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Abstract

Machines whose main purpose is to permute and sort data are

studied. The sets of permutations that can arise are analysed by means

of finite automata and avoided pattern techniques. Conditions are

given for these sets being enumerated by rational generating functions.
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1 Introduction

From the earliest days of Computer Science abstract machines have been
used to model computations and categorise them according to the different
resources they require. In this paper we consider a new type of machine
that is suited to modelling computations whose sole or main effect is to
permute data. Unlike most classical machines these new machines have an

1

http://arxiv.org/abs/math/0209022v1


infinite input alphabet whose symbols form the data that is to be permuted.
Despite this we shall show how the theory of finite automata can be deployed
in their analysis.

A permuting machine is a non-deterministic machine with the following prop-
erties:

1. it transforms an input stream of distinct tokens into an output stream
that is a permutation of the input stream,

2. it is oblivious to the values of the input stream tokens,

3. it has a hereditary property: if an input stream σ can be transformed
into an output stream τ and σ′ is a subsequence of σ whose symbols
transform into the subsequence τ ′ of τ , then it is possible for σ′ (if
presented as an input to the machine in its own right) to be transformed
into an output stream τ ′.

Examples

1. A riffle shuffler divides the input stream into two segments and then
interleaves them in any way to form the output stream.

2. A stack receives members of the input stream and outputs them under
a last-in-first-out discipline.

3. A transportation network [1] is any finite directed graph with a node to
represent the input stream and a node to represent the output stream.
The other nodes can each hold one of the input objects and the objects
are moved around the graph until they emerge at the output node.

The oblivious property of permuting machines allows us to name the input
tokens 1, 2, . . . , n (in that order) in which case the output will be some per-
mutation of 1, 2, . . . , n. In this way we can consider a permuting machine
to be a generator of permutations (usually, because of the non-determinism,
generating many of each length). There is another point of view which is
sometimes more useful where we consider the input stream to be some per-
mutation of 1, 2, . . . , n and ask whether the machine is capable of sorting the
tokens (so that they appear in the output stream in the order 1, 2, . . . , n).
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These two viewpoints are equivalent since a machine can generate a partic-
ular permutation σ if and only if it can sort the permutation σ−1.

However, it is the hereditary property which allows non-trivial properties of
permuting machines to be found because of a connection with the combi-
natorial theory of involvement and closed sets of permutations. Formally, a
permutation π is said to be involved in another permutation σ (denoted as
π � σ) if π is order isomorphic to a subsequence of σ. For example 231 is
involved in 31542 because of the subsequence 352 (or the subsequence 342).
We also say that σ avoids π if π is not involved in σ.

Permutation involvement has been an active area of combinatorics for over
10 years although it surfaced long before that in data structuring questions
on stacks, queues and deques (see [7, 9, 10]). Involvement is a partial order
on the set of all permutations and is conveniently studied by means of order
ideals called closed sets. A closed set X of permutations is one with the
property that σ ∈ X and π � σ imply π ∈ X . The connection between
permuting machines and closed sets is via the following result which follows
from the definitions.

Proposition 1 The set of permutations that a permuting machine can gen-
erate, and the set that it can sort, are both closed.

In classical automata theory machines are associated with the languages they
recognise. The above proposition suggests that the appropriate associated
language of a permuting machine is the closed set of permutations that it
can generate. We will study various permuting machines and their associated
closed sets, and will show the utility of the permuting machine paradigm as
a tool for advancing the theory of permutation involvement. Before giving
further details of our results we recall some key concepts about permutation
involvement.

A closed set X is, by definition, closed “downwards”. But that is equivalent
to its complement XC being closed “upwards” (σ ∈ XC and σ � τ imply
τ ∈ XC). Obviously, XC is determined by its set of minimal permutations
which we denote by B(X ) and call the basis of X . Clearly

X = {σ | σ 6∈ XC} = {σ | π 6� σ for all π ∈ B(X )}

is determined by its basis. By definition, B(X ) is an antichain in the in-
volvement order and conversely every antichain has the form B(X ) for some
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closed set X . The bases of the closed sets of permutations generated by the
machines in examples 1 and 2 above are {321, 2413, 2143} and {312} respec-
tively. The closed sets that arise in practice are generally infinite so it is
clearly significant to know when a finite description is available by means
of the basis. Indeed, many combinatorial enumeration investigations begin
from some particular finite basis and study properties of the closed set that
it defines ([4, 11]). We let A(B) denote the closed set whose basis is the
antichain B; in other words

A(B) = {σ | β 6� σ for all β ∈ B}

Given a closed set X (or a permuting machine that defines it) we would like
to be able to solve

• The decision problem: given a permutation σ decide whether σ ∈ X
(in linear time if possible),

• The enumeration problem: determine, for each length n, the number
of permutations in X ,

• The basis problem: find the basis of X , or at least determine whether
the basis is finite or infinite.

In this paper we shall show how to exploit the classical theory of finite au-
tomata to make progress on these problems. To do this we have to over-
come the difficulty that this theory deals with strings over a finite alphabet,
whereas the strings of X are written in the infinite alphabet 1, 2, . . .. There-
fore we shall look for encodings of the permutations in X as strings over
a finite alphabet (normally [k] = {1, 2, . . . , k}) and hope to prove that the
language of such encodings is regular (or to find conditions under which this
is so). Once we have proved the regularity of such a language we can appeal
to two well-known facts: that regular languages have linear time recognisers,
and that the generating function (the formal power series whose coefficients
give the number of sequences of each length) is a rational function.

Of course this approach cannot be expected to succeed in all cases if for no
other reason than that closed sets do not always have rational generating
functions. Nevertheless, in Sections 2 and 3, we shall give two wide classes of
closed sets (and permuting machines) which show that the approach can have
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significant successes. In particular we produce infinite families of closed sets
all of whose finitely based closed subsets have rational generating functions.
Our results therefore link to the many recent papers where particular closed
sets have been enumerated (for example, [3, 5, 8]). In the final section we
indicate how we hope our approach may be extended.

We conclude this section by recalling some basic facts about transducers.

For our purposes a transducer is essentially a (non-deterministic) finite au-
tomaton with output symbols (from an alphabet Γ) as well as input symbols
(from an alphabet ∆). We allow ǫ inputs as well as ǫ outputs. A transducer
defines a relation between ∆∗ and Γ∗ in a natural way. That is to say, for
every path in the transducer from the starting state to one of the final states,
let the sequence of input labels be α and the sequence of output labels β (all
ǫ’s being omitted of course); then (α, β) is a related pair.

In any transducer we can interchange the input and output symbols on each
transition to obtain another transducer. Therefore

Lemma 1 If R is a transducer relation so also is the transpose relation Rt.

Let L ⊆ ∆∗ and define

LR = {β ∈ Γ∗ | there exists α ∈ L with (α, β) ∈ R}

The main result we need from the theory of transducers appears as exercise
11.9 in [6]. For completeness, and to establish notation, we include the proof.

Proposition 2 If R is a transducer relation and L is a regular subset of ∆∗

then LR is regular.

Proof: Let P be the set of states of the transducer, µ the transition function
(mapping P × (∆ ∪ {ǫ}) into subsets of P × (Γ ∪ {ǫ})), p0 the initial state,
and E the set of final states.

Let M be a finite automaton recognising L. Suppose that M has set of states
Q, transition function δ, initial state q0, and set of final states F . Extend
the definition of δ so that (q, ǫ) 7→ q is a valid transition for all q ∈ Q.

Now define an automaton N as follows. The set of states is P ×Q, the initial
state is (p0, q0), and the set of final states is E × F . The transitions are
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defined as follows. If there are transitions

p1
d,g
−→ p2

and
q1

d
−→ q2

(where p1, p2 ∈ P , q1, q2 ∈ Q, d ∈ ∆ ∪ {ǫ} and g ∈ Γ ∪ {ǫ}) then N has a
transition

(p1, q1)
g
−→ (p2, q2)

We prove that the new automaton recognises the set LR. Let β be any string
in LR. By definition of LR we may choose a string α ∈ L with (α, β) ∈ R.
Then we have transducer transitions

p0
a1,b1
−−−→ p1

a2,b2
−−−→ · · ·

an,bn
−−−→ pn

with pn ∈ E witnessing that (α, β) ∈ R. Then we have α = a1 . . . an,
β = b1 . . . bn (where, possibly, ǫ symbols may occur). We also have transitions
of M

q0
a1−→ q2

a2−→ · · ·
an−→ qn

with qn ∈ F witnessing that α ∈ L. Then, by definition, we have transitions

(pi−1, qi−1)
bi−→ (pi, qi)

in N demonstrating that β is accepted by N .

We reverse this argument to get the converse. Suppose that β ∈ Γ∗ is
accepted by N via a sequence of transitions

(pi−1, qi−1)
bi−→ (pi, qi)

where β = b1 . . . bn with each bi ∈ Γ ∪ {ǫ}. By definition of N there exist
a1, . . . , an ∈ ∆ ∪ {ǫ} and state transitions

pi−1

ai,bi
−−→ pi

of the transducer, and transitions

qi−1

ai−→ qi

of M . This proves that α = a1 . . . an ∈ L and (α, β) ∈ R as required.
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2 Bounded classes

In this section we consider permuting machines as ‘black boxes’ into which
input tokens are inserted and from which they eventually emerge as output
tokens. So, at any point of a computation there may be some tokens which
are ‘inside’ the machine (in the machine’s memory) awaiting output. The
chief hypothesis of this section is that, for some constant k, the machine can
contain no more than k tokens at a time (so if it is full to capacity it must
output a token before further input is possible). Such machines are said to
be k-bounded.

If we consider a k-bounded machine as a generator of permutations then no
permutation of length k+1 that begins with k+1 can be generated from the
input 1, 2, . . . , k+1. Thus the closed sets associated with k-bounded machines
are subsets of the closed set Ωk whose basis consists of the k! permutations
k + 1, a1, . . . , ak where a1, . . . , ak ranges over all permutations of 1, 2, . . . , k.

We shall see shortly that permutations in Ωk may be encoded as words in a
k-letter alphabet. Anticipating this, we define a subset of Ωk to be regular
if its encoded form is a regular set. We shall show that a closed subset X of
Ωk is regular if and only if its basis is regular. The proof of this result is, in
principle, constructive in the sense that a recognising finite automaton for X
can be built from one that recognises its basis and vice versa. In the course
of proving this result we shall prove that it is decidable whether a regular
subset of Ωk is a closed subset.

Let π = π1π2 . . . πn be a permutation of length n. Its rank encoding is the
sequence

E(π) = p1p2 . . . pn

where
pi = |{j | j ≥ i, πj ≤ πi}|

is the rank of πi among {πi, πi+1, . . . , πn}.

Obviously, π ∈ Ωk if and only if π1π2 . . . πn has no subsequence of length k+1
whose first element is the largest in the subsequence and this is precisely the
condition that pi ≤ k for all i. Thus every subset of Ωk encodes as a subset
of [k]∗.

Proposition 3 Ωk is regular.
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Proof: It is easy to see that a word p = p1p2 . . . pn is the encoding of some
permutation if and only if

pn+1−i ≤ i for all i (1)

(and, if this condition holds, the permutation can readily be calculated).
In fact, for p ∈ [k]∗ the above inequalities may fail to hold only for i =
1, 2, . . . , k−1. Let F be the set of all words of length at most k−1 for which
(1) does not hold. We now have

E(Ωk) = [k]∗ \ [k]∗F,

which is a regular set.

Example 1 Consider the closed subset X of Ω2 whose basis is 312, 321, 231.
The first two basis elements ensure that, indeed, X ⊆ Ω2 so the permutations
of X encode as words in the alphabet {1, 2} and end with a 1. It is readily
checked that the third basis element restricts these words by prohibiting
consecutive occurrences of the symbol 2.

The set of words that do contain consecutive 2s is described by the regular
expression [2]∗22[2]∗ and so is regular. However E(X ) is the complement of
this regular set within the regular set E(Ω2) and so is also regular. Thus X
is a regular closed set. The generating function of E(X ) is well-known to be

1

1− x− x2

and, since E is one-to-one, this is also the generating function of X .

This easy example serves to illustrate that the condition of avoiding a permu-
tation translates into restrictions on encodings although they are generally
much more complicated than the ones above. The argument that proves
regularity is a very special case of more general arguments to come.

Transportation networks are another source of examples. Theorem 1 of [1]
proves that the closed sets associated with these are all regular. That paper
also contains an example to show that regular closed sets need not be finitely
based.

We also note that not every closed subset of Ωk is regular. Indeed, as shown
in [2], there are uncountably many closed subsets in Ωk, if k ≥ 3; but there
are only countably many regular languages over [k].
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2.1 A transducer to delete a letter from a word

Let π = π1π2 . . . πn be a permutation in Ωk and let p = p1p2 . . . pn be its
rank encoded form. Let π′ be the permutation obtained from π by deleting
πi (and relabelling appropriately) and let p′ = p′1 . . . p

′

i−1p
′

i+1 . . . p
′

n be its
encoded form. We put

∂ip = p′

call this the ith derivative of p. The process of passing from p to p′ is
called deleting a letter from p. We shall show how this may be done without
“looking at” π.

Example 2 Let p = 2331211 representing the permutation π = 2451637.
Then removing the 6th element of π results in the permutation π′ = 234156
whose encoding is p′ = 222111.

Suppose we have to delete the ith letter from p. We compute p′ by scanning p

from the right. For the positions to the right of pi, each pj represents the rank
of some element of π among its successors, so these ranks will be unchanged
by the deletion. Therefore until we reach pi itself (which we delete) nothing
changes. But for j < i we need to know whether or not πj > πi (so that we
can tell whether or not to reduce pj by 1). To do this we keep track of a
variable rj defined as the rank of πi in the set {πj+1, . . . , πn} (the number of
symbols in this set that are less than or equal to πi). Clearly

πj > πi if and only if pj > rj

Provided we have rj we can decide whether we should reduce pj. But, as the
pointer j moves to the left, we can easily update rj. Clearly, if πj > πi then
rj−1 = rj; and if πj < πi then rj−1 = rj + 1. We therefore get Algorithm 1.

Two easy observations make this into a finite state algorithm. The first
is the natural programming trick to use a single variable r in place of rj .
The second looks odd as a programming trick but is nevertheless essential.
When rj ≥ k the first alternative of the if is not followed nor is it followed
thereafter; so we ‘freeze’ rj to the value k once it reaches k. The result is
Algorithm 2.

It is now easy to define a transducer for the relation

D = {(p, p′) | p′ is obtained by deleting one letter from p}

9



Algorithm 1 First form of the deletion algorithm

for j := n downto i+ 1 do
p′j := pj

end for
ri−1 := pi
for j := i− 1 downto 1 do
if pj > rj then
p′j := pj − 1; rj−1 := rj

else
p′j := pj ; rj−1 := rj + 1

end if
end for

Algorithm 2 Second form of the deletion algorithm

for j := n downto i+ 1 do
p′j := pj

end for
r := pi
for j := i− 1 downto 1 do
if pj > r then
p′j := pj − 1

else
p′j := pj
if r < k then
r := r + 1

end if
end if

end for

10



The transducer begins in a ‘picking’ state 0. Once it picks a letter to delete
it passes through a sequence of states numbered according to the variable r

in Algorithm 2. The transducer for the case k = 3 is shown in Figure 2.1.

Note 1 Strictly speaking, what we have constructed is a transducer for a
relation where the words in question are read from right to left. To avoid
notational clutter we make the convention that all finite automata and trans-
ducers read their input from right to left. Of course any conclusion that we
reach of the form “L is a regular language” is independent of the direction
of reading since L is regular if and only if its reverse is regular.

3
1, 1

1, 1

2, 22, 1

3, 2
1 2

0

1, ǫ 3, ǫ2, ǫ

3, 2

1, 1

2, 2

3, 3

1, 1

2, 2

3, 3

Figure 1: Deletion transducer with k = 3

Proposition 4 Let L ⊆ E(Ωk) be regular. Then each of the following sub-
sets is also regular, and finite automata recognising them are effectively com-
putable from an automaton recognising L.

1. {∂ip | p ∈ L, 1 ≤ i ≤ |p|},

2. {p ∈ E(Ωk) | ∂ip ∈ L, for some i},

3. {p ∈ E(Ωk) | ∂ip ∈ L, for all i}.
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Proof: The first set is LD and the second is LDt both of which are regular
by Proposition 2. The third set is

{p | ∂ip 6∈ L for some i}C = {p | ∂ip ∈ LC for some i}C

= (LCDt)C

Since regularity is preserved by complements the result follows again from
Proposition 2.

2.2 A transducer for deleting any number of letters

Again let π = π1π2 . . . πn be a permutation in Ωk and let p = p1p2 . . . pn be its
rank encoded form. We shall generalise the process described in the previous
subsection so that it now deletes any number of letters (choosing which ones
to delete non-deterministically again). From the resulting algorithm we shall
be able to infer the existence of a transducer that defines the relation

H = {(p, p′) | p′ arises by deleting any number of letters from p}

In the generalisation a right to left scan takes place as before. But now,
rather than setting up a single variable r when the deleted letter is met, we
have to set up a different variable every time we come to a letter that is to
be deleted.

So, suppose we come to a letter pd that we intend to delete. Then we define
a variable r(d) (whose initial value will be pd) which will play the same role
as the variable r in the previous section. Just as before when we process a
letter pj (either to delete it or compute the value of p′j) we shall have r(d)
equal to the rank of πd in the set {πj+1, . . . , πn} (that is, r(d) is the number
of symbols in this set that are less than or equal to πd).

Processing a particular pj is then done as follows:

1. if pj is to be deleted we set up a variable r(j) as just mentioned and
update any existing variables r(d); this updating is explained below.

2. if pj is not to be deleted we must use the variables r(d) so far defined
to compute the value of p′j ; and we must update these variables as
necessary (see below).

12



Exactly as before, because of the meaning of each r(d) we have πj > πd if
and only if pj > r(d). Therefore the number of d’s for which this occurs is
the decrement that has to be applied to pj to obtain p′j .

To do the updating of the variable r(d) (so that it has the appropriate value
when j is decreased by 1) we notice that any d for which pj > r(d) means
that r(d) is not changed; otherwise it must be increased by 1.

The behaviour of this algorithm when a symbol pj is processed is governed
by the values of the set of variables r(d). In order to turn the algorithm into
a transducer to recognise the relation H we have to demonstrate that only a
fixed number of variables taking a fixed set of values is required.

First, we have the same remark as before: any r(d) which reaches the value
k can never affect whether pj should be changed; so such r(d)’s can be dis-
carded. The second remark is that the r(d) are ranks of different elements
within the same set ({πj+1, . . . , πn}); therefore the values r(d) are distinct
and so we shall never have more than k − 1 of them to store.

The state of the algorithm, as represented by the values of the r(d), is there-
fore confined to one of a finite number of possibilities. A convenient way of
representing the state is as a (0, 1) vector (s1, . . . , sk−1). We set st = 1 if
there is a variable r(d) in the current ‘live’ set whose value is t; otherwise we
set st = 0. This coding of state allows the automatic ‘dropping’ of a variable
r(d) once it reaches the value k.

Translating the way in which the r(d) are handled, the updating of the vari-
ables st when a symbol pj = e is processed is easily seen to be:

(s1, . . . , sk−1) := (s1, . . . , se−1, 1, se, . . . , sk−2)

if pj is to be deleted and

(s1, . . . , sk−1) := (s1, . . . , se−1, 0, se, . . . , sk−2)

otherwise. The value of p′j in the latter case is pj −
∑

f<e sf .

We summarise this discussion in

Proposition 5 There is a transducer that defines the relation

H = {(p, p′) | p′ arises by deleting any number of letters from p}

13
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1, λ
2, λ
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3, 1

1, 1
2, 2
3, 3
3, λ

2, λ

1, 1
2, 2

2, λ
3, λ
3, 2

1, 1
1, 1

1, λ

Figure 2: Involvement transducer with k = 3

The state diagram for the transducer in the case k = 3 is shown in Figure 2.

ClearlyHt is the relation of involvement on coded permutations and to reflect
this we write p′ ≤ p if p′ can obtained from p by deleting any number of
letters.

2.3 Regularity results

In this subsection we state and prove the main results on k-bounded classes.

Theorem 1 There is an algorithm which decides whether or not a given
regular set L ⊆ [k]∗ can be expressed as L = E(X ) for some closed set of
permutations X ⊆ Ωk.

Proof: First note that a set X of permutations is closed if and only if for
every π = π1π2 . . . πn ∈ X and every i = 1, . . . , n, we have π \ πi ∈ X . Thus,
L = E(X ) for some X if and only if {∂ip | p ∈ L, 1 ≤ i ≤ |p|} ⊆ L ⊆ E(Ωk).

14



All the three above sets are regular (Proposition 3 and Proposition 4), and
the automata accepting them are known, and hence we can decide whether
these inclusions hold.

Theorem 2 A closed subset of Ωk is regular if and only if its basis is regular.

Proof: Let X be a closed set with basis B. Suppose first that X is regular.
By definition B is the set of all permutations π = π1 . . . πn such that π 6∈ X
but π \ πi ∈ X for all i = 1, . . . , n. Thus

E(B) = (E(X ))C ∩ {p | ∂ip ∈ E(X ), for all i},

which is a regular set by Proposition 4.

For the converse assume that B is regular. By Proposition 2 the set

E(B)Ht = {p | p′ ≤ p for some p′ ∈ E(B)}

is regular and so its complement

(E(B)Ht)C = {p | p′ 6≤ p for all p′ ∈ E(B)}

is also regular. Therefore (E(B)Ht)C ∩E(Ωk) is regular as well; but this set
is E(X ) itself.

The regular set operations that we have used (intersection and complemen-
tation) are effectively computable in the sense that automata to recognise
the resulting languages can be constructed. Therefore we have

Corollary 1 There is an algorithm which, given an automaton accepting
E(X ) for some regular closed set X , computes an automaton accepting E(B),
where B is the basis of X . The converse is also true.

This, in turn has the following pleasing consequence:

Corollary 2 It is decidable whether or not a given regular closed set is
finitely based.

Corollary 3 The following are true for any closed set X ⊆ Ωk with a regular
(in particular, finite) basis:

15



(i) the enumeration sequence for X satisfies a linear recurrence with con-
stant coefficients;

(ii) membership in X can be checked in linear time.

Proof: (i) X is in one-to-one length preserving correspondence with E(X )
which, being regular, has a rational generating function.

(ii) Both testing for membership in a regular language and the process of
encoding permutations are linear.

The first part of this corollary provides a partial (affirmative) answer to
a conjecture of Gessel (that all finitely based closed sets have holonomic
generating functions).

Theorem 2 allows us to give explicit examples of non-regular closed sets. Let
A be any infinite antichain of permutations contained in Ωk. An example of
such an antichain with k = 3 is given in [2]. Let A0 = {αn1

, αn2
, . . .} be an

infinite subset of A such that

1. |αni
| = ni,

2. n1 < n2 < . . . is not a finite union of arithmetic progressions.

Then A0 is a non-regular infinite antichain and, by Theorem 2, defines a
closed set that is not regular.

3 Monotone segment sets

In this section we consider permuting machines with an unbounded memory.
The memory is represented by a two-way infinite tape on which is stored
an input sequence 1, 2, . . . , n, one token per tape square, and a reading head
moves up and down the tape. We consider machines Mφ which operate under
a fixed regime of forward and backward scans of the tape that is specified by
a sequence φ = f1f2 . . . fk of + and − signs.

The machine carries out k scans of the tape at the end of which all the
input symbols will have been output. The ith scan is from left to right if
fi = + and from right to left if fi = −. During each scan the machine will
either skip over a symbol or output it (sequentially onto a second tape say).

16



Such a computation can be described by a computation word c1 . . . cn with
1 ≤ ci ≤ k; the term ci gives the scan number on which symbol i was output.

Example 3 Let φ = (+,−,−) so that Mφ does one left to right scan and
two scans right to left. Suppose that the input tape contains 123456789.
Then, supposing Mφ is subject to no further constraints it might, in its
first scan output 2, 4, 8, in its second scan output 7, 3, and in its final scan
output 9, 6, 5, 1. The result is the output permutation 248739651. Notice
that there is another computation by this machine that produces the same
output permutation (the first scan outputs 2, 4, the second scan outputs
8, 7, 3, and the third scan outputs 9, 6, 5, 1). The computation words for
these two computations are 312133213 and 312133223.

Clearly this machine can only output permutations which have a segmenta-
tion αβγ where α is increasing and β, γ are decreasing. However, we do not
exclude the possibility that, due to further constraints on the operation of
the machine, not all permutations of this form can occur.

In the general case the (closed) set of permutations output by Mφ is a subset
of

Wφ = {σ1σ2 . . . σk}

where each σi is an increasing sequence of symbols if fi = + and a decreasing
sequence otherwise. The main results of this section are that the closed
subsets of Wφ have linear time recognisers and rational generating functions.

Every computation word c gives rise to a permutation Dφ(c) ∈ Wφ. To be
precise, if we regard c as a function

c : [n] → [k]

then Dφ(c) is the permutation obtained by concatenating the sets c−1(1)
through c−1(k), with the ith set in this concatenation arranged in increasing
order if fi = +, and in decreasing order if fi = −. It is easily seen that Wφ

is the image of [k]∗ under the map Dφ.

We have observed already that Dφ is not one-to-one but clearly each D−1

φ (π)
is a finite set (that is, every permutation π ∈ Wφ can be obtained in only
finitely many ways). We shall find it convenient to call its members the
encodings of π. This situation differs from that in the previous section in
that now a permutation may have several encodings. Nevertheless we define
subset X of Wφ to be regular, if D−1

φ (X ) is a regular subset of [k]∗.

17



Lemma 2 Suppose that s, p ∈ [k]∗ and s is a subword of p. Then Dφ(s) �
Dφ(p). Also suppose that σ � π are elements of Wφ. Then for each encoding
p of π there exists an encoding s of σ which is a subword of p

Proof: The first part is immediate. For the remainder, take a subset of the
positions in π with pattern σ. Then just take s to be the subword of p on
the same positions.

Theorem 3 Every closed subset of Wφ is regular.

Proof: Let X be a closed subset of Wφ and let B be its basis. By Theorem
2.9 of [2] B is finite. Let B be the set of all elements of [k]∗ which have a
subword belonging to D−1

φ (B). Since D−1

φ (B) is finite, B is regular. Suppose

that π ∈ X . Then no encoding p of π can contain an element s of D−1

φ (B)

as a subword, for otherwise Dφ(s) � π. So D−1

φ (X ) ⊆ Bc. On the other
hand, if p ∈ Bc, and π = Dφ(p), then π ∈ X – for if not there is some
σ ∈ B with σ � π, and then some encoding s of σ which is a subword of p,
a contradiction. So D−1

φ (X ) = Bc, which is regular.

Corollary 4 There is a linear time recognition algorithm for any closed sub-
set of Wφ.

We cannot immediately deduce that every closed subset of Wφ has a rational
generating function since the correspondence between Wφ and [k]∗ is not
one-to-one. To get around this difficulty we define, for every σ ∈ Wφ, a
distinguished encoding as follows. Let σ1 be the longest monotone initial
segment of σ consistent with the sign f1. Having chosen σ1 we choose the
next monotone segment σ2 (corresponding to f2) also as long as possible, and
we continue in this manner until all of σ has been segmented (necessarily with
k or fewer segments). The corresponding encoding c1 . . . ck, where ci = j if
i ∈ σj , is called the greedy encoding of σ. (In the example above the first
encoding was greedy, the second was not).

Lemma 3 The greedy encoding of Wφ is a regular set.

Proof: Let p and q = p + 1 be any two consecutive positions of φ. In the
greedy encoding c1 . . . cn of a permutation σ ∈ Wφ let the positions where
ch = p be h = i1, i2, . . . , ia and those where ch = q be h = j1, j2 . . . , jb. The
greedy condition implies one of the following:
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[fp = +, fq = + ] Since σ has adjacent segments i1, i2, . . . , ia and j1, . . . , jb
we have ia > j1; that is, in c, the final p comes after the first q.

[fp = +, fq = − ] Here σ has adjacent segments i1, i2, . . . , ia and jb, . . . , j2, j1,
so ia > jb; that is, the final p comes after the final q.

[fp = −, fq = + ] Similarly, the first p comes before the first q.

[fp = −, fq = − ] The first p comes before the last q.

Every consecutive p, p + 1 gives a restriction on the form of a greedy en-
coding but these restrictions are all recognisable by a finite automaton thus
completing the proof.

Theorem 4 Every closed subset of Wφ has a rational generating function.

Proof: Let X be any closed subset of Wφ. By Theorem 3 D−1

φ (X ) is regular

and therefore D−1

φ (X ) ∩ G, where G is the set of greedy encodings of Wφ, is
also regular. But this set is in one-to-one correspondence with X .

4 Final remarks

We have shown that closed sets are the natural objects to study in the analy-
sis of permuting machines. We have also demonstrated that, when a suitable
encoding of permutations is available, finite automata are a powerful tool in
this study. Nevertheless many problems remain. In particular, one natural
question is how one might extend the automata tools to use context-free
encodings. Here one might hope to prove that certain closed sets have an
algebraic generating function rather than a rational one. A natural candi-
date to investigate are the closed subsets of A(312) (which is the language
associated with a single stack) for here well-formed bracket sequences encode
permutations in a natural way. We hope to report progress on such problems
in a subsequent paper.

Another issue is that of practicability. The “effective” methods we have
developed for contructing automata frequently lead to automata with very
large numbers of states since, in particular, we often need to convert a non-
deterministic automaton to its deterministic version. In some special cases
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we have managed to contain this state explosion and have carried out these
constructions, and this gives hope that more efficient methods may exist.
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