that is polynomial
time decidable. For every k,r > 0, the class THEFS(>, *, k, x, ) is polynomial-time exact
learnable with EQ and EntMQ).

3.2.4 A lowerbound result

By Theorem 5 and Theorem 7, note that the number O(pmn®*') of EQ made by
LEARN_BY_GEN is significantly smaller than O(ptm n?*+2rkF) EQ by LEARN_BY_CBA
for large k,t > 1. In this subsection, we analyze the query complexity of the class
THEFS(>, m, k, x,7), and obtain the lower bound result, which indicates that the query

complexity is almost optimal in terms of m and n for EQ.
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Theorem 10 Let S be any signature with at least two letters. For every integers k,r > (0
such that k > 3r, any algorithm that exactly identifies all hypotheses in THEFS(m, k, *, 1)
with EntEQ and EntM@Q must make Q(mn'/?) queries in the worst case, where m is the
cardinality of a target THEFS and n is the size of the longest counterezample received so

far.

Proof. We say that a concept class C shatters aset U C X* if {UnNc|c € C} =2Y holds.
The VC-dimension of C, denoted by VC(C), is te cardinality of the largest set U C ¥*
that is shattered by C. From arguments in Maass and Turdn [22], it is sufficient to show
that VO (THEFS(>,m, k, %, 7)) = Q(mn"/?).

Let p,q,r, len, bit € 11 be predicate symbols of arity r + 1,2r,r, 2,1, respectively. For
an integer n > 0, [n] denotes the set {1,...,n}. Then, we encode an integer i € [n] by
the bit vector ¢(i) = 0°°'10" ¢ € {0,1}" and an r-vector (iy,...,4,) € [n]” by an atom
p((iy), ..., ¢¥(iy),0") € Bases. Let S,,, be the set { p(¢(i1),...,¢¥(,),0") | (i1,...,0) €
[n]” } of ground atoms of length (r + 1)n corresponding to all n* r-vectors in [n]¥. Note

that Hyp is terminating and hereditary.

p(f[ﬁ],...’ﬂ’,‘r’on) <~ /\(il,...,ir)ef |: Q(‘rla"'axr;oila"'aoir) ] .

Q(-leﬂh ce TplYrZes U, .- a'l)r) A
r(zy, .o i1, 0,200, .., ) =, forall 1 <i<r.

len(ax, 0y) < len(z,y),
len(a, 0) <,
bit(a) <,  for all @ € {0,1}.

Let w € {0,1}" be a bit vector of length r. Then, it holds that, for every u € {0,1}*
and i € [n], Hr | len(u, 0") iff |u| = i. Also, for every i € [n] and every string w = zyz
(z,y,2 € {0,1}*), if Hy |= len(zy, 0") A bit(y), then y is the i-th bit of w. Furthermore,
it holds that, for every by ---b, € {0,1}", Hr = r(b1,...,b,) iff by ---b, # 17, and Hr |=
q((ir), ..., 0(,), 00, .., 0) iff (4y,...,4.) # (j1,...,7,). Hence, it is not hard to see
that, for every (iy,...,4,) € [n|", Hp &= p(¢(i1),...,¢(,),0") iff (iy,...,i,) ¢ T. Since
each Hr belongs to HEFS(r + 8, 4r, %, 2r), the class HEFS(r + 8, 4r, %, 2r) shatters the set
Syn of the cardinality n'.

Similarly, we can show that the class HEFS(m+1r+7, 4r, *, 2r) shatters the direct sum
Smpm = Sy ,U---US of cardinality mn” obtained by making the m copies of the predicate
P. Hence, it immediately follows that VC(HEFS(m, k, *,7)) = Q((m —r — 1)’ /2 /2r") =
Q(mn'/?) in m and n when k > 4r, where the maximum length of the examples is
n=(r+1)n. O
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4 Hardness Results for Learning HEFSs

In this section, we present several representation-independent hardness results of predict-
ing the subclasses of HEFSs, which claim the necessity of both the types of queries and
the bounds on the parameters are necessary for their efficient learning mentioned in the
previous section.

We fix f, g and h to an instance mapping, a concept mapping, and a membership query
mapping. Also he parameters n and s denote the bounds of examples and representations,
respectively. For simplicity, we assume that the length of examples of Boolean concepts
is always fixed to the upper bound n. Furthermore, a signature is always fixed and a

semantics is the language semantics.

4.1 Regular pattern languages revisited

We denote by RP, U,,RP and URP regular pattern languages, at most m unions of reg-
ular pattern languages, and unbounded unions of regular pattern languages, respectively
(cf. [12, 24, 25, 35, 36, 38]). Since each regular pattern language L(7) is definable by the
HEFS {p(n) <}, we can easily observe that RP, U,,RP and URP are corresponding to
HEFS(1,%,0,1), HEFS(m, %,0, 1) and HEFS(x, %, 0, 1), respectively. It is known that RP
and U, RP are not polynomial-time PAC-learnable unless NP=RP [24, 25|, where they

are representation-dependent hardness results.

Theorem 11 RP is not polynomial-time predictable, if DN F is not polynomial-time
predictable.

Proof. 1t is sufficient to show that DN F, <RP for alln > 0. Let d = ¢, V---V 1,
be a DNF formula over the set {z,...,z,} of Boolean variables. For each vector e =
er--e, €40,1}", let € = leyleyl - -+ 1e,1 and let o = (01)3?"+D. Then, construct f and
g as follows:
f(n,s,e) = € = (AéAa)™ ' - AéA,
) = P = AP/AP,A---AP,A, where A is a new symbol.

Here, P; = *p{ *p'% % - -+ pl %, where all * are mutually distinct variables in X and pZ =1
if ¢; contains z;, pZ = 0 if ¢; contains 7;, and xZ otherwise.

We show that, if e satisfies d, then ¢’ € L(P). The following statements hold: (a) e
satisfies d iff there exists an index j (1 < j < m) such that € € L(P;), because |e| = |P;| =
2n+1. (b) For each P; (1 < j <m), a is of the form a;asa; such that |a/, |asl, |as] > 0
and ay € L(P;). (c) For each P; (1 < j < m), it holds that both éAc, ahé € L(P;)
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because of (b). From the (a) and (c), it holds that ¢ € AL(P;)A---AL(P;)A---AL(P,,)A.
Hence, ¢’ € L(P).

Conversely, suppose that e does not satisfy d. From the (a), it holds that (d) € ¢ L(P;)
for every j (1 < j <'m). Furthermore, (e) € ¢ L(P’') for any substring P’ of P containing
an A, because e contains no A. From the conditions (d) and (e), if ¢ € L(P), then at least
one of the two A’s for each occurrence AéA in ¢’ must be substituted to a variable of a P,
in P. Since the number of A’s in €’ is 2m, the remained A’s in €’ to match with all A in P
are at most m. However, P contains only m + 1 A’s, so it is impossible that ¢’ € L(P).
Hence, ¢’ ¢ L(P) and we can conclude that DN F, I RP. O

Theorem 12 URP is not polynomial-time predictable with membership queries, if DN'F

15 not polynomial-time predictable with membership queries.

Proof. Tt is sufficient to show that DN'F,, < um URP for all n > 0. For a DNF formula
d=1V- Vi, let m; (1 <i<m) and 7 be regular patterns Pl pland @y - T, Ty,
respectively. Here, pZ (1 <i < mn,1<j < m)is defined as similar as the proof of

Theorem 11. Then, construct f, g and h as follows:

f(n,s,e) = 6

gn,s,d) = {m,..., ", 7},
e if |e'| = n,

h(n,s,e') = 1 if || < n,
T if || >n.

For each ¢ € {0,1}*, we can check the properties of h in Definition 16 as follows.
Since L(m) = {w € {0,1}* | jw| > n + 1}, if h(n,s,e’) = T, then ¢’ € L(g(n,s,d))(=
L(m)U---UL(my,)UL()). On the other hand, since |7;| =n (1 < j <m) and || = n+1,
L(g(n, s, d)) contains no strings of length < n. So, if h(n, s,e') = L, thene' & L(g(n, s,d)).
If h(n,s,e’) =€, then € ¢ L(m) because |¢/| = n. Thus, ¢ € L(m)U---U L(m,,) and
there exists an index ¢ (1 < ¢ < m) such that ¢’ € L(m;) iff ¢’ is obtained by replacing
the variables in m; with 0 or 1, which is corresponding to a truth assignment satisfying ¢;.
Hence, €' € L(g(n, s,d)) iff ¢ satisfies d.

Furthermore, for each e € {0,1}", e satisfies d iff f(n,s,e) € L(g(n,s,d)). Hence, it
holds that DN F,, <pum URP. O

Since each regular pattern language is regular [35], we can construct a DFA M, such
that L(M,) = L(w) for each regular pattern 7 as follows: Suppose that 7 is a regular

pattern of the form

T =Tog1T109 " Ty 10Ty,
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where z; € X and a; = ald),- --afm € X*. Then, the corresponding DFA M, of m is a
DFA (%,Q, 0, qo, F) such that:

L Q B {qmp%a---ap,lﬂl,th?,...,pgan%.. "QTthp?]la"-apnn‘zna(Jn} and F' = {Qn}a
3. 5(1977,077) :p§+1 and 5(19;7“(1;1) =g¢g;foreach 1 <i<mand1<j<m;—1,
4. (5(p§, a) = p for each a € ¥ such that a # a;_

It is obvious that | M| is bounded by a polynomial in |r|.
By using the corresponding DFAs, we can easily shown that RP <,,m DF.A by con-

structing the following f, g and h for each regular pattern 7:

f(n,s,e) = e,
g(”’ ‘97 ﬂ-) - Mﬂ-’
h(n,s,e') = €.

Then, RP is polynomial-time predictable with membership queries, which is implied by
the result of Matsumoto and Shinohara [23] that RP is polynomial-time learnable with

equivalence and membership queries.

Theorem 13 For each m > 0, U, RP s polynomial-time predictable with membership

queries.

Proof. Since DF A is polynomial-time predictable with membership queries [2], it is suf-
ficient to show that U, RP Jyum DFA. Let m,..., 7, be m regular patterns. Also
let M, = (Q;,%,6;,q5, F;) be the corresponding DFA of 7;. First, construct a DFA
My = (Q1 X+ X Quny 2,0,(q0, -+ q"), Fi x - -+ x F,,) such that 6((q1,...,qm),a) =
(p1y- -+, pm) iff 6;(g;, a) = p; for each a € ¥ and i (1 < i < m). Then, construct f, g and

h as follows:

.f(n7 87 e) = 67
g(na S, {Wla cee ,Wm}) - M7r1,...,7rma
h(n,s,e') = €.
The size of g(n,s,{m,...,mn}) is O(s™) and m is a constant. It is obvious that
L(m)U---UL(my,) = L(Mxg, ... r,.), which implies the result. O
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4.2 Other hardness results

By Theorem 12 in Section 4.1, we can conclude that HEFS(x, *,¢,r) (¢ > 0, r > 1) is not
polynomial-time predictable with membership queries, if neither are DNF formulas. In
this subsection, we discuss the subclasses of HEFS™ (x, k, ¢, ), which are restricted that
all facts contain no variable as in HEFSs, or in even simple EFSs (r = 1).

From the learnability of k-bounded ESEFSs by Sakakibara [33] and HEFS(x, k, t,7) by
Theorem 5, it arises a natural question whether we can replace the predicate membership
queries with the ordinal membership queries. The next theorem claims that it is impossible

preserving efficient learnability.

Theorem 14 For every k,t,r > 1, HEFS™ (%, k,t,7) is not polynomial-time predictable

with membership queries under the cryptographic assumptions.

Proof. 1t is sufficient to show that UDFA <,m HEFS (x,1,1,1) by Theorem 3 and 4.
Let M;,..., M, be DFAs over the same alphabet ¥. Suppose that ¢ € X. For each
M; = (Qi, %, 0;, ¢4, F;) (1 <i <), construct Hy(n, s, M;) € HEFS™ (x,1,1,1) as follows:

1. g(ax) < r(z) € Hy(n,s, M;) if 6;(q,a) = r for each ¢, € Q; and a € ¥;
2. q(c) <€ Hi(n, s, M;) for each final state ¢ € F;.
3. p(z) < qi(z) € Hi(n, s, M;) for each initial state ¢} € Q;, where p & Q; U---U Q,.

Then, construct f, g and h as follows:

f(n,s,w) = we,
g(n,s,{My,...,M.}) = Hi(n,s,My)U---UH(n,s, M,),

w if w' = we
! )
hin, 5,0') = { otherwise.

The size of g(n,s,{Mi,..., M,}) is bounded by a polynomial in the size of all M;’s
(1 < i < r). Furthermore, it holds that (1) w € L(M;)U---U L(M,) iff f(n,s,w) €
L(g(n,s,d),p) for each w € X" (2) if h(n,s,w") = L, then w' ¢ L(g(n, s,d),p), and (3)
if h(n,s,w') = w, then it holds that w' € L(g(n,s,d),p) iff w € L(My) U ---U L(M,).
Hence, it holds that UDFA <p,m HEFS™ (%,1,1,1). O

Recall that every k-bounded ESEFSs are contained in HEFS™ (x, &, k, 1). The following
theorem claims that, if neither the variable-occurrence nor the number of atoms in the
body are bounded, then HEFSs are not polynomial-time predictable even with predicate

membership queries.
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Theorem 15 For every r > 1, HEFS™ (x, %, x, 1) is not polynomial-time predictable with
predicate membership queries, if DN F is not polynomial-time predictable with membership

quertes.

Proof. First, we show that DN F,, <,,mHEFS™ (%, %,%,1) foralln > 0. Let d = t; V- - -Vt,,
be a DNF formula. Then, construct the following EFS Hy(n, s, d):

9(0)

q(1)

HQ(TL,S,d) = p(p%

p(P .. p) < q(p),), -, a(p)

cph) < alpt),..a(pl)

where p‘lj (1 <i<mn,1 < j < m)is defined as similar as the proof of Theorem 11.
Furthermore, Hj(n, s,d) be an HEFS obtained by deleting all atoms ¢(0) and ¢(1) from
the body of each clause in Hy(n, s,d). Then, construct f, g and h as follows:

f(n,s,e) = e,
g(n,s,d) = Hi(n,s,d),
h(n,s,e') = ¢.

Since L(g(n,s,d),p) C {0,1}", it is easy to see that (1) e satisfies d iff f(n,s,e) €
L(g(n,s,d),p) for each e € {0,1}", and (2) ¢’ € L(g(n, s,d), p) iff h(n, s, €') satisfies d for
each € € {0,1}". Hence, it holds that DN'F,, Qpum HEFS™ (%, %, %, 1).

Finally, we consider whether the same result holds even if the membership queries
are replaced with the predicate membership queries. Although we can extend pwm-
reducibility to prediction-preserving reducibility with predicate membership queries ac-
cording to Definition 16, we only discuss the case HEFS™ (x, %, %, 1). Concerned with the
above pwm-reduction DN'F,, <,wm HEFS™ (%, %, %, 1), the difference between MQs and
PMQs is just to ask whether Hj(n,s,d) = q(w) < for w € {0,1}*. Note that the pred-
icate symbol ¢ in H)(n, s, d) denotes the value substituted to a Boolean variable x; in d,
so can generate just 0 and 1. Then, we can extend a membership query mapping h to
a predicate membership query mapping b’ as h'(n, s, p(w)) = h(w); h'(n,s,q(w)) = T if
|lw| = 1; h'(n, s,q(w)) = L if [w| > 1. Hence, the statement holds. O

5 Conclusion

In this paper, we investigated the efficient learnability of a hierarchy HEFS(m, k,t, 1) of
the HEFSs with the equivalence and other queries, where m is the maximum number of
clauses, k is the maximum variable-occurrences in the head, ¢ is the maximum number of

atoms in the body, and r is the maximum arity of predicate symbols.
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We showed three positive results for the learnability of HEFS(m, k, ¢, 7). First, the
class HEFS(x, k, t,r) is polynomial-time learnable with equivalence and predicate mem-
bership queries. This is an extension of Sakakibara’s result [33] for the class ESEFSs.
Second, the more general class is effectively learnable if more powerful queries are allowed
and the termination relation over the predicate symbols is assumed, that is the class
THEFS(>, *, k, x,7) of terminating HEFSs with additional information on the termina-
tion is learnable in polynomial time with equivalence and entailment membership queries.
Third, we showed that the number of queries used in the presented learning algorithm for
THEFS(>, *, k, x, ) is nearly optimal.

The negative results for the learnability of subclasses of EFSs were proved by the
prediction-preserving reduction (with membership query). The class HEFS(x, k., ¢, r) was
shown to be learnable using the above queries but the predicate membership query can
not be replaced by the membership query under the cryptographic assumptions.

Moreover, the class RP is not polynomial-time predictable if the class of DNF formulas
is not polynomial-time predictable, and the class URP is not polynomial-time predictable
with membership queries, if the class of DNF formulas is not polynomial-time predictable
with membership queries. The class U,,, RP of bounded union of regular pattern languages
is polynomial-time predictable with membership queries. It is a strong evidence for the
efficient learnability of the class.

Fig. 1 summarizes the results obtained in this paper. It is a future problem to study the
learnability of the class THEFS(>, x, k, %, r) with equivalence and predicate or entailment
membership queries but without dependency queries. Khardon [19] has recently shown
that function-free k-variable Horn sentences of arity r are polynomial-time learnable in
various active learning models without using termination information. Thus, it would be

interesting to apply his method to the classes of HEFSs.
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