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1 Introduction

In order to be able to compute exactly the set of reachable configurations of
an infinite-state system, even for restricted classes of programs, one needs to
solve the two following problems: Representing infinite sets by a finite amount
of information, and generating in finite time infinite sets of reachable config-
urations.

A simple solution to the former problem consists in using finite-state repre-
sentations , which amounts to representing a set by a finite-state automaton
recognizing its elements with respect to a suitable encoding scheme. There
are several motivations to following this approach. First, one knows efficient
algorithms for manipulating finite-state automata [1]. In particular, finite-
state representations can easily be reduced to a canonical form by means of
a minimization operation [18]. Second, these representations have a high ex-
pressive power. Consider for instance programs relying on integer variables.
Using the classical encoding of numbers as words of digits in a base r > 1, it
is well known that all the sets that are definable in Presburger arithmetic, i.e.,
the first order theory 〈Z, +,≤〉, are recognizable by finite-state machines [10].
Finite-state representation methods have also been developed for other data
domains, namely for real vectors [4] and unbounded FIFO channels [5–7].

In order to compute infinite sets of reachable configurations in finite time, the
underlying idea to many central results in the field of infinite-state systems
verification consists in studying the effect of loops executed by the programs
being analyzed. Indeed, a loop that can be followed unboundedly many times
from a location reached during a system run might lead to a infinite number
of reachable configurations, thus generating an infinite set from a finite one.
We can now restate our second problem in the more specific framework of
studying the effect of loops: Given a representation of a set U of values and a
transformation θ over these values, the goal is to compute a representation of
the set θ∗(U) containing the images of the elements of U by arbitrary repeti-
tions of θ. This computation is not always feasible though, since the set θ∗(U)
may not always be representable by finite-state automata with respect to the
encoding scheme that is used. We get around this limitation by decomposing
our main goal into two separate problems :

• Given θ, deciding whether θ∗(U) is effectively representable for every rep-
resentable U , and

• Given θ satisfying the previous criterion and a representation of U , com-
puting a representation of θ∗(U).

The purpose of this paper is to solve the two previous problems in the following
context :
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• The data domain is Zn (n > 0), i.e., the values are vectors of integers with
a fixed dimension;

• The sets are expressed in a finite-state representation system based on the
classical encoding of numbers in a given base r > 1;

• The operations θ are of the form θ(~x) = A~x+~b, with A ∈ Zn×n and ~b ∈ Zn,
i.e., they are linear transformations with arbitrary integer coefficients.

In addition, we will also show that the solutions obtained in this context are
also applicable (with some restrictions) to more general operations, namely
those combining a linear guard and a linear transformation.

This paper is structured as follows. First, we describe a finite-state repre-
sentation system suited for unbounded integer vectors and present some of
its properties. We also define some basic notions of algebra and combina-
torics that are extensively used in the paper, and recall some known results.
Next, we extend in an original way the notion of sets that are recognizable by
finite-state automata to the domain of vectors with complex components. This
generalized notion of recognizability is then used as a powerful tool for estab-
lishing necessary and sufficient conditions 1 over the linear transformations
whose closure preserves the recognizable nature of sets. Then, we give algo-
rithms implementing with finite-state representations the decision procedures
expressed by the necessary and sufficient conditions. Next, we address the case
of linear operations with guards. Finally, we conclude with some proofs that
are omitted from the main text for clarity sake.

2 Finite-state Representation of Integer Vectors

2.1 Number Decision Diagrams

The first step towards obtaining a finite-state representation system suited for
subsets of Zn is to define an encoding scheme for vectors. We base ours on the
classical encoding of integers as finite sequences of digits belonging to a finite
alphabet.

Let r ∈ N, with r > 1, be a numeration base (or simply base). Any positive
integer z can be encoded as a finite word w = ap−1 · ap−2 · · ·a1 · a0 (p ≥
0) of digits belonging to {0, 1, . . . , r − 1}, such that z =

∑

0≤i<p air
i. The

encoding of z is not unique. Indeed, its length can be increased at will by
adding an arbitrary number of leading “0” digits. This encoding scheme is

1 In the main text, these conditions are first expressed in the form of several distinct
theorems, which are then summarized into one main result.
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easily generalized to all the integers in Z by requiring that the encoding of
an integer z ∈ Z such that −rp−1 ≤ z < rp−1, where p > 0 is the smallest
integer satisfying these inequalities, has at least p digits. If z < 0, then the
encoding of z consists of the last p digits of the encoding of rp +z (the number
rp + z is called the r’s complement of z). As a consequence, the first digit of
the encoding of an integer will be equal to 0 if the number is greater or equal
to zero, and to r − 1 otherwise (this first digit is called the sign digit). The
fact that the word w ∈ {0, 1, . . . , r − 1}∗ encodes the integer z ∈ Z in base r
is denoted w ∈ [z]r.

Let n ≥ 0 be a dimension and r > 1 be a base. The synchronous encoding
scheme Er is the relation that associates to a vector of Zn the tuples com-
posed of the same-length encodings in base r of the components of this vector.
Formally, we have

Er ⊆ Zn × VEr
= {((v1, . . . , vn), (w1, . . . , wn)) | |w1| = |w2| = · · · = |wn|

∧w1 ∈ [v1]r ∧ w2 ∈ [v2]r ∧ · · · ∧ wn ∈ [vn]r},

where VEr
=
⋃

k∈N

({0, r − 1} · {0, . . . , r − 1}k)n is the set of valid encodings.

An encoding of an element of Zn can indifferently be viewed either as a tuple
of n words of identical length over the alphabet {0, 1, . . . , r−1}, or as a single
word over the alphabet {0, 1, . . . , r − 1}n.

We are now ready to define the representation system for sets of vectors.

Definition 1 Let n ≥ 0 be a dimension and r > 1 be a base. A Number Deci-
sion Diagram (NDD) representing the set U ⊆ Zn is a finite-state automaton
accepting the language

L(U) = {w ∈ VEr
| (∃~v ∈ U)(w ∈ Er(~v))}.

In other words, an NDD representing a set U is simply a finite-state automaton
accepting all the synchronous encodings of all the elements of U .

2.2 Representable Sets of Vectors

Finite-state representations of sets of integer vectors have been studied for a
long time [10]. In [11], Büchi gave the first characterization of representable
sets of vectors in terms of logic. A flaw was discovered in Büchi’s proof by
MacNaughton [21], and a correct characterization was proposed in [21] and [9].
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Simplified proofs of this characterization can be found in [22] and [29]. Pre-
cisely, the characterization is expressed as the following necessary and suffi-
cient condition.

Theorem 2 Let n ≥ 0 be a dimension, r > 1 be a base, and U ⊆ Zn be a
set of vectors. A set U is recognizable by a finite-state automaton with respect
to the synchronous encoding scheme Er if and only if U is definable in the
first-order theory 〈Z,≤, +, Vr〉, where Vr is a function defined as

Vr : Z → N : z 7→











the greatest power of r dividing z if z 6= 0,

1 if z = 0.

It is worth mentioning that the proof of the sufficient condition is construc-
tive [10], and can easily be turned into an algorithm for building the repre-
sentation of any set specified by a formula of 〈Z,≤, +, Vr〉.

The previous result characterizes the sets that are representable with respect
to a particular base r. The question of determining whether a set can be repre-
sented by a finite-state automaton in any base has been solved by Cobham [13]
and Semenov [23,27], whose main result can be stated as follows.

Theorem 3 Let n > 0 be a dimension, and U ⊆ Zn be a set of vectors.
The set U is recognizable in every base r > 1 with respect to the synchronous
encoding scheme Er if and only if U is definable in the first-order theory
〈Z,≤, +〉. Moreover, an NDD representing U can be computed from a formula
of 〈Z,≤, +〉 defining U .

The theory 〈Z,≤, +〉 has been studied by Presburger [25] and is usually re-
ferred to as Presburger arithmetic. It is known [15,24,14] that deciding Pres-

burger arithmetic is Atime-alt[22O(n)
, O(n)]-complete.

An advantage of considering the sets of vectors that are definable in Presburger
arithmetic rather than the sets definable in 〈Z,≤, +, Vr〉 for some base r > 1
is that lots of techniques have been developed for dealing with Presburger
arithmetic, and that efficient implementations of these techniques have been
made available. An example of such an implementation is the Omega Test [26]
which allows to manipulate formulas of Presburger arithmetic with a surprising
efficiency. Another result of interest, due to Boudet and Comon [8], shows
that the minimal and deterministic NDD representing the set of vectors that
satisfies a system of linear equations and inequations is very compact and can
be computed efficiently.

On the other hand, there are applications for which using the theory 〈Z,≤,
+, Vr〉 for some base r > 1 is nonetheless more advantageous than using Pres-
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burger arithmetic. For instance, the model of a hardware circuit performing
some arithmetic operation on unbounded binary numbers might very well have
a control location at which the set of reachable values is the set of the powers
of 2. It can be shown that this set cannot be defined in Presburger arithmetic.
It can however be denoted in 〈Z,≤, +, V2〉 by the formula ϕ(x) ≡ V2(x) = x.

Since both theories have advantages, the approach followed in this paper is
to stay as general as possible. Each result dealing with the possibility of rep-
resenting a set of vectors as an NDD will thus be expressed twice: once with
respect to the theory 〈Z,≤, +, Vr〉 for any r > 1, and once with respect to
Presburger arithmetic. Intuitively, the former case consists in choosing the
numeration base used by the NDD, and the latter one consists in requiring
that the result has to hold in any base. We will make use of the following
definitions.

Definition 4 Let r > 1 be a base, n ∈ N be a dimension, and U ⊆ Zn be a
set of vectors. The set U is r-recognizable if it is recognizable with respect to
the synchronous encoding Er.

Definition 5 Let n ∈ N be a dimension and U ⊆ Zn be a set of vectors. The
set U is Presburger-definable if for every base r > 1, it is recognizable with
respect to the synchronous encoding Er.

In the rest of this paper, we will only consider bases r > 1 for which there does
not exist j ∈ N, with j ≥ 2, such that r(1/j) ∈ N. This can be done without
loss of generality thanks to the following result 2 .

The following result is well known [10].

Theorem 6 Let n ∈ N be a dimension, r > 1 be a base and U ⊆ Zn be
a set of vectors. For every k ∈ N0, U is r-recognizable if and only if U is
rk-recognizable.

PROOF SKETCH. A finite-state automaton recognizing U with respect to
the base r can easily be turned into one operating in the base rk by means of a
transducer outputting exactly one symbol for every sequence of k consecutive
input digits. The reverse transformation is carried out in a similar way after
exchanging the input and the output labels of the transducer. A detailed proof
is given in [3]. �

2 The notation N0 is introduced as a shorthand for N \ {0}, i.e., the set of all the
strictly positive integers.
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2.3 Algebra and Combinatorics Basics

The sets of rational numbers and of complex numbers are respectively de-
noted by Q and C. For every n ∈ N0, In denotes the identity matrix In =
diag(1, 1, . . . , 1) of dimension n. The successive columns of In are denoted
~e1, ~e2, . . . , ~en. Let A ∈ Cn×n be a complex matrix. If S ⊆ Cn is a set of
vectors, then AS is a shorthand for {A~x | ~x ∈ S}. Similarly, if ~v ∈ Cn, then
S + ~v denotes the set {~x + ~v | ~x ∈ S}. The sets of rows and of columns
of A are respectively denoted row(A) and col(A). The maximum number of
linearly independent rows or columns of A is the rank of A. Any λ ∈ C and
~x ∈ (Cn \ {~0}) such that A~x = λ~x are respectively called an eigenvalue and
an eigenvector of A. The eigenvalues of A are the roots of the characteristic
polynomial of A, defined as Π(λ) = det(A − λIn). They are also the roots
of the minimal polynomial of A, which is defined as the polynomial Π′(λ) of
lowest degree such that Π′(A) = (0). If λ1, λ2, . . . , λm are the eigenvalues of
A, then λp

1, λp
2, . . . , λp

m are the eigenvalues of Ap for any p ∈ N0. For every
n ∈ N0 and λ ∈ C, the Jordan block of dimension n associated to λ is the
matrix

Jn,λ =





















λ 1

λ 1
. . . 1

λ





















.

A matrix A ∈ Cn×n only composed of Jordan blocks on its main diagonal,
in other words such that A = diag(Jn1,λ1 , Jn2,λ2 , . . .), is said to be in Jordan
form. For every A ∈ Cn×n, there exists a nonsingular matrix U ∈ Cn×n such
that A = UAJU−1, with AJ being in Jordan form (U is said to transform A
into its Jordan form AJ). The Jordan form AJ of A is unique up to reordering
its diagonal blocks. For each diagonal block Jni,λi

composing AJ , the corre-
sponding λi is an eigenvalue of A. Reciprocally, for every eigenvalue λi of A,
there exists a (possibly non unique) Jordan block Jni,λi

that belongs to the set
of diagonal blocks of AJ . If the components of A and its eigenvalues belong
to Q, then there exists U ∈ Qn×n transforming A into AJ . If the Jordan form
of A is diagonal (in other words, if all its Jordan blocks are of size 1), then A
is said to be diagonalizable.

Let p, q ∈ N with p ≤ q. The binomial coefficient Cp
q ∈ N is defined as

Cp
q =

q!

(q − p)! p!
.
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Binomial coefficients are related to Jordan blocks in the following way. If λ ∈ C

and n, m ∈ N with 0 < n ≤ m, then the m-th power of the Jordan block Jn,λ

is such that

Jm
n,λ =





























λmC0
m λm−1C1

m λm−2C2
m . . . λm−n+1Cn−1

m

λmC0
m λm−1C1

m . . . λm−n+2Cn−2
m

λmC0
m . . . λm−n+3Cn−3

m

. . .
...

λmC0
m





























.

We now define some notions related to cyclotomic fields. It is known that
every polynomial with integer coefficients can be factorized into a product of
irreducible polynomials with integer coefficients. This factorization is unique
up to multiplicative constants. For every n ∈ N0, the indivisible factors of the
polynomial xn − 1 are called cyclotomic polynomials. There is a cyclotomic
polynomial Φm associated to every integer m ∈ N0, defined as

Φm(x) =
∏

[k,m]

(x − e
2ikπ

m ),

where [k, m] stands for 1 ≤ k < m ∧ gcd(k, m) = 1. Actually, we have

xn − 1 =
∏

k|n

Φk(x),

where k|n means “k divides n”. For every m ∈ N0, the degree of Φm(x) is
equal to φ(m), where φ is the Euler function. This function is defined as

φ : N0 → N0 : x 7→ x

(

1 −
1

p1

)(

1 −
1

p2

)

· · ·

(

1 −
1

pq

)

,

where p1, p2, . . . , pq are the (distinct) prime factors of x. Actually, φ(m) rep-
resents the number of integers in {1, 2, . . . , m} that are relatively prime to
m.

3 Recognizability of Sets of Complex Vectors

Let n ∈ N be a dimension. In this section, we generalize the notion of recog-
nizable set of vectors to subsets of Cn. The reason why we consider complex
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vectors is that Jordan forms of matrices will be heavily used, and that trans-
forming a matrix into its Jordan form is generally not possible within R. In-
tuitively, the idea behind the generalization of recognizability is the following.
Let S ⊆ Zn be a set of vectors and let θ = (~x := A~x +~b), where A ∈ Zn×n

and ~b ∈ Zn, be a linear transformation. If the matrix A is nonsingular, then
the set S is recognizable (either with respect to a given base r > 1 or to all of
them) if and only if the set θ(S) is recognizable. This shows that the recogniz-
able nature of a set of integer vectors is not influenced by nonsingular linear
transformations. It is therefore natural to define a set of complex vectors as
recognizable if it can be expressed as the image of a recognizable set of in-
teger vectors by some linear transformation. Formally, we have the following
definition.

Definition 7 Let n, r ∈ N0 with r > 1. A set of complex vectors S ⊆ Cn is
r-definable if and only if there exist m ∈ N0, S ′ ⊆ Zm and U ∈ Cn×m such
that S ′ is r-recognizable and S = US ′.

The following result shows that the notion of r-definability is indeed an gen-
eralization of r-recognizability, i.e., that the two notions coincide for sets of
integer vectors.

Theorem 8 Let n, r ∈ N0 with r > 1. A set S ⊆ Zn is r-definable if and only
if it is r-recognizable.

PROOF. The proof is given in Section 8. �

The next step is to show how to obtain definable sets of complex vectors. The
following theorem establishes the definability of some elementary sets, and
presents operations that can be used for combining definable sets.

Theorem 9 Let r ∈ N with r > 1, n1, n2 ∈ N0, S1 ⊆ Cn1, S2 ⊆ Cn2 such that
S1 and S2 are r-definable, ~v ∈ Cn1, p, q ∈ N0, k ∈ N such that 0 < k ≤ n1,
and T ∈ Cp×n1. The following sets are r-definable 3 :

• Any finite subset of Cn1,
• S1 + ~v,
• TS1,
• S1 ∪ S2, provided that n1 = n2,
• S1 ∩ S2, provided that n1 = n2,
• S1 × S2,
• {(x1, . . . , xk−1, xk+1, . . . , xn1) | (x1, . . . , xn1) ∈ S1},

3 ℜ(~x) and ℑ(~x) denote respectively the real and the imaginary part of the complex
vector ~x.
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•









































~x

ℜ(~x)

ℑ(~x)















| ~x ∈ S1



























,

• expand(S1, r
q) = {rqk~x | ~x ∈ S1 ∧ k ∈ N}.

PROOF. The proof is given in Section 8. �

It is surprising that the intersection and union of two definable sets are always
definable themselves. Indeed, S1 and S2 are images of recognizable sets of
integer vectors by two linear transformations which might be different. It is
worth noticing that their intersection or union can always be expressed as
the image of a single set of integer vectors by the same transformation. This
observation strengthens our claim that definable sets of complex vectors are
a “good” generalization of recognizable sets of integer vectors.

Of course, not all sets of complex vectors are definable. The following theorems
characterize families of sets that are proved to be undefinable. In Sections 4
and 8, those theorems will be used as tools for establishing that the closure of
some linear operations does not preserve the definable nature of sets.

Theorem 10 Let r ∈ N with r > 1, and a, b, c ∈ Z with a 6= 0. The set

S = {ak2 + bk + c | k ∈ N}

is not r-definable 4 .

PROOF. The proof is given in Section 8. �

Theorem 11 Let r, p ∈ N0 with r > 1, λ ∈ C such that λp = 1, and a, b, c, d ∈
C with a 6∈ R \ Q. The set

S =











λk







(j + a)(k + b) + c

j + d





 | j, k ∈ N











is not r-definable.

PROOF. The proof is given in Section 8. �

4 A similar result for natural numbers appears in [11].

10



Theorem 12 Let r ∈ N with r > 1, λ ∈ C such that there do not exist p ∈ N0

and m ∈ N such that λp = rm. The set

S = {λk | k ∈ N}

is not r-definable.

PROOF. The proof is given in Section 8. �

Theorem 13 Let r, p, m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and
a ∈ C such that a 6∈ R \ Q. The set

S = {λk(k + a) | k ∈ N}

is not r-definable.

PROOF. The proof is given in Section 8. �

Theorem 14 Let r, p, m ∈ N0 with r > 1, and λ ∈ C such that λp = rm. The
set

S =

















k

λk





 | k ∈ N











is not r-definable.

PROOF. The proof is given in Section 8. �

Theorem 15 Let r, p, m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and
a ∈ C. The set

S =

















λk(j + a)

j





 | j, k ∈ N











is not r-definable.

PROOF. The proof is given in Section 8. �
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Theorem 16 Let r, p1, p2, m1, m2 ∈ N0 with r > 1, and λ1, λ2 ∈ C such that
λp1

1 = rm1, λp2
2 = rm2 and |λ1| 6= |λ2|. The set

S =

















λk
1

λk
2





 | k ∈ N











is not r-definable.

PROOF. The proof is given in Section 8. �

4 Necessary Conditions

Here, we give conditions that must be verified by A if the linear transformation
θ = (~x := A~x+~b) is such that θ∗ preserves the definable nature of sets. Those
conditions consist of conditions on the eigenvalues of A, and on the size of the
blocks of the Jordan form of A. For clarity sake, each group of conditions is
presented separately. A summary of all the necessary conditions follows.

The idea behind the necessary conditions that will be developed is to show
that the violation of any of them implies that there exists a set that is at the
same time r-definable and not r-definable. The sets that are considered are
related to the Jordan form of the transformation matrix. Precisely, we have
the following result.

Theorem 17 Let n, r ∈ N0 with r > 1, θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn, U ∈ Cn×n transforming A into its Jordan form AJ , Jm,λ be a
Jordan block of AJ with m ∈ N0, λ ∈ C, π be the projection mapping AJ onto
Jm,λ, and S be a r-definable subset of Zn. If θ∗(S) is r-definable, then the set

S ′ = {Jk
m,λ~x +

∑

0≤i<k

J i
m,λ

~b′ | k ∈ N ∧ ~x ∈ π(U−1S)},

with ~b′ = π(U−1~b), is r-definable.

PROOF. We have

θ∗(S)= {Ak~x +
∑

0≤i<k

Ai~b | k ∈ N ∧ ~x ∈ S}

= {UAk
JU−1~x +

∑

0≤i<k

UAi
JU−1~b | k ∈ N ∧ ~x ∈ S}.
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If this set is r-definable, then applying Theorem 9 shows that π(U−1θ∗(S)) is
r-definable. Hence the result. �

We are now ready to state the necessary conditions on the eigenvalues of the
transformation matrix. The first condition expresses a relationship that must
exist between those eigenvalues and the numeration base.

Theorem 18 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn be such that for every ~v ∈ Zn, the set θ∗({~v}) is r-definable. For
every nonzero eigenvalue λ of A, there exist p ∈ N0 and m ∈ N such that
λp = rm.

PROOF. Let λ be a nonzero eigenvalue of A, AJ be the Jordan form of A,
Jm,λ be a block of AJ associated with λ (m ∈ N0), and π be the projection
mapping AJ onto Jm,λ. From Theorem 17, it follows that for every ~v ∈ Zn,
the set

S ′ = {Jk
m,λ~v

′ +
∑

0≤i<k

J i
m,λ

~b′ | k ∈ N},

with ~v ′ = π(U−1~v) and ~b′ = π(U−1~b), is r-definable. Let π′ be the projec-
tion mapping each vector onto its component of highest index. There are two
possible situations.

• If π′(~b′) = 0. We choose ~v ∈ Zn such that π′(π(U−1~v)) 6= 0 (this is always
possible, otherwise U−1 would be singular). According to Theorem 9, this
implies that the set

1

π′(π(U−1~v))
π′(S ′) = {λk | k ∈ N}

is r-definable.
• If π′(~b′) 6= 0. We choose ~v = ~0. According to Theorem 9, this implies that

the following sets are r-definable:

1

π′(~b′)
π′(S ′) = {

∑

0≤i<k

λi | k ∈ N},

{λk − 1 | k ∈ N},

{λk | k ∈ N}.

We have thus established that the set

{λk | k ∈ N}

13



is r-definable. The existence of p ∈ N0 and m ∈ N such that λp = rm is then
a consequence of Theorem 12. �

The property expressed by Theorem 18 is easily adapted to sets of vectors
that are definable in any base.

Corollary 19 Let n ∈ N0 and θ = (~x := A~x +~b) with A ∈ Zn×n and ~b ∈ Zn

be such that for every ~v ∈ Zn, the set θ∗({~v}) is Presburger-definable. For
every nonzero eigenvalue λ of A, there exists p ∈ N0 such that λp = 1.

PROOF. Since every Presburger-definable set of integer vectors is r-defin-
able in any base r > 1, the result follows from applying Theorem 18 to two
relatively prime bases r1 and r2 (chosen arbitrarily). �

Now, we go further and establish a correlation between the different eigenval-
ues of the transformation matrix.

Theorem 20 Let n, r ∈ N0 with r > 1, and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn be such that for every ~v ∈ Zn, the sets θ∗({~v}) and θ∗({j~v | j ∈ N})
are r-definable. Every pair of nonzero eigenvalues (λ1, λ2) of A is such that
|λ1| = |λ2|.

PROOF. The proof is by contradiction. Let U ∈ Cn×n be a matrix trans-
forming A into its Jordan form AJ . Let S be either equal to {~v} or to
{j~v | j ∈ N}, with ~v ∈ Zn. The set

θ∗(S)= {Ak~x +
∑

0≤i<k

Ai~b | k ∈ N ∧ ~x ∈ S}

= {UAk
JU−1~x +

∑

0≤i<k

UAi
JU−1~b | k ∈ N ∧ ~x ∈ S}

is r-definable. Suppose that A has two nonzero eigenvalues λ1 and λ2 such that
|λ1| 6= |λ2|. Without loss of generality, we may assume that |λ1| < |λ2|. Let
Jm1,λ1 and Jm2,λ2 (m1, m2 ∈ N0) be two blocks of AJ respectively associated to
λ1 and to λ2, and let π be the projection onto the two components matching
the positions of the last row of Jm1,λ1 and of the last row of Jm2,λ2 in AJ .
According to Theorem 9, the set S ′ = π(U−1θ∗(S)) is r-definable. We have

S ′ =

















λk
1 0

0 λk
2













x1

x2





+
∑

0≤i<k







λi
1 0

0 λi
2













b1

b2





 |







x1

x2





 ∈ S ′′, k ∈ N











,

14



with S ′′ = π(U−1S) and







b1

b2





 = π(U−1~b). We distinguish several situations.

• If λ1 = 1 and b1 = 0. We have

S ′ =

















x1

λk
2x2 +

λk
2−1

λ2−1
b2





 |







x1

x2





 ∈ S ′′, k ∈ N











.

Let ~v ∈ Zn be such that the two components of π(U−1~v) are different from
zero (such a ~v always exists, otherwise U−1 would be singular). Choosing
S = {j~v | j ∈ N}, we obtain that the set

S ′ =

















jv1

jλk
2v2 +

λk
2−1

λ2−1
b2





 | j, k ∈ N











,

with







v1

v2





 = π(U−1~v), is r-definable. From Theorem 9, it follows that the

set







0 1
v2

1
v1

0











S ′ +







0

b2
λ2−1











 =

















λk
2

(

j + b2
v2(λ2−1)

)

j





 | j, k ∈ N











is r-definable, which contradicts Theorem 15.
• If λ1 = 1 and b1 6= 0. We have

S ′ =

















x1 + kb1

λk
2x2 +

λk
2−1

λ2−1
b2





 |







x1

x2





 ∈ S ′′, k ∈ N











.

Let ~v ∈ Zn be such that the second component of π(U−1~v) is different from
b2

1−λ2
(such a ~v always exists, otherwise U−1 would be singular). Choosing

S = {~v}, we obtain that the set

S ′ =

















v1 + kb1

λk
2v2 +

λk
2−1

λ2−1
b2





 | k ∈ N











,

with







v1

v2





 = π(U−1~v), is r-definable. From Theorem 9, it follows that the

15



set








1
b1

0

0 1

v2+
b2

λ2−1













S ′ +







−v1

b2
λ2−1











 =

















k

λk
2





 | k ∈ N











is r-definable, which contradicts Theorem 14.
• If λ1 6= 1. We have

S ′ =























λk
1x1 +

λk
1−1

λ1−1
b1

λk
2x2 +

λk
2−1

λ2−1
b2









|







x1

x2





 ∈ S ′′, k ∈ N















.

Let ~v ∈ Zn be such that the two components of π(U−1~v) are respectively
different from b1

1−λ1
and from b2

1−λ2
(such a ~v always exists, otherwise U−1

would be singular). Choosing S = {~v}, we obtain that the set

S ′ =























λk
1v1 +

λk
1−1

λ1−1
b1

λk
2v2 +

λk
2−1

λ2−1
b2









| k ∈ N















,

with







v1

v2





 = π(U−1~v), is r-definable. From Theorem 9, it follows that the

set









1

v1+
b1

λ1−1

0

0 1

v2+
b2

λ2−1













S ′ +







b1
λ1−1

b2
λ2−1











 =

















λk
1

λk
2





 | k ∈ N











is r-definable, which contradicts Theorem 16.

�

Before establishing the conditions that involve the Jordan blocks of the trans-
formation matrix, we need to give a few lemmas.

Lemma 21 Let n, r ∈ N0 with n > 1, r > 1, λ ∈ C such that λ 6= 1, p ∈ N0,
m ∈ N such that λp = rm, q ∈ N with 1 < q ≤ n, V ∈ Cq×n of rank q, and
~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jk
q,λ~x +

∑

0≤i<k

J i
q,λ

~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.
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PROOF. The proof is given in Section 8. �

The next lemma deals with Jordan blocks associated to the eigenvalue 1.

Lemma 22 Let n, r ∈ N0 with n > 1, r > 1, q ∈ N with 1 < q ≤ n, V ∈ Qq×n

of rank q, and ~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jk
q,1~x +

∑

0≤i<k

J i
q,1

~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.

PROOF. The proof is given in Section 8. �

Lemma 23 Let n ∈ N0 and A ∈ Zn×n. There exists a nonsingular matrix
U ∈ Cn×n transforming A into its Jordan form AJ , and such that every row
of U−1 at the same position as a row of a Jordan block Jq,λ in AJ contains
only rational components provided that λ is rational.

The proof is given in Section 8. �

We are now ready to state the necessary condition on the size of the Jordan
blocks of the transformation matrix.

Theorem 24 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn be such that for every r-definable set S ⊆ Zn, the set θ∗(S)
is r-definable. Let AJ be the Jordan form of A. Every Jordan block of AJ

corresponding to a nonzero eigenvalue of A is of size 1.

PROOF. The proof is by contradiction. Suppose that AJ has a Jordan block
Jm,λ such that λ 6= 0 and m > 1. Let U ∈ Cn×n transforming A into AJ , and
such that its rows at the same position as a row of Jm,λ in AJ contain only
rational components if λ = 1 (according to Lemma 23, such a U always exists).
Let π be the projection mapping AJ onto Jm,λ. Applying Theorem 17, we have
that for every r-definable set S ⊆ Zn, the set

S ′ = {Jk
m,λ~x +

∑

0≤i<k

J i
m,λ

~b′ | k ∈ N ∧ ~x ∈ π(U−1S)},

with~b′ = π(U−1~b), is r-definable. Depending on the value of λ, this contradicts
either Lemma 21 or Lemma 22. �

The necessary conditions are now complete. They can be summarized as fol-
lows.

17



Theorem 25 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn. If θ is such that for every r-definable set S ⊆ Zn, the set θ∗(S) is
r-definable, then

(1) There exist p ∈ N0 and m ∈ N such that every nonzero eigenvalue λ of
A satisfies λp = rm, and

(2) The Jordan form of A is such that all the blocks corresponding to a
nonzero eigenvalue are of size 1.

PROOF. This result is a direct consequence of Theorems 18, 20, and 24. �

Corollary 26 Let n, r ∈ N0 with r > 1, and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn. If θ is such that for every r-definable set S ⊆ Zn, the set θ∗(S) is
r-definable, then there exists p ∈ N0 such that

(1) Ap has at most one nonzero eigenvalue λ, and
(2) λ (if any) is an integer power of r, and
(3) Ap is diagonalizable.

PROOF. If θ is as required, then Theorem 25 implies that there exist p′ ∈ N0

and m′ ∈ N such that every nonzero eigenvalue λ′ of A satisfies (λ′)p′ = rm′

.
Moreover, the Jordan form of A is such that all the blocks corresponding to
a nonzero eigenvalue are of size 1. Let a ∈ N0 be such that a > n/p′, and
let p = ap′, m = am′. Since every eigenvalue λ of Ap is the p-th power of an
eigenvalue of A, we have λ = rm. Furthermore, every matrix transforming A
into its Jordan form AJ transforms Ap into Ap

J . This last matrix is diagonal,
for any power of a block of size one is of size one, and the n-th power of a
block associated to the eigenvalue zero is only composed of zeroes. �

Theorem 27 Let n ∈ N0 and θ = (~x := A~x +~b) with A ∈ Zn×n and ~b ∈ Zn.
If θ is such that for every Presburger-definable set S ⊆ Zn the set θ∗(S) is
Presburger-definable, then there exists p ∈ N0 such that

(1) The eigenvalues of Ap belong to {0, 1}, and
(2) Ap is diagonalizable.

PROOF. The result is obtained by applying the same reasoning as in the
proofs of Theorems 18, 20, 24 and 25 with two relatively prime bases r1 and
r2 (chosen arbitrarily). This can be done only because the sets {~v} and {j~v |
j ∈ N} used in the proof of Theorem 20 and in the ones of Lemmas 21 and
of 22 are Presburger-definable. �
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5 Sufficient Conditions

Here, we show that the necessary conditions given in Section 4 are also suf-
ficient. In other words, if a linear transformation satisfies the conditions ex-
pressed by Corollary 26, then its closure preserves the definable nature of sets
of vectors. This property is formalized as follows.

Theorem 28 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn. If there exists p ∈ N0 such that Ap is diagonalizable, Ap has at
most one nonzero eigenvalue λ, and λ (if any) is an integer power of r, then
for any r-definable set S ⊆ Zn, the set θ∗(S) is r-definable.

PROOF. Suppose that there exists such a p. For any r-definable set S ⊆ Zn,
we have

θ∗(S)=
⋃

0≤j<p, k∈N

θpk+j(S)

=
⋃

0≤j<p

θj





⋃

k∈N

θpk(S)





=
⋃

0≤j<p

θj ((θp)∗(S)) .

According to Theorem 9, every θj preserves the r-definable nature of sets,
as does the finite union of sets. Therefore, it is sufficient to prove that (θp)∗

preserves r-definability. Let S ′ = (θp)∗(S), J be the Jordan form of Ap (we
know that it is diagonal), and U ∈ Qn×n be a matrix transforming Ap into J .
We have

S ′ = {Apk~x +
∑

0≤i<k

Api~b′ | ~x ∈ S ∧ k ∈ N},

with ~b′ =
∑

0≤i<p

Ai~b. Hence,

S ′ = {UJkU−1~x +
∑

0≤i<k

UJ iU−1~b′ | ~x ∈ S ∧ k ∈ N}.

We distinguish two situations.

• If all the eigenvalues of Ap belong to {0, 1}. We have

S ′ = S ∪ {UJU−1~x + (k − 1)UJU−1~b′ +~b′ | ~x ∈ S ∧ k ∈ N0}

= S ∪ {Ap~x + kAp~b′ +~b′ | ~x ∈ S ∧ k ∈ N}.
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Since the last member of this equation is expressed in Presburger arithmetic,
the set denoted by this term is r-definable, and so is S ′.

• If all the eigenvalues of Ap belong to {0, rm}, with m ∈ N0. We have

S ′ = {UJkU−1~x +
∑

0≤i<k

UJ iU−1~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪ {rm(k−1)UJU−1~x +
∑

0<i<k

rm(i−1)UJU−1~b′ +~b′

| ~x ∈ S ∧ k ∈ N0}

= S ∪ {rmkAp~x +
∑

0≤i<k

rmiAp~b′ +~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪ {rmkAp~x +
rmk − 1

rm − 1
Ap~b′ +~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪
{

1

rm − 1

[

rmk
(

(rm − 1)Ap~x + Ap~b′
)

− Ap~b′
]

+~b′

| ~x ∈ S ∧ k ∈ N

}

= S ∪
1

rm − 1

[

expand
(

(rm − 1)ApS + Ap~b′, rm
)

− Ap~b′
]

+~b′

According to Theorem 9, the last formula denotes a r-definable set.

�

A similar result holds for Presburger-definable sets.

Theorem 29 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n

and ~b ∈ Zn. If there exists p ∈ N0 such that Ap is diagonalizable and has its
eigenvalues in {0, 1}, then for any Presburger-definable set S ⊆ Zn, the set
θ∗(S) is Presburger-definable.

PROOF. The proof is identical to the first part of the proof of Theo-
rem 28. �

6 Algorithms

The necessary and sufficient conditions given in Sections 4 and 5 are not
directly usable in practical applications. Indeed, they are defined in terms of
eigenvalues and of Jordan blocks, which can in general only be computed up
to a limited accuracy. In this section, we give an algorithm for determining
whether a given linear transformation with integer coefficients satisfies the
necessary and sufficient conditions expressed by Theorem 25. This decision
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procedure is only based on integer arithmetic. An algorithm is also given for
computing a finite-state representation of the set θ∗(S) given a representation
of the set of vectors S ⊆ Zn and a linear transformation θ that satisfies the
necessary and sufficient conditions for preserving definability.

Let r, n ∈ N0 with r > 1, and θ be the linear transformation ~x := A~x+~b with
A ∈ Zn×n and ~b ∈ Zn. The first problem consists in checking whether θ∗(S)
is r-definable for every r-definable set S ⊆ Zn. In addition, if the answer
is positive, we would like to compute m ∈ N and p ∈ N0 such that Ap is
diagonalizable and has all its eigenvalues in {0, rm}.

First, we check whether the eigenvalues of A satisfy the conditions required by
Theorem 25. We know that those eigenvalues are the roots of the characteristic
polynomial Π1(x) of A. Since this polynomial has integer coefficients, the
product a (or −a) of all its nonzero roots can easily be computed as the ratio
of its nonzero coefficients of lowest and of highest degree (this implies a ∈ Q).
According to Theorem 25, all the nonzero roots of Π1(x) must be of the same
magnitude, and this magnitude must be equal to some rational power of r.
Therefore, if |a| is not a rational power of r, then θ does not preserve the
r-definable nature of sets of vectors.

Let us now assume that |a| = r(u/v), with u ∈ Z, v ∈ N0 and gcd(u, v) =
1. The eigenvalues of A satisfy the conditions expressed by Theorem 25 if
and only if every nonzero root of Π1(x) has the magnitude |a|(1/n′), where n′

is the difference between the highest and the lowest degrees of the nonzero
coefficients of Π1(x). If n′ = 0, then zero is the only root of Π1(x) and the
condition is trivially satisfied. If n′ > 0, then let z = (n′v)/ gcd(n′v, u) and
y = (zu)/(n′v). Every eigenvalue of Az that is different from zero must have
the magnitude ry. Therefore, each root of the characteristic polynomial Π2(x)
of Az must be either equal to zero or of magnitude ry. Hence, if k ∈ N is the
greatest integer such that Π2(x) is divisible by the polynomial xk, then all the
roots of the polynomial Π3(x) = Π′

2(r
yx), where Π′

2(x) = Π2(x)/xk, must be
complex roots of 1.

The problem consisting in checking whether the eigenvalues of A satisfy the
conditions expressed by Theorem 25 has thus been reduced to checking if all
the roots of Π3(x) are complex roots of 1. This is the case if and only if there
exists l ∈ N0 such that Π3(x) divides xl − 1. Since the polynomial Π3(x) has
integer coefficients, such an integer l exists if and only if Π3(x) is a product of
cyclotomic polynomials. Checking this by trying successively to divide Π3(x)
by Φ1(x), Φ2(x), Φ3(x), . . . introduces two difficulties. First, given an integer
i ∈ N0, computing the coefficients of Φi(x) is tedious. One must therefore find
a way of testing the divisibility of Π3(x) by Φi(x) without computing explicitly
Φi(x). Second, one must find an upper bound on the indices i of the Φi(x)
that have to be considered.
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The first problem is solved thanks to the following theorem.

Theorem 30 Let i ∈ N0 and Π(x) be a polynomial with integer coefficients
such that for every 0 < j < i, Π(x) is not divisible by the cyclotomic polynomial
Φj(x). The polynomial Π(x) is divisible by Φi(x) if and only if the degree of
the polynomial gcd(xi − 1, Π(x)) is at least equal to 1.

PROOF. We have xi − 1 = Φi(x)Φj1(x) · · ·Φjq
(x), where each jk is such

that 0 < jk < i. Since the factorization of xi − 1 into cyclotomic polynomials
is unique, the result is immediate. �

As a consequence of this theorem, trying successively to divide Π3(x) by Φ1(x),
Φ2(x), Φ3(x), . . . can be done by dividing successively Π3(x) by its common
factors with x − 1, x2 − 1, x3 − 1, . . .. The conditions on the eigenvalues of A
are satisfied if and only if one eventually obtains a polynomial of degree 0.

It remain to give an upper bound on the indices i of the cyclotomic polynomials
Φi(x) that can potentially divide Π3(x). Intuitively, the idea is that it is useless
to consider the Φi(x) whose degree is greater than the one of Π3. We have the
following theorem.

Theorem 31 For every integer k ∈ N0 and for every degree d ∈ N such that

k > 210
(

d
48

)log10 11
, we have degree(Φk(x)) > d.

PROOF. It is known [19] that degree(Φk(x)) = φ(k), where φ is the Euler
function, defined as

φ(k) = k

(

1 −
1

p1

)(

1 −
1

p2

)

· · ·

(

1 −
1

pq

)

,

where p1, p2, . . . , pq are the (distinct) prime factors of k.

Assume first that q ≥ 5, i.e., that k has at least five distinct prime factors.
We have p1 ≥ 2, p2 ≥ 3, p3 ≥ 5, p4 ≥ 7, as well as pi ≥ 11 for all i ≥ 5. These
inequalities imply

(

1 −
1

p1

)(

1 −
1

p2

)(

1 −
1

p3

)(

1 −
1

p4

)

≥

(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)

(1)
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and
(

1 −
1

p5

)(

1 −
1

p6

)

· · ·

(

1 −
1

pq

)

≥
(

1 −
1

11

)(q−4)

. (2)

Moreover, since k ≥ p1 · · · pq, we have k ≥ 2.3.5.7.11(q−4), and hence q − 4 ≤
log11(k/210). Replacing into Equation (2), we obtain

(

1 −
1

p5

)(

1 −
1

p6

)

· · ·

(

1 −
1

pq

)

≥
(

1 −
1

11

)log11( k
210)

. (3)

Introducing Equations (1) and (3) into the expression of φ(k), we obtain

φ(k) ≥ k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210)

.

Now, let us show that the previous inequality also holds if q < 5, i.e., if k does
not have more than four distinct prime factors. Let p′1 = 2, p′2 = 3, p′3 = 5 and
p′4 = 7. We have

φ(k) = k

(

1 −
1

p1

)

· · ·

(

1 −
1

pq

)

≥ k

(

1 −
1

p′1

)

· · ·

(

1 −
1

p′q

)

= k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210)

ϕ(k),

with

ϕ(k) =
1

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)

(

1 −
1

11

)log11( k
210)

.

It is thus sufficient to show that ϕ(k) ≥ 1, i.e., that

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)

≤
(

1 −
1

11

)− log11( k
210 )

.

For every i ∈ {q + 1, . . . , 4}, we have

(

1 −
1

p′i

)

≤ 1 −
1

11
≤
(

1 −
1

11

)log11 p′
i

,
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which yields

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)

≤
(

1 −
1

11

)(log11 p′q+1+···+log11 p′4)

=
(

1 −
1

11

)log11(p′q+1···p
′

4)

.

Since k ≥ p′1 · · · p
′
q and p′1 · · · p

′
4 = 210, we have

p′q+1 · · ·p
′
4 =

210

p′1 · · · p
′
q

≥
210

k
.

Therefore,

(

1 −
1

11

)log11(p′q+1···p
′

4)

≤
(

1 −
1

11

)log11(210
k )

=
(

1 −
1

11

)− log11( k
210)

and hence ϕ(k) ≥ 1.

In summary, we have for every k ∈ N0

φ(k) ≥ k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210)

.

This yields

φ(k)≥
8k

35
e(log11(10)−1) loge

k
210

=
8k

35

(

k

210

)log11(10)−1

= 48

(

k

210

)log11 10

.

If k is such that k > 210
(

d
48

)log10 11
, then this last expression implies φ(k) >

d. �

Note that the same reasoning can be followed so as to obtain a better bound
(up to an arbitrary amount of accuracy), by considering a greater number
of prime factors in the expansion of φ(k). The choice of expanding only the
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first five prime factors was motivated by an explicit computation of the first
few hundred cyclotomic polynomials, which demonstrated that the bound ex-
pressed by Theorem 31 is nearly optimal for these polynomials.

It remains to check whether the sizes of the Jordan blocks of A satisfy the
conditions required by Theorem 25. We assume that the conditions on the
eigenvalues of A are satisfied. Let i1, i2, . . . , iq (q ∈ N) be all the integers i
such that Π3(x) has common factors with xi − 1. The least common multiple
l of i1, i2, . . . , iq is such that the l-th power of every root of Π3(x) is exactly
equal to 1. This means that all the nonzero eigenvalues of Azl are equal to ryl.
Let

l′ =











l if zl ≥ n or Π2(x) = Π′
2(x),

l⌈n/(zl)⌉ if zl < n and Π2(x) 6= Π′
2(x),

and let m = yl′, p = zl′. All the eigenvalues of Ap belong to {0, rm}. If Ap has
the eigenvalue 0, then the definition of l′ yields p ≥ n, which implies that the
Jordan blocks of Ap associated to the eigenvalue 0 are only composed of zeroes.
The condition on the size of the Jordan blocks of A will thus be satisfied if
and only if Ap is diagonalizable. This can be checked thanks to the following
result.

Theorem 32 A square matrix is diagonalizable if and only if its minimal
polynomial has only simple roots.

PROOF. A proof of this well-known result can be found in [2] or [16]. �

In the present case, we know that the minimal polynomial of Ap has to be
either 0, x, x− rm or x(x− rm), depending on the eigenvalues of A. This can
be checked explicitly.

An algorithm formalizing the decision procedure that has just been developed
is given in Figures 1 and 2. (In this algorithm, the test performed at Line 11
can easily be carried out by comparing the prime factors of a0, a1 and r.)

Theorem 33 Let r, n ∈ N0 and θ be the linear transformation ~x = A~x +~b
with A ∈ Zn×n and ~b ∈ Zn. The set θ∗(S) is r-definable for every r-definable
set S ⊆ Zn if and only if DEFINABLE-CLOSURE?(r, n, A) returns a triple
of the form (T, m, p), with m ∈ N and p ∈ N0. If this is the case, then m and
p are such that Ap is diagonalizable and has all its eigenvalues in {0, rm}.

PROOF. The algorithm in Figures 1 and 2 is a direct implementation of the
computation method discussed in this section. In Lines 41–42, the condition
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function DEFINABLE-CLOSURE?(base r, dimension n, integer matrix A) :
{T,F} × N × N0

1: var Π1,Π2,Π : polynomials with integer coefficients;

2: d0, d1, a0, a1, a, u, v, n′, z, y, i,m, p, l : integers;

3: M : integer matrix;

4: begin

5: Π1(x) := characteristic polynomial of A;

6: d0 := lowest degree of the nonzero terms of Π1(x);

7: d1 := highest degree of the nonzero terms of Π1(x);

8: a0 := coefficient of Π1(x) with the degree d0;

9: a1 := coefficient of Π1(x) with the degree d1;

10: a := a0/a1;

11: if (r > 1 ∧ logr(|a|) 6∈ Q) ∨ (r = 1 ∧ |a| 6= 1) then

return (F, 0, 0);

12: if r = 1 then (u, v) := (1, 1)

13: else let u/v := logr(|a|) such that u ∈ Z ∧ v ∈ N0

∧ gcd(u, v) = 1;

14: n′ := d1 − d0;

15: if n′ = 0 then return (T, 0, n);

16: z := (n′v)/ gcd(n′v, u);

17: y := (zu)/(n′v);

18: Π2(x) := characteristic polynomial of Az;

19: n′ := n;

20: while x divides Π2(x) do

21: begin

22: Π2(x) := Π2(x)/x;

23: n′ := n′ − 1

24: end;

(. . . )

Fig. 1. Decision procedure for the preservation of r-definability by the closure of a
linear transformation.
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(. . . )

25: Π3(x) := Π2(r
yx);

26: l := 1;

27: for i := 1 to ⌊210(n′/48)log10 11⌋ do

28: begin

29: Π(x) := gcd(xi − 1,Π3(x));

30: if degree(Π(x)) > 0 then

31: begin

32: l := lcm(l, i);

33: while Π(x) divides Π3(x) do

34: Π3(x) := Π3(x)/Π(x)

35: end

36: end;

37: if degree(Π3(x)) > 0 then return (F, 0, 0);

38: if zl < n ∧ n′ < n then l := l⌈n/(zl)⌉;

39: (m, p) := (yl, zl);

40: M := In;

41: if n′ > 0 then M := (Ap − rmIn)M ;

42: if n′ < n then M := ApM ;

43: if Ap = (0) ∨ M = (0) then return (T,m, p);

44: return (F, 0, 0)

45: end.

Fig. 2. Decision procedure for the preservation of r-definability by the closure of a
linear transformation (continued).

on the minimal polynomial of Ap is checked by taking advantage of the facts
that n′ > 0 if and only if Ap has the eigenvalue rm, and that n′ < n if and
only if Ap has the eigenvalue 0. �

Theorem 34 Let n ∈ N0 and θ be the linear transformation ~x := A~x + ~b
with A ∈ Zn×n and ~b ∈ Zn. The set θ∗(S) is Presburger-definable for every
Presburger-definable set S ⊆ Zn if and only if DEFINABLE-CLOSURE?(1, n,
A) returns a triple of the form (T, m, p), with m ∈ N and p ∈ N0. If this is
the case, then p is such that Ap is diagonalizable and has all its eigenvalues in
{0, 1}.
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function APPLY-STAR-BASE(base r, dimension n, NDD A,
linear operation ~x := A~x +~b) : NDD

1: var m, p : integers;

2: ~b′ : integer vector;

3: A′ : NDD;

4: begin

5: (T,m, p) := DEFINABLE-CLOSURE?(r, n,A);

6: ~b′ :=
∑

0≤i<p

Ai~b;

7: if m = 0 then

8: A′ := NDD
(

SET(A) ∪ {~y ∈ Zn | (∃k ∈ N, ~x ∈ SET(A))

(~y = Ap~x + kAp~b′ +~b′)}
)

9: else

10: A′ := NDD
(

SET(A) ∪ (1/(rm − 1))
[

expand
(

(rm − 1)Ap SET(A) + Ap~b′, rm
)

− Ap~b′
]

+~b′
)

;

11: return NDD





⋃

0≤j<p



Aj SET(A′) +
∑

0≤i<j

Ai~b









12: end.

Fig. 3. Image of an NDD by the closure of a linear transformation in a given base.

PROOF. The result is a direct consequence of Theorems 27 and 33. �

It remains to give an algorithm for computing the image of a definable set of
vectors S ⊆ Zn (n ∈ N) by the closure of a linear transformation ~x := A~x+~b
that satisfies DEFINABLE-CLOSURE?. An expression of this image in terms
of S and of operations preserving the definable nature of sets has already been
obtained in the proof of Theorem 28. Algorithms based on that result are given
in Figures 3 and 4. In these algorithms, NDD(φ) and SET(A) denote respec-
tively an NDD representing the formula φ, which can be computed thanks to
the constructive proof of Theorem 2, and the set represented by the NDD A.

Theorem 35 Let r, n ∈ N0 with r > 1 and θ be the linear transforma-
tion ~x := A~x + ~b, with A ∈ Zn×n and ~b ∈ Zn, such that DEFINABLE-
CLOSURE?(r, n, A) = (T, q, p) for some q and p. If A is an NDD represent-
ing the set of vectors S ⊆ Zn in base r, then APPLY-STAR-BASE(r, n,A, θ)
is an NDD representing the set θ∗(S) in base r.
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function APPLY-STAR-PRESBURGER(dimension n, NDD A,
linear operation ~x := A~x +~b) : NDD

1: var p : integer;

2: ~b′ : integer vector;

3: A′ : NDD;

4: begin

5: (T, 0, p) := DEFINABLE-CLOSURE?(1, n,A);

6: ~b′ :=
∑

0≤i<p

Ai~b;

7: A′ := NDD
(

SET(A) ∪ {~y ∈ Zn | (∃k ∈ N, ~x ∈ SET(A))

(~y = Ap~x + kAp~b +~b′)}
)

;

8: return NDD





⋃

0≤k<p



Ak SET(A′) +
∑

0≤i<k

Ai~b









9: end.

Fig. 4. Image of an NDD by the closure of a linear transformation in any base.

PROOF. The algorithm in Figure 3 is a direct implementation of the com-
putation performed in the proof of Theorem 28. �

Theorem 36 Let n ∈ N0 and θ be the linear transformation ~x := A~x + ~b,
with A ∈ Zn×n and ~b ∈ Zn, such that DEFINABLE-CLOSURE?(1, n, A) =
(T, q, p) for some q and p. If A is an NDD representing the Presburger-
definable set of vectors S ⊆ Zn in some base r > 1, then APPLY-STAR-
PRESBURGER(n,A, θ) is an NDD representing the Presburger-definable set
θ∗(S) in base r.

PROOF. The algorithm in Figure 4 is a direct implementation of the com-
putation performed in the proof of Theorem 28. �

7 Linear Transformations with Guards

We now move to the more general case of operations of the form θ = (P~x ≤

~q → ~x := A~x+~b), where n, m ∈ N, P ∈ Zm×n, ~q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn.
The semantics of such a guarded transformation is defined by the function

θ : {~v ∈ Zn | P~v ≤ ~q} → Zn : ~v 7→ A~v +~b
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(i.e., θ(~v) is equal to A~v +~b if P~v ≤ ~q, and is undefined otherwise.)

We do not provide a general solution to the problem of checking whether the
closure of a guarded linear transformation preserves the recognizable nature
of sets. Instead, we show that the results developed in Sections 4, 5 and 6 can
be adapted with little difficulty to guarded transformations, in the form of a
sufficient condition for the preservation of recognizability.

Precisely, the sufficient condition is a consequence of a remarkable property:
if θ is such that its underlying guardless transformation ~x := A~x +~b satisfies
the necessary and sufficient conditions expressed by Theorem 25, then for
every definable set S ⊆ Zn, the set θ∗(S) is definable. Moreover, an NDD
representing θ∗(S) can be computed from an NDD representing S. Formally,
we have the following result.

Theorem 37 Let n ∈ N, r ∈ N with r > 1, m ∈ N, and θ = (P~x ≤ ~q →

~x := A~x +~b) with P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn. If there exists
p ∈ N0 such that Ap is diagonalizable, has at most one nonzero eigenvalue λ,
and λ (if any) is an integer power of r, then for any r-definable set S ⊆ Zn,
the set θ∗(S) is r-definable.

PROOF. Suppose that there exists a suitable p. Let S ⊆ Zn be a r-definable
set, θ′ be the guardless linear transformation (~x := A~x + ~b), and V = {~x ∈
Zn | P~x ≤ ~q}. We have

θ∗(S)= {(θ′)k(~x) | ~x ∈ S ∧ k ∈ N ∧
∧

0≤i<k

(θ′)i(~x) ∈ V }

= {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧ 0 ≤ j < p

∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ] ∧
∧

0≤i<k

∧

0≤l<p

[(θ′)l((θ′)pi+j(~x)) ∈ V ]}.

Let

V ′ = {~x ∈ Zn|
∧

0≤l<p

[(θ′)l(~x) ∈ V ]}.

The expression of θ∗(S) becomes

θ∗(S)= {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧ 0 ≤ j < p

∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ] ∧
∧

0≤i<k

[(θ′)pi+j(~x) ∈ V ′]}

=
⋃

0≤j<p

Sj ,
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with for every j ∈ {0, 1, . . . , p − 1},

Sj = {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ]

∧
∧

0≤i<k

[(θ′)pi+j(~x) ∈ V ′]}.

Let us define

Uj = {~x ∈ Zn|(∃~x ′ ∈ S)(~x = (θ′)j(~x ′) ∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ V ])}.

We obtain

Sj = {(θ′)pk(~x) | k ∈ N ∧ ~x ∈ Uj ∧
∧

0≤i<k

[(θ′)pi(~x) ∈ V ′]}.

By construction, V ′ is a convex set. Moreover, it follows from the algorithm in
Figure 3 that all the the vectors belonging to {(θ′)pi(~x), (θ′)p(i+1)(~x), . . .} are
colinear. It follows that for any k > 1, the condition

∧

0≤i<k

[(θ′)pi(~x) ∈ V ′]

is equivalent to

~x ∈ V ′ ∧ (θ′)p(~x) ∈ V ′ ∧ (θ′)(k−1)p(~x) ∈ V ′.

Therefore, we have

Sj = Uj ∪ {(θ′)p(~x) | ~x ∈ Uj ∩ V ′}

∪ {(θ′)pk(~x) | k ∈ N ∧ k ≥ 2 ∧ ~x ∈ Uj ∩ V ′

∧ (θ′)p(~x) ∈ V ′ ∧ (θ′)p(k−1)(~x) ∈ V ′}

= (θ′)p(Uj ∩ V ′) ∪ (θ′)p((θ′)p([(θ′)p]∗(Uj ∩ V ′ ∩ V ′′)) ∩ V ′),

with V ′′ = {~x ∈ Zn | (θ′)p(~x) ∈ V ′}. Since V ′, V ′′ and every Uj are Presburger-
definable (and thus r-definable), every Sj is r-definable. It follows that θ∗(S)
is r-definable as well. �

Unfortunately, the reciprocal of Theorem 37 does not hold. Indeed, there are
guarded linear transformations that preserve the r-definable nature of sets of
vectors, but whose underlying guardless transformation does not. The condi-
tions expressed by Theorem 37 are thus sufficient, but not necessary. Obtaining
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necessary and sufficient conditions over guarded linear transformations that
preserve the r-definable nature of sets of vectors seems to be a very difficult
problem. (Intuitively, the difficulty originates from the fact that, if a linear
operation θ does not satisfy the hypotheses of Theorem 37, then the orbit
{θk(~v) | k ∈ N} of an individual vector ~v ∈ Zn to which θ is repeatedly ap-
plied is in general non-linear. This makes a manageable description of θ∗(S),
for a subset S of Zn, much more difficult to obtain.)

A result similar to Theorem 37 holds for Presburger-definable sets.

Theorem 38 Let n ∈ N, m ∈ N, and θ = (~x := P~x ≤ ~q → A~x +~b), with

P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn. If there exists p ∈ N0 such that Ap

is diagonalizable, has at most one nonzero eigenvalue λ, and λ = 1, then for
any Presburger-definable set S ⊆ Zn, the set θ∗(S) is Presburger-definable.

Identical to the proof of Theorem 37. �

The previous theorems state that one can use the function computed by the
algorithm DEFINABLE-CLOSURE? of Figures 1 and 2 as a sufficient criterion
for guarded transformations. It remains to give an algorithm for computing
the image of a definable set of vectors S ⊆ Zn (n ∈ N) by the closure of a

guarded linear operation (P~x ≤ ~q → ~x := A~x+~b) that satisfies this criterion.
An expression of this image in terms of S and of operations preserving the
definable nature of sets is given in the proof of Theorem 37. Algorithms based
on that result are given in Figures 5 and 6.

Theorem 39 Let r, n ∈ N0 with r > 1, and θ be the guarded linear transfor-
mation (P~x ≤ ~q → ~x := A~x +~b), with m ∈ N, P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n

and ~b ∈ Zn such that DEFINABLE-CLOSURE?(r, n, A) = (T, q, p) for some
q and p. If A is an NDD representing the set of vectors S ⊆ Zn in base r, then
APPLY-STAR-GUARDED-BASE(r, n,A, θ) is an NDD representing the set
θ∗(S) in base r.

PROOF. The algorithm in Figure 5 is a direct implementation of the com-
putation performed in the proof of Theorem 37. �

Theorem 40 Let n ∈ N0 and θ be the linear operation (P~x ≤ ~q → ~x :=

A~x + ~b), with m ∈ N, P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn such that
DEFINABLE-CLOSURE?(1, n, A) = (T, q, p) for some q and p. If A is an
NDD representing the Presburger-definable set of vectors S ⊆ Zn in some base
r > 1, then APPLY-STAR-GUARDED-PRESBURGER(n,A, θ) is an NDD
representing the Presburger-definable set θ∗(S) in base r.
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function APPLY-STAR-GUARDED-BASE(base r, dimension n, NDD A,
linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var m, p, j : integers;

2: θ′ : guardless linear transformation;

3: A′,A′′,A1,A2,A3,A4 : NDDs;

4: begin

5: (T,m, p) := DEFINABLE-CLOSURE?(r, n,A);

6: θ′ := (~x := A~x +~b);

7: A1 := NDD({~x ∈ Zn | P~x ≤ ~q });

8: A2 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l(~x) ≤ ~q });

9: A3 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l+p(~x) ≤ ~q });

10: A′ := NDD(∅);

11: for j := 0 to p − 1 do

12: begin

13: A4 := NDD

(

{~x ∈ Zn | (∃~x ′ ∈ SET(A))

(~x = (θ′)j(~x ′) ∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ SET(A1)])}

)

;

14: A′ := A′ ∪ A4 ∪ NDD((θ′)p(SET(A4) ∩ SET(A2)));

15: A′′ := APPLY-STAR-BASE?(r, n,

A2 ∩ A3 ∩ A4, A
p,
∑

0≤k<p

Ak~b);

16: A′ := A′ ∪ NDD((θ′)p((θ′)p(SET(A′′)) ∩ SET(A2)))

17: end;

18: return A′

19: end.

Fig. 5. Image of an NDD by the closure of a guarded transformation in a given base.

PROOF. The algorithm in Figure 6 is a direct implementation of the com-
putation performed in the proof of Theorem 37. �
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function APPLY-STAR-GUARDED-PRESBURGER(dimension n, NDD A,
linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var p, j : integers;

2: θ′ : guardless linear transformation;

3: A′,A′′,A1,A2,A3,A4 : NDD;

4: begin

5: (T, 0, p) := DEFINABLE-CLOSURE?(n,A);

6: θ′ := (~x := A~x +~b);

7: A1 := NDD({~x ∈ Zn | P~x ≤ ~q });

8: A2 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l(~x) ≤ ~q });

9: A3 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l+p(~x) ≤ ~q });

10: A′ := NDD(∅);

11: for j := 0 to p − 1 do

12: begin

13: A4 := NDD

(

{~x ∈ Zn | (∃~x ′ ∈ SET(A))(~x = (θ′)j(~x ′)

∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ SET(A1)])}

)

;

14: A′ := A′ ∪ A4 ∪ NDD((θ′)p(SET(A4) ∩ SET(A2)));

15: A′′ := APPLY-STAR-PRESBURGER(n,

A2 ∩ A3 ∩ A4, A
p,
∑

0≤k<p

Ak~b);

16: A′ := A′ ∪ NDD((θ′)p((θ′)p(SET(A′′)) ∩ SET(A2)))

17: end;

18: return A′

19: end.

Fig. 6. Image of an NDD by the closure of a guarded transformation in any base.

8 Proofs of Auxiliary Results

This section contains the proofs that were omitted from Sections 3 and 4 for
clarity sake. They are presented according to their order of occurrence in the
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main text.

Theorem 8 Let n, r ∈ N0 with r > 1. A set S ⊆ Zn is r-definable if and only
if it is r-recognizable.

PROOF.

• If S is r-definable, then S is r-recognizable. If S is r-definable, then there
exist m ∈ N0, S ′ ⊆ Zm and U ∈ Cn×m such that S ′ is r-recognizable and
S = US ′. Let B ⊂ Zm be a maximal subset of linearly independent vectors
from S ′, i.e., a finite subset of S ′ such that each vector in S ′ can be expressed
as a linear combination of vectors in B. There exists a ∈ N0 such that every
vector in S ′ is a linear combination with integer coefficients of vectors in
(1/a)B. Let p be the number of vectors in B, and T ∈ Qm×p be a matrix
such that col(T ) = (1/a)B. Since S ′ is r-recognizable, the set

S ′′ = {~x ∈ Zp | T~x ∈ S ′}

is r-recognizable as well. We have S ′ = TS ′′, hence S = (UT )S ′′. Every
column ~c of T belongs to (1/a)S ′, and thus is such that U~c belongs to
(1/a)S. It follows that UT ∈ Qn×p, and therefore the equation S = (UT )S ′′

leads to a definition of S in the first-order theory 〈Z,≤, +, Vr〉 (recall that
S ′′ is r-recognizable). It follows that S is r-recognizable.

• If S is r-recognizable, then S is r-definable. Let U = In and S ′ = S. We have
S = US ′, where S ′ is a r-recognizable subset of Zn, hence S is r-definable.

�

Before proving Theorem 9, we introduce the following lemma.

Lemma 41 Let r ∈ N with r > 1, n, m1, m2 ∈ N0, U1 ∈ Cn×m1, and U2 ∈
Cn×m2. The set

















~x1

~x2





 ∈ Zm1+m2 | U1~x1 = U2~x2











is r-definable.

PROOF. It is sufficient to prove that for any m ∈ N0 and ~u ∈ Cm, the set S
of all the vectors ~x ∈ Zm satisfying ~u · ~x = 0 is Presburger-definable. Indeed,
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applying this result to m = m1 + m2 and

~u =







~u1

−~u2





 ,

where ~u1 and ~u2 are rows at the same position in U1 and in U2, shows that
the set of all the vectors







~x1

~x2





 ∈ Zm1+m2

such that ~u1 · ~x1 = ~u2 · ~x2 is Presburger-definable. The intersection of the
sets obtained for each pair of matching rows in U1 and U2 is thus Presburger-
definable, and therefore r-definable.

It remains to prove that the set S of all the solutions in Zm of ~u · ~x = 0
is Presburger-definable. This set is an additive subgroup of Rm. An addi-
tive subgroup of Rm is finitely generated if and only if it is discrete (Theo-
rem 6.1 in [28]). Since S ⊆ Zm, S is discrete and thus finitely generated. Let
~v1, ~v2, . . . , ~vp be the generators of S. We have

S = {a1~v1 + · · · + ap~vp | a1, . . . , ap ∈ Z}.

This expression can be rewritten as

S = {~x ∈ Zm | (∃a1, . . . , ap ∈ Z)(~x = a1~v1 + · · ·+ ap~vp)},

which is a formula of Presburger arithmetic defining S. �

Theorem 9 Let r ∈ N with r > 1, n1, n2 ∈ N0, S1 ⊆ Cn1, S2 ⊆ Cn2 such that
S1 and S2 are r-definable, ~v ∈ Cn1, p, q ∈ N0, k ∈ N such that 0 < k ≤ n1,
and T ∈ Cp×n1. The following sets are r-definable:

• Any finite subset of Cn1,
• S1 + ~v,
• TS1,
• S1 ∪ S2, provided that n1 = n2,
• S1 ∩ S2, provided that n1 = n2,
• S1 × S2,
• {(x1, . . . , xk−1, xk+1, . . . , xn1) | (x1, . . . , xn1) ∈ S1},
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•









































~x

ℜ(~x)

ℑ(~x)















| ~x ∈ S1



























,

• expand(S1, r
q) = {rqk~x | ~x ∈ S1 ∧ k ∈ N}.

PROOF.

• Any finite subset of Cn1 is r-definable. Let S1 = {~v1, ~v2, . . . , ~vm}. Defining
U = [~v1; . . . ;~vm] and S ′ = {~e1, ~e2, . . . , ~en1}, we obtain S1 = US ′, where
S ′ ⊆ Zn1 is r-definable. It follows that S1 is r-definable.

• S1 + ~v is r-definable. There exist m ∈ N0, U ∈ Cn1×m and S ′ ⊆ Zm such
that S ′ is r-definable and S1 = US ′. Since S1 +~v = [U ;~v] (S ′×{1}), the set
S1 + ~v is r-definable.

• TS1 is r-definable. There exist m ∈ N0, U ∈ Cn1×m and S ′ ⊆ Zm such
that S ′ is r-definable and S1 = US ′. Since TS1 = (TU)S ′, the set TS1 is
r-definable.

• S1 ∪ S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn1×m1 , U2 ∈ Cn1×m2 ,
S ′

1 ⊆ Zm1 and S ′
2 ⊆ Zm2 such that S ′

1 and S ′
2 are r-definable, S1 = U1S

′
1,

and S2 = U2S
′
2. Since S1 ∪ S2 = [U1; U2] ((S

′
1 × (0)m2) ∪ ((0)m1 × S ′

2)), the
set S1 ∪ S2 is r-definable.

• S1 ∩ S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn1×m1 , U2 ∈ Cn1×m2 ,
S ′

1 ⊆ Zm1 and S ′
2 ⊆ Zm2 such that S ′

1 and S ′
2 are r-definable, S1 = U1S

′
1,

and S2 = U2S
′
2. Let V ∈ Zm1+m2 be the set

V =

















~x1

~x2





 ∈ Zm1+m2 | U1~x1 = U2~x2











,

and S ′ be the set

S ′ = {~x1 ∈ Zn1 | ~x1 ∈ S ′
1 ∧ (∃~x2 ∈ S ′

2)(







~x1

~x2





 ∈ V )}.

According to Lemma 41, V is r-definable. It follows that the set S ′ is also
r-definable. Since S1 ∩ S2 = U1S

′, the set S1 ∩ S2 is r-definable.
• S1 ×S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn1×m1 , U2 ∈ Cn1×m2 ,

S ′
1 ⊆ Zm1 and S ′

2 ⊆ Zm2 such that S ′
1 and S ′

2 are r-definable, S1 = U1S
′
1,

and S2 = U2S
′
2. Since S1 × S2 = diag(U1, U2)(S

′
1 × S ′

2), the set S1 × S2 is
r-definable.

• V = {(x1, . . . , xk−1, xk+1, . . . , xn1) | (x1, . . . , xn1) ∈ S1} is r-definable. There
exist m ∈ N0, U ∈ Cn1×m and S ′ ⊆ Zm such that S ′ is r-definable and
S1 = US ′. Let U ′ ∈ C(n1−1)×m be the matrix obtained by removing the k-th
row from U . We have V = U ′S ′, hence V is r-definable.
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•









































~x

ℜ(~x)

ℑ(~x)















| ~x ∈ S1



























is r-definable. There exist m ∈ N0, U ∈ Cn1×m and

S ′ ⊆ Zm such that S ′ is r-definable and S1 = US ′. Since









































~x

ℜ(~x)

ℑ(~x)















| ~x ∈ S1



























=















U

ℜ(U)

ℑ(U)















S ′,

this set is r-definable.
• expand(S1, r

q) is r-definable. There exist m ∈ N0, U ∈ Cn1×m and S ′ ⊆ Zm

such that S ′ is r-definable and S1 = US ′. Let L be the language Er(S
′) of

the synchronous encodings in base r of the vectors in S ′, expressed over the
alphabet {0, . . . , r − 1}m. Since S ′ is r-definable, L is regular.

The language L′ = L · ((0m)q)∗ is thus also regular. It follows that the set
S ′′ ⊆ Zm encoded by L′ is r-definable. Since this set obeys

S ′′ = {rqk~x | ~x ∈ S ′ ∧ k ∈ N},

we have US ′′ = expand(S1, r
q), from which it follows that expand(S1, r

q) is
r-definable.

�

Theorem 10 Let r ∈ N with r > 1, and a, b, c ∈ Z with a 6= 0. The set

S = {ak2 + bk + c | k ∈ N}

is not r-definable.

PROOF. The proof is by contradiction. Suppose that the set S = {ak2+bk+
c | k ∈ N} is r-definable. This implies that −S = {−x | x ∈ S} is r-definable
as well. Therefore, we may assume that a ≥ 1. Let P be the characteristic
predicate of S:

P (y) ≡ (∃k ∈ N)(y = ak2 + bk + c).

Since S is r-definable, P is definable in 〈Z,≤, +, Vr〉. Let n ∈ N be greater
than −b/2a, and F (x, y) be the predicate

F (x, y) ≡ y = ax2 + bx + c ∧ x ≥ n.

38



This predicate is definable in 〈Z,≤, +, Vr〉:

F (x, y)≡P (y) ∧ P (y + 2ax + a + b) ∧ x ≥ n

∧ (∀z)(¬P (z) ∨ z ≤ y ∨ z ≥ y + 2ax + a + b).

Indeed, f(x) = ax2 + bx + c is strictly increasing for x ≥ n, and the second
line of the expression of F (x, y) states that y and y + 2ax + a + b are two
consecutive values f(z) and f(z + 1) of the function f . Resolving











y = az2 + bz + c

y + 2ax + a + b = a(z + 1)2 + b(z + 1) + c

yields x = z, hence y = f(x). Now, let M(x, y, z) be the predicate

M(x, y, z) ≡ x ≥ 0 ∧ y ≥ 0 ∧ z = xy.

This predicate is definable in 〈Z,≤, +, Vr〉:

M(x, y, z) ≡ (∃z1, z2, z3, z4)(F (x + y + n, z1)

∧F (x + n, z2) ∧ F (y + n, z3) ∧ F (n, z4)

∧ 2az = z1 − z2 − z3 + z4).

(4)

Indeed,

z1 = a(x + y + n)2 + b(x + y + n) + c

z2 = a(x + n)2 + b(x + n) + c

z3 = a(y + n)2 + b(y + n) + c

z4 = an2 + bn + c

implies z1 − z2 − z3 + z4 = 2axy. From Equation (4), it follows that the first-
order theory 〈N, +, .〉 is a subset of the theory 〈Z,≤, +, Vr〉. This is clearly a
contradiction, since the latter is decidable [29] and the former is not [12]. �

In order to prove Theorem 11, we need to establish the following result.

Theorem 42 Let r ∈ N with r > 1, and p, q ∈ Z with p 6= 0. The set

S =

















(pj + q)k

j





 | j, k ∈ N










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is not r-definable.

PROOF. The proof is by contradiction. Suppose that S is r-definable. Let
P be the characteristic predicate of S:

P (y, x) ≡ (∃k ∈ N)(y = k(px + q)).

Since S is r-definable, P is definable in 〈Z,≤, +, Vr〉. The predicate D(y, x)
over Z2 which is true if and only if y is different from 0 and is divisible by
px + q is straightforwardly defined in terms of P :

D(y, x) ≡ y 6= 0 ∧ (P (y, x) ∨ P (−y, x))

For every x ∈ Z, we have gcd(px+q, p(x+1)+q) = gcd(p, px+q) = gcd(p, q),
from which we deduce

lcm(px + q, p(x + 1) + q) =
1

gcd(p, q)
(px + q)(p(x + 1) + q).

If a number can be divided by two others, then it can be divided by their least
common multiple. Therefore, for every y verifying

D(y, x) ∧ D(y, x + 1), (5)

there exists k ∈ Z such that

y =
k

gcd(p, q)
(px + q)(p(x + 1) + q).

Moreover, if we have x > |q/p| + 1, then the integer y verifying Equation (5)
that has the smallest magnitude corresponds to k = 1. From this argument,
it follows that the predicate

Q(y, x)≡x >

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

+ 1 ∧ D(y, x) ∧ D(y, x + 1) ∧

(∀z)(|z| ≥ |y| ∨ ¬D(z, x) ∨ ¬D(z, x + 1)),

which is definable in 〈Z,≤, +, Vr〉, is such that

Q(y, x) ≡ x >

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

+ 1 ∧ y =
1

gcd(p, q)
(px + q)(p(x + 1) + q).
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Let l ∈ N be such that l > |q/p| + 1, and R(y) be the predicate

R(y) ≡ (∃x, z)(y = gcd(p, q).z ∧ x ≥ 0 ∧ Q(z, x + l)).

This predicate is definable in 〈Z,≤, +, Vr〉, and satisfies

R(y) ≡ (∃k)(k ≥ 0 ∧ y = (p(k + l) + q)(p(k + l + 1) + q)).

It follows that the set

{(p(k + l) + q)(p(k + l + 1) + q) | k ∈ N}

is r-definable, which contradicts Theorem 10. �

Theorem 11 Let r, p ∈ N0 with r > 1, λ ∈ C such that λp = 1, and a, b, c, d ∈
C with a 6∈ R \ Q. The set

S =











λk







(j + a)(k + b) + c

j + d





 | j, k ∈ N











is not r-definable.

PROOF. Without loss of generality, we may assume that p is such that
λi 6= 1 for every i ∈ {1, 2, . . . , p − 1}. The proof is by contradiction. We
suppose that S is r-definable. Let us show that this assumption implies that
the set

S0 =

















(j + a)(k + b) + c

j + d





 | j,
k

p
∈ N











is also r-definable. We have

(∀j, k ∈ N, 0 ≤ k < p)((∃l ∈ N)(λk(j + d) = l + d ∧ l > ⌊2|d|⌋)

⇔ k = 0 ∧ j > ⌊2|d|⌋).
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Indeed,

• If there exists l ∈ N such that λk(j + d) = l + d ∧ l > ⌊2|d|⌋, then we have

|j + d| = |l + d| ∧ l > ⌊2|d|⌋

⇒ j = l ∧ l > ⌊2|d|⌋

⇒ λk(j + d) = j + d ∧ j > ⌊2|d|⌋

⇒ k = 0 ∧ j > ⌊2|d|⌋.

• If k = 0 ∧ j > ⌊2|d|⌋, then, by choosing l = j, we get

λk(j + d) = l + d ∧ l > ⌊2|d|⌋.

It follows that S0 = S01 ∪ S02, with

S01 =

















(j + a)(k + b) + c

j + d





 | j ∈ N ∧ j ≤ ⌊2|d|⌋ ∧
k

p
∈ N











and

S02 =
{







(j + a)(k + b) + c

j + d





 | j ∈ N ∧
k

p
∈ N

∧ (∃l ∈ N)(λk(j + d) = l + d ∧ l > ⌊2|d|⌋)
}

.

In order to prove that S0 is r-definable, we show that S01 and S02 are both
r-definable.

• S01 is r-definable. The set S01 is a finite union of sets of the form

S01j =

















(j + a)(k + b) + c

j + d





 |
k

p
∈ N











,

with j ∈ N. Each of those sets is the image of the set {k | k
p
∈ N} by a

linear transformation, and is thus r-definable (thanks to Theorem 9).
• S02 is r-definable. We have

S02 =

















x1

x2





 ∈ S | (∃l ∈ N)(x2 = l + d ∧ l > ⌊2|d|⌋)











=S ∩ (π1(S) × {l + d | l ∈ N ∧ l > ⌊2|d|⌋}),
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where π1(S) denotes the projection of S over the first vector component.
By Theorem 9, S02 is r-definable.

We have thus proved that S0 is r-definable. Applying Theorem 9, it follows
that the following sets are also r-definable:

S
(1)
0 = S0 −







0

d





 =

















(j + a)(k + b) + c

j





 | j,
k

p
∈ N











,

S
(2)
0 =







1 −b

0 1





S
(1)
0 −







c + ab

0





 =

















(j + a)k

j





 | j,
k

p
∈ N











,

⋃

0≤i<p













1 i

0 1





S
(2)
0 +







ia

0











 =

















(j + a)k

j





 | j, k ∈ N











.

Let us show that the fact that the last set is r-definable leads to a contradic-
tion. There are two possible cases.

• If a ∈ Q. Let q ∈ N0 be such that qa ∈ Z. The set

















(qj + qa)k

j





 | j, k ∈ N











is r-definable, which contradicts Theorem 42.
• If a ∈ C \ R. Applying Theorem 9, the following sets are r-definable:

S
(3)
0 =









































(j + a)k

ℑ((j + a)k)

j















| j, k ∈ N



























=









































(j + a)k

ℑ(a)k

j















| j, k ∈ N



























,

S
(4)
0 =















1 0 0

0 1
ℑ(a)

0

0 0 1















S
(3)
0 =









































(j + a)k

k

j















| j, k ∈ N



























,







1 −a 0

0 0 1





S
(4)
0 =

















jk

j





 | j, k ∈ N











.

The fact that the last set is r-definable contradicts Theorem 42. �
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In order to be able to prove Theorem 12, we need an additional lemma.

Lemma 43 Let n, r ∈ N0 with r > 1, S ⊆ Zn be r-definable, and ~u ∈ Cn. If
{~u · ~x | ~x ∈ S} is infinite, then there exist ~y1, ~y2 ∈ Qn and m ∈ N0 such that
{~y1 + rmk~y2 | k ∈ N} ⊆ S and ~u · ~y2 6= 0.

PROOF. First, S must be infinite. Since it is r-definable, the language L of
the shortest synchronous encodings of its elements in base r is regular. Indeed,
this language is denoted by the expression

L = Er(S) \
⋃

a∈{0,r−1}n

(a · a · Σ∗),

where Σ = {0, 1, . . . , r − 1}n. Hence, there exists a finite-state automaton A
accepting L. Let |A| denote the number of states of A. Every word w ∈ L such
that |w| ≥ |A| must be accepted by a path of A that contains at least one
cycle, which can be suppressed or further repeated. One can thus decompose
w into w3 · w2 · w1, with |w2| > 0 and w3 · w

k
2 · w1 ∈ L for every k ∈ N. The

language w3 · w
k
2 · w1 encodes a subset S ′ of S satisfying

S ′ = {~x1 +
∑

0≤i<k

rmi~x2 + rmk~x3 | k ∈ N},

with m = |w2| ∈ N0, and ~x1, ~x2, ~x3 ∈ Zn. Indeed, ~x1 is the vector encoded by
0n·w1, ~x2 is the vector encoded by 0n·w2 multiplied by r|w1|, and ~x3 is the vector
encoded by w3 multiplied by r|w1|. Note that A only accepts vector encodings
in which the sign digits are not repeated, which implies rm~x3 + ~x2 6= ~x3. By
defining ~y1 = ~x1 − (1/(rm − 1))~x2 and ~y2 = (1/(rm − 1))~x2 + ~x3, we obtain

S ′ = {~y1 + rmk~y2 | k ∈ N},

with ~y1, ~y2 ∈ Qn and ~y2 6= ~0.

It remains to prove that it is always possible to choose w ∈ L such that the
corresponding ~y2 verifies ~u·~y2 6= 0. The proof is by contradiction. Suppose that
for every w ∈ L such that |w| ≥ |A|, we obtain ~u · ~y2 = 0. By removing one
occurrence of the cycle labeled by w2 from a path of A accepting w, we obtain
w′ = w3 · w1 ∈ L. Let ~x and ~x ′ be the elements of S respectively encoded by
w and w′. We have ~x = ~y1 +rm~y2 and ~x ′ = ~y1 +~y2, and therefore ~u ·~x = ~u ·~x ′.
One can thus repeat the same operation so as to remove successively all the
occurrences of cycles in w, finally obtaining w′′ such that |w′′| < |A|. The
word w′′ encodes ~x ′′ ∈ S, with ~u · ~x = ~u · ~x ′′. Since there is only a finite set of
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w′′ such that |w′′| < |A|, the set {~u · ~x | ~x ∈ S} is finite, which contradicts an
hypothesis of the lemma. �

Theorem 12 Let r ∈ N with r > 1, λ ∈ C such that there do not exist p ∈ N0

and m ∈ N such that λp = rm. The set

S = {λk | k ∈ N}

is not r-definable.

PROOF. The proof is by contradiction. Suppose that S is r-definable. There
are two possible cases.

• If S is finite. Then, there exist k1, k2 ∈ N such that k1 < k2 and λk1 = λk2 .
Choosing p = k2 − k1 and m = 0 leads to a contradiction.

• If S is infinite. Since S is r-definable, there exist n ∈ N0, ~u ∈ Cn and a
r-definable set S ′ ⊆ Zn such that S = {~u · ~x | ~x ∈ S ′}. By Lemma 43, there
exist ~y1, ~y2 ∈ Cn and m ∈ N0 such that

{~y1 + rmk~y2 | k ∈ N} ⊆ S ′,

and ~u · ~y2 6= 0. Let S ′′ denote the set {~y1 + rmk~y2 | k ∈ N}. Since S ′′ ⊆ S ′,
we have

{~u · ~x | ~x ∈ S ′′} ⊆ {λk | k ∈ N}.

Let g = ~u · ~y2 and h = ~u · ~y1. We have

{grmk + h | k ∈ N} ⊆ {λk | k ∈ N},

with g 6= 0. Since the left-hand side of this equation is an unbounded set,
it follows that |λ| > 1. We have

lim
k→∞

grm(k+1) + h

grmk + h
= rm,

which gives

(∀ε ∈ R+
0 )(∃k ∈ N)

(∣

∣

∣

∣

∣

grm(k+1) + h

grmk + h
− rm

∣

∣

∣

∣

∣

< ε

)

,

where R+
0 denotes the set of strictly positive real numbers. There must exist

p1, p2 ∈ N with p1 < p2 such that grmk + h = λp1 and grm(k+1) + h = λp2 .
Therefore, by choosing p = p2 − p1,

(∀ε ∈ R+
0 )(∃p ∈ N)(|λp − rm| < ε).
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Since |λ| > 1, there can only be a finite number of integers p ∈ N such that
|λp − rm| < 1, and taking ε = 1/2k, k = 1, 2, . . . eventually leads to

λp = rm

for some p ∈ N. This contradicts an hypothesis of the theorem.

�

Before proving Theorem 13, we need to establish two auxiliary results.

Lemma 44 Let u, v ∈ R with u > 1, p, q ∈ N0 with p ≥ 1, and Π(x) be a
polynomial of degree greater than zero with its coefficients in R. We have

{(upk + v)q | k ∈ N} 6⊆ {uk′

Π(k′) | k′ ∈ N}.

PROOF. The proof is by contradiction. Suppose that we have

{(upk + v)q | k ∈ N} ⊆ {uk′

Π(k′) | k′ ∈ N}.

This is equivalent to

(∀k ∈ N)(∃k′ ∈ N)((upk + v)q = uk′

Π(k′)). (6)

For sufficiently large values of k, the left-hand side of this equation is strictly
increasing with respect to k. Since Π is a polynomial, that implies that there
exists m > 0 such that

(∀l2 > l1 > m)(Π(l2) > Π(l1) > 0).

Let z = max
0≤x≤m

uxΠ(x), and n > 0 be such that (∀k ≥ n)((upk + v)q > z).

Equation (6) associates a unique k′ ∈ N to every k ∈ N such that k ≥ n. This
k′ satisfies k′ = l(k), where l is a function R → R verifying

(∀x ∈ R, x ≥ n)((upx + v)q = ul(x)Π(l(x))). (7)

From this equation, we obtain for x ≥ n

d

dx
((upx + v)q) =

d

dl

(

ulΠ(l)
)

.
d

dx
l(x).

The left-hand side and the first factor of the right-hand side of this equation
being strictly positive for x ≥ n (and thus l ≥ m), the second factor of the
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right-hand side is strictly positive as well, from which we deduce that l(x) is
strictly increasing for x ≥ n. Let us compute the derivative l′(x) of l(x) with
respect to x. For x ≥ n, Equation (7) gives

(upx + v)q = ul(x)Π(l(x)).

Taking the natural logarithm of both sides, we obtain

q log(upx + v) = l(x) log u + log Π(l(x)).

Deriving with respect to x, and defining Π′(x) = dΠ(x)/dx, we get

pq(log u)upx

upx + v
= (log u)l′(x) +

Π′(l(x))l′(x)

Π(l(x))
,

from which we extract

l′(x) =
pq

1 +
v

upx

·
1

1 +
1

log u
·

Π′(l(x))

Π(l(x))

.

This result implies that lim
x→+∞

l′(x) = pq, and therefore

(∀ε > 0)(∃n′ ≥ n)(∀x > n′)(pq − ε < l′(x) < pq + ε).

Let us take ε = 1. There exists n′ ≥ n such that

(∀x > n′)(pq − 1 < l′(x) < pq + 1). (8)

For any k ∈ N such that k > n′, we have

l(k + 1) = l(k) +

k+1
∫

k

l′(x)dx,

and it follows from Equation (8) that

pq − 1 < l(k + 1) − l(k) < pq + 1.

Note that pq, l(k) and l(k + 1) are integer numbers. The only integer number
between pq − 1 and pq + 1 is pq, hence

(∀k > n′)(l(k + 1) − l(k) = pq),
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which gives

(∀k > n′)(l(k) = l0 + pqk),

with l0 ∈ Z. Replacing l(k) by its value in (7), we obtain for any k > n′

(upk + v)q = ul0+pqkΠ(l0 + pqk),

hence

Π(l0 + pqk) = u−l0(1 +
v

upk )q.

This is clearly impossible, since

lim
k→+∞

Π(l0 + pqk) = +∞,

and

lim
k→+∞

u−l0(1 +
v

upk )q = u−l0 .

�

Theorem 45 Let r, l, a, b ∈ N with r > 1, l > 1 and a ≥ 1, such that ra = lb.
If Π(x) is a polynomial of degree greater than zero with its coefficients in Z,
then the set

S = {lkΠ(k) | k ∈ N}

is not r-definable.

PROOF. The proof is by contradiction. Suppose that S is r-definable. After
applying Lemma 43 with ~u = (1), we obtain that there exist m ∈ N0 and
y1, y2 ∈ Q such that y2 6= 0 and

{y1 + rmky2 | k ∈ N} ⊆ S,

which can be rewritten as

{(rm)k +
y1

y2

| k ∈ N} ⊆ {lkΠ′(k) | k ∈ N},
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where Π′(k) = Π(k)/y2. This result implies

{(rm)ak +
y1

y2
| k ∈ N} ⊆ {lkΠ′(k) | k ∈ N},

and thus, since lb = ra,







(

(ram)k +
y1

y2

)bm

| k ∈ N







⊆ {(ram)kΠ′(k) | k ∈ N}.

Applying Lemma 44 to this result directly leads to a contradiction. �

We are now ready to prove Theorem 13.

Theorem 13 Let r, p, m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and
a ∈ C such that a 6∈ R \ Q. The set

S = {λk(k + a) | k ∈ N}

is not r-definable.

PROOF. Without loss of generality, we assume that p and m are relatively
prime, and that there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N

(thanks to Theorem 6). The proof is by contradiction. Suppose that S is r-
definable. There are two possible cases, depending on the value of a. For each
of them, we will show that our assumption implies that the set

S ′ = {λk(k + a) |
k

p
∈ N}

is r-definable, and that this result leads to a contradiction. For each k ∈ N,
we define yk = λk(k + a).

• If a ∈ Q. For each k ∈ N such that k > 2|a| and p divides k, we have

ℑ(yk) = 0 ∧ ℜ(yk) > |λ|⌊2|a|⌋(2|a| + a).

Reciprocally, for each k ∈ N such that yk satisfies the previous formula, we
have k > 2|a| and p divides k. It follows that we have S ′ = S ′

1 ∪ S ′
2, with

S ′
1 = {λk(k + a) |

k

p
∈ N, k ≤ 2|a|},

S ′
2 = {yk ∈ S | ℑ(yk) = 0 ∧ ℜ(yk) > l},
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and

l = |λ|⌊2|a|⌋(2|a| + a).

The set S ′
1 is finite, hence it is r-definable (thanks to Theorem 9). In order

to prove that S ′ is r-definable, it remains to show that S ′
2 is r-definable. Let

q ∈ N be such that qa ∈ Z. We have

S ′
2 = S ∩

1

q
{x ∈ N | x > ql},

whose r-definability follows from Theorems 8 and 9. Let us now show that
the fact that S ′ is r-definable leads to a contradiction. We have

S ′ = {λk(k + a) |
k

p
∈ N}

= {r(
mk
p )(k + a) |

k

p
∈ N}.

Theorem 9 implies that the set

{r(
mk
p )(qk + qa) |

k

p
∈ N}

is also r-definable, which contradicts Theorem 45.
• If a ∈ C \ R. We can assume without loss of generality that ℑ(a) > 0.

Indeed, Theorem 9 implies that the set

S = {λ
k
(k + a) | k ∈ N},

where for every z ∈ C, z denotes the complex conjugate of z, is r-definable
if and only if S is r-definable. Let N ∈ N be such that N > 2|a| and
0 < arg(N + a) < 2π

p
.

· For every k > N such that p divides k, we have

λk = r(
mk
p ) ⇒ arg(yk) = arg(k + a) ⇒ 0 < arg(yk) <

2π

p
.

· For every k > N such that p does not divide k, we have

arg(yk) >
2π

p
. (9)

Let M ∈ N be such that M > N and M > |λ|N |N + a|, and let α =
arg(M + a). Note that 0 < α < π

2
(since M > 2|a|).

· For every k > M such that p divides k, we have 0 < arg(yk) < α ∧ℑ(yk) >
ℑ(a).

· For every k > M such that p does not divide k, we have arg(yk) > α
(according to Inequation (9)).
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· For every k ≤ M , we have arg(yk) ≥ α ∨ ℑ(yk) ≤ ℑ(a). (Indeed, 0 <
arg(yk) < α ∧ ℑ(yk) > ℑ(a) implies k > M .)

In summary, we have for each k ∈ N:

k > M ∧ p divides k ⇔ 0 < arg(yk) < α ∧ ℑ(yk) > ℑ(a).

It follows that we have S ′ = S ′
1 ∪ S ′

2, with

S ′
1 = {λk(k + a) |

k

p
∈ N, k ≤ M}

and

S ′
2 = {yk ∈ S | 0 < arg(yk) < α ∧ ℑ(yk) > ℑ(a)}.

The set S ′
1 is finite, hence it is r-definable (thanks to Theorem 9). In order

to prove that S ′ is r-definable, it remains to show that S ′
2 is r-definable. Let

us consider the transformation yk → ~x such that

~x =







x1

x2





 = T







ℜ(yk)

ℑ(yk)





 ,

with

T =







1 −ℜ(a)
ℑ(a)

0 1
ℑ(a)





 .

This transformation can be inverted as follows:







ℜ(yk)

ℑ(yk)





 =







1 ℜ(a)

0 ℑ(a)













x1

x2





 .

By Theorem 9, the set

S ′′
2 =











T







ℜ(yk)

ℑ(yk)





 | yk ∈ S ′
2











is r-definable if and only if S ′
2 is r-definable. Note that every yk ∈ S ′

2 is such
that

T







ℜ(yk)

ℑ(yk)





 =







λkk

λk





 ∈ N2.
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Let S ′′ be the set

S ′′ =











T







ℜ(yk)

ℑ(yk)





 | yk ∈ S











.

We thus have S ′′
2 ⊆ N2. From the previous results, we deduce

S ′′
2 =

{







x1

x2





 ∈ N2 | 0 < arg(x1 + ℜ(a)x2 + iℑ(a)x2) < α

∧ ℑ(a)x2 > ℑ(a)
}

∩ S ′′

=

















x1

x2





 ∈ N2 |
ℑ(a)x2

ℜ(a)x2 + x1

<
ℑ(M + a)

ℜ(M + a)
∧ x2 > 1











∩ S ′′

=

















x1

x2





 ∈ N2 | x2(ℜ(a) + M) < x2ℜ(a) + x1 ∧ x2 > 1











∩ S ′′

=

















x1

x2





 ∈ N2 | x1 > Mx2 ∧ x2 > 1











∩ S ′′.

This set is r-definable (thanks to Theorem 9), hence S ′
2 and S ′ are r-

definable. Let us now show that the fact that S ′ is r-definable leads to
a contradiction. We have

S ′ = {λk(k + a) |
k

p
∈ N}

= {r(
mk
p )(k + a) |

k

p
∈ N}.

It follows from Theorem 9 that the set
{

ℜ(x) −
ℜ(a)

ℑ(a)
ℑ(x) | x ∈ S ′

}

=

{

r(
mk
p )k |

k

p
∈ N

}

is r-definable, which contradicts Theorem 45.

�

Theorem 14 Let r, p, m ∈ N0 with r > 1, and λ ∈ C such that λp = rm. The
set

S =

















k

λk





 | k ∈ N











52



is not r-definable.

PROOF. The proof is by contradiction. Without loss of generality, we as-
sume that there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N (thanks
to Theorem 6). Suppose that S is r-definable. According to Theorem 9, the
following sets are also r-definable:

S ∩ N2 =

















pk

rmk





 | k ∈ N











,

S ′ =







1
p

0

0 1





 (S ∩ N2) =

















k

rmk





 | k ∈ N











.

Let L be the language of the shortest synchronous encodings in base r of
the vectors in S ′, expressed over the alphabet {0, 1, . . . , r − 1}2. Since S ′ is
r-definable, L is regular. Let A be a finite-state automaton accepting L. Any
w ∈ L is of the form

w = (0, 0) · (0, 1) · w1 · w2,

where w1 is equal to the empty word if k = 0 or to (0, 0)mk−⌊logr k⌋−1 if k ∈ N0,
and w2 is such that (0, 0) ·w2 is the shortest encoding of k~e1 in base r. For any
sufficiently long word w in L, the path of A that accepts w must encounter
an occurrence of a cycle while reading w1. This cycle can be further iterated,
accepting words that do not belong to L. Hence the contradiction. �

The proof of Theorem 15 requires three additional results.

Lemma 46 Let r, m, p ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C.
The set

















λkj

λk(j + a)





 | j, k ∈ N











is r-definable.

PROOF. We have

S =
⋃

0≤i<p











λi







λkj

λk(j + a)





 | j,
k

p
∈ N











.
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It is thus sufficient to prove that the set

S ′ =

















λkj

λk(j + a)





 | j,
k

p
∈ N











is r-definable. We have

S ′ =











rmk







j

j + a





 | j, k ∈ N











.

The set N is r-definable, thus by Theorem 9, the set

S ′′ =







1

1





N +







0

a





 =

















j

j + a





 | j ∈ N











is r-definable. Since S ′ = expand(S ′′, rm), it follows from the same theorem
that S ′ is r-definable. �

Theorem 47 Let r, m ∈ N0 with r > 1, and p, q ∈ Z with p 6= 0. The set

S =

















rmk(pj + q)

j





 | j, k ∈ N











is not r-definable.

PROOF. The proof is by contradiction. Suppose that S is r-definable. From
Theorem 9, it follows that the set

S ′ =

















rmk(pj + q)

pj + q





 | j, k ∈ N











is also r-definable. Let L be the language of the shortest synchronous encodings
in base r of the vectors in S ′, expressed as a set of pairs (w1, w2) of words of
same length over the alphabet {0, . . . , r − 1}∗. Let f be the function

f : Z → Z : x 7→
x

Vr(x)
.
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Intuitively, f(x) is the number obtained by removing all the trailing “0” digits
from the encoding of x in base r. The value of f(x) stays unchanged when x
is multiplied by r. It follows that we have

(∀







x1

x2





 ∈ S ′)(f(x1) = f(x2)). (10)

For any l ∈ N, let us define

yl =











p(rl + 1) if q = 0,

p(rl) + q if q 6= 0.

Note that Vr(yl) stays bounded with respect to l (in other words, the number
of trailing “0” digits of yl encoded in base r stays bounded when l increases).
Let n ∈ N0 be such that rn > Vr(yl) for every l ∈ N, and such that n is greater
than the length of the shortest synchronous encodings of p and of q in base
r. Let A be a finite-state automaton accepting L. There exists l ∈ N such
that the shortest synchronous encoding of yl in base r has more than |A|+ n
symbols, where |A| denotes the number of states of A. Let us take k ∈ N such
that mk is greater than the length of the shortest synchronous encoding of yl

in base r. We know that the vector






rmkyl

yl







belongs to S ′. Therefore, its shortest synchronous encoding (w1, w2) in base r,
expressed as a pair of same-length words, belongs to L, and is thus accepted
by A. This encoding can be decomposed into (w1 · w

′
1 · w

′′
1 , w2 · w

′
2 · w

′′
2), with

|w′
1| = |w′

2| = |A| and |w′′
1 | = |w′′

2 | = n. It follows that w′
1 and w′

2 only contain
the symbol 0. Any subpath of A accepting (w′

1, w
′
2) must contain a cycle that

can be iterated one more time. This allows to transform a path accepting
(w1, w2) into one accepting a different word (u1, u2), from which it follows that
(u1, u2) ∈ L. By construction, w1 and u1 differ only by their number of trailing
“0” digits, whereas u2 and w2 have the same number of trailing “0” digits and
encode different integers. Let x1 and x2 be the integers encoded by u1 and u2.
From the previous results, it follows that f(x1) = f(yl) and f(x2) 6= f(yl),
and therefore that f(x1) 6= f(x2). This contradicts Equation (10). Hence, S is
not r-definable. �

Lemma 48 Let r, p, m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C.
There exists N ∈ N such that for all k1, k2, j1, j2 ∈ N with j1 > N and j2 > N ,
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we have

λk1(j1 + a) = λk2(j2 + a) ⇔ λk1 = λk2 ∧ j1 = j2.

PROOF. That the right-hand side of the equivalence implies the left-hand
one is immediate. Besides, if λk1 = λk2, then

λk1(j1 + a) = λk2(j2 + a)

reduces to j1 = j2 and the proposition hence holds for any value of N . More-
over, the proposition is symmetrical in (k1, j1) and (k2, j2). It is therefore
sufficient to prove that there exists N ∈ N such that for all k1, k2, j1, j2 ∈ N

satisfying k1 > k2 and j1 > N , the equation

λk1(j1 + a) = λk2(j2 + a) (11)

does not hold.

Let µ = λk1−k2 and α = arg(µ). From the hypotheses on λ, we have |µ| > 0
and α ∈ {j2π/p | −p/2 ≤ j ≤ p/2 ∧ j 6= 0}. We distinguish two cases.

• If |α| = π. Then, µ = −|µ| and Equation 11 reduces to

−|µ|(j1 + a) = j2 + a,

which yields

j1 = −
j2

|µ|
−

a

|µ|
− a ≤ 2|a|.

Choosing N = ⌈2|a|⌉ thus makes Equation 11 unsatisfiable.
• If |α| < π. Taking the imaginary part of each side of 11, one gets

|µ| sinα(j1 + ℜ(a)) + |µ| cosαℑ(a) = ℑ(a),

which gives

j1 =
ℑ(a)

|µ| sinα
− ℑ(a) cotα − ℜ(a).

The largest possible values of | sinα| and | cotα| are obtained with a value
of α equal to β = ⌊(p − 1)/2⌋2π/p. Therefore,

j1 ≤

(

1

| sin β|
+ | cotβ|

)

|ℑ(a)| + |ℜ(a)|.
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Equation 11 is thus unsatisfiable for values of N at least equal to the right-
hand side of this inequality. �

We are now ready to prove Theorem 15.

Theorem 15 Let r, p, m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and
a ∈ C. The set

S =

















λk(j + a)

j





 | j, k ∈ N











is not r-definable.

PROOF. Without loss of generality, we assume that p and m are relatively
prime, and that there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N

(thanks to Theorem 6). The proof is by contradiction. Suppose that S is r-
definable. By Lemma 48, there exists N ∈ N such that for all k1, k2, j1, j2 ∈ N

with j1 > N and j2 > N , we have

λk1(j1 + a) = λk2(j2 + a) ⇔ λk1 = λk2 ∧ j1 = j2. (12)

With respect to such an integer N , the following set is r-definable:

S =

















λk(j + a)

j





 | j, k ∈ N ∧ j > N











.

Applying Theorem 9, Lemma 46 and Equation 12, we obtain that the following
sets are r-definable :









































λk(j + a)

λkj

j















| j, k ∈ N ∧ j > N



























,

















λkj

j





 | j, k ∈ N ∧ j > N











,
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S ′ =

















λkj

j





 | j, k ∈ N ∧ j > N











∩ N2

=

















rmkj

j





 | j, k ∈ N ∧ j > N











.

For each j ∈ N, the set

Sj =

















rmkj

j





 | k ∈ N











= expand({j}, rm) × {j}

is r-definable thanks to Theorem 9.

The set

S ′ ∪
⋃

0≤j≤N

Sj =

















rmkj

j





 | j, k ∈ N











is therefore r-definable, which contradicts Theorem 47. It follows that S is not
r-definable. �

Theorem 16 Let r, p1, p2, m1, m2 ∈ N0 with r > 1, λ1, λ2 ∈ C such that
λp1

1 = rm1, λp2
2 = rm2 and |λ1| 6= |λ2|. The set

S =

















λk
1

λk
2





 | k ∈ N











is not r-definable.

PROOF. Without loss of generality, we can assume that mi and pi are
relatively prime for i ∈ {1, 2}, that m1 < m2, and that there does not exist
j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N (thanks to Theorem 6). The proof is by
contradiction. Suppose that S is r-definable. Theorem 9 implies that the set

S ′ = S ∩ N2 =

















rm1k

rm2k





 | k ∈ N










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is r-definable as well. Let L be the language of the shortest encodings in base
r of the vectors in S, expressed over the alphabet {0, 1, . . . , r − 1}2. This
language is of the form

L = {(0, 0) · (0, 1) · (0, 0)k(m2−m1)−1 · (1, 0) · (0, 0)km1 | k ∈ N}.

Since L is not regular, S ′ is not r-definable. It follows that S is not r-definable
either. �

Lemma 21 Let n, r ∈ N0 with n > 1, r > 1, λ ∈ C such that λ 6= 1, p ∈ N0,
m ∈ N such that λp = rm, q ∈ N with 1 < q ≤ n, V ∈ Cq×n of rank q, and
~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jk
q,λ~x +

∑

0≤i<k

J i
q,λ

~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.

PROOF. Let us project S ′ onto the two vector components that have the
highest index. We obtain

S ′′ =

















λk kλk−1

0 λk





~x +
∑

0≤i<k







λi iλi−1

0 λi







~b′′ | ~x ∈ V ′S ∧ k ∈ N











,

where V ′ ∈ C2×n is composed of the two last rows of V (and is therefore of

rank 2), and ~b′′ = V ′~b. It is sufficient to prove that there exists a r-definable

set S ⊆ Zn such that the corresponding S ′′ is not r-definable. Let







b1

b2





 = ~b′′.

We distinguish four different situations (remark that λp = rm implies |λ| ≥ 1).

• If |λ| = 1 and b2 = 0. We have

S ′′ =

















λkx1 + kλk−1x2 + λk−1
λ−1

b1

λkx2





 |







x1

x2





 ∈ V ′S ∧ k ∈ N











.

Let ~v ∈ Zn be such that the second component of V ′~v is different from zero
(such a ~v always exists, otherwise the rank of V ′ would be less than 2).
Choosing S = {j~v | j ∈ N} yields

S ′′ =

















λkjv′
1 + kjλk−1v′

2 + λk−1
λ−1

b1

λkjv′
2





 | j, k ∈ N











,
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with







v′
1

v′
2





 = V ′~v. If S ′′ is r-definable, then by Theorem 9 the following sets

are also r-definable:

S(1) =







1 −
v′1
v′2

0 1
v′2











S ′′ +







b1
λ−1

0











 =

















kjλk−1v′
2 + λk

λ−1
b1

λkj





 | j, k ∈ N











,

S(2) =







λ
v′2

0

0 1





S(1) =











λk







kj + λ
λ−1

b1
v′2

j





 | j, k ∈ N











,







1 λ
λ−1

b1
v′2

0 1





S(2) =











λk







j(k + λ
λ−1

b1
v′2

) + λ
λ−1

b1
v′2

j





 | j, k ∈ N











.

By Theorem 11, this last set is not r-definable. It follows that S ′′ and S ′ are
not r-definable.

• If |λ| = 1 and b2 6= 0. Let us take S = {j~b | j ∈ N}. We obtain

S ′′ =

















λkjb1 + kjλk−1b2 + λk−1
λ−1

b1 + (k−1)λk−kλk−1+1
(λ−1)2

b2

λkjb2 + λk−1
λ−1

b2





 | j, k ∈ N











If S ′′ is r-definable, then by Theorem 9 the following sets are also r-definable:

S(1) = S ′′ +







b1
λ−1

− b2
(λ−1)2

b2
λ−1







=











λk







jb1 + b2
λ
jk + 1

λ−1
b1 + k

λ(λ−1)
b2 −

1
(λ−1)2

b2

jb2 + 1
λ−1

b2





 | j, k ∈ N











,

S(2) =







λ
b2

0

0 1
b2





S(1)

=











λk







jk + λ b1
b2

j + λ
λ−1

b1
b2

+ k
λ−1

− λ
(λ−1)2

j + 1
λ−1





 | j, k ∈ N











=











λk







(j + 1
λ−1

)(k + λ b1
b2

) − λ
(λ−1)2

j + 1
λ−1





 | j, k ∈ N











.
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Since we have 1
λ−1

6∈ R \ Q, it follows from Theorem 11 that the last set is
not r-definable. Therefore, S ′′ and S ′ are not r-definable.

• If |λ| > 1 and b2 = 0. We have

S ′′ =

















λkx1 + kλk−1x2 + λk−1
λ−1

b1

λkx2





 |







x1

x2





 ∈ V ′S ∧ k ∈ N











.

Let ~v ∈ Zn be such that the second component of V ′~v is different from zero
(such a ~v always exists, otherwise the rank of V ′ would be less than 2).
Choosing S = {~v} yields

S ′′ =

















λkv′
1 + kλk−1v′

2 + λk−1
λ−1

b1

λkv′
2





 | k ∈ N











,

with







v′
1

v′
2





 = V ′~v. If S ′′ is r-definable, then by Theorem 9 the following sets

are also r-definable:

S(1) =







λ −b1
v′2

0 1











S ′′ +







b1
λ−1

0











 =











λk







kv′
2 + λv′

1 + 1
λ−1

b1

v′
2





 | k ∈ N











,

[

1
v′2

− b1
(v′2)2(λ−1)

−
λv′1

(v′2)2

]

S(1) = {λkk | k ∈ N}.

According to Theorem 13, the last set is not r-definable. It follows that S ′′

and S ′ are not r-definable.
• If |λ| > 1 and b2 6= 0. Let us take S = {~b}. We obtain

S ′′ =

















λkb1 + λk−1kb2 + λk−1
λ−1

b1 + (k−1)λk−kλk−1+1
(λ−1)2

b2

λkb2 + λk−1
λ−1

b2





 | k ∈ N











.

If S ′′ is r-definable, then by Theorem 9 the following sets are also r-definable:

S(1) = S ′′ +







b1
λ−1

− b2
(λ−1)2

b2
λ−1







=











λk







b1 + k
λ
b2 + 1

λ−1
b1 + k

λ(λ−1)
b2 −

1
(λ−1)2

b2

b2 + 1
λ−1

b2





 | k ∈ N











,

[

λ−1
b2

1
λb2

− (λ−1)b1
(b2)2

]

S(1) = {λkk | k ∈ N}.
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(Note that |λ| > 1 implies 1 + 1
λ−1

6= 0.) According to Theorem 13, the last
set is not r-definable. It follows that S ′′ and S ′ are not r-definable.

�

Lemma 22 Let n, r ∈ N0 with n > 1, r > 1, q ∈ N with 1 < q ≤ n, V ∈ Qq×n

of rank q, and ~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jk
q,1~x +

∑

0≤i<k

J i
q,1

~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.

PROOF. Let us project S ′ onto the two vector components that have the
highest index. We obtain

S ′′ =

















1 k

0 1





 ~x +
∑

0≤i<k







1 i

0 1







~b′′ | ~x ∈ V ′S ∧ k ∈ N











,

where V ′ ∈ Q2×n is composed of the two last rows of V (and is therefore of

rank 2), and ~b′′ = V ′~b. It is sufficient to prove that there exists a r-definable

S ⊆ Zn such that the corresponding S ′′ is not r-definable. Let







b1

b2





 = ~b′′. We

distinguish two different situations.

• If b2 = 0. We have

S ′′ =

















x1 + kx2 + kb1

x2





 |







x1

x2





 ∈ V ′S ∧ k ∈ N











.

Let ~v ∈ Zn be such that the second component of V ′~v is different from zero
(such a ~v always exists, otherwise the rank of V ′ would be less than 2).
Choosing S = {j~v | j ∈ N} yields

S ′′ =

















jv′
1 + jkv′

2 + kb1

jv′
2





 | j, k ∈ N











,
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with







v′
1

v′
2





 = V ′~v. If S ′′ is r-definable, then by Theorem 9 the following set

is also r-definable:







1
v′2

−
v′1

(v′2)2

0 1
v′2





S ′′ =

















jk + b1
v′2

k

j





 | j, k ∈ N











.

Since b1
v′2

∈ Q (because ~v ∈ Zn and V ′ ∈ Q2×n), Theorem 11 implies that

this set is not r-definable. It follows that S ′′ and S ′ are not r-definable.
• If b2 6= 0. We have

S ′′ =

















x1 + kx2 + kb1 + 1
2
k(k − 1)b2

x2 + kb2





 |







x1

x2





 ∈ V S ′ ∧ k ∈ N











.

Let S = {~0}. We obtain

S ′′ =

















kb1 + 1
2
k(k − 1)b2

kb2





 | k ∈ N











.

If S ′′ is r-definable, then by Theorem 9 the following sets are also r-definable:

S(1) =







1 − b1
b2

0 1
b2





S ′′ =

















1
2
k(k − 1)b2

k





 | k ∈ N











,

[

2
b2

0

]

S(1) = {k(k − 1) | k ∈ N}.

By Theorem 10, this last set is not r-definable. It follows that S ′′ and S ′ are
not r-definable. �

Lemma 23 Let n ∈ N0 and A ∈ Zn×n. There exists a nonsingular matrix
U ∈ Cn×n transforming A into its Jordan form AJ , and such that every row
of U−1 at the same position as a row of a Jordan block Jq,λ in AJ contains
only rational components provided that λ is rational.

PROOF. In order for U to transform A into AJ , we must have AJ = U−1AU .
Let J be a Jordan block in AJ associated to a rational eigenvalue. Without
loss of generality, we may assume that J is the first block of AJ . We have
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AJU−1 = U−1A, which can be decomposed into







J 0

0 X













U1 U2

U3 U4





 =







U1 U2

U3 U4





A,

where U1, . . . , U4 are parts of U−1 of appropriate sizes. This linear system can
be split into the two equations

J [U1; U2] = [U1; U2]A (13)

and

X [U3; U4] = [U3; U4] A.

If U exists, replacing [U1; U2] by any solution of (13) whose rows are linearly
independent from each other and from the rows of [U3; U4] yields a matrix
transforming A into AJ . Since all the coefficients of Equation (13) belong to
Q, it is always possible to find a suitable rational solution. �

9 Conclusion

In this paper, we have developed general algorithms for deciding whether the
closure of a linear transformation preserves the recognizable nature of sets of
integer vectors, both with respect to a given single base or to all of them, as
well as for computing the effect of iterating such transformations over finite-
state representations of sets. It should be noted that these algorithms are
expressed in terms of simple integer arithmetic operations and of elementary
set transformations, and hence that their applicability is not restricted to
finite-state representations of sets. In particular, the decision algorithm and
the image computation procedure developed for Presburger-definable sets can
easily be applied to the formula-based representations of sets used by symbolic
packages such as the Omega library [26]. Besides, as far as finite-state repre-
sentations are concerned, the results presented here can straightforwardly and
naturally be extended to other encoding functions for integer vectors, such as
least significant digit first encodings, interleaved schemes, . . . [3,17].

We have not studied the worst-case complexity of our algorithms. This is
mainly because we expect most of the problems that have been tackled to
be computationally as hard as deciding Presburger arithmetic, which is a
problem known to be almost intractable from the complexity theoricist’s point
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of view [24], but for which very satisfactory solutions are available in the real
world [26,30]. The algorithms have indeed been implemented in an actual
tool [20], and have been shown to be very effective in the context of symbolic
state-space exploration of infinite state spaces.
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