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Abstract

In this paper we initiate the study of measurements on the probabilistic powerdomain. We show
how measurements on an underlying domain naturally extend to its probabilistic powerdomain,
so that the kernel of the extension consists of exactly those normalized measures on the kernel
of the measurement on the underlying domain. This result is combined with now-standard results
from the theory of measurements to obtain a new proof that the .xed point associated with a
weakly hyperbolic IFS with probabilities is the unique invariant measure whose support is the
attractor of the underlying IFS.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

A relatively recent discovery [16] in domain theory is that most domains come
equipped with a natural measurement: a Scott continuous map into the non-negative
reals in the dual order which encodes the Scott topology. The existence of measure-
ments was exploited by Martin [15,17,19] to study the space of maximal elements of
a domain, and to formulate various .xed point theorems for domains, including .xed
point theorems for non-monotonic maps.
The theory of measurements meshes particularly fruitfully with the idea of domains

as models of classical spaces. Here we say that a domain D is a model of a topological
space X if the set of maximal elements of D, equipped with the relative Scott topology,
is homeomorphic to X . For instance, a simple model of the unit interval [0; 1] is the
interval domain I[0; 1]. This domain consists of the non-empty closed sub-intervals
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of [0; 1], ordered by reverse inclusion. The idea is that an interval [a; b] represents a
partially de.ned real number—we are not sure what the number is, but we know it lies
somewhere between a and b. The maximal elements of I[0; 1] are the singleton intervals
[x], and these are in bijective correspondence with the elements of [0; 1]. Furthermore,
the map sending an interval to its length is a measurement on I[0; 1]. Notice that we
can view the measurement as giving a notion of the degree of partiality of an element
of I[0; 1]. In particular, the collection of maximal elements of I[0; 1] coincides with
the kernel of the measurement: the set of elements with measurement 0.
The present paper is motivated by the idea that if D is a domain model for a space

X , then the probabilistic powerdomain PD can be used as a model for the space of
Borel probability measures 3 on X . This idea was utilized by Edalat [4,5] to provide
new results on the existence of attractors for iterated function systems, and to de.ne
a generalization of the Riemann integral to functions on metric spaces.
We can begin to appreciate Edalat’s idea by taking D to be the interval domain

I[0; 1]. For example, writing �I ∈PI[0; 1] for the point mass concentrated at the interval
I ∈ I[0; 1], and given a positive integer n, the distribution


n =
n∑
i=1

1
n
�Ii ;

where Ii = [(i − 1)=n; i=n], is an element of PI[0; 1]. Intuitively we regard the 
n as
successively .ner and .ner approximations to Lebesgue measure on the unit interval,
and we might expect that

⊔
n 
n is a maximal element of PI[0; 1] (corresponding to

Lebesgue measure). In fact, a proof of this may be found in Edalat [4]; but it is non-
trivial. (In particular, it requires the result that valuations on PI[0; 1] extend to Borel
measures.)
However, building on the measurement on I[0; 1], there is a very natural candidate

for a measurement M on PI[0; 1]: simply de.ne

M
(∑

ri�[ai ;bi]
)
=

∑
ri(bi − ai):

Suppose we could prove that M really is a measurement; then, from a basic property of
measurements, the simple observation that M (
n)→ 0 as n increases, entails that

⊔
n 
n

is maximal and corresponds to a Borel measure on [0; 1]. Thus we replace Edalat’s
argument from [4] with an argument involving measurements which can also be applied
in other settings.
In this paper we show that each measurement m (satisfying a suitable condition,

called MP) on a domain D has a natural extension to a measurement M on the proba-
bilistic powerdomain PD. Moreover, we show that the kernel of M , equipped with the
relative Scott topology, is homeomorphic to the space of valuations 4 on the kernel of
m equipped with the weak topology.
We show that the condition MP, alluded to above, is satis.ed by the natural mea-

surements on standard models of metric spaces, such as the interval domain, the formal

3 The notion of a measure is quite separate from the notion of a measurement, despite the similarity of
the terminology.

4 Roughly speaking, valuations and measures are synonymous.
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ball model and the upper space model. We also show that any !-continuous dcpo D
whose Scott and Lawson topologies agree on the subset maxD of maximal elements
admits such a measurement.
These results can be used to derive facts about domains in general which are in-

dependent of measurement: for example, if D is an !-continuous dcpo whose Scott
and Lawson topologies agree on maxD, then the set of normalized Borel measures on
maxD, equipped with the weak topology, can be embedded into the set of maximal
elements of PD. They can also be used to derive results which are independent of
domain theory altogether, such as a new proof that the .xed point associated with a
weakly hyperbolic iterated function system with probabilities is the unique measure
whose support is the attractor of the underlying iterated function system.
This paper can be seen as a probabilistic analogue of [19]. The latter gives a nec-

essary and su@cient condition for a measurement on a domain D to extend to a mea-
surement on the convex powerdomain CD. Knowing that certain measurements extend
to the convex powerdomain enables one to prove that any !-continuous dcpo D with
maxD regular satis.es the property that the Vietoris hyperspace of maxD embeds into
maxCD (as the kernel of a measurement). Further, Edalat’s domain theoretic analysis
of hyperbolic iterated function systems is then shown to be a consequence of standard
results about measurement.

2. Background

In this section we summarize some of the notions from topology, measure theory
and domain theory which will be used in this paper.

2.1. Topology and measure theory

We assume familiarity with basic topological notions such as closure, basis, neigh-
bourhood, convergence and compactness. Here we just explain some terms which may
be slightly less well known to computer scientists, but which are central to our subject
matter. In particular, we outline some of the basic connections between topology and
measure theory.
A topological space is regular if each neighbourhood of a point x contains a closed

neighbourhood of the same point x. A space is locally compact if each neighbour-
hood of a point x contains a compact neighbourhood of the same point x. A space is
completely metrizable if the topology is generated by a complete metric.
A collection of subsets of a given set X which contains ∅, and is closed under .nite

unions and complementation is called a ;eld. A topology on a set X generates a .eld,
i.e., the smallest .eld containing all the open sets. The members of this .eld can all be
written as disjoint unions of crescents, where a crescent is the diJerence between two
open sets. A �-;eld on a set X is a .eld on X which is also closed under countable
unions. The �-.eld generated by the open sets of a topological space is called the
Borel �-;eld.
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Suppose BX is the Borel �-.eld on a topological space X . A normalized Borel
measure on X is a function � : BX → [0; 1] satisfying �(X )= 1 and, for any countable
pairwise disjoint family {Ti} ⊆BX ,

� (∪Ti) =
∑
i
�(Ti):

The weak topology on the space of normalized Borel measures on X is the weak-
est topology such that, for each bounded continuous function f : X →R, the map
� 	→ ∫

f d� is continuous. The weak topology can also be characterized independently
of a notion of integral. In fact, a net 〈�i〉 of normalized Borel measures converges to
� in the weak topology iJ lim inf �i(U )¿�U for each open set U ⊆X .

2.2. Domain theory

A poset (P;�) is a set P endowed with a partial order �. The least element of P
(if it exists) is denoted ⊥, and the set of maximal elements of P is written maxP.
Given A⊆P, we write ↑A for the set {x∈P | (∃a∈A) a�x}; similarly, ↓A denotes
{x∈P | (∃a∈A)x� a}. A function f : P→Q between posets P and Q is monotone if
x�y implies f(x)�f(y) for all x; y∈P. A subset A⊆P is directed if each .nite
subset F ⊆A has an upper bound in A. Note that since F = ∅ is a possibility, a directed
subset must be non-empty. A (directed) complete partial order (dcpo) is a poset P in
which each directed set A⊆P has a least upper bound, denoted �A.
If D is a dcpo, and x; y∈D, then we say that x is way-below y, denoted x�y, if

for each directed subset A⊆D, if y� �A, then ↑ x ∩ A �= ∅. Let ↓↓y={x∈D | x�y};
we say that D is continuous if it has a basis, i.e., a subset B⊆D such that for each
y∈D, ↓↓y∩B is directed with supremum y. If D has a countable basis then we say D
is !-continuous. The way-below relation on a continuous dcpo has the interpolation
property: if x�y then there exists a basis element z such that x�z�y.
A subset U of a dcpo D is Scott-open if it is an upper set (i.e., U = ↑U ) and for

each directed set A⊆D, if �A∈U then A∩U �= ∅. The collection �D of all Scott-
open subsets of D is called the Scott topology on D. If D is continuous, then the
Scott topology on D is locally compact, and the sets ↑↑x where x∈D form a basis
for the topology. If S ⊆D, we write Cl�(S) for the closure of S with respect to the
Scott topology. Given dcpos D and E, a function f : D→E is continuous with respect
the Scott topologies on D and E iJ it is monotone and preserves directed suprema:
for each directed A⊆D, f(�A)=�f(A). The Lawson topology on a dcpo D is a
re.nement of the Scott topology generated by including the sets D\↑ x for x∈D as
opens.
Hereafter continuous dcpos will also be referred to as domains.

3. Valuations and the probabilistic powerdomain

We recall some basic de.nitions and results about valuations and the probabilistic
powerdomain.
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De�nition 1. Let X be a topological space. A (continuous) valuation on X is a map-
ping 
 : (!X; ⊆)→ ([0; 1];6) satisfying:
(1) Strictness: 
(∅)= 0.
(2) Monotonicity: U ⊆V ⇒ 
(U )6
(V ).
(3) Modularity: for all U; V ∈!X , 
(U ∪V ) + 
(U ∩V )= 
(U ) + 
(V ).
(4) Continuity: for every directed family {Ui}i∈I , 
(

⋃
i∈I Ui)= supi∈I 
(Ui).

Each element x∈X gives rise to a valuation de.ned by

�x(U ) =
{
1 if x ∈ U;
0 otherwise:

A simple valuation has the form
∑

a∈A ra�a, where A is a .nite subset of X , ra¿0
and

∑
a∈A ra61. A valuation 
 is normalized if 
(X )= 1. For the most part we will

consider valuations de.ned on the Scott topology �D of a dcpo D.
Obviously, valuations bear a close resemblance to measures. Lawson [13] showed

that any valuation on an !-continuous dcpo D extends uniquely to a measure on the
Borel �-.eld generated by the Scott topology (equivalently by the Lawson topology)
on D. This result was generalized to continuous dcpos by Alvarez-Manilla et al. [3]. In
this paper we do not use either of these theorems. In Section 8 we use the well-known
fact that any valuation on a metric space has a unique extension to a measure (cf.
[2, Corollary 3.24]). But this is only used to mediate between the formulation of the
main result of that section, and the results of Hutchinson [10], which are stated for
measures.
While the problem of extending valuations to measures is non-trivial, it is straight-

forward to extend a valuation on a topological space X to a .nitely additive set func-
tion on the .eld FX generated by the open sets of X . Recall that each member
R of this .eld can be written as a .nite, disjoint union of crescents, i.e., R=

⋃n
i=1

Ui\Vi for open Ui; Vi ⊆X . The extension of a valuation 
 to FX assigns to R the
value

n∑
i=1

(
(Ui) − 
(Ui ∩ Vi)):

Also we recall from Heckmann 9, Section 3.2 that if E ∈FX then we may de.ne a
valuation 
 |E by 
 |E(O)= 
(O∩E) for all open O⊆X .
Next we review from [11, Section 3.9] the de.nition of the integral of a lower semi-

continuous function f : X → [0;∞) (i.e., a continuous function for the Scott topology
on [0;∞)) against a valuation 
 on X . This is precisely the construction we need to
extend a measurement on a domain D to a measurement on PD.
First, if a lower semi-continuous function f : X → [0;∞) is simple, i.e., has .-

nite range, then we can write f uniquely as a linear combination of characteristic
functions

f =
n∑
i=1

%i&f−1(%i);
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with moreover f−1(%i)∈FX . This leads us to de.ne

∫
f d
 =

n∑
i=1

%i
(f−1(%i)):

Now any lower semi-continuous function f : X → [0;∞) is the uniform limit of the
sequence of simple functions 〈fn〉, where

fn =
n2n∑
i=1

2−n&f−1(i2−n;∞):

The integral
∫
f d
 is now de.ned to be supn

∫
fn d
.

This is, of course, completely analogous to the way one de.nes the integral of a
non-negative measurable function against a measure. The weak topology on the set of
valuations on X is now de.ned to be the weakest topology such that f 	→ ∫

f d� is
lower semi-continuous for each lower semi-continuous map f. (For HausdorJ spaces
the same condition characterizes the weak topology on Borel measures.)
Next we recall the probabilistic powerdomain construction from Jones [11].

De�nition 2. Given a dcpo D, the probabilistic powerdomain PD is the dcpo of all
valuations de.ned on D in its Scott topology, and ordered by �� 
 if and only if
�(U )6
(U ) for all U ∈�D.

Theorem 3 (Jones [11]). If D is a continuous dcpo, then PD is a continuous dcpo
with a basis B = {�ni=1ri�pi |pi ∈B}, where B⊆D is a basis for D.

The following proposition shows that the Scott topology on PD is just the weak
topology.

Proposition 4 (Edalat [6]). Suppose D is a continuous dcpo, then a net 〈
i〉i∈I in PD
converges to 
 in the Scott topology i=

lim inf 
i(U )¿ 
(U )

for all Scott open subsets U ⊆D.

4. Measurement

Let m : D→E be a Scott continuous map between domains D and E. We de.ne the
kernel of m by

kerm = {x ∈ D: m(x) ∈ maxE}:

De�nition 5. For (∈E, the (-approximations of x∈D are

m((x) = {y ∈ D: y � x & (�m(y)}:



K. Martin et al. / Theoretical Computer Science 312 (2004) 99–119 105

We say that m measures x∈D if, for all open U ⊆ D, we have

x ∈ U ⇒ (∃( ∈ E) x ∈ m((x) ⊆ U:

A helpful intuition is to think of m as an abstraction function, representing elements
of D in a (simpler) domain E; the (-approximations m((x) are those points in D below
x whose measurement is ‘(-close to that of x in E’. From this viewpoint, m measures
x∈D just in case this abstraction is faithful to the Scott topology at x. In particular,
a sequence 〈xn〉 in ↓ x converges to x in the Scott topology precisely when m(xn)
converges to m(x) in E.

De�nition 6. A measurement is a continuous map m : D→E which measures every
element of kerm.

In this paper we will typically take E= [0;∞)∗: the non-negative reals in the opposite
order. In this case we can see a measurement as capturing the degree of partiality of
elements of D by a single number. Elaborating the measurement condition in this
particular instance, we have that m : D → [0;∞)∗ is a measurement iJ for any Scott
open U and any ideal element x∈ kerm,

x ∈ U ⇒ (∃ ( ¿ 0) {y ∈ D: y � x & m(y) ¡ (} ⊆ U:

That is, any element below x with su@ciently small measurement lies in U .
It is straightforward to prove that kerm⊆maxD for a measurement m.

Example 7. The following examples of measurements are all pertinent to this paper.
The .rst two illustrate the idea that natural models of metric spaces yield canonical
measurements into [0;∞)∗.
(1) If 〈X; d〉 is a locally compact metric space, then its upper space

UX = {∅ �= K ⊆ X : K is compact};
ordered by reverse inclusion, is a continuous dcpo. The supremum of a directed
set S ⊆UX is

⋂
S, and the way-below relation is given by A�B iJ B⊆ int A.

Given K ∈UX , de.ning the diameter of K by

|K | = sup{d(x; y): x; y ∈ K};
it is readily veri.ed that m(K)= |K | is a measurement on UX whose kernel is
maxUX = {{x}: x∈X }.

(2) Given a metric space 〈X; d〉, the formal ball model [7] BX =X × [0;∞) is a poset
ordered by

(x; r) � (y; s) iJ d(x; y)6 r − s:

The way-below relation is characterized by

(x; r)�(y; s) iJ d(x; y) ¡ r − s:
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The poset BX is a continuous dcpo iJ the metric d is complete. Moreover BX
has a countable basis iJ X is separable. A natural measurement m on BX is given
by m(x; r)= r. Then kerm = maxBX = {(x; 0): x∈X }.

(3) Let X = {xn}n∈N be a countably in.nite set, and (PX;⊆) the lattice of subsets of
X ordered by inclusion. Observe that S�T in PX iJ S is a .nite subset of T .
We can de.ne a measurement m : PX → [0;∞)∗ by

m(S) = 1 − ∑
xn∈S

2−(n+1):

One of the motivations behind the introduction of measurement in [16] was to facil-
itate the formulation of sharper .xed point theorems. The following is a basic example
of one such result.

Theorem 8. Let f : D→D be a monotone map on a pointed continuous dcpo D
equipped with a measurement m : D→E. If

⊔
m(fn(⊥))∈maxE, then

x? =
⊔
n¿0

fn(⊥) ∈ kerm

is the unique ;xed point of f. Moreover, x? is an attractor: For all x, fn(x)→ x? in
the Scott topology on D. This convergence restricts to kerm if f carries kerm into
kerm.

5. Lebesgue measurements and MP-measurements

Martin [18] gives a necessary and su@cient condition for a measurement on a domain
D to extend to a measurement on the convex powerdomain CD, thereby uncovering
the class of Lebesgue measurements. Before de.ning this class we .rst extend the
de.nition of m( to arbitrary sets S ⊆D by writing

m((S) =
⋃
s∈S

m((s):

De�nition 9. A continuous map m : D→[0;∞)∗ is a Lebesgue measurement if for all
compact K ⊆ kerm and all open U ⊆D,

K ⊆ U ⇒ (∃ ( ¿ 0)(m((K) ⊆ U ):

Clearly any Lebesgue measurement is indeed a measurement according to De.ni-
tion 6. We ought also to mention that Lebesgue measurements have nothing to do with
Lebesgue measure. The name arises because a measurement m induces a distance map
on kerm, and this map has the Lebesgue covering property precisely when m satis.es
the conditions laid out in De.nition 9, cf. Martin [15].

Knowing that Lebesgue measurements extend to the convex powerdomain enables
one to prove that any !-continuous dcpo D with maxD regular satis.es the property
that the Vietoris hyperspace of maxD embeds into maxCD (as the kernel of a mea-
surement). Further, Edalat’s domain theoretic analysis of hyperbolic iterated function
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systems is then shown to be a consequence of standard results from measurement. In
the same setting, the necessity of complete metrizability becomes apparent.

Theorem 10 (Martin [15]). A space is completely metrizable i= it is the kernel of a
Lebesgue measurement m : D→ [0;∞)∗ on a continuous dcpo.

Here we seek analogous results, with the probabilistic powerdomain in place of
the convex powerdomain, and the weak topology on Borel measures in place of
the Vietoris topology on compact sets. We now identify a condition which ensures
that a measurement on a domain D extends to a measurement on the probabilistic
powerdomain PD.
Given a continuous map m : D→E, we consider the following condition:

a�b ∈ D ⇒ (∃ ( ∈ E)m((↑ b ∩ kerm) ⊆ ↑↑a: (MP)

In words, the condition states that whenever b is way-above a, then there exists (
such that all the (-approximations of elements in the kernel above b are still way-
above a.

Proposition 11. Suppose m : D→[0;∞)∗ satis;es condition (MP); then m is a Lebesgue
measurement.

Proof. Let U ⊆D be Scott open and K a compact subset of kerm with K ⊆U . For
each x∈K let ax�bx�x with ax ∈U . Since m satis.es condition (MP), for each x∈K
there exists (x¿0 such that m(x( ↑ bx ∩ kerm)⊆↑↑ax. Furthermore, by compactness of K ,
we have x1; : : : ; xn ∈K such that K ⊆ ↑ bx1 ∪ · · · ∪ ↑ bxn . But then, taking (= min (i, we
have that m((K)⊆U .

In particular, m : D → [0;∞)∗ satisfying (MP) is a measurement. We call such a
map an MP-measurement. (We explain the terminology below.)

Example 12. It turns out that all the measurements we have considered thus far are
MP-measurements.
(1) Recall from Example 7 the de.nition of a measurement m on the upper space of

a locally compact metric space X . Suppose E�K ∈UX , i.e., there exists an open
set U ⊆X with K ⊆U ⊆E. Using the compactness of K it is straightforward that
(∃ (¿0)(∀x∈K)B((x)⊆U , where B((x) is the open ball of radius ( centred at x.
It follows that m((↑K ∩ kerm)⊆↑↑E.

(2) Suppose 〈X; d〉 is a metric space, and let m denote the measurement on the
formal ball model BX de.ned in Example 7. Suppose (x; r)�(y; s)∈BX . Let
(=(r−s−d(x;y))

2 ¿0. We show that

m((↑ (y; s) ∩ kerm) ⊆ ↑↑(x; r):
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To this end, suppose (y; s)� (w; 0) and (z; t)� (w; 0) for some w; z ∈X and t¡(.
Then

d(x; z)6 d(x; y) + d(y; w) + d(w; z)

6 d(x; y) + s+ t

¡ (r − s− 2t) + s+ t

= r − t:

Thus (x; r)�(z; t).

The name (MP) for the condition described above arises from the notion of an MP-
hull in Lawson [14]. That paper was concerned with determining which spaces arise
as the space of maximal points of an !-continuous dcpo.

De�nition 13. An MP-hull is an !-continuous dcpo such that the relative Scott
topology coincides with the relative Lawson topology on maxD.

Theorem 14. Every MP-hull D admits an MP-measurement m :D→ [0;∞)∗.

Proof. Suppose D is an MP-hull with countable basis B, and let

I = {(a; b) ∈ B× B|a�b}:
It is straightforward that m :D→ (PI;⊆) de.ned by

m(x) = {(a; b)|x ∈ ↑↑a ∨ x �∈ Cl�( ↑ b)}; (1)

is a Scott continuous map. Next we show that maxD= kerm.
Let x∈maxD. If (a; b)∈ I , then Cl�( ↑ b)∩maxD= ↑ b∩maxD⊆↑↑a, since ↑ b

is Lawson closed and the Scott and Lawson topologies agree on maxD. It follows
that (a; b)∈m(x). But the choice of (a; b) was arbitrary so we have that x∈ kerm.
Conversely, suppose x∈ kerm with x�y. If a�b�y, then the fact that (a; b)∈m(x)
and x∈Cl�( ↑ b) implies a�x. Thus x = y.

Now we show that m satis.es condition (MP). If a�b, then taking (= {(a; b)} we
have

m((↑ b ∩ kerm) = m((↑ b ∩ maxD) = m((Cl�(↑ b) ∩ maxD) ⊆ ↑↑a:
It is now straightforward that composing m with the measurement in Example 7(iii)
yields an MP-measurement m :D→ [0;∞)∗.

Our main result, Theorem 30, says that an MP-measurement m :D→ [0;∞)∗ extends
in a natural way to a measurement M :PD→ [0;∞)∗ on the probabilistic powerdomain
of D. Furthermore, in this case, kerM is homeomorphic to the set of normalized valu-
ations on kerm in the weak topology. Edalat’s domain theoretic analysis of hyperbolic
iterated function systems [5] can then be shown to be a consequence of standard results
using measurement [16].
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Fig. 1.

We conclude this section with an example showing that the class of MP-measure-
ments is strictly smaller than the class of Lebesgue measurements.

Example 15. Let D= {n; Qn: n∈N} ∪ {a;∞}, with order generated by n� Qn, a� Qn and
n�m� ∞ for all n; m∈N with n6m in the usual order (see Fig. 1). We de.ne
a measurement m :D→ [0;∞)∗ by requiring that m( Qn)=m(∞)= 0, m(n)= 2−n and
m(a)= 1. Then m fails to satisfy MP, since a�a but for no (¿0 is it the case that
m(( ↑ a∩ kerm)⊆↑↑a. On the other hand, m is a Lebesgue measurement: in particular,
the only compact subsets of kerm contained in ↑↑a are .nite.

6. Comparing valuations

One of the most elegant results about the probabilistic powerdomain is the splitting
lemma. This bears a close relationship to a classic problem in probability theory: .nd
a joint distribution with given marginals.

Lemma 16 (Jones [11]). Let �=
∑

a∈A ra�a and 
=
∑

b∈B sb�b be simple valuations.
Then ��
 if and only if there exists a family of non-negative transport (or @ow)
numbers {ua; b}a∈A; b∈B satisfying
(1) For each a∈A, ∑

b∈B ua;b = ra.
(2) For each b∈B, ∑

a∈A ua; b¡sb.
(3) ua; b �=0 implies a�b.

We can picture the situation above as a network Row diagram with a set A of
sources, a set B of sinks, and an edge from each source to each sink. Each source
a∈A has value ra, each sink b∈B has value sb, and ua; b indicates the value of the
mass Rowing from a to b.
In the remainder of this section we give a characterization of when a simple valuation

lies way-below an arbitrary valuation.

Proposition 17 (Kirch [12]). If 
 is a valuation on D, then
∑

a∈A ra�a�
 if and only
if ∀S ⊆A,

∑
a∈S ra¡
(↑↑S).
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De�nition 18. Fix a .nite subset A⊆D, and for each S ⊆A de.ne

Cr(A; S) =
⋂
a∈S

↑↑a \ ⋃
a′∈A\S

↑↑a′ :

Observe that {Cr(A; S)}S⊆A is a family of crescents partitioning D.

Proposition 19. Let 
 be a valuation on D,
∑

a∈A ra�a a simple valuation on D, and
{Ei}i∈I ⊆FD a ;nite partition of D re;ning {Cr(A; S)}S⊆A. Then

∑
a∈A ra�a�
 i=

there exists a relation R⊆A× I such that
(1) (a; i)∈R implies Ei ⊆↑↑a;
(2) for all S ⊆A,

∑
a∈S ra¡

∑
i∈R(S) 
(Ei).

Proof. (⇒) Suppose
∑

a∈A ra�a�
. De.ne R by R(a; i) just in case Ei ⊆↑↑a. Then,
given S ⊆A, by Proposition 17,

∑
a∈S

ra ¡ 
(↑↑S) = ∑
i∈R(S)


(Ei):

(⇐) Given a relation R satisfying conditions (1) and (2) above, then for all S ⊆A we
have

∑
a∈S

ra ¡
∑

i∈R(S)

(Ei)6 
(↑↑S):

Thus
∑

a∈A ra�a�
 by Proposition 17.

Next we give an alternate characterization of the way-below relation on PD. This
is a slight generalization of the Splitting Lemma, and should be seen as dual to
Proposition 19.

Proposition 20. Suppose
∑

a∈A ra�a and 
 are valuations on D and {Ei}i∈I ⊆FD is
a partition of D re;ning {Cr(A; S)}S⊆A. Then

∑
a∈A ra�a�
 i= there exists a family

of ‘transport numbers’ {ta; i}a∈A; i∈I where
(1) For each a∈A, ∑

i∈I ta; i = ra.
(2) For each i∈ I , ∑

a∈A ta; i¡
(Ei).
(3) ta; i¿0 implies Ei ⊆↑↑a.

Proof. (⇐) Given the existence of a family of transport numbers {ta; i}, de.ne R⊆A
× I by R(a; i) iJ ta; i¿0. Then R satis.es (1) and (2) in Proposition 19.
(⇒) By Proposition 19 there exists a relation R⊆A× I satisfying conditions (1)

and (2) thereof. The proof that such a relation yields transport numbers as required
uses the max-Row min-cut theorem from graph theory. The basic idea is due to Jones
[11], but we refer the reader to the formulation of Heckmann [9, Lemma 2.7] which
is general enough to apply to the present setting.
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6.1. Splittings as stochastic relations

Next we de.ne a composition of two splittings with a common index set. This is
nothing but (the discrete case of) composition in the category of stochastic relations
considered in [1].

De�nition 21. Suppose u= {ua; b}a∈A;b∈B and v= {vb; c}b∈B;c∈C are families of non-
negative real numbers, where A; B and C are .nite. Assuming that

∑
c∈C vb; c¿0 for

each b∈B, we de.ne u; v to be an (A×C)-indexed family where

(u; v)a;c =
∑
b∈B

ua;b


 vb;c∑

c′∈C
vb;c′


 :

Furthermore, we de.ne u−1 to be the (B×A)-indexed family (u−1)b; a = ua; b.

The idea that one can compose splittings leads to the following question. Sup-
pose �=

∑
a∈A ra�a, 
=

∑
b∈B sb�b and 5=

∑
c∈C tc�c are simple valuations with

��
�5. If u= {ua; b} is a splitting between � and 
, and v= {vb; c} is a splitting
between 
 and 5, then is u; v a splitting between � and 5? (That is, does u; v satsify
conditions (1–3) in Lemma 16?) The following proposition answers this question in
the a@rmative.

Proposition 22. Let u and v be as above. Then for each a∈A,
∑
c∈C

(u; v)a;c =
∑
b∈B

ua;b: (2)

Furthermore, if
∑

a∈A ua; b¡
∑

c∈C vb; c for each b∈B, it follows that
∑
a∈A

(u; v)a;c ¡
∑
b∈B

vb;c (3)

for each c∈C.

Proof. Simple algebra.

7. Measuring the probabilistic powerdomain

Until now, all of the concrete instances of measurement that we have considered
have been maps into [0;∞)∗. Henceforth we consider measurements into [0; 1]. There
is no loss of generality here, since [0;∞)∗ can be order-embedded in [0; 1]. We used
[0;∞)∗ in the preceding sections since this choice is both simpler and more con-
ventional (see [15]). However, for the extension of a measurement to the probabilistic
powerdomain it is more convenient to use [0; 1]. Note that the condition MP is generic.
The specialization to a measurement m :D→ [0; 1] says that whenever a�b∈D, then
there exists (¿0 such that m1−(( ↑ b∩ kerm)⊆↑↑a.
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De�nition 23. If m :D→ [0; 1] is a measurement on a continuous dcpo D, then we
de.ne M :PD→ [0; 1] by M (
)=

∫
m d
.

The Scott continuity of M follows directly from the continuity of the integral. In
particular, we have that

M (
) = sup
{

n∑
i=1

rim(ai) :
n∑
i=1

ri�ai�

}
:

The next few propositions describe the kernel of M . It is worth remarking that in
proving Proposition 24 we do not assume that valuations on continuous dcpos extend
to measures.

Proposition 24. Let 
∈ kerM , i.e.,
∫
m d
=1. Then for a crescent E=U\V , where

U; V ∈�D, we have that 
(E)¿0 implies E ∩ kerm �= ∅.

Proof. We construct an increasing sequence 〈xn | n ∈ N〉 in E with m(xn)¿ n=(n+1).
It follows that

⊔
xn ∈E ∩ kerm.

Firstly, since 
 |E is a non-zero valuation on D, we may choose x1 ∈E such that

 |E(↑↑x1)¿0. Thus, de.ning E1 =E ∩↑↑x1, we have 
(E1)¿0.
Next, assume xn has been de.ned such that En=E ∩↑↑xn has 
(En)¿0. Let 5=
1


(En)

 |En. Since


 = 
|En + 
|Ecn;
the inequality M (
 |Ecn)6
(Ecn) forces M (
 |En)= 
(En), whence M (5)= 1.
We may choose a simple valuation ��5 such that M (�)¿n=(n + 1). Thus there

exists y∈D (namely one of the mass points of �) such that m(y)¿ n=(n + 1) and

(En ∩↑↑y)¿0. Now pick xn+1 ∈En ∩↑↑y such that 
(En ∩↑↑xn+1)¿0.

Proposition 25. Let 
∈ kerM . If U1; U2 ∈�D with U1 ∩ kerm=U2 ∩ kerm, then

(U1)= 
(U2).

Proof. Since neither of the crescents U1\U2 and U2\U1 meets kerm it follows that


(U1) = 
(U1 ∩ U2) + 
(U1\U2)

= 
(U1 ∩ U2) (by Proposition 24)

= 
(U1 ∩ U2) + 
(U2\U1) (by Proposition 24)

= 
(U2):

Theorem 26. The space of normalized valuations on kerm in the weak topology is
homeomorphic to kerM equipped with the relative Scott topology.

Proof. Suppose 
 is a normalized valuation on kerm. Then we easily see that 
∗ :
�D → [0; 1] de.ned by 
∗(O)= 
(O∩ kerm) is a valuation on �D. For all positive
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integers n, since


∗({x : m(x) ¿ n=(n+ 1)}) = 
(kerm) = 1;

M (
∗)¿n=(n+ 1). Thus 
∗ ∈ kerM .
Conversely, suppose 
∈ kerM . We de.ne a valuation 
∗ on the open sets of kerm as

follows. For an open set O⊆ kerm we de.ne 
∗(O)= 
(O†) where O† is the greatest
Scott open subset of D such that O† ∩ kerm=O. Now for all open subsets O1; O2 of
kerm,


∗(O1 ∪ O2) + 
∗(O1 ∩ O2) = 
((O1 ∪ O2)†) + 
((O1 ∩ O2)†)

= 
(O†
1 ∪ O†

2) + 
(O†
1 ∩ O†

2) (by Proposition 25)

= 
(O†
1) + 
(O†

2) (by modularity of 
)

= 
∗(O1) + 
∗(O2):

Thus 
∗ is modular. By similar reasoning it also follows that 
∗ is Scott continuous.
One easily sees that the maps 
 	→ 
∗ and 
 	→ 
∗ are inverse.
Recall that a net 〈
i〉 of normalized valuations on kerm converges to 
 in the weak

topology iJ lim inf 
i(O)¿
(O) for all open O⊆ kerm. Using Proposition 4 it is
routine to show that the bijection above is a homeomorphism.

Corollary 27. If m satis;es MP and D is an !-continuous dcpo, then the space of
normalized Borel measures on kerm in the weak topology is homeomorphic to kerM
in the relative Scott topology.

Proof. Since an MP-measurement is a Lebesgue measurement, kerm is a separable
metric space by Theorem 10. In this case, as we remarked earlier, valuations and
Borel measures are in one-to-one correspondence.

We now begin the build-up to our main result, Theorem 30, showing that M
is a measurement. In particular, it is this result which allows us to conclude that
kerM ⊆maxPD. The following proposition and lemma contain most of the work in-
volved in proving Theorem 30.

Proposition 28. Let 5=
∑

c∈C tc�c and (¿0 be such that M (5)¿1 − (. If C′ =
{c ∈ C : m(c)¿1 − √

(}, then 5′ =
∑

c∈C′ tc�c satis;es M (5′)¿1 − 2
√
(.

Proof. From
∑

t∈C tc(1 − m(c))61 −M (5)¡(, it follows that

M (5) −M (5′)6
∑

c∈C\C′
tc 6

∑
c∈C\C′

tc(1 − m(c))√
(

¡
√
(:

Lemma 29. Suppose m :D→ [0; 1] is an MP-measurement and M :PD→ [0; 1] is the
map given in De;nition 23. Let 
∈ kerM and �=

∑
a∈A ra�a�
. Then there exists

(¿0 such that whenever 5=
∑

c∈C tc�c � 
 and M (5)¿1 − (, then ��5.
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Fig. 2.

Proof. Let 6=
∑

b∈B sb�b be such that ��6�
 and let u= {ua; b} be a splitting be-
tween � and 6 as in Lemma 16. Applying Proposition 20 with the partition {Ei}i∈I ,
where I = PB and Ei = Cr(B; i), we obtain a splitting v = {vb; i} between 6 and 
.
We now de.ne (¿0 in terms of u and v. First we choose (1¿0 to be a lower bound

on the unful.lled demand at each of the sink nodes for the vb; i:

(1 = min
i∈I

(

(Ei) − ∑

b∈B
vb;i

)
: (4)

Since m satis.es (MP) we may choose (2¿0 such that for all a∈A and b∈B
with a�b it holds that m1−(2 ( ↑ b∩ kerm)⊆↑↑a. Now we de.ne (¿0 by (=
min((1; (2)2=4.
Suppose we are given 5=

∑
c∈C tc�c � 
 with M (5)¿1− (. Let C′ ⊆C and 5′ � 5

be as in Proposition 28. In particular, we have m(c)¿1 − (2 for each c∈C′, and
M (5′)¿1 − (1.
Applying Proposition 20 once again, with the partition {Fj}j∈J , where J = P(B∪C′)

and Fj = Cr(B∪C′; j), we obtain a splitting w= {wc; j} between 5′ and 
. Notice that
the partition {Fj} re.nes {Ei}. We write j ≡ i whenever j∩B= i, so Ei =

⋃
j≡i Fj.

We illustrate the splittings v and w in the network Row diagram in Fig. 2. Roughly
speaking, we would like obtain a splitting between � and 5′ as u; v;w−1. Notice,
however, that w−1 and v are not even composable as it stands: they do not have a
common index set. We .rst have to amalgamate the Row numbers wc; j which go into
the same group of circled nodes. Formally, we de.ne the (C′ × I)-indexed set Qw by
Qwc; i =

∑
j≡i wc; j.
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We claim that u; v; Qw−1 de.nes a splitting between � and 5′ in the sense of
Lemma 16, so that ��5′ � 5. We verify condition 3 of the lemma as follows.

(u; v; Qw−1)a;c ¿ 0 ⇒ (∃i)(∃b)(ua;b ¿ 0 & vb;i ¿ 0 & Qwc;i ¿ 0) (5)

⇒ (∃i)(∃j ≡ i)(∃b)(ua;b ¿ 0 & vb;i ¿ 0 & wc;j ¿ 0) (6)

⇒ (∃i)(∃j ≡ i)(∃b)(a�b & Ei ⊆ ↑↑b & Fj ⊆ ↑↑c): (7)

Now wc; j¿0 in (6) implies 
(Fj)¿0 (cf. Proposition 24). Thus, by Proposition 24,
there exists z ∈Fj ∩ kerm. Also, from (7), we have that a�b� z and c� z. Since
z ∈ kerm and m(c)¿1 − (2, from m1−(2 ( ↑ b∩ kerm)⊆↑↑a it follows that a�c.

To verify the condition in Lemma 16(1), observe that two applications of Proposi-
tion 22 yield

∑
c∈C′

(u; v; Qw−1)a;c =
∑
i∈I

(u; v)a;i =
∑
b∈B

ua;b = ra:

It remains to verify the condition in Lemma 16(2). Now

∑
j∈J

(

(Fj) − ∑

c∈C′
wc;j

)
= 
(D) − 5′(D)6 1 −M (5′) ¡ (1: (8)

The parenthesized term above is always positive. Thus, for each i∈ I , taking the partial
sum in (8) over those j∈ J with j ≡ i, we get


(Ei) − ∑
c∈C′

Qwc;i ¡ (1:

From the de.nition of (1 in (4) it follows that for each i∈ I ,
∑
b∈B

vb;i ¡
∑
c∈C′

Qwc;i:

Now two applications of Proposition 22 yields
∑

a∈A (u; v; Qw
−1)a; c¡

∑
i∈I Qw−1

i; c = tc
for each c∈C′.

Having proved Lemma 29, the result that M is a measurement follows from general
domain theory.

Theorem 30. Suppose m is an MP-measurement on a domain D, and let M be the
extension of m to a Scott continuous map PD→[0; 1] as given in De.nition 23. Then
M is a measurement.

Proof. Let 
∈ kerM and ��
. We have to show that there exists (¿0 such that
whenever 5� 
 and M (5)¿1 − (, then ��5.
By the interpolation property of � there exists a simple valuation �′ with ���′�
.

By Lemma 29 there exists (¿0 such that whenever 5′ � 
 is simple and M (5′)¿1−(,
then �′�5′. But if 5� 
 is an arbitrary valuation with M (5)¿1 − (, then there is a
simple valuation 5′�5 with M (5′)¿1 − (. Thus ���′�5′�5.
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Corollary 31. If D is an !-continuous dcpo whose Scott and Lawson topologies agree
at the top, then the space of normalized Borel measures on maxD in the weak
topology embeds as a subspace of maxPD.

Proof. The Lawson topology is metrizable in any !-continuous dcpo, so maxD is
metrizable. Since valuations and Borel measures are in one-to-one correspondence in
any separable metric space, it su@ces to prove the result above with valuations in place
of measures.
By Theorem 14, D admits an MP-measurement m with kerm = maxD. Since the

extension M :PD→ [0; 1] is a measurement, it follows that kerM ⊆maxD. Now the
result directly follows from Corollary 27.

This result is also implied by [6, Corollary 4.1]. The proof of that corollary uses
the fact that valuations on PD extend uniquely to measures. In [19] we prove a more
general version of Corollary 31, assuming only that D is an !-continuous dcpo with
maxD regular. This depends on a more general version of Theorem 30. Here we avoid
the extra generality in order to give a less technical presentation.

8. Iterated function systems

De�nition 32. An iterated function system (IFS) on a complete metric space X is a
collection of continuous maps fi :X →X indexed over a .nite set I . Such an IFS
is denoted 〈X; {fi}i∈I 〉. If each map fi is contracting, then the IFS is said to be
hyperbolic.

A hyperbolic IFS induces a contraction F on the complete metric space of non-empty
compact subsets of X equipped with the HausdorJ metric. F is de.ned by

F(K) =
⋃
i∈I

fi(K):

By Banach’s contraction mapping theorem, F has a unique .xed point: the attractor
of the IFS. An alternate domain-theoretic proof this result, due to Hayashi [8], involves
considering F as a continuous selfmap of CUX and deducing that the least .xed point
of F is maximal in CUX , and therefore is a unique .xed point. Many diJerent fractal
sets arise as, or can be approximated by, attractors of IFSs.

De�nition 33. A weighted IFS 〈X; {(fi; pi)}i∈I 〉 consists of an IFS 〈X; {fi}i∈I 〉 and a
family of weights 0¡pi¡1, where

∑
i∈I pi =1. These data induce a so-called Markov

operator G :MX →MX on the set MX of normalized Borel measures on X , given
by

G(
)(B) =
∑
i∈I

pi
(f−1
i (B)) (9)

for each Borel subset B⊆X .
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The space MX equipped with the weak topology can be metrized by the Hutchinson
metric [10]. Furthermore, if a weighted IFS is hyperbolic then the map G is contract-
ing with respect to the Hutchinson metric. In this case the unique .xed point of G,
obtained by the contraction mapping theorem, de.nes a normalized measure called an
invariant measure for the IFS. The support of the invariant measure is the attractor of
the underlying IFS. This construction is an important method of de.ning fractal mea-
sures. Next we outline a domain-theoretic construction, due to Edalat [4], of invariant
measures for so-called weakly hyperbolic IFSs on compact metric spaces.
Edalat’s approach involves embedding the set of measures on a compact metric space

X in the domain PUX of valuations on the upper space of X . Recall from Section
4 that UX admits an MP-measurement m :UX → [0; 1], where m(K)= 2−|K|; in turn
this yields a measurement M on PUX . Next, a weighted IFS 〈X; {(fi; pi)}i∈I 〉 induces
a continuous map T :PUX →PUX – the domain theoretic analogue of the Markov
operator-de.ned by

T (
)(O) =
∑
i∈I

pi
((Ufi)−1(O)); (10)

where Ufi :UX →UX is the map K 	→fi(K).
Applying T to �X , the point valuation concentrated at X ∈UX , one obtains T (�X ) =∑
i∈I pi�fi(X ). Iterating, it follows that

Tn(�X ) =
∑

i1 ;:::;in∈I
pi1 : : : pin�fi1 ::: fin (X ): (11)

Thus MTn(�X ), the measurement of the nth iterate, equals
∑

i1 ;:::;in∈I
pi1 : : : pinm(fi1 : : : fin(X )):

To ensure that MTn(�X )→ 1 as n→ ∞ it is su@cient to require that for all (¿0,
there exists n¿0 such that |fi1 : : : fin(X )|¡( for all sequences i1i2 : : : in ∈ I n. In fact,
by KTonig’s lemma, it is su@cient that for each in.nite sequence i1i2 : : : ∈ I!, |fi1 : : :
fin(X )| → 0 an n→ ∞. Edalat calls an IFS satisfying the latter condition weakly
hyperbolic. It is clearly the case that every hyperbolic IFS is weakly hyperbolic.

Theorem 34 (Edalat [4]). A weakly hyperbolic weighted IFS 〈X; {(fi; pi)}i∈I 〉 on a
compact metric space X has a unique invariant measure which is moreover an
attractor for the Markov operator (9).

Proof. Every valuation on a compact metric space extends to a Borel measure, and
conversely every Borel measure restricts to a valuation. Thus, to prove the existence
of a unique invariant measure, it su@ces to prove that there is a unique valuation 

on X such that 
(O)=

∑
i∈I pi
(f

−1
i (O)) for all open O⊆X .

Let D be the sub-dcpo of PUX consisting of valuations with mass 1. Then D is
pointed and continuous, and T restricts to a monotone map D→D. Thus we may
apply Theorem 8 to deduce that T has a unique .xed point on D, and this point lies
in kerM .
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By an obvious identi.cation of X with kerm we may regard the Markov operator
G, de.ned in (9), as a selfmap of the set of valuations on kerm. Next we show that
G, so regarded, agrees with T . Formally, if O⊆UX is Scott open, then, using the
notation of Theorem 26, we have

G(
∗)∗(O) =G(
∗)(O ∩ kerm)

=
∑
i∈I

pi
∗(f−1
i (O ∩ kerm))

=
∑
i∈I

pi
((Ufi)−1(O)) ker (f−1
i (O ∩ kerm)

= (Ufi)−1(O) ∩ kerm)

= T (
)(O):

Since T =G on kerm, we know that the unique .xed point of T is a unique invari-
ant measure. Furthermore, it also follows that T takes kerM into kerM , and so, by
Theorem 8, the .xed point of T is an attractor for T in the relative Scott topology
on kerM . But kerM �MX , so the invariant measure for G is also an attractor in the
weak topology.

The construction of the unique invariant measure here is essentially the same as in
Edalat [4]. However it is justi.ed in a diJerent way. Edalat deduces that the least
.xed point of T is a unique .xed point by proving that it is maximal. This obser-
vation depends on a characterization of the maximal elements of PUX in terms of
their supports. This last requires some more measure-theoretic machinery than we have
used here: in particular he uses the result of Lawson [13] on extending valuations on
!-continuous dcpos to Borel measures over the Lawson topology.

9. Summary and future work

We introduced the class of MP-measurements: a strict subclass of the Lebesgue
measurements from [19]. We showed that the natural measurements on the upper space
and formal ball models are MP-measurements, and that any domain which is an MP-
hull in the sense of Lawson [14] admits an MP-measurement.
Our main result, Theorem 30, showed that an MP-measurement m :D→ [0; 1] extends

in a natural way to a measurement M :PD→ [0; 1] on the probabilistic powerdomain.
As an application of this result we showed how Edalat’s domain theoretic construc-
tion of unique invariant measures for IFS’s can be justi.ed by standard results about
measurements.
Martin [19] proves that the requirement that m :D→ [0; 1] be a Lebesgue measure-

ment is both necessary and su@cient for the natural extension of M to the convex
powerdomain CD to de.ne a measurement. The corresponding result does not hold for
MP-measurements and the probabilistic powerdomain: there are measurements which
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do not satisfy MP and yet extend to the probabilistic powerdomain. For example, it
turns out that the measurement in Example 15, which is Lebesgue but not MP, ex-
tends to the probabilistic powerdomain. The question of obtaining a necessary condition
remains open.
An interesting problem is to characterize the maximal elements of the probabilistic

powerdomain. In particular, for an MP-measurement m with kerm = maxD, do we
have kerM =maxPD?
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