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Abstract

In this paper we study the assignment of a single server to two queues. Customers arrive at both queues
according to Poisson processes, and all service times are exponential, but with rates depending on the queues.
The costs to be minimized consist of both holding costs and switching costs. The limiting behavior of the
switching curve is studied, resulting in a good threshold policy. Numerical results are included to illustrate the

complexity of the optimal policy and to compare the optimal policy with the threshold policy.
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1. INTRODUCTION

Our model consists of 2 queues with Poisson arrivals (with rate A; at queue 7) and exponential
service times (with rate p; at queue 7). There are holding costs (¢; at queue i) for each time
unit a customer spends in a queue. There is a single server, which has to divide its time
between the queues. When the server moves from one queue to the other, switching costs
are incurred (equal to s;; if the server moves from queue i to queue j). The objective of this
paper is to study the optimal preemptive dynamic assignment of the server to the queues,
with respect to the long run discounted or average costs.

A special case of this model, with g1 = p9 and ¢; = ¢; (and with switching times instead
of switching costs), has been studied in Hofri & Ross [2] and in Liu et al. [4]. In both papers
it is shown that the optimal policy serves each queue exhaustively. (In [4] a more general
model is considered, allowing for more than 2 queues and different information structures.)
In [2] it is conjectured that it is optimal for the server to switch from an empty queue to the
other if the number of customers in the other queue exceeds a certain level. Such a policy is
called a threshold policy. Our numerical results are in compliance with this conjecture.

Another special case, the one with s19 = s9; = 0, has been studied extensively. For this
model the pc-rule is known to be optimal (e.g., Buyukkoc et al. [1]). The pc-rule serves,
amongst the non-empty queues, a customer in the queue with highest u;c;.

In this paper we study the general case with arbitrary parameters.

Before going into the technical details of the paper, let us first do a numerical experiment,
to obtain some insight in the model. This we do using dynamic programming (dp). Using
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standard arguments (on which we elaborate in section 2), we can reformulate our continuous
time problem into a discrete time problem, and derive its dp equation.

Using a computer program, we computed the actions minimizing the a-discounted costs,
(for a state space truncated at a sufficiently high level) for Ay = Ay =1, pg = py =6, ¢; = 2,
ca =1, s19 = s91 = 20, and o = 0.95. The results can be found in table 1. We denote the
state of the system with (z,y), with z = (x1, x9) the numbers of customers in the queues, and
y € {1,2} the position of the server. A “—” at position z = (z1,z2) denotes that if the server
is in state (x, 1), then it is optimal to switch from queue 1 to queue 2. A “4” denotes that
it is optimal to switch to queue 1 in state (z,2). A “” denotes that the server stays at the
present queue. In the table the state space is truncated at =1, 9 < 15, but the computations
were done for higher truncation levels.

zy =15 - + + + + 4+ + + + 4+ o+ o+ o+
14 - + + + + 4+ + + + o+ + o+ o+
13 — + + + + 4+ o+ + + 4+ o+ o+ o+
12 - + + + + 4+ o+ + + 4+ + o+ o+
11 - + + + + 4+ + + + 4+ + o+ o+
10 — + + + + 4+ o+ + + 4+ o+ o+ o+
9 - + + + + 4+ + + + 4+ + o+ o+
8 - + + + + 4+ + + + 4+ o+ o+ o+
7 - + + + + 4+ + + + 4+ + + o+
6 - + + + + 4+ + + + o+ + o+ o+
5 - o+ o+ o+ o+ o+ 4+ o+
4 - + + + + 4+ + + + + o+ o+
3 - o+ o+ + + + o+ + 4+ + o+
2 + + + + 4+ + + + o+ 4+
1 -+ o+ o+ o+ o+ +
0 + + + + 4+ + + + + + + + 4+ 4+
©=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1. The optimal switching policy for \y = Ao =1, p1 = pa =6, ¢c1 =2, c3 = 1,
S19 = 8§91 = 20, o = 0.95

Several interesting conclusions can be drawn from this table. In the first place, as the
policy in the table does not have a simple form, it seems unlikely that the optimal policy can
be described easily.

Switching from queue 1 to queue 2 occurs only if 1 = 0, i.e., queue 1 is served exhaustively.
This we can prove (see section 2), for all cases with pjc; > pgcs. Thus the queue that
would get higher priority under the pc-rule in the case without switching costs, is served
exhaustively. We also show in section 2 that if z; = 0, then queue 2 is served exhaustively.
This is also in compliance with the pc-rule.

From table 1 it is clear that it is not optimal always to serve queue 2 exhaustively; if there
are sufficient customers in queue 1, it pays to switch to queue 1. Note that serving queue 1
reduces the holding costs at a faster rate than by serving queue 2. (This is the intuitive
explanation of the optimality of the pc-rule.) However, to reduce costs at a faster rate we
have to invest in the form of switching costs. This investment only pays if there are enough
customers in queue 1 to serve. This suggests a threshold level for 1, at which to switch to
queue 1. In our example, this threshold clearly depends on zs, but becomes constant for
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x2 > 5 (and remains the same for values of x5 well beyond 15). The intuition behind this
is that if there are only a few customers in queue 2, it is better to serve these first before
switching to queue 1, thereby avoiding having to switch back to queue 2 after serving queue 1
exhaustively. This complex behavior lends itself hardly for analysis, but for the discounted
costs criterion, and for x5 big enough, we can prove that the optimal policy does not depend
on z9. This is done in section 3, and we show how the optimal policy for x5 large can be
computed. In section 4 we compare numerically the optimal policy and several threshold
policies, one of which is based on the limiting policy obtained in section 3.

2. EXHAUSTIVE POLICIES
In this section we formally derive the discrete time dp equation, and prove some properties
of this model, which partially describes the optimal policy.

In Serfozo [6] it is shown that each continuous time Markov decision process with uniformly
bounded transition rates is equivalent to a discrete time Markov decision chain, for the
discounted cost criterion. In our model, the sum of the transition rates is bounded by
v = A1 + A2 + p in each state (with y = max; y;). By adding fictitious transitions from a
state to itself, we can assume that the sum of the rates in each state is equal to . Let the
costs at ¢ in the continuous time model be discounted with a factor #*. Then, according to
[6], the optimal policy in the continuous time model is the same as the optimal policy in the
discrete time model with the transition rates divided by  as transition probabilities, and
with discount factor a = /(log(87!) + ). In each state, the transition probabilities sum to
one due to the fictitious transitions. The minimal discounted costs in both models are equal
up to a multiplicative factor . A similar result holds for the average cost case.

In our model we do not allow for idleness of the server at the current queue, if there
are customers available at that queue. If ¢; > 0, it can indeed be shown that idleness is
suboptimal, in the same way as Liu et al. [4] show it for their model. Note however, that
the optimal policy need not be work conserving: in the example of the previous section the
server remains in state ((0,1),1) at the empty queue 1, while there is a customer waiting in
queue 2.

Assume, without restricting generality, that A; + A2 + ¢ = 1. Recall that x = (z1,z9)
denote the queue lengths, and that y is the queue presently being served. The dp equation
of the discrete time model is then as follows (with e; = (1,0) and ey = (0,1)):

V(z,y) = min{V"(I,y), Sz + V"(x,z)}, z=ymod?2+1, (2.1)
V"+1(m, y) = 101 + 2202 + M V™ (z + e1,y) + XV (z + e9,y) + (2.2)

apy V™M((x — ey) ", y) + alp — py) V™ (z,9),

with VO(z,y) = 0. Here V™ serves as an intermediate variable, making the notation easier.
It is well known that (under some technical conditions) V™(z,y) converges to the minimal
discounted costs V*(x,y) for all x and y, and that the actions minimizing V" (z,y) converge
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to the minimizing actions in (z,y). If @ = 1, then V"!(z,y) — V*(z,y) converges to the
minimal average costs.

In the remainder of this paper we study the discrete time model, whose dp equation is given
by (2.1) and (2.2). Assume that pic; > pacg > 0, and that s19, s91 > 0. To show that queue 1
should always be served exhaustively, we need a technical lemma. Define fi; = p — p;, and
note that a < 1 is equivalent to taking A\ + A2+ g < 1 and @ = 1. Therefore we will suppress
« in the notation, and drop the condition that A1 + Aa + = 1. (The case A1 + A +p =1
represents the average cost case.)

Lemma 2.1 Forn=0,1,..., we have

pV™(x —e1, 1)+ V"™ (z,1) < psi2 + poV"™(x — e,2) + V" (x,2), z > 0, (2.3)
and

Vi (z,y) < V(2 + ei,9)- (2.4)
Proof. It is easily seen that

Vi (z,y) < sy, +V™(2,2), 2 #y. (2.5)

We will show (2.3) and (2.4) inductively, starting with (2.3). For n = 0 the inequality holds.
Assume it holds up to n. Instead of proving (2.3) for n + 1, we prove

pV (@ — e1,2) + g VT (2, 2) < pa V™ (@ — €2, 2) + BV (2, 2).

This is clearly sufficient, as V"1 (z,1) < s19 + V"1(z,2) for all z. We have to distinguish
between all combinations of actions in (z — ey, 2) and (z,2). The optimal actions in these
states are denoted with a1 and as, respectively. If a; = a9 = 1, we have to show

,ulf/'"(a: —e1,2) + ﬁlvn(z, 2) < pusoy + ugf/'”(x —eg,1)+ [LQV”(QU, 1).

If we insert (2.1) and use (2.5) (and the fact that sy; > 0), this inequality follows without
difficulty.

If a1 = a9 = 2, we also write the inequality in terms of V", and then we use, by induction,
(2.3) (or (2.4), if 23 =1).

For a; = 1 and a2 = 2, we have, for the terms concerning arrivals,
AimV™(z —e1 +€,2) + in V™ (z + €;,2) <
Xipasa1 + Aip V™ (z — €2 + €5, 1) + Aijsa V(2 + €, 2),

by induction and (2.5).

For the terms concerning departures in p1 V"t (z — e1,2) + a1 V"™ (z, 2) we have
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pipV™(z —e1 — e, 2) + p1pa V"™ (x — e1,2) + fap2V"(z — €9,2) + p1p2V"(2,2) <
ppp2sar + pep V™ (z — e1 — e, 1) + pap V™ (2 — eg, 1)+
Rap2 V" (x — e2,2) + fafia V" (x, 2),
which holds again by induction and (2.5). The r.h.s. consists of the departure terms in

oV (z — e9,1) + V™ (x,2) if a; = 1 and ap = 2. Summing these terms, together with
0 < (1— A1 — Ay — p)s91, gives the inequality.

The case with a1 = a9 = 2 follows in a similar way.

Equation (2.4) follows easily, by taking the action in (z,y) equal to the optimal action in
(fE + €, y) o

Now we can show that queue 1 should always be served exhaustively.
Theorem 2.2 For n=0,1,..., we have
V(z,1) < 5194+ V™(,2) if 21 > 0, (2.6)
showing that queue 1 should be served erhaustively.
Proof. Again by induction. Using (2.5), it is easily seen that
AV (z +ei,1) < Ais12 + V™ (z + €5, 2).
By (2.3) (or (2.4), if zo9 = 0) we have
piV™(x — e, 1) + g1 V™(z,1) < psia + paV"*((z — e2) ™, 2) + paV"(x,2).

A~

Summing the inequalities (and using that s15 > 0) gives (2.6) for n+1. As lim, oo V™ (z,y) =
Ve(z,y), (2.6) holds also for V¢. Thus, if 1 > 0, the action minimizing V"(x, 1), is staying
at queue 1. This shows that the optimal discounted policy serves queue 1 exhaustively. o

Theorem 2.3 Forn=0,1,..., we have
V™ (x,2) < s91 4+ V™(x,1) if 31 =0, (2.7)
showing that queue 2 should be served as long as queue 1 is empty.

Proof. The proof is similar to that of theorem 2.2. It is easily seen that

AV (z +€i,2) < Aisar + AV (z + e, 1),
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p2V™((z — e2)",2) + 2V (2,2) < psor + uV"(2,1),
holds by (2.4) and (2.5). =

If s19 = s91 = 0 it follows from the theorems 2.2 and 2.3 that the pc-rule is optimal.
Indeed, because in this case V™(z,y) = min{V"(z,1), V"™(z,2)}, it follows from theorem 2.2
that queue 1 should always be served if z; > 0; by theorem 2.3 we know that if z;1 = 0 and
z9 > 0 queue 2 should be served. A simpler iterative proof of the optimality of the pc-rule
can be found in Hordijk & Koole [3].

I tried to generalize the results of this section to more than 2 queues using similar argu-
ments, but failed.

Remark 1. We assumed the arrivals to be Poisson, but without losing the results of this
section, we can allow them to be more general, for example a Markov arrival process (MAP).
Note however that in this case the optimal policy will also depend on the state of the arrival
process. In [3] the MAP is used for a related control model.

Remark 2. In the literature on polling models it is customary to study the expected
(weighted) waiting time of an arbitrary customer. The problem of finding the optimal policy
for this criterion is equivalent to finding the policy that minimizes the expected (weighted)
sojourn time, as each customer’s expected service time is fixed. By Little’s theorem, mini-
mizing Y, \;&IEW; is equivalent to minimizing ), &;IEL;, where ¢; is a weighting factor, and
L; is the stationary queue length at queue . But this is equivalent to the average cost case
studied in this section, with ¢; = ¢;. Thus the results proved in this section hold also if the
objective is to minimize the expected waiting times.

3. ASYMPTOTIC ANALYSIS

In this section we will study the actions minimizing V*(z,y) for z9 large. To do this, we
consider the optimal actions in V"(z,y) for n < z9, and n large (and thus also zy large).
These results are used to derive e-optimal policies for the discounted cost criterion.

Lemma 3.1 If 29 > n, then V™(z + eg,y) = V"(z,y) + 111"" .

o
Furthermore, the optimal actions in V™(x,y) and V™(x + es,y) are equal.

Proof. We use induction to n. Assume that V"(z + e2,y) — V"(z,y) = =% ¢, for all =
with z9 > n. Then the actions minimizing V"(z,y) and V"(z + es, y) are equal. (Note that
adding a constant to V™(z,y) does not change the optimal action, giving the second part of
the theorem.) Now look at V"1 (a! + eg,y) — V*Hi(2',y), with 24, > n + 1. For all states x

that can be reached from z’ in one step, we have x93 > n. Therefore

1—a" 1— antl
Vn+1(w, + e2ay) - Vn+1(xlay) =+t C = Co.
l1—« l—«o
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Thus, if 9 > n, the optimal policy does not depend on z3. To study the limiting behavior
as both n and zs go to oo, we consider a model with states (z1,y), where z; is the number
of customers in the single queue of the system, and y € {1,2} the position of the server: the
server is at the queue only if y = 1. The dp equation is:

W™(z1,y) = min{W"(Il,y), Syz + W”(xl, z)}, z=ymod2+1,

'

o ¢y + W (zy, 1))

l—«o

W™ (z1,1) = 216, + e\ W™ (21 +1,1) + a,\Q(

+ap W((z1 — 1)+’ 1)+ a(p — py)W(z1,1),

and

n

=y + W(z1,2))

—

Wn+1(.7,'1,2) =z1c1 + aM W™ (21 +1,1) + ogAz( 1

1—a"
11—«

—aLy ¢y + apWm(z1,2).

This dp equation can be interpreted as originating from the original model but with an
infinite number of class 2 customers. Indeed, if y = 2 the costs are reduced with a factor
Ly 111"5 c9. This is equal to the probability of a class 2 departure, times the expected costs
incurred for a class two customer who stays in the system for the remaining n periods.

Note that the dp equation has a somewhat unusual form, as the costs depend on n. How-
ever, the discounted costs are equal to those for the model with " replaced by 0 (which can
by proved by considering the optimality equation). To distinguish between both models, we
will refer to the original model as the V-model, and to the model with value function W™ as
the W-model.

Lemma 3.2 If z3 2 n, then V"(z,y) = W™(z1,y) + 2275 c2.

-«

Proof. The proof is similar to that of lemma 3.1. Assume that V"(z,y) — W"(z1,y) =

9 1{_ "‘: ¢y for all x with z9 > n. For 2’ with 4 > n + 1, it is straightforward to show, using

lemma 3.1, that

1—a" 1— "t
C) = Trg—C9.
l—« l1—«

Vn+1($,7 y) - Wn+1(xlla y) = T9C + axo
a

Now we can compute W and the optimal actions in each state. Based on this optimal
policy for the W-model we define a policy Ry for the original V-model, which takes as action
in (z,y) the optimal action for the W-model, in state (z1,y). Note that under Ry, the
original model and the optimal policy for the W-model treat the class 1 customers exactly
the same. Obvious improvements can be made to Ry, like not switching from queue 1 to
queue 2 if z = (0, 0).
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Theorem 3.3 For all € > 0, there is a N such that |Vg (z,y) — V*(z,y)| < e if 12 > N.

Proof. Using the triangle inequality, we have
[Viep(z,9) = V(z,9)| < [V¥(z,y) = V= (z,y)| + W (z1,y) — W (z1,9)|+

z2

Vo2 (z,y) — W™ (z1,y) — 2202 72| + |22 17252 — maca 5 [+

|V§T(.’E,y) - Wa(xlay) - $202ﬁ|-

For each of the terms on the r.h.s. we show that it goes to 0, as z3 tends to co.

Let us start with V*(z,y) — V*2(z,y). Discounting can be interpreted as taking the total
costs over a geometrically distributed horizon. Thus V¥(z,y) can be seen as the minimal costs
for a control problem with horizon X, where X is geometrically distributed with parameter
a. Similarly, V"(z,y) can be seen as a problem with horizon max{X,n}. Note that the
policies used to calculate V™ differ from the optimal discounted policy; a different horizon
gives different optimal policies. As the direct costs for V™ are positive, it is easily seen that
V™ (z,y) < V¥z,y). Now we bound the costs for the case that X > n, which occurs with
probability ™. At time n there are z1 + z9 + n customers in the system or less (the number
x1 + 2 + n corresponds to all events being arrivals). If these customers are not served, their
costs after n are bounded by o"(z1 + z2 + n) max{ci, c2}/(1 — a). The costs of a customer
arriving at time k& can be bounded by o max{ci, c2}/(1 — @). Summing this for & = n to oo
gives a bound for customers arriving after n, which is equal to o™ max{eci, ca} /(1 — a)?. The
switching costs can be bounded by max{s1a, s21}/(1 — «). Together, this gives

Vn(x’ y) < Va(.’E, y) < Vn(.’E, y) +a” (w1+w2+n+(1—a)_1)max{cl,cz}-f—max{slz,sn}’

l—«

from which we conclude that V*(z,y) — V*2(z,y) — 0, as x93 — oo.

In a similar way, we can find bounds for W*. The negative costs after n are bounded by
a™paca/(1 — a)?. Therefore

W"(z1,y) < W(z1,9) +a"p2c2/(1 — ).

On the other hand

We(1,y) < W(a1,y) + an @rtnloe) Dmexie e emax{nzen)

l-a )
giving that W*(zq,y) — W*2(z1,y) — 0, as x9 — oo.
By lemma 3.2 we know that V2(z, y) = W72 (z1,y) + 22 1722, making the third term 0.

l-a

l—a®2
-

Obviously, z2c¢o — xgczﬁ — 0, as 9 — o0.

To prove that the last term tends to 0, we do not consider V" or W™, with a possibly
different policy for each n, but we restrict ourself to the policy Ry. If we add a term zscy
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to the direct costs in W™, resulting in W™, the term becomes |V (z,y) — W*(z1,)|. Now,
if Ry is employed at all times, then the direct costs in both systems are equal, until o = 0.
Note that the switching costs and the holding costs in queue 1 are always equal. Therefore,
using similar arguments as above, we have

[Var(z,y) — We(z1,9)| < ey /(1 — a)’.
This gives the bound on the fifth term. o

The next step in finding good and simple policies is characterizing the policy Rr. Although
we conjecture that Rp is a threshold policy, we were not able to prove it. Instead, we
computed Ry for various choices of parameters. In all instances a threshold policy was
found. Note that the computation of Ry takes little time compared to the overall optimal
policy, due to the reduction in size of the state space. In the next section we report on the
numerical results.

Remark. In the literature, I found one paper on the control of a queue with switching costs
between the actions, Lu & Serfozo [5]. However, a detailed study of it learned that there is
an unrepairable error in the proof of the main result. Indeed, in the proof of Lemma 1 on p.
1128 of [5] it is stated that R,, = 0 for case C2 (which contains the holding cost case). This
is not correct, and examples contradicting (25) can be constructed. This disproves Lemma 1
for case C2, on which the main result, Theorem 1, is based.

4. NUMERICAL RESULTS
First we computed the optimal W-policy for several instances. A table showing the optimal
policy, for the same parameters as used in table 1, can be found in table 2.

R T T T T e T S e s S -
©n=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 2. The optimal W-policy for Ay = Ao =1, p1 = p2 =6, ¢c1 =2, co =1,
S19 = 891 = 20, a=0.95

We see that the server switches from serving queue 2 to queue 1 as soon as z; reaches the
threshold level (in this case 4), which is what we conjectured to be the limiting behavior for
the V-model. For all considered instances the optimal W-policy has the same structure.

From this we construct the policy Ry for the V-model, by taking in ((z1,z3),y) the action
which is optimal in (z1,y) for the W-model. We make an exception for the states with z3 = 0;
there we assume the policy to be work conserving, that is, it switches to queue 1 only if there
are customers at queue 1, and in state ((0,0),1) the server does not switch to queue 2 (which
is obviously suboptimal). Thus Rr becomes as depicted in table 3.
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+H++++++++

+ + 4+
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We compared the optimal policy and Ry as derived from the W-model, for various problem
instances. We also included two other simple policies in our computations. These are the
policy which serves not only queue 1, but also queue 2 exhaustively, which can be seen as
Ry with threshold level co (and therefore denoted with R,), and the list policy which gives
priority to queue 1, which is Ry with threshold level 1 (denoted with R;). Note that R;
coincides with the pc-rule.

Our first observation is that the performance of the policies depends on the initial states.
This is illustrated in table 4, where we list the discounted costs for various starting states.
The computations for the optimal policy R* were done by calculating (2.1) and (2.2), for n
large enough. Also the computations for Ry, R; and R, were done with the dp equation, by
inserting the policy in (2.1) instead of taking the minimizing actions. To make computations
possible we had to truncate the state space. We took the truncation levels high enough to
be sure that the resulting numbers are equal to the ones for the model without truncation.

(=',y) | o1 (002  ((1001)  ((100)2)  ((0,10,1)  ((0,10)2)  ((10,10),1)  ((10,10),2)

R* 40.76 45.01 176.8 196.8 139.6 119.6 332.8 352.8
Ry 56.95 56.95 184.1 204.1 146.3 126.3 335.4 355.4
Ry 63.60 63.60 189.4 209.4 177.1 157.1 350.4 370.4
R 56.95 56.95 184.1 204.1 146.4 126.4 335.6 420.6

Table 4. Values for different policies and initial states (z,y’), for Ay = As =1,
p1r=pg=06,¢ =2, =1, 512 =591 =20, a=0.95

First we observe that the values for Ry, R; and Ry do not depend on y, if z = (0,0).
This can be explained by the fact that the server serves the first customer that arrives. As
A1 = A, this occurs at each queue with the same probability. Because also s19 = s91, we
find V2((0,0),1) = V§£((0,0),2), for R = Ry, R1 and R. Furthermore it is observed that
the difference between entries in different columns is often equal to 20, the switching costs.
The differences can easily be explained by looking at the structure of the policies involved.
Of course R* performs best, but note that R, performs better than the other two.

Let us see what the influence of a on the results is. For a ranging from 0.5 up to 1
(representing average costs) we computed the values in state ((5,5),2). Note that for a = 1,
W™ is not defined. We derived Ry in this case directly from R*. Note that taking « close
to 1, reduces the dependence on the starting state. Furthermore, & = 0.95 corresponds to a
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reasonable interest rate of = 0.05. No low values of « are considered, as a discount rate of
B = 0.1 in the continuous time model gives in the discrete time model o = v/(log(3~1)+7) ~
0.78. The results can be found in table 5. In the table one can also find the values of T, the
threshold level on which Ry is based.

«a | 0.5 0.75 0.8 0.85 0.9 0.95 0.98 1
R* | 29.27 56.55 69.39 87.16 114.8 164.6 267.0 2.722
Rr | 29.47 57.36 69.87 88.41 1184 170.7 283.9 3.093

T [e9) o) o) 8 5 4 3 3
R, | 48.04 71.69 8237 98.49 125.7 185.9 313.9 3.470
Ro | 29.47 57.36 69.87 88.39 1186 180.9 302.1 3.088

Table 5. Values for different policies and discount factors, for Ay = Ay =1,
p1 = p2 =6, c; =2, cg =1, s19 = s91 = 20, and initial state ((5,5),2)

It is interesting to note that, as long as o < 0.75, the optimal policy does not switch to the
other queue. The optimal policy for the W-model has threshold level co here. For o = 0.8
R* switches to queue 1 in states ((z1,0),2) if z1 > 5. Note that for the average cost case Ry
performs better than Rp. As the traffic is low, this can be explained by the fact that R,
approximates the “nose” of the optimal policy better than Ry does. (We call the roughly
triangular subset of the state space where R* deviates from Ry, which is best illustrated in
table 1, the nose of the optimal policy.)

Finally, we change the parameters of the system, keeping the discount rate and the initial
state constant. First, let us change \y. We expect the nose to be larger if Ay is small, to
avoid having to return to queue 2 after serving queue 1 exhaustively. Such a large nose is
best approximated by R. Indeed, we see in table 6 that for Ay = 0.1, R, is slightly better
than Rr. However, for Ay large, we see that Rr outperforms R,,. For A = 5, the system is
unstable. As we are considering discounted costs, this does not cause problems. We also see
that for larger values of A, Ry behaves better compared to R*. This can be explained by the
fact that under high loads x5 is relatively big. It is for these states that Ry approximates R*
best.

A2 | 0.1 0.5 1 2 4 5
R* [ 1339 150.3 164.6 190.9 248.7 278.1
Rp | 1381 1555 170.7 1956 249.7 278.6
T 4 4 4 4 4 3
Ry | 1529 1704 1859 211.6 265.9 293.7
Ro | 137.0 1609 1809 2126 280.2 315.4

Table 6. Values for different policies and different values of Ay, for Ay =1,
p1 = pe =6,c1 =2, co =1, s19 = s91 = 20, @ = 0.95, and initial state ((5,5),2)

We now vary the value of ¢;, ranging from 1 to 10. The results can be found in table
7. For ¢; = 1, we know by theorem 2.2 that both queue 1 and queue 2 should be served
exhaustively. Therefore the values for Ry and R, are equal, and lower than the value for
R;. The policy R, behaves poorer and poorer if we increase c;, and the optimal threshold
value becomes 1, making Ry and R; equal.
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a | 1 2 3 5 10
R™ | 1141 1646 1927 2464 375.0
Rr | 1227 170.7 1983 251.9 381.1
T oo 4 3 2 1
R, | 161.5 1859 210.3 259.1 3811
Ro | 1227 1809 239.1 355.4 646.4

Table 7. Values for different policies and different values of ¢q, for Ay = Ay =1,
p1 = pe =6, coa =1, s19 = s91 = 20, @ = 0.95, and initial state ((5,5), 2)

Finally we change the switching costs s;3 and s9;. The results can be found in table 8. In
case s = s19 = s91 = 0, then R; is optimal. This is indeed what we expect, because in this
case the pc-rule, which is equal to Ri, is optimal. As the switching costs increase, R; gets
worse and R, better.

s | 0 5 10 20 100
R* [ 1105 1275 141.0 1646 236.2
Rr | 1105 127.6 1422 170.7 327.1

T 1 2 3 4 12
Ry | 1105 1294 148.2 1859 4873
Ro | 1443 1535 162.6 1809 327.1

Table 8. Values for different policies and different values of s, for \; = Ay =1,
p1 = pe =6,c1 =2, co =1, s19 =891 = 8, @ = 0.95, and initial state ((5,5),2)
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