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Abstract 

In this paper we present a graph representation of logic programs and default theories. 

We show that many of the semantics proposed for logic programs can be expressed in 

terms of notions emerging from graph theory, establishing in this way a link between 

the fields. Namely the stable models, the partial stable models, and the well-founded 

semantics correspond respectively to the kernels, semikernels and the initial acyclic 

part of the associated graph. This link allows us to consider both theoretical prob­

lems (existence, uniqueness) and computational problems (tractability, algorithms, 

approximations) from a more abstract and rather combinatorial point of view. It also 

provides a clear and intuitive understanding about how conflicts between rules are 

resolved within the different semantics. Furthermore, we extend the basic framework 

developed for logic programs to the case of Default Logic by introducing the notions of 

partial, deterministic and well-founded extensions for default theories. These semantics 

capture different ways of reasoning with a default theory. 

Keywords 
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1 Introduction 

Humans often use patterns of reasoning that enable them to draw conclusions under incomplete 

information. These conclusions are retractable since new information can invalidate them. Much 

research in Nonmonotonic Reasoning has concentrated in capturing these pattern of reasoning 

in a formal representation. One of the most prominent nonmonotonic reasoning formalizations 

is Default Logic. One the other hand, recent developments in Logic Programming and deductive 

databases have shown that negation as failure is strongly related to various nonmonotonic for­

malisms, and in particular with default logic. Thus logic programs with negation provide us a 

framework for nonmonotonic reasoning. 

Some recent work has dealt with the relation between some nonmonotonic formalisms and 

graph-theoretic constructs. Torres shows in [Tor93a] that the stable models of logic programs 

correspond to the kernels of an associated graph. This result is extended in [Tor93b], which 

proves that the maximal semikemels of the same graph correspond to partial stable models. 

For disjunction-free default theories, Dimopoulos and Magirou show in [DM92] that extensions 

correspond to kernels in a related graph. In this paper, we further extend the forementioned 

results with the introduction of an unified semantic and graph-theoretic framework for logic 

programs and default theories. 

We introduce the class of negative logic programs and a simple graph representation, the rule 

graph. We show that the most important proposals for defining the semantics of logic programs 

can be defined in terms of graph-theoretic structures in the rule graph. Stable models [GL88] 

correspond to kernels, partial stable models [Prz90, SZ90] to semikemels and the well-founded 

partial model [VRS88] to a special semikemel called the initial acyclic part. 

We use the logic programming notion of support, which we extend to disjunction free default 

theories, to show that the above equivalences can be extended to the case of disjunction-free 

default theories. Aside from the theoretical interest of the above results, we believe the practical 

contribution of this paper is twofold. On the one hand, the known properties of graph kernels 

and semikernels can improve our understanding of logic programming and default logic. Graphs 

give us an intuitive representation of the interactions between the rules and the different ways 

these interactions can be resolved. Furthermore they allow us to approach the formalizations in a 

way that ignores the logical meaning and concentrates on the structural properties of them. This 

is particularly useful when we try to investigate complexity issues or to tackle problems like the 

existence of particular semantics (stable models, extensions) and the development of algorithms. 

On the other hand, the unified graph model give us a clear intuitive understanding about the 

translation of the semantical constructs of logic programs into the domain of default logic. The 

graph structures defined for logic programs remain meaningful in default logic. The proposed 

semantics for logic programs can be naturally transferred to default logic, and allow as to resolve 

various shortcomings of the initial semantics of default logic. 
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The rest of this paper is organized as follows. In Section 2, we introduce the fundamental 

concepts and results from logic programming, default logic and graph theory that we use in the 

rest of the paper. In Section 3, we introduce the restricted class of negative logic programs and 

prove the basic results of our graph model. In Section 4, we extend the results of the previous 

sections to the class of general logic programs. In Section 5, we explore some of the complexity 

and algorithmic implications of the graph model. In Section 6, we show how the semantic and 

graph-theoretic constructs can be transferred to the case of default logic. Finally, in Section 7, 

we summarize the main contributions of this work. 

2 Preliminaries 

In this section we introduce the basic terminology and notation for logic programs, default theories 

and directed graphs used throughout this paper. We also summarize some of the fundamental 

results used in later sections. 

2.1 Logic Programs and Hypotheses 

A program P is a set of first order rules of the form: 

where n 2:: 1, m 2:: 0, every a, is an atom, and and every /i is a literal. The literals in the body 

of a rule are called subgoals. The above form of logic program differs from the standard since it 

allows conjunctions in the head of rules instead of single atoms. We choose to permit conjunctions 

to make a clearer connection with the default theories introduced in Section 6. Nevertheless, the 

above rule form should be seen solely as a shorthand for the set of rules: 

a1 +- /1 A /2 A ... A /m 

a2 +- /1 A /2 1\ ... A /m 

<Xn +- /1 1\ /2 1\ • • • A /m 

A rule with no subgoals is considered identical to the conjunction in its head. All variables are 

implicitly universally quantified. A datalog program is a program with no occurrences offunction 

symbols. 

If r is a rule then head( r) denotes the set of atoms in the head of r, and body( r) denotes the 

set of literals in its body. If R is a set of rules then body(R) = UreR body(r) and head(R) = 

UreR head(r). 

Let P be a logic program. We denote by 1i(P) the Herbrand base of P and by p! the 

Herbrand instantiation of P, that is, the ground program obtained by replacing the variables in 
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P by terms in its Herbrand universe in all possible ways. An assumption is a ground negative 

literal in -.1f.(P), and a hypothesis is a set of assumptions. If A is a set of literals then -.A is the 

set of literals corresponding to the negation of elements in A. 

A hypotheses .6. enables a rule r if all negative subgoals in r are contained in .6., that is, 

(body(r)- .6.) ~ 'H.(P). The set of rules n a program P enabled by a hypotheses .6. is denoted 

by enabled( A, P). We extend this notation to interpretations through the following definition 

enabled(!, P) = enabled(!-, P) . 

2.2 Supports and Attacks 

We denote by P a the ground program resulting from deleting all assumptions in a given hypothesis 

.6. from the body of rules in p!, and Pt. the program resulting from deleting all rules with negative 

subgoals from Pa. Since Pt. is a ground Horn program for any A, deduction can be limited to 

forward application of the rules without loss of expressive power. 

Definition 2.1 A hypothesis .6. is a support for an atom~ in a program P {denoted by .6. ~ ~Y 
if Pt. I= ~. If e ~ 'H.(P), we write A ~ a if for all~ E e we have A ~ ~. We denote by 

p 

.6.- the set of atoms supported by a hypothesis .6.. Furthermore, a support .6. is minimal for ~ 

{denoted by A m~P ~J if no subset of A supports~. 

Example 2.2 Consider the program P1 following: 

t +-S 

{ -.q, -.t, -.p} supports p, and there are only two minimal supports for r: { -.p} and { -.r}. Moreover, 

t has no support in P1 even though there is a rule with t in its head. 0 

Intuitively, a hypothesis supports an atom if the latter can be proved by applying the rules 

''forward," assuming true all the negative atoms in the former. Notice that support is then a 

monotonic operator. Notice also that a minimal support corresponds to the leaves of a proof tree 

and therefore is finite. All conclusions supported by an assumption A are entailed by .6. U P. 

However, the reciprocal of this statement is not true. For instance, in P1 above, the hypothesis 

{ -.r} does not support p while P1 U { -.r} I= p. 

1 Notation: We omit the superscript P from the above notation as well as other introduced later when it is 

clear form the context. A min superscript over a binary relation always indicates the minimality of the left operand 

(with respect to set inclusion). 
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Definition 2.3 A hypothesis A attacks another hypothesis A' in a program P (denoted by A .!: 
A') if A .!: f3 for some -,13 E A'. A hypothesis A is self-consistent in a program P if it does not 

attack itself 

In the example above, { -,t, -,p} ~ { -,p, -,q}. The hypothesis { -,p, -,t} is self-consistent but 

{ -,p, -,q, ..,t} is not since { ..,p, -,q, ..,t} !4 {q,p}. 

Definition 2.4 An assumption ..,/3 is unfounded with respect to a hypothesis A if for every A' 

such that A' ..-..+ f3 we have A"""'-+ A'. We denote by Up(A) the set of all unfounded assumptions 

w. r. t. A in program P. 

2.3 Logic Program Semantics 

A (Herbrand) interpretation I for a program Pis a subset of1f.(P)u-,1f.(P) such that In-,I = 0. 

We denote by I+ and I- respectively In 1f.(P) and In -.1f.(P) . We also denote by I the set 

1f.(P)- (I+ U -.I-). We say that a E 1f.(P) is defined in I if a E I+ U -,I- and undefined if 

a E I. An interpretation I is total if 1f.(P) = I+ U -,r, otherwise it is partial. An atom a is true 

in I if a E I, false if -.a E I. An interpretation I is a partial model for a program P if P U I is 

consistent. A model is a total partial model. We now define the semantical constructs explored 

in this paper: 

Definition 2.5 Let P be a program and A be a self-consistent hypothesis. The supported in­

terpretation of A is It. = A U A-. We say that an interpretation is supported if it is the 

supported interpretation of some self-consistent hypothesis A. We say that an interpretation I is 

well-founded if I is supported and I- ~ U(I-). A well-founded interpretation I is complete if 

r =U(I-). 

For example, in P1 of Example 2.2 the interpretation I= {p, -.q, -.t} is well-founded but not 

complete since {-.q,-.t} =I- C Up
1
(I-) = {-,q,-,s,-,t}. The set {p,-,q,-,s,-.t} is a complete 

well-founded interpretation. 

Definition 2.6 Let P be a program and let I be a supported interpretation. We say that I is a: 

Stable model: if I is total. 

Partial stable model: if I is a maximal well-founded interpretation. 

Deterministic (partial) model: if I is a complete well-founded interpretation and 

it is contained in every partial stable model. 

Well-founded (partial) model: if I is the minimal deterministic model, which co­

incides with the unique minimal complete well-founded interpretation. 
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For instance, P1 above has one stable model ({-.p,q,r,--.s,--.t}), two partial stable models 

( { --.p, q, r, --.s, --.t} and {p, --.q, --.s, --.t} ), and only one deterministic model, its well-founded model 

({-.s,--.t}). 

We now show that partial stable models and stable models are complete well-founded inter­

pretations and that stable models are nothing but total partial stable models. 2 

Theorem 2. 7 Let I be a partial stable model of P. Then I is a complete well-founded interpre­

tation. 

Proof: If I were not a complete well-founded interpretation then Iup(I-) would be a well-founded 

interpretation strictly containing I. 0 

Lemma 2.8 Let I be a stable model of P. Then I is a well-founded interpretation. 

Proof: If --.{3 E r and .6. - --.{3 then .6. g; I- , because I- is self-consistent. Since .6. U -.I+ :f. 0 
and I is supported, r .._.. .6.. Therefore, --.p E Up{I-) and I- ~ Up(I-). 0 

Theorem 2.9 Let I be a stable model of P. Then I is a complete well-founded interpretation. 

Proof: Consider any --.p inUp(I-). f3 ft I+ since otherwise I-- f3 and r would have to attack 

itself because --.{3 E Up(I-). Since I is total, --.{3 E I- and therefore U(I-)p ~I-. Since I is a 

well-founded interpretation, I- = Up(I-). 0 

Since every stable model is total, the above theorem implies the following corollary. 

Corollary 2.10 Let I be a stable model of P. Then Pis a partial stable model. 0 

Finally, notice that all of the above semantical constructs define the meaning of a program 

depending exclusively on the support relation that the program defines. Therefore, two programs 

that define the same support relation ought to be treated as identical. This notion is captured 

by the following definition. 

Definition 2.11 Two logic programs, P1 and P2, are support-equivalent if for every hypothesis 

.6., we have .6. !la if and only if .6. D. a. 

Notice that if two programs are support-equivalent then their stable models, partial stable 

models, deterministic models and well-founded models are the same for both programs. 

2.4 Default Theories 

In [Rei80] Default Logic was introduced in order to augment first-order logic with a set of default 

assertions. In this paper we restrict ourselves to the case of propositional Default Theories. A 

(propositional) default theory is a pair .6. = (W, D), where W is a finite set of propositions and 

2The proof of this latter fact was originally given in [SZ90]. 
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D is a finite set of default rules of the form d = a : M b1 ... M bn f w, where a, b1 , . .. , bn, w are 

arbitrary propositions. Proposition a is called prerequisite ofthe ruled (denoted as Prer(d)), the 

set of propositions b1, ... , bn justifications (denoted as Just( d)) and the proposition w consequent 

(denoted as Cons( d)). The default rules are roughly rules of inference stating the fact that if a is 

provable and b1, ... , bn are consistent, then w is also provable. 

The key concept in Default Logic is that of an Extension of an extension, which is intuitively 

what can consistently be believed given (W, D). 

Definition 2.12 A set of propositions E is an extension of a propositional default theory ~ = 
(W, D) if! E = U~0E;, where Eo= W and Ei+l = Th(E;) U {wla : Mb1 .. . Mbnfw E D, a E E; 

and -.bj '1. E for all j from 1 ton}. 

A default theory for which both W and the prerequisite, justifications and consequents of the 

rules are conjunctions (sets) of literals is called conjunctive default theory (or disjunction-free 

default theory). A theory which contains no prerequisites in its rules is called prerequisite-free. 

2.5 Graphs and Kernels 

A directed graph or graph3 is a pair (V, C) where V is a set and C is a subset of V x V. Elements 

in V are called nodes and members of C are called edges. If e = ( v1, v2) is an edge we say that e 

goes from v1 to v2. If g is a graph then V( g) denotes the set of nodes in g and C(g) denotes the 

set of its edges. 

If g is a graph and v E V(g) we define rt(v) = {v'j(v, v') E C(g)}, and fQ"(v) = {v'l(v', v) E 

C(g)}. These definitions are extended to sets of nodes through the following equations: rt(V) = 

Uv E V rt (V)' and rg- (V) = Uv ev rg- (V). The subscript G will be dropped from the above notation 

whenever clear from the context. 

Let g = (V, C) be a graph, and V' a subset of V . We denote by C fV' the set C Cl V' x V' . The 

subgraph of g induced by V', denoted by g /V', is the graph (V', C /V'). 

The set of nodes of a graph which have no outgoing edges is called the set of sink nodes for 

the graph. 

Definition 2.13 Given a directed graph (V, C), and a subset V' of V, we say that V' is: 

Independent: if there are no edges between elements ofV', i.e. , ifC/V' = 0. 

Dominant: if for all v E V- V' there is a v' E V' such that (v', v) E C, i.e., ifV- V'~ rt(V'). 

Semidominant: if for all v E V- V', such that (v , v') E C with v' E V' then there is a v" E V' 

such that (v",v) E C, i.e., fQ"(V') ~ rt(V') . 

3 In this paper the term graph refers exclusively to directed graphs. 
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Definition 2.14 Let g be a graph, and K- a subset of V(g). We say that K- is a kernel if 

it is independent and dominant. We also say that K is a semikernel if it is independent and 

semidominant.4 

The following proposition follows trivially from the above definition: 

Proposition 2.15 Let g be a graph. If K- is a kernel ofg then K- is a maximal semikernel of g. 

0 

Definition 2.16 A graph g is kernel-perfect if for every V' E V( g) we the graph g /V' has a 

kernel. 

Many sufficient properties for a graph to be kernel-perfect have been found. The classical 

results are included in the following proposition:5 

Proposition 2.17 A graph G is kernel-perfect if it satisfies any of the following properties: 

1. g is acyclic. In this case the kernel is unique (von Neumann). 

2. g contains no odd-length cycle (Richardson). 

3. g is symmetric. 

4. g is transitive. In this case all kernels have the same cardinality (Konig). Cl 

Now we introduce the notion of initial acyclic part of a graph and prove that it exists and is 

unique for every graph. 

Definition 2.18 Let g =(V, C) be graph. We define the initial acyclic segment ofg to be a set 

of independent nodes V' ~ V such that it can be well-ordered in such a way that for every v E V' 

we have r-(v) ~ r+({v' E V'lv' < v}). The initial acyclic part of a graph is its maximal initial 

acyclic segment. Cl 

Lemma 2.19 If IS is a set of initial acyclic segments of g then IS = Usexs S is an initial 

acyclic segment of g. 

Proof: For any SE IS, let <s be a well-order of S that complies with Definition 2.18. Let <xs 

be any well-order of IS, and letS. = min<xs{S EIS: 8 E S} for any 8 EIS. We define< in 

IS such that 8 < s' if and only if Ss <xs Ss' or ifs. = s •. and 8 <s. 8
1

• It is easy to see that < 

is a well-order that complies with Definition 2.18. 0 

'Often symmetric to our definitions are used for kernels and semikemels (see for example (Ber73)). 
5 For a more extensive review of the area see (BD90]. 
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Theorem 2.20 Every graph has a unique initial acyclic part. 

Proof: Notice that the empty set is an initial acyclic segment for every graph. It follows from 

the previous lemma that the union of all initial acyclic segments is the unique initial acyclic part. 

0 

Finally we show that every acyclic segment is a semikernel. 

Theorem 2.21 If IS is an initial acyclic segment of g then I is a semikernel of g. 

Proof: It is an easy ordinal induction to prove that IS is an independent set. To prove semidom­

inance, notice that if V E r-(Is) then there is a v' EIS such that V E r+(v'). 0 

3 Negative Logic Programs and Rule Graphs 

In this section we introduce the restricted class of negative logic programs. We also introduce 

the rule graph whose vertices correspond to rules and whose edges capture the notion of attack. 

We show that kernels in this graph correspond to stable models while semikernels correspond to 

well-founded interpretations. 

Definition 3.1 A negative logic program is a logic program containing only rules of the form: 

where n ~ 1, m ~ 0, and every ai and every f3i is a ground atom. 

The following properties follow from the form of negative logic programs. 

Theorem 3.2 Let P be a negative logic program. Then Ll !.t. a if and only if Ll enables a rule 

in P such that a E head(r). 

Proof: Since all rules in P have only negative subgoals, for any Ll , P't contains only one rule r' 

with head(r') = head(r) and body(r') = 0 for every ruler in P such that body(r) ELl. Therefore, 

P't Fa if and only if there is a ruler in P such that body(r) ~ Ll and a E head(r). 0 

Corollary 3.3 Let P be a negative logic program. If Ll m~P a then there is a rule r in P such 

that Ll = body(r) and a E head(r). 0 

Corollary 3.4 Let P be a negative logic program. An assumption -.{3 is unfounded w.r.t . .6. if 

and only if for every rule r in P such that {3 E head(r) then .6..!. body(r) . 0 

Definition 3.5 Let P be a negative logic program. We say that P is reduced if, for every two 

rules r1 and r2 in P: 
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The central property of reduced negative logic programs is that the bodies of rules are exactly 

the minimal supports of atoms in the program. 

Theorem 3.6 Let P be a reduced negative logic program. tl m~P a if and only if there is a rule 

r in P such that tl = body(r) and a E head(r). 

Proof: The "only if' part follows from Corollary 3.3. To prove the "if' part, consider a rule r 

in P such that a E head(r) and tl = body(r). Then tl !. a. Now, if Ll' m~P a and Ll' s; Ll, 

there is a rule r' such that body(r') = tl' s; tl = body(r). Condition 2 of Definition 3.5 implies 

that tl = tl'. 0 

Reduced negative logic programs can be seen as support-equivalent canonical forms for nega­

tive logic programs. 6 For any given negative logic program, a support-equivalent reduced negative 

logic program can in fact be obtained by "reducing" the given program. The next theorem shows 

that a reduced negative logic program can in fact be obtained by "reducing" a given negative 

logic program. 

Theorem 3. 7 Let P be a negative logic program. There is a reduced program P' such that P' is 

support equivalent toP. Moreover, given P, P' can be computed in polynomial time. 

Proof: Given a negative logic program P we can build a reduced negative logic program by using 

the following procedure: 

(1} for each r in P 

if 3r' E P (body(r') = body(r)) then 

remove r from P 

add head( r) to head( r') 

end if 

end for 

(2} for each r in P 

for each a in head( r) 

if3r' E P (a E head(r') 1\ body(r') C body(r) then 

if head(r)- {a}# 0 then 

remove a from head(r) 

else 

remove r from P 

end if 

end if 

6We generalize this result to general logic programs in Section 4. 
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end for 

end for 

Loop {1} collapses rules with the same body, and therefore P satisfies Condition 1 of Definition 

3.5 after the loop exit. Loop {2} removes redundant atoms and rules, and therefore the resulting 

P satisfies Condition 2 of Definition 3.5. The above program can obviously be implemented in 

polynomial time. 0 

We now introduce a graph theoretical representation for reduced negative logic programs. 

Definition 3.8 Let P be a reduced negative logic program, the rule graph of P (denoted by 

ng(P)) is the directed graph (V,£), where V= {rlr E P} and£= {(r1, r2)!head(r1)n-.body(r2) # 
0}.7 

Following we introduce the main results of this section, linking the .semantics introduced in 

the previous section to the graph theoretical structures of kernels and semikernels in the rule 

graph. 

Theorem 3.9 Let P be a reduced negative logic program. If I is a well-founded interpretation of 

P then enabled( I, P) is a semikernel of'R.g(P). 

Proof: Since r- is self-consistent, enabled( I, P) is an independent set. Now, if there is an edge 

(r,r') in ng(P) with r' E enabled(I,P) then body(r) is a minimal support of an atom a such 

that -.a E body(r'). Since -.a E I-, -.a is unfounded w.r.t. r- and I- ~ body(r). Therefore, 

there is a rule r" in enabled(!, P) such that body(r") ~ body(r) and then (r", r) is an edge in 

ng(P) . o 

Theorem 3.10 Let P be a reduced negative logic program. If K is a semikernel of'R.g(P) then 

lbody(K) is a well-founded interpretation of P. 

Proof: Let us first prove that body(K) is not self defeating. If body(K) is self-defeating then 

there is a rule r in enabled(body(K), P) such that a E head(r) and -.a E body(K). Therefore, 

there is an edge from r to some rule in K. Since K is a semikernel then there is a rule r' E K 

such that there is an edge (r', r) in ng(P). But this means that body(r') is a minimal attack 

of an assumption -.{3 in body(r) ~ body(K). Since -.{3 E body(K), there is an r" E K such 

that -.{3 E body(r"). Thus, there is an edge from r' to r", but this edge would contradict the 

supposition that K is independent. 
min,P 

Now we have to prove that body(K) ~ Up(body(K)). Let -.{3 E body(K) and ~ ~--+ {3. Then 

there is a rule r in P such that body(r) = A. Therefore, there is an edge from r to some rule 
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in K, but since K is a semikernel there is an edge from some other rule r' in K to r. Then 

body(r') m~P A and body(K) ~A. Therefore -.f3 is unfounded w.r.t. body(K). 0 

Theorem 3.10 is not the full reciprocal of Theorem 3.9 since there are many well-founded 

interpretations that are not of the form Iiody(K)• where K is a kernel of 'R.g(P)-1• A well­

founded interpretation can contain other assumptions that are either not explicitly used in the 

program or are heads of rules invalidated by the assumptions in the bodies of the rules of a 

semikernel. We now combine Theorems 3.9 and 3.10 through the introduction of addition sets.8 

Definition 3.11 Let P be a program and A a hypothesis. A subset T ofUp(A)-A is an addition 
p p 

set for A in P if(A UT)" .... = A-. 

Lemma 3.12 Let I be any interpretation of P. Then the following statements are true: 

p p 

1. (I->- =body( enabled(!, P))-

2. Up(I-) = Up(body(enabled(I, P))) 

Proof: Proposition 1 is trivial, since the only assumptions in 1- that can be used to apply rules 

are in enabled(!, P). Proposition 2 follows from Proposition 1. 0 

Theorem 3.13 An interpretation I for a program P is well-founded if and only if there is a 

semikernel K in 'RQ(P) such that I= Ibody(K) UT where T is an addition set for body(K) in P. 

Proof: Let us first prove the "if" part. Let K be a semikernel a of'RQ(P) and Tan addition set 

for body(K) in P. Using Theorem 3.10, we have that Ibody(K) is a well-founded interpretation. 

Now I= Ibody(K) UT is supported since the assumptions in T do not support any new atom. 

And since T C Up(body(K)) = Up(body(K) UT) then I is well-founded. 

To prove the "only if' part, consider any well-founded interpretation I . By Theorem 3.9 we know 

that enabled(!- ,P) is a semikernel of'RQ(P). Now, to prove that T =I-- body(enabled(I,P)) 

is an addition set for body(K) in P we notice that since I is well-founded we have that T C 

Up(I-) -body( enabled( I, P)). By Lemma 3.12 we have Up(r) = Up(body(enabled(I, P))), 
p 

so T C Up( enabled(!, P)) - body( enabled(!, P)). Lemma 3.12 also implies that (I-)- = 
p 

body( enabled( I, P)) ..... Therefore T is an addition set for body( enabled( I, P)). 0 

Corollary 3.14 An interpretation I for a program P is a partial stable model of P if and only if 

there is a maximal semikernel K in 'RQ(P) such that I= Ibody(K) UT where T = Up(body(K))­

body(K) is the maximal addition set for body(K) in P. 0 

Stable model impose stronger restrictions on the rules they enable. While rules enabled by a 

well-founded interpretation have to attack only rules which can attack them, the rules enabled 

11In [Tor93a, Tor93b] a different approach is used. We discuss this approach in Section 4. 
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by the stable models have to attack any other rule. The next theorem formally states the link 

between stable models and kernels. 

Theorem 3.15 An interpretation I for a program P is a stable model of P if and only if there 

is a kernel K in 1UJ(P) such that I = Ibody(K) UT where T = Up(body(K)) - body(K) is the 

maximal addition set for body(K) in P. 

Proof: To prove the "if'' part, notice that since K is a kernel then it is also a maximal semikernel, 

so I is a partial stable model. Furthermore, since K is a kernel, then every atom is either in the 

head of an enabled rule (hence it is supported by body(K)) or all its rules are made invalid by 

body(K) (hence it is unfounded w.r.t. body(K)). Therefore I is total. 

To prove the "only if'' part, consider K = enabled( I, P). By the above corollary we ki;low that 

K is a maximal semikernel. Since K is independent, if K is not a kernel then there is a rule 

r E P- K such that r fi r:kg(P)(K). Since K is a maximal semikernel, r fi rng(P)(K). But 

then the atoms in head(r) are undefined in I, which contradicts the fact that I is a (total) stable 

model. D 

The next two theorems demonstrate the fact that within well-founded models serious re­

strictions are imposed on the way the interactions between the rules are resolved. In particular, 

well-founded models enable only rules that satisfy a non-circularity condition in their interactions, 

leading to a particular (and from a combinatorial point of view, rather simple) semikernel. 

Theorem 3.16 Let P be a reduced negative logic program. The interpretation I is the well­

founded model of P if and only if I = Ibody(IP) UT where IP is the initial acyclic part of 

nQ(P)-1 and l' = Up(body(IP))- body(IP) is the maximal addition set for body(IP) in P. 

Proof: To prove that if I= Ibody(IP) Ul' then I is the minimal complete well-founded interpreta­

tion of P, we first show that l' is an addition set for Ibody(IP)· Since JP is maximal then Vr E P, 

if body(r) ~ TU body(IP) = Up(body(IP)) U body(IP), then rE IP and body(r) ~body(IP). 
p p 

Hence, (Up(body(IP)) U body(IP))- = body(IP)- and l' is an addition set for Ibody(IP)· Since 

the initial acyclic part is a semikernel as well, from Theorem 3.13 follows that I is a well-founded 

interpretation. Additionally, since T ~ I, I is complete. Moreover, every literal in T should be 

included in I for I to be complete. Additionally we can prove inductively on the well-order for I P 

that if literal p E body(IP) is omitted then I is not complete. Hence, I is the minimal complete 

well-founded interpretation of P, that is, its well-founded model. 

Let I now be the the well-founded model of P. Since I is complete then !1 ~ 1-, where l1 = 
{-.bl f.Jr E P, b E head(r)} . Let R(h) = {rlr E P, body(r) ~ h}. Then head(R(h)) ~ I. Let 

!2 = {-.biVr, bE head(r), 3-.p E body(r),p E head(R(I1))}. Then !2 ~Up( I) and hence l2 ~I-. 

Let R(I2) = {rlr E P, body(r) ~ !1 U !2}. Then again head(R(I2)) ~I. Iterating in this way over 

the ordinals we can prove that I = IU .. 1 .. = IU .. body(R .. ) u (Up(IU .. body(R .. ) - Ua body(Ra)). 
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Figure 1: Rule graph for P2 ('Rg(P2)) 

But since the set Ua Ra complies with definition 2.18, it is the initial acyclic part IP for 'Rg(P) 

and therefore I= Ioody(IP) U l'. 0 

We recapitulate the results presented in this section by means of the following example. 

Example 3.17 Let P2 be the following negative logic program 

q- -.p, -.r 

s- -.s 

t- -.r 

u- -.t 

The rule graph of P2, 'Rg(P2), is depicted in the Figure 1. The semikernels of this graph are 

S1 = {rl}, S2 = {r2}, Ss = {r4}, S4 = {r1. r4}, Ss = {r2, r4} (the last two are maximal). 

The first three semikernels correspond to the well-founded interpretations I 1 = { -.q, -.r, p, s, t}, 

I2 = {-.p,-.r,q,t}, Is = {-.r,t}, respectively. None of these well-founded interpretations is 

complete. The corresponding complete well-founded models are I4 = {-.q,-.r,p,s,t,-.u}, Is= 

{-.p,-.r,q,t,-.u}, I6 = {-.r,t,-.u}. The first two of these complete well-founded models corre­

spond to the maximal semikernels S4 and Ss respectively and therefore are partial stable models. 

Since S4 is a kernel for 'Rg(P) then 14 is a stable model as well. Finally the initial acyclic part 

of'Rg(P) is the set Ss, hence the well-founded model of Pis the set 16 = {-.r, t, -.u}. 0 

13 



4 The Case of General Logic Programs 

In this section, we extend the results introduced for negative logic programs to general logic 

programs. We show that for every general logic program there is a support-equivalent reduced 

negative logic program. We also show that the rule graph of the corresponding negative program 

represents the support relation of the original program. 

Definition 4.1 The negative equivalent of a given logic program P is the negative logic program 

p- containing exactly every ruler where body(r) is a minimal support of some atom in P, and 
min,P 

head(r) = {al.6. .,.... a}. 

Theorem 4.2 Let P be a logic program. Then p- is reduced and support-equivalent to P. 

Proof: Since no two different rules have the same body in the transformed program fulfills 

Condition 1 of Definition 3.5. Now, if a E head(rt) n head(r2), it is not possible that body(rt) C 

body(r2) because otherwise body(r2) would not be a minimal support of a. Therefore p- is 

reduced. 

The fact that p- is support-equivalent to P follows directly from Theorem 3.6. 0 

Theorem 4.3 If P is a datalog program, then p- is finite. 

Proof: Since Pis a datalog program, then 1l(P) is finite. But p- can not contain more than 

2"H{P) rules. 0 

We now introduce the minimal support graph of a logic program and show that it corresponds 

to the rule graph of its negative equivalent. 

Definition 4.4 The minimal attack graph of a program P, denoted by MAg(P), is the directed 

( { I min P } {( )I min P } graph V, C), where V= .6. 3a .6. H: a and C = .6.1, .6.2 .6.1 ~ .6.2 . 

Theorem 4.5 Let P be a logic program. The graph MAg(P) is isomorphic to the graph n.g(P-). 

Proof: Consider the function that maps every minimal support in P into the rule with the same 

body in p-. It follows trivially from the above definition that this function is an isomorphism. 

0 

Combining the above theorem with the results in Section 3 we have the following corollary. 

Corollary 4.6 Let P be a program, and let I be an interpretation for P. The following proposi­

tions are true: 

1. I is a well-founded interpretation of P if and only if there is a semikernel K in MAg(P)- 1 

such that I= Ioodr~(K) UT where T is an addition set for body(K) in P. 
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2. I is a partial stable model of P if and only if there is a maximal semikernel Kin MAg(P)- 1 

such that I= Ibody(K)Ul: where 1: = Up(body(K))-body(K) is an addition set for body(K) 

in P. 

3. I is a stable model of P if and only if there is a maximal kernel K in MAg(P)- 1 such that 

I= Ibody(K) U 1: where 1: = Up(body(K))- body(K) is an addition set for body(K) in P. 

4. I is the well-founded model of P if and only if I= Ibody(IP)Ul: where IP is the initial acyclic 

part of MAg(P)- 1 and 1: = Up(body(IP))- body(IP) is an addition set for body(IP) in 

P.O 

It is well known that stable models do not exist for every program. Using the results of 

Proposition 2.17 we can identify classes of programs for which the existence of a stable model is 

guaranteed by some property of its minimal attack graph. 

Definition 4.7 A program Pis support-stratified if MAg(P) is acyclic. 

A consequence of the classical result by von Neumann is the following. 

Proposition 4.8 Every support-stratified program has a unique stable model. 0 

Theorem 4.9 Every locally stratified program is support-stratified. 

Proof: Notice that if -.{3 belongs to a minimal support of a in P, there is a proof of a that uses a 

rule with -.{3 in its body. It follows that a depends on -.{3. Therefore, if the dependency relation 

has no cycles the minimal support relation can not have cycles. 0 

Example 4.10 Support-stratification is in fact a strict extension of local stratification. This fact 

is shown in the following example: 

p-ql\r 

q--.p 

Notice that even though p depends on its negation, this dependency will never be used to prove p 

because r can not be proved (there is no support for r ). 0 

Definition 4.11 A program P is odd-loop free if every cycle in MAg(P) is of even length. 

Proposition 4.12 Every odd-loop free program has at least one stable model. 0 

Theorem 4.13 Every structurally total program is odd-loop free. 

Proof: Since there are no odd-length loops at the predicate level. If follows trivially that there 

can no be any odd-length loop at the atom (support) level. 0 

Proposition 4.14 Let P be a logic program. If MAg(P) is symmetric then P has at least one 

stable model. 0 
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5 Complexity and Algorithms 

The intractability of most of the nonmonotonic formalisms, even in very simple cases, is one of the 

central problems research in the field has to address. This section is devoted in demonstrating how 

graph theory can contribute in obtaining complexity results, determining cases where reasoning 

is tractable, and defining new notions of approximation. 

To begin with, given the intractability of determining whether a graph has a kernel ([GJ79]), 

the problem of determining whether a negative logic program possesses stable models is NP­

complete.9 On the other hand semikernels, or equivalently well-founded interpretations and 

partial stable models, are more easy to be found in a graph. For example every graph has a 

trivial semikernel which is the empty set. Hence one may expect better computational behavior 

in the case of semikernels. Furthermore since the existence of semikernels is guaranteed we need 

to formulate a sightly different decision problems. 

Decision problem: Instance: Let G=(N, E) be a directed graph. 

Question: Is there a nontrivial semikernel SK for G? 

The next theorem states that this problem is intractable. 

Theorem 5.1 The above decision problem is NP-complete. 

Proof: The proof is by reduction from 3-SAT. Given a formula in CNF C = {Cl> C2, ... , Cn}, 

Ci = Ci1 V Ci2 V Cis we construct a graph G = (N, E), like the one shown in Figure 1 as follows: 

For every literal Zi (and its negation) we put a node n1 (n~ respectively) in the set N. We refer 

to this set of nodes with the name L . For every clause Ci in C put a node Ci in N (we call this 

set of nodes S), as well as a node Auz and a cycle of length 3 involving a distinguished node A. 

The set E ·consists of the following edges: 

1) A bidirectional edge, between the nodes which correspond to complementary literals. 

2) For every literal Zi occurring in clause C; an edge (ni,c;). 

3) From every Ci E San edge (ci,Auz). 

4) The edge (Auz,A), as well as an edge (A, ni) from A to every node ni EL. 

Lemma 5.2 In graph G every nontrivial semikernel (if one erists) is a kernel. 

Proof: Let SK be a semikernel of the graph, SK <> {}. Assume that SK contains a set of 

nodes M~ S. Then the node Aux does not belong to SK, and A can not belong to SK as well 

(note that A is one of the nodes in the odd cycle). Since every node in M receives an edge from 

some node in L, the set r-(M) must be covered. Assume that some of nodes in L belong to SK 

and cover them. But then these nodes receive an edge form A which can not be dominated. Also 

A itself can not cover these nodes since it can not belong to SK. Hence no semikernel can contain 

a node from S. Hence every nontrivial semikernel must contain Aux and must not contain A. 

9 The complexity results in [MT91] regarding autoepistemic logic also imply this result. 
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What a semikemel must contain is a subset of the nodes of L which must cover every node in S. 

It is easy to see that such a semikernel is kernel. 

Hence in G every nontrivial semikernel is a kernel. 0 

n I n' 
I 

n' 
2 

Observe that every nontrivial semikernel (if one exists) implies a satisfying truth assignment 

to the literals of the clauses, and vice versa. Hence every polynomial algorithm for this decision 

problem would also solve the 3-SAT problem in polynomial time. 0 

Lemma 5.3 The decision problem whether a negative logic program has a well-founded interpre­

tation or a partial stable model different from the empty set is NP-complete. 0 

The next question we address is under which conditions an algorithm which computes kernels, 

is useful in computing semikemels as well. 

Definition 5.4 A graph G' = (N', E') is called the semikemel equivalent of a graph G = (N, E), 

if N' =NU {n'ln EN}, and E' = E U {(n,n'),(n',n)!n E N,n' EN'- N} U {(n,,nj)lns E 

N,nj EN', and ni E f 0(n,)}. 

Theorem 5.5 If G' is the semikernel equivalent to G, then, if K is a kernel for G' then K- N' 

is a semikernel for G. Conversely, every semikernel in G induces a kernel in G'. 
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Proof: Let K be a kernel for G'. Then the nodes in K - N' are independent and for every node 

n; such that n; E r 0 (n,), n, E K- N' there is a node n1: E K- N' such that (n1:,n;) E E. 

Hence K - N' is a semikernel for G. 

Let K is a semikernel for G. Then see that K U {nln EN'- N, n fi r+(K)} is a kernel for G'. 0 

In view of the above theorem, every algorithm which computes kernels is also capable of 

computing semikernels if it is supplied with the semikemel equivalent of the graph at hand. 

Clearly in the case of graphs without cycles the computation of the unique kernel, which 

coincides with the maximal semikemel, is trivial. This kernel in this case captures, what most 

researchers agree to be, the meaning of the associated logic program. 

In cases of graphs with cycles there are two possibilities. The first is that the graph is odd­

loop free, and a kernel always exists. In this case we can perform the tie-breaking procedure 

introduced in [PY92) and compute nondeterministically in polynomial time a kernel of the graph. 

Furthermore as it shown in [DMP93] there is a polynomial delay algorithm10 which enumerates a 

set of kernels for this class of graphs. Unfortunately this procedure is not complete, that is, there 

are kernels that will not be detected by the procedure. Nevertheless this procedure may serve 

as a sound but incomplete procedure for logic programs without odd cycles. It is also shown in 

[DMP93] that determining whether there is another kernel for such a graph, except from those 

found by this procedure is NP-complete. Finally skeptical reasoning with these graphs (i.e. the 

problem whether there is a node contained in all kernels) was also proved to be intractable in 

[DM92). 

In the case of graphs with odd cycles there are still some possibilities to maintain the above 

computational features at the cost of incompleteness. Suppose that the task is to compute the 

kernels of a graph. First remove from the graph at hand the edges (or nodes) causing the odd 

cycles. Compute the kernels for the new odd-cycle free graph with polynomial delay. Determine 

which of these kernels are kernels for the original graph. The overall complexity is bounded by 

the size of the graph and the number of the kernels in the odd-cycle-free graph. The procedure 

is sound but incomplete. 

We also note that if the graph is symmetric, then the set K is a kernel iff K is a mazimal 

independent set for the undirected graph obtained after removing the direction from the edges in 

the original graph. Every graph has at least one MIS which can be computed in polynomial time. 

Furthermore there are polynomial delay procedures which computes all the MIS of a graph (see 

[TIAS77), [JPY88]). 

Given the intractability of computing kernels and semikemels in the general case, another 

possibility is to look for approzimations to these problems. The major obstacle is, that it is not 

10We say that an algorithm for generating configurations is polynomi4l del4y [JPY88] if there is only a polynomial 

delay between any two configurations generated. Such algorithms may behave exponentially because of the number 

of the exponentially many different configurations, but this is obviously unavoidable. 
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easy to find a measure of the approximation. Some recent attempts include the approximate 

entailment of [CS92b] referring to default logic and circumscription, which extents their previous 

work in [CS92a] regarding classical logic. However the graph theoretic representation offers yet 

another possibility. Namely, by approximations we mean the efficient and (in cases where this 

is necessary) nondeterministic computation of subsets of the maximal semikemels of the graphs, 

which are, themselves, semikernels. Under this view, given a graph G, the set St is a better 

approximation than S2, if S2 ~ St, where St, S2 ~SandS is a maximal semikernel for G. 

6 The Case of Default Theories 

Since Reiter's original definitions of default theories and their extensions, several researchers have 

given different definitions especially of the notion of the extension, 11 as well as of the notion of 

the default rule itself (e.g. [GLPT91]). Most of these proposals intent to rebut some of the 

'original default logic shortcomings (e.g. the nonexistence of extensions, difficulties in expressing 

disjunctive information e.t.c.). On the other hand a number of researchers has applied the various 

semantics for logic programs, to default logic and other nonmonotonic formalisms. An early 

attempt towards this direction was described in [Prz89] where the well-founded semantics were 

defined for default and autoepistemic theories, based on a three-valued reconstruction of those 

formalisms. More recently well-founded semantics for the same formalisms were proposed in 

[BS91] and [BS92] based on an ordering for the sets of interpretations around which Gelfond­

Lifschitz operator oscillates. In [PAA92] another reformulation of default logic is presented that 

satisfies some criteria defined by the authors, and which is along the lines of stable models for 

extended logic programs. In [PP92] the stationary extensions are presented, an extension of the 

stationary semantics for logic programs. Finally the approach of [Kak92] is closely related to the 

framework developed in this section. 

In this section we extent the notions defined in section 2 for logic programs to the case of 

propositional default theories. This leads to several definitions of the notion of extension, which 

capture different methods (or modes) of reasoning with default logic. This generalization also 

links the graph theoretic results presented in the previous sections, to the case of conjunctive 

default theories. 

Throughout this section we refer exclusively to seminormal propositional default theories, 

except if otherwise stated. In a seminormal default theory every default is of the form A : 

MB A C/C, where BA C is consistent. Furthermore, the basic theory refers to the case of 

conjunctive default theories where W, the prerequisite, the justification and the consequent of 

the rules are conjunctions (sets) of literals. We drop this restriction later, and generalize some 

of the notions to the general case of propositional default theories. Notice that in the case of 

11 See [F J92] for a general framework where several invariants of defaUlt logic are examined. 
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conjunctive seminormal theories, M B 1\ C is equivalent to M B 1\ MC. Hence we can also use the 

term seminormal, for theories of conjunctive defaults of the form a : Mb1 1\ ... 1\ Mbn/w, where 

bi is a consistent conjunction and w ~ b1 U ... U bn. 

Let .6. = (D, W) be a conjunctive default theory and let D = {d~, ... dn}· Any literal 

p EJust(dl)U .. Just(dn) can be considered as an assumption. A set of assumptions is called a 

hypothesis. Intuitively a hypothesis is a set of literals assumed consistent with the semantics of 

the theory. A hypothesis may contain both a literal and its negation. We denote .6.Ji, where H 

is a hypothesis, the propositional theory W U D' where D' is obtained by deleting from the set 

Just( di) of every rule di, the justifications in H, and then deleting every rule d;, Just( d;) =f 0. 
Notice that .6.Ji can be inconsistent. 

A hypothesis H supports a literal er in .6. (denoted by H ~ er) if .6. if t= er and in .6. if not both 

a literal and its negation occur in the heads of the rules in D' or in W. A hypothesis H attacks 

another hypothesis H' in a theory .6. (denoted by H ~ H') if H ~ {3 for some -,p E H' . 

An assumption {3 is unfounded with respect to a hypothesis H iffor every H' such that H' ~--+ {3 

we have H--.... H'. We denote by Ua(H) the set of all unfounded assumptions w.r.t. H in a theory 

.6.. We say that a set of propositions P is supported if there is a hypothesis H that supports every 

proposition in P. If for such a set Pandits associated hypothesis H, ..,H = Ua(H) holds as well, 

then P is a partial extension. The next theorem provides an alternative definition for the partial 

extensions in the vein of [Rei80J. 

Theorem 6.1 A set of propositions E is a partial extension for a propositional seminormal con­

junctive default theory .6. = (D, W) iff E = U~oEi for a sequence of sets Ei such that 

Eo= Wand 

Vi, i > 0 Ei = Th(Ei- 1 ) U { wla : Mbfw, a E Ei-1, b is consistent with E and for every bi, m 

b = 1\ bi, ..,bi E BE}, 

where BE 12 = {PI if p fl. W and for every sequence of defaults d1, .. . ,dn E D, such that 

p eCons(dn), and for every di in the sequence, Prer(d,) ~ u;:~ Cons(d;) U W, the condition 

3q Elust(di) such that ..,q E E holds }. 

Proof (sketch): We first show that if E is a partial extension supported by a hypothesis H, 

then there is a sequence of defaults satisfying the conditions of the theorem, leading to E. First 

we prove that UA(H) =BE. If bE UA(H) then either there is no sequence of defaults concluding 

b, or for every such sequence there is a proposition Pi EJust(di) for some di in the sequence, such 

that ..,PiE E. Then see that bE BE . Similarly if b f/. UA(H) then b f/. BE. Hence Ua(H) =BE. 

For every q E E there is a sequence of defaults d1, ... , dk such that Prer( di) ~ uj =l Cons( d;), for 

1 ~ i ~ k, and for every p EJust(ds) for every di inthe sequence p EH. Since Ua(H) = BE 

and Ua(H) = -,H then ..,p E BE. Hence every q E E satisfies the conditions of the theorem. On 

12The full notation is BE,.c. but we omit A form the subscript when we refer to exactly one theory 
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the other hand if q ~ E then q is not supported by H. This means that for every sequence of 

rules providing q there is Pi EJust(di) for some d, in the sequence, such that Pi ~ H and since 

BE= -.H, -.p, ~BE, and we are done. 

We show now that if E is a set satisfying the conditions of the theorem then it is a partial ex­

tension. First see that E is supported by the set -.BE. We have to prove that UA(-.BE) =BE. 

Assume that b E UA(-.BE)· Then either there is no sequence of defaults that concludes b, or 

every such sequence is blocked by ...,BE. Then bE BE. Conversely if bE BE then again, every 

sequence of defaults concluding b (if one exists) is blocked by some c E E, in other words some 

literals in -.BE. Hence b E UA(...,BE), and UA(..,BE) = BE, which means that E is a partial 

extension. 0 

Roughly speaking, a rule can be applied only if every rule which provides the negation of a 

justification of the rule is blocked by the activated rules. The consistency of the justification with 

the partial extension, is necessary in order to avoid inconsistent extensions. Consider, for example, 

the theory W = 0 and D = {: MB/B,M-.Bf-.B}. Then the inconsistent set E = {B,-.B, .. . }, 

is a partial extension, since BE = {B, -.B, .. . }. 

We define the semantics of the default theory to be its maximal partial extensions. The next 

example demonstrates the difference between partial extensions and Reiter's extensions. 

Example 6.2 Let~= (D, W) be a default theory, where W ={A} and D ={A: MB/B,A: 

M-.Bj-.B,A: MC /1. -.BjC,: ME /1. -.G /1. -.CjE,: MF /1. ..,E/F,: MG /1. -.FfG}. Theory~ has 

two maximal partial extension, namely E1 = {A, -.B, C, F} and E2 = {A, B}. Notice that E1 a 

Reiter-type extension as well, while E2 is not, due to the presence of the last three roles. 

0 

For every conjunctive default theory there is a partial extensions preserving transformation, 

to a conjunctive prerequisite-free default theory. 

Theorem 6.3 Let ~ be a conjunctive default theory and let ~- be the prerequisite free conjunc­

tive default theory containing exactly the roles r' with Cons( r') = {a} and Just( r') a minimal 

support for a, for every literal a ECons(r), rE~- Then E is a partial extension for~ if! E is 

a partial extension for ~-. 

Proof {sketch): Let E be a partial extension of~ = (D, W). We show that E is an exten­

sion for ~- = (D-, W) as well, and furthermore BE,A = BE,A-. We first show the second 

equality. Assume that p E BE,A· There are two case for this to happen. First there is no 

sequence of defaults d1, ... , dn E D, such that p eCons(dn), and for every d, in the sequence, 

Prer(do) s; u;:,~Cons(dj) U W. See that in this case there is no support for P and there will be 

no rule in D- with head p hence p E BE,A-. The second possibility is that for such sequence 

of default in~. there exists a q E E, -.q E Just(di) for some rule d, in the sequence. But then 
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every rule in .6.- concluding p will also contain such a proposition, hence p E BE,tl.-. Similar 

arguments can be constructed for the opposite direction, hence BE,tl. = BE,tl.-. 

Now assume that b E Et;.. Then there is a minimal sequence of defaults d1, ... , dn E D, which 

can lead to the derivation of b from Wand if p EJust(d1) U ... UJust(dn) then -.p E BE,tl.· But 

then there will be a ruled~: E D-, Just(d~.:) =Just(dl) U ... UJust(dn), with b ECons(d~,:). Since 

BE,tl. = BE,tl.-, b E Et;.- as well. Also see that if a proposition b f/. Et;., then for every rule 

d; E D, such that b ECons(d;) either 3p EPrer(d;),p f/. E or 3p EJust(d;), -.p f/. BE,tl.· In both 

cases this means that b f/. Et;.- as well. Hence if E is an extension of .6. = (D, W) then E is an 

extension of .6.- = ( D-, W). 

We now show the opposite direction. Suppose that E is an extension for a theory .6.-. First, using 

similar to the above given arguments, we can prove again that BE,tl. = BE,tl.-. See that b E Et;.-, 

in terms of the theory .6. means that there must be a sequence of defaults in d1, ... , d~,: E D such 

that b ECons(d~,:) and for every p EJust(dl) U ... UJust(dn), -.p E BE,tl.· Furthermore see that 

if q EPrer(di) for some di in the sequence, then q ECons(dn)· Hence b E Et;. as well. Finally 

assume that b f/. E tl.-. This means either that there is no rule in D- with b as its consequent or 

for every such rule there is a proposition the negation of which does not belong to BE,tl.-. Then 

if b ft Et;.- then b ft Et;. as well. 0 

It is important to stretch the fact that during the translation we may need to distribute the 

literals of the justification over several M operators, in order to avoid inconsistent justifications. 

Consider for example W ={A} and D ={A: MB/B,A: M-.B A CfC,B A C: MD/D}. The 

associated prerequisite free theory is W = {A} and D' = {: MB/B,: M-.B /1. C/C,: MB /1. 

M-.B AMC AD/D}. 

In [DM92), Reiter's extension of a prerequisite-free conjunctive default theory were proved to 

correspond to the kernels of the theory's graph. The next two theorems state the fact that partial 

extensions correspond to the semikernels of the same graph. 

Definition 6.4 Let .6. be a prerequisite-free conjunctive default theory, the rule graph of .6., 

denoted by ng(~), is the directed graph (V, E), where V = {r : r E ~} and E = {(r~,:, rm) : if 

b eCons(r~:) and -.b eJust(rmH· 

Theorem 6.5 Let~ be a prerequisite-free conjunctive default theory and ng(.6.) its rule graph. 

If E is a partial extension of .6., then for the set 8 = {r :rE ng(.6.), rED, Just(r) S:; -.BE}, 

8 = 81 U 82 holds, where 81 is a semikernel of'Rg(.6.), and 82 is the initial acyclic part for the 

graph ng(.6.)- (81 u r+(81)). 

Proof (sketch): Let E be a partial extension for the prerequisite-free conjunctive default theory 

.6.. We will show that for 8 = { r : Just( r) s; -.BE}' 8 = 81 u 82 holds, for 81' 82 as described 

above. Since any of the sets 81, 82 can be empty and 81 U 82 is always a semikernel, it suffices 

to show that 8 is a semikernel for ng(.6.), and the initial acyclic part of'Rg(.6.)- (8 u r+(8)) 
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is empty. If a node ri E S is receiving an incoming edge from some other node r; in ng(.O.), this 

means that there is a literal in Just(ri) the negation of which is in the consequents of r;. But 

since the negation of the literal belongs to BE this means that there must be some node r1c E S, 

for which (r7c,r;) E £holds. Hence S dominates all the nodes which belong to r-(s). On the 

other hand since for every other rule m ft S there is always a proposition Pi EJ ust( m), Pi ft --.BE, 

then the node m will receive some edges form some nodes not dominated by S, hence the initial 

acyclic part of ng ( .6.) - ( S u r+ ( S)) will be empty. o 

Theorem 6.6 Let .6. be a prerequisite-free conjunctive default theory and n.g(.O.) its rule graph. 

Then there is partial extension E for .6., for which -.BE= S1 U S2 U Sa, where 

1. S1 = {b: b Elust(r), where either rE K, K is a semikernel of'Rg(P) or rE IP where IP 

is the initial acyclic part of'Rg(.O.)- (K U r+(K))} 

2. S2 = { --.b : b occurs nowhere in the consequents of the rules of .6.}. 

9. Sa= {--.b: Vr, b ECons(r), rE r+(K) U r+(IP)} 

Proof (sketch): The partial extension E will be the set supported by S. Hence we have to 

prove that -.S = U(S). First see that every proposition b for which b ftCons(r), b is unfounded 

and hence if -.bE S2 then bE U(S). Let b E S1, and b EJust(ri) for some rule ri E K. Then 

if --.b ftCons(r) for some ruler E .6., --.bE U(S). Let r; E D be a rule with -.b ECons(r;). The 

(r;,ri) E £.Since K is a semikernel there must be ruler~: E K, (r~:,r;) E £, Just(r~:) ESt. This 

means that --.bE U(Sl), hence -.bE U(S). Let now bE St. and b EJust(ri) for some rule ri E IP . 

For set IP there is well-order IP1, IP2, .. .. Then the nodes in IP1 are not receiving any edge 

except form nodes dominated by K, and every I Pi, for 2 ::; i is not receiving any edge except 

from nodes in r+(IPi-d· Then -.b E U(Sl), hence -.b E U(S). Finally for every proposition 

bE Sa, --.bE U(S) holds. 0 

I 
I 

I 
4 

Is 

Figure 3 
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Example 6.7 Consider the theory .6. of the example 6.2. We first convert the theory to one 

without prerequisites, obtaining in this way the theory .6.' = ( IY, W), where D' = {: M B j B, : 

M-.Bj-.B,: MCA-.B/C,: MEA-.GA-.CjE,: MFA-.EjF,: MGA-.F/G}. The rule graph of 

this theory is depicted in figure 9. 

The graph has two {maximal) semikernels K1 = {r2, r3 , r5} and K 2 = {rl} which correspond to 

the two maximal partial extensions. The first is a kernel, hence, the associated partial extension 

is a (Reiter) extension as well. 0 

Theorem 6.1 allows us to extend the definition of the partial extensions to the general case of 

default theories, in a straightforward manner. 

Definition 6.8 We define a set E to be a partial extension for a default theory .6. = (D, W) iff 

E = Uf:0Ei for a sequence of sets Ei such that 

Eo= Wand 

Vi, i > 0 Ei = Th(Ei-1) U { wla: Mb1 ... Mbnfw, a E Ei-1 and for every bi, 1 $ i $ n, bi =A bij 

where bij is disjunction of literals, bi is consistent with E and -.bij E BE}, 

where BE= {PI if for every sequence of defaults d1, ... , dn E D, n;::: 0, such that Th(WUU.f=1 

Cons(d;)) 1- p, and for every default d, in the sequence Prer(di) ~ Th(WUu~:,~Prer(d;)), the 

condition 3q Elust(di) such that -.q E E holds }. 0 

Even though partial extensions are a reasonable semantics for default theories, there are cases 

where we would prefer to be more skeptical. We can capture this skepticism in default reasoning 

by means of deterministic and well-founded extensions, which are notions developed earlier for 

logic programs. 

Definition 6.9 Let .6. be a default theory and let E be a set of propositions. We say that E is a: 

Deterministic (partial) extension: if E is a partial extension contained in every 

maximal partial extension. 

Well-founded (partial) extension: if E is a minimal deterministic extension. 

For the case of well-founded extensions the next theorem introduces a Reiter-type character­

ization, for general propositional theories. 

Theorem. 6.10 A set E is a well-founded extension for a default theory .6. = (D, W) iff E = 
Uf:oEi for a sequence of sets Ei such that 

Eo= Wand 

Vi, i > 0 Ei = Th(Ei-1) U { wla : Mb1 . .. Mbnfw, a E Ei-1 and for every b,, 1 $ i $ n, b, =Ab,; 

where bij is a disjunction of literals, bi is consistent with E and -.bij E BE.}, 

where BE, ={PI if for every sequence of defaults d1, ... , dn E D such that Th(WUUj=1 Cons(d; )) 1-
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p, and for every default di in the sequence Prer(di) s; Th(WUu;~iPrer{dj)), the condition 

3q EJust(di) such that ...,q E Th(Ei-t) holds}. 

Proof (sketch): First see that the set E defined above is a deterministic extension. Furthermore 

any smaller set is not a partial extension, hence E is the minimal deterministic model. 

On the other hand the well-founded model can be expressed as a sequence of sets Eo, E1 , ... as 

defined above. D 

Notice the occurrence of E in the definition of E itself. This is necessary for the general case of 

theories, but in the case of seminormal theories see that the consistency check of the justification 

with the well founded extension is redundant. Consider for example the theory W = {A} and 

D = {A : MD/ B, A : M F / -.B}. If we omit the consistency check of the justifications against E 

then we get WFE1 = {B,...,B, ... }, while with the consistency check we obtain WFE2 ={A}. 

Thus, in the case of seminormal defaults, the definition is constructive and deterministic. As a 

consequence the well-founded extension of a theory is unique. 

Example 6.11 Let A = (D, W), where W = {A} and D = {A : M-,K /1. B/B,A : M-,C /1. 

-,Bj-,C,B: MC /1.-.DjC /1.-.D, C: MD/1.-.Fj-.F,C: MF /I.E !I.G/E /I.G, C: M-.E /1.-,Gj-.E /1. 

-.G,C: ME /1.-,G/I.HjH,C: M-,Hj-.H}. 

Theory A has two maximal partial extensions -which are Reiter's extensions as well- namely, 

E1 ={A, B, C, -.D, E, G, ...,H} and E2 ={A, B, C, -.D, -.E, -.G, -.H}. The deterministic 

extensions are DE1 ={A, B, C, ...,D}, DE2 ={A, B, C, -,D, -.H}. The well-founded extension 

of A is the set DE1. 0 

7 Concluding Remarks 

In this paper we were concerned with extending the links between three fields of research, namely 

logic programming, default logic and graph theory. 

Every normal logic program can be transformed to a graph and its stable, partial stable and 

well-founded semantics correspond to graph-theoretic constructs, namely kernels, semikernels and 

the initial acyclic part. This graph representation gives a clear understanding of how interaction 

between rules can be resolved within different semantics. Furthermore we employed various results 

from pure and algorithmic graph theory and obtained in this way theoretical and computational 

interesting subclasses of programs. 

We also presented a reconstruction of default logic based on a straightforward generalization of 

the semantics developed for logic programs. The problem of the non-existence of extensions was 

resolved in an intuitively appealing manner. On the other hand deterministic and well-founded 

extensions provide a semantically strong background for skeptical default reasoning. 

Not surprisingly, the graph structures defined for logic programs remain meaningful in the 

case of default theories as well. Similar considerations are possible for the autoepistemic logic 
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and various forms of truth maintenance systems (TMS). This offers us the possibility to answer 

questions regarding all these formalisms in a unified manner. 
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