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The problem of counting tilings of a plane region using sfieditiles can often be recast as the problem of
counting (perfect) matchings of some subgraph of an Aztamdnd graptA,, or more generally calculating
the sum of the weights of all the matchings, where the weidla matching is equal to the product of the
(pre-assigned) weights of the constituent edges (assumbd hon-negative). This article presents efficient
algorithms that work in this context to solve three problefirtsding the sum of the weights of the matchings
of a weighted Aztec diamond grapgfy; computing the probability that a randomly-chosen matghihA, will
include a particular edge (where the probability of a matghis proportional to its weight); and generating
a matching ofA, at random. The first of these algorithms is equivalent to @iapease of Mihai Ciucu’s
cellular complementation algorithrﬁl [2] and can be used teesmany of the same problems. The second of
the three algorithms is a generalization of not-yet-pigiéswork of Alexandru lonescu, and can be employed
to prove an identity governing a three-variable generditimgtion whose coefficients are all the edge-inclusion
probabilities; this formula has been usﬂj [3] as the basiagpmptotic formulas for these probabilities, but a
proof of the generating function identity has not hitheréeb published. The third of the three algorithms is a
generalization of the domino-shuffling algorithm presdrite[ﬁ]; it enables one to generate random “diabolo-
tilings of fortresses” and thereby to make intriguing irieces about their asymptotic behavior.

1. INTRODUCTION matching of an Aztec diamond graph of order 3:

1.1. Background / / \
/
/ AN

Let L be the rotated square lattice with vertex §6t j) : \ \
i,j €Z, i+ jis odd, and with an edge joining two vertices \
in the graph if and only if the Euclidean distance between the
corresponding points in the plane 62. Define theAztec \ / /

diamond graphof ordern (denoted byA,) as the induced
subgraph oL with vertices(i, j) satisfying—n <i,j <n, as

(Hereafter, the term “matching”, used without a modifiet] wi
shown below fon = 3.

denote a perfect matching.)

Matchings of Aztec diamond graphs were studie(ﬂn [8], in
the dual guise of domino-tilings (see below for the domino-
tiling dual to the previously depicted matching).

A partial matchingof a graph is a set of vertex-disjoint edges
belonging to the graph, and @erfect matchings a partial o o ,
matching with the property that every vertex of the graph peNote that this is rotated by 45 degrees from the original pic-

longs to exactly one edge in the matching. Here is a perfedi/re presented irf[/8]. That article showed, by means of four
different proofs, that the number of matchings of an Aztec

diamond graph of ordem is 2""+1)/2 (as had been conjec-
tured a decade earlier in the physics Iiteratt@ [10]). One

*Supported by grants from the National Science FoundatiorttemNational ~ Of the proofs of this result (deve]oped by aUthorS Kuper-
Security Agency. berg and Propp) used a geometric-combinatorial procedure
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dubbed “shuffling” (short for “domino-shuffling”). Shufflgn @,

was originally introduced purely for purposes of countihg t

domino-tilings of the Aztec diamond of order but it later - that the probability computation algorithm (presented
turned out to be useful as the basis for an algorithm for sam-  in section 3 and analyzed in section 6) is a reasonably
pling from the uniform distribution on this set of tilings.nA straightforward generalization of lonescu’s unpublished
undergraduate, Sameera lyengar, was the first person teimpl algorithm for the unweighted case,

ment domino-shuffling on a computer, and the output of her . . )
program suggested that domino-tilings of Aztec diamondsex - @nd that the random generation algorithm (presented in
hibit a spatially-expressed phase transition, where thmto section 4 and analyzed in section 7), although alge-
ary between “frozen” and “non-frozen” regions in a random braically more complicated, represents no conceptual
domino-tiling of a large Aztec diamond is roughly circular advance over the unweighted version of shuffling pre-
in shape. A rigorous analysis of the behavior of the shuf- sented by Kuperberg and Propp.

fling algorithm led to the first proof (by Jockusch, Propp, and

Shor ]) .Of the as“ymp_ton_c circularity OT, the boundary loét any one of these algorithms in isolation but the way they fit
frozen region (the “arctic circle theorem?). . :
; t{:)gether in a uniform framework.

Meanwhile, Alexandru lonescu, also an undergraduate & The essential tool that makes generalized shuffling work is
the time, discovered a recurrence relation related to $haffl a orinciple first communicated tg me by Ku erberg which
that permits one to calculate fairly efficiently, for any edg is F\)/er Similar to tricks common in the Iﬁerat%re ongéxactl
in an (unweighted) Aztec diamond graph, the probability tha Y ; ) NI y

solvable lattice models. This principle is a lemma that as-

a random matching of the graph contains the eegdhis e%erts a relationship between the dimer model on one graph

theorem allowed Gessel, lonescu, and Propp (in unpublish . .
work) to prove a conjecture of Jockusch concerning the valu nd t_he dimer model on another, where the two graphs differ
only in that a small patch of one graph (sometimes called a

of this probability whereis one of the four central edgesinthe .7, ) . X
graph. More significantly, the theorem allowed Cohn, Elkies city”) has peen slightly modified in a particular way (a pro-
y ’ ' cess sometimes called “urban renewal”). Urban renewal is a

and Propp I]IS] to give a detailed analysis of the asymptotic owerful trick, especially when used in combination with an

behavior of this probability as a function of the positiorti even more trivial trick called vertex splitting/mergingsuch

edgee as the size of the Aztec diamond graph goes to infinity. o .

During this same period, it had become clear thatgr_aph-rewrmng rul§s are not new to the subject of enumer-
(weighted) enumeration of matchings of weighted Aztec gi-ation of matchlng$, see for instance the article of Colbpurn
amond graphs had relevance to tiling-models other tharﬁ’rovan, and Vert|gan|][5] for a very general approach that

domino-tiling. Notably, Bo-Yin Yang had showi [22] that uses the "wye-delta” lemma in pl?-[(%:e of the “urban renewal”
the number of “diabolo-tilings” of a “fortress of ordat was lemma.) Urban renewal, applied it locations in an Aztec

: : . diamond of orden, essentially converts it into an Aztec di-
given by a certain formula conjectured by Propp (for more OMamond of orden— 1. In this way, a relation is established

this, see section 8). Yang's proof made use of Kuperberg'sr . X ;
formulation of the problem as a question concerning We@hteebetween matchings o, and _matchlngs OAnfl.‘ In partic- .
ular, one can reduce the weighted enumeration of matchings

enumeration of matchings of a weighted version of the Aztec]c iahted Aztec di q h of ordet differ-
diamond graph in which some edges had weight 1 while othef' & Welghted Aztec diamond graph Of oraeto a (differ .
edges had weigh% (see the end of section 5 of this article ently) weighted enumeration of matchings of the Aztec dia-
and the longer discussion in section 8). It was clearly desirmond graph of ordem_— L . . . .
able to try to extend the shuffling algorithm to the context of _The results described in this article were first commu-
weighted matchings, or as physicists would call it, the dime hicated by means of several Iong email messages | sent
model in the presence of non-uniform bond-weights, butet th out to a number of colleagues in 4996' | am greatly
time it was unclear how to devise the right extension. Cisicu’ indebted to Greg Kuperperg, th.) in the Fall .Of 20.00
work [Q] went part of the way towards this, and in particutar i twrned the_se messages into the first draft Of.th's ar_'ucle,
gave a very clean combinatorial proof of Yang’s result. How-and Who. In par_t|cular created_ most of ,the illustrations
ever, it was not clear whether one could efficiently generat thereby introducing me to the joys @istricks). Also,
diabolo-tilings using some extension of domino-shuffling. arald Helfgotts progrgmren (currently a\./a|lable fr_om
The purpose of the present article is to give the details opttp://www.math.wisc.edu/~propp/ see the files
just such a generalization of domino-shuffling into the gahe S+ ¢ ren.h, andren.html) was the first implementa-
context of Aztec diamond graphs with weighted edges. At thdion of th_e ge_neral .algorlthm, and it famhtgted seyereéfui;
same time, my goal is to remove some of the mystery th iscoveries, including phenomena associated with fat®gs

hung about the shuffling algorithm in the original expositio ] Heggott ‘an tlonescu aﬂd '-‘/‘?antr Wer:e three g;’_‘nor}[g
in [E], and to give a exposition of the work of lonescu, which many undergraduate research assistants whose paraaipat

up until now has not been described in the literature at an)zl‘:"?hco_:ltlr'bmeg to mth((;)rk on t|||nq[s;ftheh other memk:jers
useful level of detail. It should be stressed e Tilings Research Group (most of whom were under-

graduates at the time the research was done) were Pramod
- that the counting algorithm (presented in section 2 andAchar, Karen Acquista, Josie Ammer, Federico Ardila, Rob
analyzedin section 5) is essentially a restatement of MiBlau, Matt Blum, Ruth Britto-Pacumio, Constantin Chiscanu
hai Ciucu’s cellular graph complementation algorithm Henry Cohn, Chris Douglas, Edward Early, Marisa Gioioso,

| think that the major contribution offered by this paper @& n
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David Gupta, Sharon Hollander, Julia Khodor, Neelakanc= 2.
tan Krishnaswami, Eric Kuo, Ching Law, Andrew Menard,
Alyce Moy, Ben Raphael, Vis Taraz, Jordan Weitz, Ben
Wieland, Lauren Williams, David Wilson, Jessica Wong, Ja-

son Woolever, and Laurence Yogman. | thank Chen Zeng,
who has made use of the generalized shuffling algori [23]

in his own work on and thereby encouraged me to write up this
algorithm for publication. Lastly, | thank the anonymous re

eree, whose careful reading and helpful comments have made
this a better article in every way.

LetV be the set of triangles, and IEtbe the set of pairs of
triangles sharing an edge. (Pictorially, we may repredest t
elements o¥ by dots centered in the respective triangles, and
the elements oE by segments joining elements \¢fat unit
1.2. Two examples distance.) The graptV,E) is the hexagon honeycomb graph
H,,c- Here, for instance, is the hexagon honeycomb graph
H, 5
Here are two illustrations of the flexibility of the procedsr 222
described in this article. The figure below shows a subgraph
of the Aztec diamond grapAg. This can be thought of as
an edge-weighting of the Aztec diamond graph of order 5 in
which the marked edges are assigned weight 1 and the remain-
ing (absent) edges are assigned weight 0.

v ANERN
/ N Perfect matchings of such a graph correspond to tilingseof th
a,b,c,a, b,chexagon by unit rhombuses with angles of 60 and
120 degrees, each composed of two of the unit equilateral tri
N v angles.
The following figure shows, illustratively, how, ,, can
NN\ avd be embedded in the Aztec diamond gragh ”
S S Y NN
Itis easy to see that the twelve isolated edges all are “€trce S/ NN\
in the sense that every matching of the graph must contain o o
them. When these forced edges are pruned from the graph, J/
what remains is the 6-by-6 square grid. More generally, for
any n, one can assign a, D-weighting to the edges of the ol
Aztec diamond graph of ordem2- 1 so that the matchings s S S

of positive weight (i.e., weight 1) correspond to the match-

ings of the &-by-2n square grid. One can use this correspon- , . - erally. for ana b.c. one can assian a o-weiahtin
dence in order to count matchings of the square grid, deter- 9 Y, Ny, D, ¢, 'gna ghting

o ) S T to the edges of a suitably large Aztec diamond graph so that
mine inclusion-probabilities for individual edges, andge

ate random matchings (for a technical caveat, see section %ﬂe matchl_ngs of positive weight (i.e., W?'ght 1) corregptin .
item 1). e matchings oH,, .. One can use this correspondence in

order to count matchings of the honeycomb graph, determine
The second example concerns matchings of graphs callgdclusion-probabilities for individual edges, and generan-

“hexagon honeycomb graphs”. These graphs have been studem matchings (once again subject to the technical caveat di

ied by chemists as examples of generalized benzene-like hgussed at the beginning of section 9).

drocarbons|]6], and they also have connections to the study

of plane partitions[|4]. To construct such a graph, starhwit

a hexagon with all internal angles measuring 120 degrees and ~ 1.3. Evaluation and comparison of the algorithms

with sides of respective lengtlasb, c,a, b, c, wherea, b, and

C are non-negative integers, and divide it (in the unique way) | have not done a rigorous study of the running-times of

into unit equilateral triangles, as shown below witk= b =  these algorithms under realistic assumptions, but if oneema



the (unrealistic) assumption that arithmetic operatiai®et Wilson’s is known.

constant time (regardless of the complexity of the numbers

involved), then it is easy to see that the most straightfodwa

implementation of generalized shuffling, when applied in an 1.4. Overview of article
Aztec diamond of orden, takes time roughly®® (ignoring
factors of logn). We have found that in practice, shuffling is
extremely efficient. The physicist Zeng has applied the al

gorithm to the study of the dimer model in the presence O1996 e-mail version of the article. Sections 2 through 4 give

random edge-welghtﬂz3]. ) ) algorithms for weighted enumeration, computation of proba
Alternative methods of enumerating matchings of graphgyjjisies. and random generation: sections 5 through 7 diee t
are legion; the simplest method that applies to all IOIan"j‘é[)roofs that these algorithms are valid. The expositoryea
graphs IS the Pfaffian method of Kasteleyn|[12], and ther S to use examples wherever possible, rather than resoetto d
is a variant due to Percuf ]18] (the permanent-determinani.intions of the general situation, especially whererttight
method) that applies when the graph is bipartite. For the Sp&, | cumbersome notation. Section 8 applies the methods o
cial case of enumerating matchings of Aztec diamond graphgpe aricle to the study of diabolo-tilings of fortresseecS

therg are closg to a _dozen different (or at Iegst differentiion 9 concludes the article with a summary and some open
looking) proofs in the literature. One that is particulanigr- problems.

thy of mention is the recent condensation algorithm of Eric

Kuo [E]. Kuo's algorithm appears to be closely related ® th

algorithm presented here, although | have not worked out the

details of the correspondence. It is also worth remarkiranup

the resemblance between Kuo's basic bilinear relation laad t

bilinear relation that appears in section 6 of this artitleth Here is the rule (to be immediately followed by an example)

relations are proved in similar ways. for finding the sum of the weights of all the matchings of an
Once one knows how to count matchings of graphs (or, irf*ztec diamond graph: Given an Aztec diamond graph of order

the weighted case, to sum the weights of all the matchings} Whose edges are marked with weights, first decompose the

there is a trivial way to use this to compute edge-inclusior@raph inton® 4-cycles (to be called “cells” following Mihai

probabilities: apply the counting-algorithm to both theger ~ Ciucu’s coinage[[1]), and then replace each marked cell

inal graph and the graph from which a selected edge has

been deleted (along with its two endpoints). The ratio of

these (weighted) counts gives the desired probability.n o

wants to compute only a single edge-inclusion probability,

this method is quite efficient, and if one uses Kasteleyn's ap

proach, one need only calculate two Pfaffians; however,gf on

wants to compute all edge-inclusion probabilities, it istea

ful to compute all the Pfaffians independently of one angtherby the marked cell

since the different subgraphs are all very similar. Wil@]][

showghow one can (.)r.ganize the calculation more efficiently, z/(wWz+ xy) y/ (Wz+ xy)

exploiting the similarities between the subgraphs. | velie

that Wilson’s algorithm and the approach given here ardyike

to be roughly equivalent in terms of computational diffigult

and numerical stability. The new approach has the virtue of X/ (Wz+Xy) w/(Wz+Xy)

being much simpler to code.

Once one knows how to compute edge-inclusion probabiliand strip away the outer flank of edges, so that an edge-marked
ties, generating a random matching is not hard: one can cyclaztec diamond graph of order— 1 remains. Then (as will be
through the set of edges, making decisions about whether &hown in section 5) the sum of the weights of the matchings
include or not include an edge in accordance with the assaoaf the graph of orden equals the sum of the weights of the
ciated inclusion-probability (whose value in general defee  matchings of the graph of order 1 times the product of the
on the outcome of earlier decisions). The naive way of im-n? (different) factors of the formvz+ xy (“cell-factors”). So,
plementing this, like the naive way of computing all the in- if you perform the reduction procesgimes, obtaining in the
clusion probabilities in parallel, requires many determmta ~ end the Aztec diamond of order O (for which the sum of the
evaluations or Pfaffian-evaluations of highly similar matr weights of the matchings is 1), you will find that the weighted
ces; as in the case of the previous paragraph, Wilkoh [21§um of the matchings of the original graph of oraeis just
has shown how to use this to increase efficiency, resultinghe product of
in an O(N'®) algorithm, whereN is the number of vertices.

Note that in the case of Aztec diamonds¢,= O(n?) and P+ (n—-1)>24.. 422417
N5 = O(n®), so this is the same approximate running-time
as the algorithm given in this article. No algorithm fasteart ~ terms, read off from the cells.

_ The layout of the rest of the article is as follows. Sections
12 through 7 correspond to the original six installments ef th

2. COMPUTING WEIGHT-SUMS: THE ALGORITHM
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Let us try this with the weighted Aztec diamond graph dis-We do it one more time, and we obtain the empty Aztec dia-
cussed earlier, in connection with thex4t grid: mond.
Now we multiply together all the cell-factors:

2° % (3/4)* x (32/9) = 36.

A different example arises when the cells of an Aztec dia-
mond of ordemn are alternately colored white and black, with
all the edges in the white cells being assigned one weht (
and all the edges in the black cells being assigned another
weight ). In this case, a single application of the algorithm
gives an Aztec diamond of order— 1 in which there are
again edges of two different weights, only now the different

weighted edges are intermixed in the cells. However, if one
repeats the algorithm again, one gets an Aztec diamond of or-
dern— 2 in which the alternation of the two weights is as in

the original graph. In this fashion, it is possible to expres
the sum of the weights of all the matchings of the graph in

terms of cell-factors equal toa2, 2b%, anda® + b?. Indeed,
First we apply the replacement rule described above: by specializing these weights with= 1 andb = % we get
a very simple proof of the “powers-of-5” formula proved by
Yang [22], similar to the proof given by Ciuc[] [2].
3. COMPUTING EDGE-INCLUSION PROBABILITIES:
THE ALGORITHM
Let us assume that non-negative real weights have been as-
signed to the edges of an Aztec diamond graph, and let us
define the weight of a matching of the graph as the product of
the weights of the constituent edges. Assume that the weight
ing of the edges is such that there exists at least one match-
ing of non-zero weight. Then the weighting of the matchings
induces a probability distribution on the set of matchings o
the graph, in which the probability of a particular matching
is proportional to the weight of that matching. This is most
N . natural in the case where all edges have weight 0 or weight 1;
ext we strip away the outer layer (note that some of the val; . ) . o
) . then one is looking at the uniform distribution on the setlbf a
ues computed at the previous step are simply thrown away, sQ . o ;
that it is not in fact strictly necessary to have computedthe matchings of the subgraph consisting of the edges of weight
1. In any case, the probability distribution is well-defined
it makes sense to ask, what is the probability that a random
matching (chosen relative to the aforementioned proligbili
distribution) will contain some particular ed@® Here we
present a scheme that simultaneously answers this question
for all edge< of the graph.
What we do is thread our way back through the reduction
process described in the previous section, starting frataror
0 and working our way back up to ordar computing the
edge probability in successively larger and larger weighte
Aztec diamonds graphs; along the way we make use of the
cell-weights that were computed during the reduction pro-
Now we do it again (only this time | will not bother to depict cess. Suppose we have computed edge probabilities for the

the weights that end up getting thrown away): weighted graph of order— 1. To derive the edge probabili-
ties for the weighted graph of order we embed the smaller
4/3 4/3 graph in the larger (concentrically), divide the largermra
into n? cells, and swap the numbers belonging to edges on
opposite sides of a cell (the example below will make this
4/3 413 clearer). When we have done this, the numbers on the edges
are (typically) not yet the true probabilities, but they dan



regarded as approximations to them, in the sense that we caell

add a slightly more complicated correction term that makes
the “approximate” formulas exact. Let us zoom in on a partic-
ular cell to see how it works: Consider the typical cell

These are the approximate, inexact edge-probabilitieBndio

the exact values, we compute that in each of the four cells the
Qeficit 1— p—q-r—sis 1/2. The weights on the edges (all
equalto 1 or Y2 — see second-to-list figure of section 2) give
us creation biases

and suppose that the edges with weightg, y, andz (before
the swapping has taken place) have been given “approximat
probabilitiesp, g, r, ands, respectively. Then thexactprob-
abilities for these respective edges are

(1-p-q-r-swz  (1-p-q-r—sxy (1/2)/(3/4)=2/3

S+ r and
Wz+ Xy WZ+ Xy
q+(1—p—q—r—8)xy p+(1—p—q—f—S)WZ (1/4)/(3/4)=1/3.
WZ+Xy WZ+Xy So we increment the/R’s (and the 0's that are opposite them)
by
The number + p— g —r — swill be called thedeficit asso- (1/2)(2/3)=1/3

ciated with that cell, and in the context of the four precegdin _ 1

inset expressions, it is called tliet) creation ratethe num- ~ and we increment the other 0's by

Egrswz/ (wz+ xy) andxy/(wz+ xy) are called(net) creation (1/2)(1/3) = 1/6,
iases

Applying this to the 4< 4 grid graph, we find that for the °*"""9

weighted Aztec graphs of orders 1, 2, and 3 that we found
(in reverse order) when weountedthe matchings, the edge-
probabilities are as follows: For the order 1 graph, we have

1/2 1/2
1/2 1/2
Embed this in the graph of order 3, and swap the numbers in
We embed this in the Aztec graph of order 2: each cell:

Note that | have put a dot in the middle of each of the four
cells. We swap each number with the number opposite itin its




The four corner-cells have deficit/@&, the other four outer consisting of “creation”, “sliding”, and “destruction”l} can

cells have deficit 23 and the inner cell has deficitl/3 (or  be shown that the complement of the resulting matching (that

surplus+1/3). So we do our adjustments, this time with all is, the graph that remains when the matched vertices and all

creation biases equal tg'2 (except in the corners, where the their incident edges are removed) can be covered by 4-cycles

creation biases are 0 and 1 — see third-to-list figure of@ecti in a unique way (and it is easy to find this covering just by

2): making a one-time scan through the graph). Each such 4-cycle
has weights attached to each of its 4 edges, so we can choose

a random perfect matching of the 4-cycle using the weights
to determine the respective probabilities of the two défer
ways to match the cycle. (Ir||][8], this was called “creatiyn”.
Taking the union of these new edges with the edges that are
already in place, we get a perfect matching of the Aztec dia-
mond graph of ordek.

0 \ Let us see how this works with the-d4 grid (for which we

a have already worked out the reduction process). To generate
a random perfect matching, we start with the empty matching
of the graph of order 0, embed it in the graph of order 1, and
find that the complementary graph of the empty matching is a
single 4-cycle, which we match in one of two possible ways.
In this case, each of the four edges has weigt®, 40 both

matchings have equal likelihood; say we choose

These are the true edge-inclusion probabilities assatvweité
the original graph. That is, if we take a uniform random
matching of the 4« 4 grid, these are the probabilities with *
which we will see the respective edges occur in the matching.
4. GENERATING A RANDOM MATCHING: THE (Here we have used open circles to denote the vertices of the
ALGORITHM graph.) Now we embed this matching in the Aztec diamond
graph of order 2:

Before one can begin to generate random matchings of a
weighted Aztec diamond graph of orderone must apply the o o
reduction algorithm used in the counting algorithm, obtain
ing weighted Aztec diamond graphs of orders 1, n—2, o R . o
etc. But once this has been done, generating random match-
ings of the graph is quite easy. The algorithm is an iterative /

one: starting from a Aztec diamond graph of order 0, one
successively generates random matchings of the graphs of or
ders 1, 2, 3, etc., using the weights that one computed during o . . o
the reduction-process. At each stage, the probabilityeifge
any particular matching can be shown to be proportionaldo th
weight of that matching (where the constant of proportidpal

naturally changes as one progresses to larger and largec Azt
diamond graphs). Neither of the two edges needs to be destroyed, because they

Here is how one iteration of the procedure works. Given g2€/ong to different cells. Replacing each by the opposigeed

perfect matching of the Aztec diamond graph of order1, ' its cell, we get
embed the matching inside the Aztec diamond graph of order o
k, so that you have a partial matching of an Aztec diamond

graph ordeik. (Note that the 4-cycles that were cells in the /

small graph become the holes between the cells in the large . o
graph). In the new enlarged graph, find all (new) cells that

contain two matched edges and delete both edged.|(In [8], thi o o

was called “destruction”.) Then replace each edge in the re-

sulting matching with the edge opposite it in its cell. (][h [8

this was called “shuffling”, although in subsequent talkd an o ¢ o *
articles | prefer to call this step of the algorithm “slidirend

to reserve the term “shuffling” for the compound operation o



The complementary graph has a unique cover by 4-cycles: 4-cycle, obtaining

o AN

O °
o) o) o)
o) . o) . o . o
. o)
o) o) o)
o)

. O . O .
In each 4-cycle, three edges have weigj2 Bnd one has \ /
weight 1, so we are twice as likely to see the one of the o

matchings as the other. Let us suppose that when we choo$@ere is a unique cover of the complement by 4-cycles:
matchings with suitable bias, we get the more likely of the tw

matchings in both cells (as happen®4f the time). Thus we © ©
have
o} . . o}
\ / ° ) ) °
@) ©)
Now we embed the matching in the graph of order 3: As it happens, each edge in the complement has weight 1 in

the (original) weighted Aztec diamond of order 3, so we can
use a fair coin to decide how to match each of the 4-cycles.

5. COMPUTING WEIGHT-SUMS: THE PROOF

@) . . . O
/ \ To prove the claim, we begin with a lemma (the “urban re-

newal lemma”): If you have a weighted gra@that contains
the local pattern

/|

This time we must delete the two central edges, because they
belong to the same cell. After we have done this, we replace
each of the four remaining edges with the opposite edge of its
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(hereA,B,C,D are vertex labels ana,x,y,z are edge weights, e S= 0: In this case our matching & matches all four ver-
with unmarked edges having weight 1) and you de@®\es ticesA, B,C, D outward, and either contains edgeand
the graph you get when you replace this local pattern by z or contains edges andy. These two cases must be
lumped together. Lep denote the product of the edges
of all the weights of the other edges of the matching
(not countingw, x,y,2). We find that two matchings of
G, of weightwzQandxyQ, are associated with a single
matching ofG’ of weightQ. The ratio of the weights of
the two matchings of to the single matching o®’ is
WZ+ XY.

This completes the proof of the lemma.

Now, to prove the Aztec reduction theorem, suppose we
with have a weighted Aztec graph of order

W = z/(wz+ Xy) X =y/(Wz+Xxy)
y = x/(Wz+Xxy) Z = w/(wz+xy),

then the sum of the weights of the matchings@®fequals

wz+ xy times the sum of the weights of the matchingszof

The proof will be by verification: For each possible sulzet

{A,B,C,D}, we will check that the total weight of the match-

ings of G in which the vertices irsare matched with vertices

inside the patch and the vertices(i, B,C,D} \ Sare matched

outside the patch equalgz+ xy times the total weight of the

matchings ofG’ in which the vertices ir§ are matched with

vertices inside the patch and the vertice$AB,C,D}\Sare  (Heren = 3 and the weights are not shown.) We begin our
matched outside the patch. As it turns out, 10 of the=216  reduction by splitting each vertex into three vertices:
cases are trivial, and of the remaining 6, four are related by

symmetry, so it comes down to three cases.

e S={AB}: In this case our matching @& matchesA,B
inward andC,D outward, so it must contain the edge
of weightz. This matching ofG is associated with a
matching ofG’ in which A andB are matched (inward)
to each other via an edge of weight andC andD
are matched outward just as before. The ratio of the
weight of the (given) matching d& to the (associated)
matching ofG’ is z/w = wz+ xy.

e S={A B,C,D}: In this case our matching & matches all
four verticesA,B,C,D inward. This matching is asso-
ciated with two matchings d®', one of which matches
A with B andC with D and the other of which matches
A with C andB with D (all edges outside of the patch
remain as before). If we l&) denote the weight of the
given matching of5, one of the two derived matchings
of G’ has weightv'ZQ and the other has weigkly' Q.
The combined weight of the two matchings is

(WZ +XY)Q = Q/(wz+Xy),

It is easy to see that this vertex-splitting does not chahge t
so the ratio of the weight of the single (given) matching sums of the weights of the matchings, as long as the new edges
of G to the two (associated) matchings@fiswz+xy.  we add are given weight 1.
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Now we apply urban renewal in? locations to get a graph this graph. Then one gets an Aztec diamond graph in which
of the form roughly half of the edges have weight 1 and the rest have
weight 1/2, with the two sorts of cities alternating in checker-
board fashion. The same techniques that were used above can
also be applied here to allow one to conclude that the number
of matchings of such a graph is a certain power of 5 (or twice
a certain power of 5). The “5” comes from the cell-factor
(1)(1) + (1/2)(1/2) (when multiplied by 4), just as (in the
unweighted Aztec diamond theorem) the “2” comes from the
cell-factor(1)(1) + (1)(1). In short, the proof of Yang'’s theo-
rem becomes a near-triviality (just as it is for Ciucu’s noeth

[2D).

6. COMPUTING EDGE-INCLUSION PROBABILITIES:
THE PROOF

In this section | will prove that the iterative scheme for com
puting these probabilities that was described earlier does
fact work (at least when all edge-weights are non-vanishing
To start things off we will need a lemma: This lemma s a gen-
with new weightsw/, X, y, Z replacing the old weight®, X,  eralization of a proposition originally conjectured by Rém-

y, z (If one were attempting a literal description of the algo-dru lonescu in the context of Aztec diamond graphs, and was
rithm, one would want the weight-variables to have subserip proved by Propp in 1993 (private e-mail communication).
i, j ranging from 1 tan.) Here is the coup de grace: The pen-  Let G be a bipartite planar graph and &B,C,D be four

dant edges that we see must belongteryperfect matching  vertices ofG that form a 4-cycléABDC bounding a face o®:
of the graph, so we can delete them from the graph, obtaining

an Aztec graph of order— 1:

3

The theorem now follows.
One can prove the “fortress” theorem (sEe [2]) by similar
means. Here, the initial graph is

Assume the edges of this graph are weighted in some fashion.
Define G,z as the weighted graph obtained by deleting ver-
ticesA andB and all incident edges; all other edges have the
same weight as its. DefineG,, Ggp, Gp, andGpgp Sim-

ilarly. For any edge-weighted gragh, let M(H) denote the
sum of the weights of the matchingsidf Then the identity

we will prove is

M(G)M(Gppcp) = M(Gpg)M(Gep) +M(Gpc)M(Ggp)-

Note that if we superimpose a matching®and a match-
ing of Gpgp, We get a multiset of edges & in which ver-
ticesA,B,C,D get degree 1 and every other vertex gets degree
2. The same thing happens if we superimpose a matching
of G,g and a matching o6, or a matching ofG,- and a
matching ofGgp. Call an edge-multiset of this sort a “near 2-
factor” of G. | will prove that equality holds above by showing
One’s first impulse is to remove the pendant edges, but it ishat each near 2-factér makes the same contribution to the
better still to apply urban renewal to eveogher “city” in left side as it does to the right side.
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Pick a specific near 2-factdF of G; it consists ofk  probability that a random matching & contains both edge
closed loops plus some paths that connect up the four veAB and edgeCD is (psxy+ qrwz) /xy, while the correspond-
ticesAB,C,D in pairs. It is impossible that the vertices are ing probability for edge#C andBD is ( psxy+ qrwz) /wz (To
paired as{A,D} and{B,C}, since the graph is planar. Hence see that this follows from the formula f&*, note that their
the vertices pair as eithgiA,B} and {C,D} or {A,C} and  sum is indeedwz+ xy)(ps/wz+ qr/xy) = P*, and that their
{B,D}. Without loss of generality, let us focus on the former ratio is wz/xy, which is the ratio of the weights of any two
case. Sinc& is bipartite, the path from to Bwill containan  matchings that differ only in that one contaiA8 andCD
odd number of edges, as will the path fr@no D. Itis easy while the other contain&C andBD.)
to verify the following three claims: Now let us go back and give urban renewal a fresh look.

Here are the graphs andG’, with edges marked with both

1. There are 2ways to split upF as a matching 08 to-  hqir weight and their probability (in the format “weightrfg-
gether with a matching dBpgcpy ability]”). Here isG:

2. There are ®ways to split upF as a matching 06,5
together with a matching @& p.

3. There areno ways to split upF as a matching 06,
together with a matching @®gp,.

Moreover, one can check that each near 2-factor that pars th
vertices ag A, B} and{C, D} contributes equal weight to both
sides of the equation. Clearly the same is true for the near
2-factors that pair the vertices the other waywith C andB

with D). This completes the proof.

(Note: Another way to prove this lemma is to use the face
that the number of perfect matchings of a bipartite planplgra
with 2nvertices can be written as the determinant ofidsy-n
Kasteleyn-Percus matri 8]. Then the lemmais seent . . -
be a res)t/atement of Dodgshoﬂ)n]densatﬁn (71: see)) [19 The unmarked edges have weight 1, and their probabilities

It will be convenient for us to restate this lemma in a some-2"€ 1~ P— 9 1-q-setcetera)
what different form. Assume that the graph has at least one Here isG:
matching of positive weight. Let, X, y, andz denote the re-
spective weights of the edgé8, AC, BD, andCD, and letp,

g, r, ands denote the probabilities of these respective edges
being included in a random matching Gf (where as usual
the probability of an individual matching is proportionalits
weight):

Recall that we are in the situation where we knpiyd/, r’,
ands, and are trying to computg, g, r, ands. Recall also
that

W = z/(wz+ Xxy) X =y/(Wz+Xy)

Y = x/(wz+Xxy) Z = w/(Wz+Xy).
The probability P* that a random matching ofs has
an alternating cycle at fac&BDC (i.e., either includes Here is our plan: First, we will work out the probabilities
edges AB and CD or includes edgesAC and BD) is  of all the local patterns i&&’. Then we will use the urban re-
equal toM(Gpgep)(Wz+ Xxy)/M(G). Since we havep =  newal correspondence to deduce the probabilities of thad loc
WM(Gpg)/M(G), g =XM(Gpc)/M(G), r =yM(Ggp)/M(G),  patterns inG. Finally, we will deduce the probabilities of the
ands = zM(G.p)/M(G), the preceding lemma tells us that, individual edges irG.
in the event thatv,x,y,z are all non-zero, the probabili§* is | will write p,q,r',s W Xy ,Z asP,Q,RSW,X,Y,Z, to save
equal to(psxy+qrwz) (L + L ). It follows from this that the  eye-strain. | will also write\’ = XY PS+WZQR

xy T wz
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Let S denote the set of vertices ifA,B,C,D} that are  of the domino-shuffling procedure describedﬁh [8]. The op-
matched to a vertex inside the patch. Then here are the reration of removing from a matching those matched edges

spective probabilities of the local patternsGf that belong to the same cell as another matched edge corre-
sponds to the process of removing odd blocks to obtain an
S={AB,C,D}: (WZ+XY)A' /WXYZ odd-deficient tiling; the operation of swapping the remagni
S={AB}:P—-A"/XY edges to the opposite side of the cell corresponds to the pro-

_ i / cess of shuffling dominos (resulting in the creation of an-odd
S={AC}:Q-A/WZ deficient tiling of a larger Aztec diamond); and the opematio
S={B,D} :R-A"/WZ of introducing new edges corresponds to the creation of new
S={C,D}:S—A//XY 2 x 2 blocks.

’ Next, let us recall that a perfect matching of the Aztec di-

— . !

S={}:1-P-Q—R—-S+ (WZ+XY)A"/WXYZ amond graph of ordan determines am x n alternating-sign
matrix, as was first described |ﬂ [8]. Specifically, for each

(The second formula is obtained by recalling that the probaof the n2 cells of the graph, write down the number of edges

bility of edgeAB being present in a random matching, which
can happen in two ways according to whether or not €ige from that cell that participate in the matching and subtfact

is present, must bi; the last formula is obtained by recalling For instance:

that the probabilities of the six local configurations mushs
tol.)
It follows from the last of these, and the urban renewal cor- 0 +1 0 0
respondence, that the probability that a random matchi® of
contains two edges from the 4-cy@®8CDis

1-P-Q—R—S+ (WZ+XY)(PS/WZ+ QR/XY). \ \ \
The probability that a random matching Gfcontains edges \ \
ABandCD must be equal to this quantity times
wz/(wz+xy) =WZ/(WZ+ XY), / /
which gives
(WZ/(WZ+XY))(1—P—Q—R—9) + PS+QRWZ/XY). Q\\b Q\\b O//p

The probability that a random matching Gf contains edge
AB but not edgeCD (by another application of the urban re- 1 0 0

0 +
newal correspondence) equals the probability that a random
matching ofG’ contains edg€&D but not edgeAB, which is
S—PS-QRWZ/XY). Label the weights of the edges of the cell in roand column
Adding, we find that the probability that a random matching] With W;, %;;, ¥;;, andz;, thus:
of G contains edgéBiis
wz

Wz+ Xy

S+ (1-P—Q—R-9).

Thus we conclude that

wz
=S+ 1-P-— R-S
P wz+ xy( Q- ) Define also a “cell-weight”
wherewz/(wz+ xy) is the creation bias anddP—- Q—R-S Dij = W Zj +X;Y,;

is the deficit. The formulas far, r, ands follow by symmetry.

(these weights are the same as the cell-factors considared e
lier in this article). Call two edges in a matching “pardllil
The bias in the creation rates for generalized shuffling was
Now | will show that (generalized) domino-shuffling chosen so that the ratio between the probabilities of choos-
works. ing one pair of parallel edges versus anothez yersusxy)
First, let us note that the algorithm for generating randormis equal to the ratio of the weights of the resulting matching
matchings that was presented earlier remlly generalization Consequently, if two perfect matchings of the Aztec graph of
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ordern are associated with the samg nalternating-sign ma- the triangles alternately black and white, and removesall t
trix, then theirelativeprobabilities are correct. So all we need black (resp. white) triangles that have an edge on the top or
to do is verify that the aggregate probability of these match bottom (resp. left or right) boundaries of the array. Heoe, f
ings (for fixed alternating-sign matri) is what it should be. instance, is a fortress of order 4:

To do this, it is convenient to introduce certain partial
matchings of Aztec diamond graphs (analogous to the odd-
deficient and even-deficient domino-tilings considere@]m [

For the Aztec diamond of ordex we consider partial match-
ings obtained from perfect matchings by removal of all par-
allel edges; that is, pairs of edges that belong to the same
cell. For the Aztec diamond of order— 1, we consider par-
tial matchings obtained from perfect matchings by remofal o
all pairs of edges that belong to the same “co-cell” (defined
as the space between four adjoining cells). The “destmittio
phase of generalized shuffling converts a perfect matching o
the graph of orden— 1 into a partial matchiniy! of the graph

of ordern— 1, the “sliding” phase converts that partial match-
ing into a partial matching/’ of the graph of orden, and

the “creation” phase converts that partial matching intea p
fect matching. Note tha¥l determinedv’ uniquely, and vice
versa.

Define the aggregate cell-weighis,, D,, andD _ to be
the products of those cell-weighy J- associated with loca-
tions in the Aztec diamond at whiehl, 0, and-1 appear, re-
spectively (so thaD, DD _ is just the product of all the cell-
weights). The following three claims can be readily checked
the sum of the weights of the perfect matchings of the Azteq\whenn is even, the two ways of coloring the triangles lead
diamond of ordem that extend the partial matching’ is 5 fortresses that are mirror images of one another; however
equal toD, times the weight oM’ itself (defined as the prod- \yhenn is odd, the two sorts of fortresses one obtains by re-
uct of the weights of its constituent edges); the weight/of  1qying the colored triangles in the specified fashion are gen
is equal toD,, times the weight oM (defined in terms of the  inely different.) The graph dual to a fortress (with vestic
weighting of the graph of order—1); and the weight oM is ¢orresponding to the isosceles right triangles) is compose
equal toD _ times the sum of the weights of the perfect matCh'4-cycIes and 8-cycles. (If one removes the pendant edges fro

ings of the Aztec diamond of order-1 that extend the partial ~ the final figure in section 5 one obtains the graph dual to a
matchingM. (This relationship between cell-weights and thefgtress of order 3.)

entries of alternating-sign matrices was originally maldeaic
in the work of Ciucu [iL].)

The upshot is, the sum of the weights of the perfect match
ings of the Aztec diamond graph of ordethat are associated
with the alternating-sign matri& equals

We call the small isosceles right triangl@sonobolos
Given our tiling of the fortress by monobolos, we can (in
many different ways) form a new tiling with half as many
tiles by amalgamating the monobolos in pairs, where the two
monobolos that are paired together are required to be adja-

Dy4Dy5...Dan cent. These new tiles a@abolos ar_ld come in two di_fferent_
i ’ shapes: squares and isosceles triangles. (Note: in the lite
times the sum of the weights of all the perfect matchingsef th ature on tilings, such aﬂ [9], a third kind of diabolo is rec-
Aztec diamond graph of order— 1 that are capable of giving ognized, namely a parallelogram with angles of 45 and 135
rise to it under shuffling. This factor is independent?oflt ~ degrees with side-lengths in the ratio #/2; however, these
follows that if one takes a random matching of the smallerdiabolos do not arise in the context being discussed here.)
graph (in accordance with the edge weights given by urban A tiling obtained from the original monobolo-tiling of the
renewal) and applies destruction, shuffling, and creatiwm  fortress by amalgamating adjacent pairs of monobolos will b
one will get a random matching of the larger graph. called, for (comparative) brevity, a diabolo-tiling of afi@ss.
It should, however, be kept in mind that we are tacitly limgfi
ourselves to those tilings that can be obtained by the afore-
8. DIABOLO-TILINGS OF FORTRESSES mentioned process of amalgamation; or, if one prefers to use
the dual picture, tilings that correspond to perfect maighi

Consider am-by-n array of unit squares, each of which of the “squares and octagons” graph that is dual to the @igin
has been cut by both of its diagonals, so that there afe 4 tiling by monobolos. For instance, the first of the following
isosceles right triangles in all. A region calledatress of two tilings of a fortress of order 3 by means of tiles that are
order nis obtained by removing some of the triangles that arediabolos is an example of what we mean by a “diabolo-tiling
at the boundary of the array. More specifically, one colorsof a fortress”, but the second is not, because the four center
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diabolos are not amalgams of the required kind: “north-going” if i + j + nis odd and “south-going” otherwise,

going” if i + j +nis odd and “west-going” otherwise (this
nomenclature is taken fronﬂ[8]). The kind of weighting we
are considering can be described as follows:

1. Each horizontal edge has weight 1 or weightcord-
ing to the parity of itsx-coordinate. (That is, if two
such edges are related by a unit vertical displacement,
they have same weight, but if they are related by a unit
horizontal displacement, their weights differ.)

2. Each vertical edge has weight 1 or weigtstccording
to the parity of itsy-coordinate.

3. If nis 1 or 2 (mod 4), the four extreme-most edges (the
northernmost and southernmost horizontal edges and
the easternmost and westernmost vertical edges) have
weightt; if nis 0 or 3 (mod 4), those four edges have
weight 1.

(These four situations are considered together becau$e eac
is linked to the next by the shuffling operation. Technigally
this scheme only handles fortresses of odd order, and indeed
only handles half of those, but the other case are quiteaihil
We define a generating functidt(x,y, z) in which the coeffi-
cient ofX'y!Z" (with k > 0, i+ j+k odd, andi| + |j| < n)is

the probability that a random matching of the Aztec diamond
graph of ordem, chosen in accordance with the probability
distribution determined by the weight contains a horizon-

tal bond joining verticegi — 1, j) and(i, j), wherei+ j+n

To count the diabolo-tilings of a fortress (understood i th 1S 0dd. (We are limiting ourselves to northgoing horizontal

above sense), one replaces the underlying monobolo-tifing bonds but this limitation is unimportant, since by symmetry

its dual graph and adds pendant edges along the boundaFg,e other thre.e_sortslof bpnds havg the same beh_awor.) Note

obtaining a graph like the one shown at the end of sectiofat the coefficients in this generating function (viewedaas

5. One can then apply the urban renewal lemma to turn thi§OWer Series in the variablesy, andz) are polynomials i,

into an Aztec diamond graph with edges of weight 1 arranged@nd that for eachm, only finitely many pairs, j contribute a

in cells that alternate, checkerboard-style, with cellogen NON-zero term t&(x,y, 2).

edges have weigh%. In this fashion one can derive Yang’s  The presence dfin the pattern of edge-weighting makes it

formula. natural to divide the north-going edges into four classes, a
Now, however, we set our sights higher. In section 6, wecording to how they “sit” relative to the weighting (cellsear

gave a scheme for calculating the probability that a giverweighted in two patterns whamis odd and in two other pat-

edge of a weighted Aztec diamond graph is included in a ranterns whem is even). Correspondingly, we wrif(x,y, z)

dom matching, where the probability of a matching is propor-as a sum of four generating functions, each corresponding to

tional to its weight. This in fact lets us write down an exjtlic one of the four classes of north-going edges. We call these

power series whose coefficients are precisely those imrlusi  generating functiong, F, G, andH. We also introduce gen-

probabilities. We will show how this goes in a slightly more erating functions whose coefficients are the net creatitasra

general setting, where the edges of weiéhatre replaced by of the four kinds of differently-weighted cells, which we-de

edges of weight. note bye, f, g, andh. E ande are associated with cells in
Here we will find it convenient to use a rotated and shiftedwhich all edges have weight F and f are associated with

version of the Aztec diamond graph of ordgerwhose edges cells in which all edges have weight&;andg are associated

are all either horizontal or vertical (rather than diagpnahe  with cells in which horizontal edges have weiglaind vertical

vertices of this graph are the integer poifits)) where|i + edges have weight 1; atlandh are associated with cells in

%| +]j+ %| < n; the edges of the graph join vertices at distancewhich horizontal edges have weight 1 and vertical edges have

1. The horizontal edge joining —1,j) and (i, j) is called weightt. Generalized shuffling implies the following alge-
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shape of the curve that separates the tropical zone from the
temperate zone.

Suppose we put coordinates on the fortress so that the cor-
ners are at0,2), (0,—2), (2,0), and(—2,0). Then it appears
that the boundary of the frozen region is given by one real
component of the curve

4008 + 400y2 + 3400¢%y° 4 3400/°° + 8025¢y*
+ 10006 4 1000/° — 17250¢%y? — 17250¢%y* — 1431x*
— 1431y* + 258122 — 3402 — 34022 + 729=0

These can be solved simultaneously, giving us four threegthe “octic circle”) and that the boundary of the tropicajian

variable generating functione(x,y,z), f(x,y,2), 9(xy,2),
h(x,y,z). We can then solve

E =Hyz+ %ez F:Gyz+%fz

2

is given by the other real component. Henry Cohn and Robin
Pemantle, as of this writing, are working on a proof of these
two assertions, by giving an asymptotic analysis of the -coef
ficients of the generating functions obtained via genezdliz
shuffling.

H=Fyz+ 1 hz

t
G=Eyz+ ——0z
er1+tZg 1+12

and obtain (messy!) generating functida&,y, z), F(x,Y, 2),
G(x,Y,2), H(X,Y,2). The sumE +F + G+ H, multiplied byz,

9. LAST THOUGHTS

Here are some last thoughts concerning urban renewal,

is the desired generating functiéh It is too messy to write domino-shuffling et cetera.

down here, but it does at least in principle give one a way to

understand what is going on with random diabolo-tilings of1. This article has glossed over an important point, namely,

large fortresses.

We can also use generalized shuffling to generate a random
tiling of a large fortress. Recall that when this was done for
Aztec diamonds in the early 1990s, a new phenomenon was
discovered: the “arctic circle” effecmll]. Specificallyjth
probability going to 1 as the size of the Aztec diamond graph
increases, a random tiling divides itself up naturally ifite
regions: four outer, “frozen” regions in which all the domi-
nos line up with their neighbors in a repeating pattern, and a
central, “temperate” region in which the dominos are jurdble
together in a random-looking way. One feature of the tem-
perate zone, rigorously proved iﬁv[B], is that the asymptoti
local statistics, expressed as a function of normalized- pos
tion, are nowhere constant; that is, the probability of rsgei
particular local pattern of dominos in a random tiling chesg
as one shifts one view over macroscopic distances (i.e., dis
tances comparable to the size of the Aztec diamond graph).
Strikingly, the boundary of the temperate zone, rescadetld
in probability to a perfect circle.

One might expect random diabolo-tilings of fortresses to
exhibit much the same sort of phenomena, albeit with the cir-
cular temperate zone probably replaced by a temperate zone
of some other shape. However, when the generalized shuf-
fling algorithm was used to generate random tilings of large
fortresses, a startling new phenomenon appeared: witkin th
very inmost part of the fortress, local statisticsrat appear
to undergo variation. That is to say, within this region, deith
the “tropical astroid”, the local statistics of a randormty ap-
pear to be shielded from the boundary, so that the (norntflize
position of a tile relative to the boundary does not matter (a
long as it stays fairly close to the center of the region).- Fig
ure[1
200; the square diabolos have been shaded, to highlight the

anomalies that arise when one attempts to apply the al-
gorithm to Aztec diamond graphs in which some edges
have been assigned weight 0. Even if the weighted
Aztec diamond in question has matchings of positive
weight, it is possible that somewhere in the reduction
process one will encounter cells with cell-weight 0; this
leads to blow-up problems when one attempts to divide
by the cell-weight. In such a case, one should replace
edge-weights equal to 0 in the original graph with edge-
weights equal t&; the result will be a rational function

of € whose limiting value ag goes to zero is desired.
For this purpose, every rational function efcan be
written as a polynomial or power series énand re-
placed by its leading term, so calculations are not as
bad as one might think. This will work as long as the
original weighted Aztec diamond graph has at least one
matching of positive weight.

2. These algorithms arose partly in response to work of Ku-

perberg (seem6]), which took a more algebraic per-
spective on enumeration, using the approach pioneered
by Kasteleyn ]. Kasteleyn’s method requires mak-
ing some arbitrary choices that end up not affecting
the final answers to meaningful enumerative questions.
This new work arose out of an attempt to find the in-
variant combinatorial core of the Kasteleyn method. In
particular, graph-rewriting is a combinatorial subsgtut
for algebraic operations like row-reduction applied to
a Kasteleyn matrix. However, this analogy was never
worked out in any kind of rigorous detail. It would be
helpful to see this explained.

shows a random diabolo-tiling of the fortress of order3. Continuing the above remark: One strength of the alge-

braic approach, exploited by Kenydn]13] and others, is
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Figure 1: A fortress of order 200 randomly tiled with diab®lo

that edge-inclusion probabilities, and, more generally, son’s condensation schenﬂz [7] that permits one to ef-
“pattern-occurrence probabilities”, can be expressed in ficiently compute the inverse of a matrix and not just
terms of determinants of minors of the inverse of the compute its determinant.

Kasteleyn matrix. Here again, the answer must be in-
dependent of the arbitrary choices that were made it. Generalized shuffling bears a strong resemblance to an al-

forming the matrix. So it is natural to hope that there gorithm described in recent work of Vienndt [20].
will be a similar canonical scheme for calculating such have not studied the matter deeply enough to be able
pattern-occurrence probabilities as well. This may be to identify the relationship, but | strongly believe that

similar to the problem of finding an extension of Dodg- the resemblance is more than coincidental.



5. It would also be desirable to extend urban renewal to

matchings ohon-bipartite planar graphs. This is equiv-
alent to asking for routinized matrix-reduction schemes
for Kasteleyn’s Pfaffians.

6. As described in|]|3], lonescu’s recurrence gives rise to edge

(1]
(2]

(3]

[4] Henry Cohn, Michael Larsen and James Propp, The shape dfl5] Eric

(5]

(6]

(7]

(8]

(9]

inclusion probabilities for uniformly-weighted perfect
matchings of Aztec diamond graphs, and it is observed
that if two edges, € are close to one another (relative
to the overall dimensions of the large Aztec diamond
graph they both inhabitland eand € occupy identi-
cal positions within their respective cells (i.e., both are
either the northwest, northeast, southwest, or southeast
edges in their cells), then the edge-inclusion probabili-
ties fore and€ are very close numerically. Indeed, this
phenomenon is a rigorously-proved consequence of the
detailed analysis given irﬂ[3]. However, it would be
good to have a conceptual explanation for this continu-
ity property. In particular, it seems plausible that the
recurrence relation for edge-inclusion probabilities has
the property of smoothing out differences. A clear for-
mulation of such a smoothing-out property, and a rigor-
ous proof that it holds, would be very desirable, since it
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might lead to a proof that this kind of continuity prop-
erty holds for lozenge tilings of hexagons. (Numeri-
cal evidence supports this continuity conjecture, but the
method used in [4] does not permit one to draw conclu-
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7. As is explained in|]]8], enumeration of perfect matchings of

Aztec diamond graphs corresponds to “2-enumeration”
of alternating-sign matrices, where the weight assigned
to a particular ASM is 2 to the power of the number of
—1's it contains. One can more generally consiger
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and 3-enumeration of ASMs leads to interesting exact
formulas (see e.gL_UL?]). Could shuffling be extended to
give a scheme for sampling from the set of ASMs with
uniform distribution or more generally acgweighted
distribution?
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