
MAX-PLANCK-INSTITUT
FOR

INFORMATIK

Graph Theoretical Structures in
Logic Programs and Default Theories

Yannis Dimopoulos Alberto Torres

MPI-I-93-264 November 1993

0

mPD
·---------IN F 0 R M AT I K _________ _

lm Stadtwald

66123 Saarbrucken

Germany

Graph Theoretical Structures in
Logic Programs and Default Theories

Y annis Dimopoulos Alberto Torres

MPI-I-93-264 November 1993

Author's Address

Yannis Dimopoulos

Max-Planck-Institut fiir lnformatik

Im Stadtwald,

66123 Saarbriicken, Germany,

e-mail: yannis@mpi-sb.mpg.de

Alberto Torres,

Stanford University,

Computer Science Department,

Stanford, CA 94305-2140, USA

e-mail: torres@cs.stanford.edu

Abstract

In this paper we present a graph representation of logic programs and default theories.

We show that many of the semantics proposed for logic programs can be expressed in

terms of notions emerging from graph theory, establishing in this way a link between

the fields. Namely the stable models, the partial stable models, and the well-founded

semantics correspond respectively to the kernels, semikernels and the initial acyclic

part of the associated graph. This link allows us to consider both theoretical prob­

lems (existence, uniqueness) and computational problems (tractability, algorithms,

approximations) from a more abstract and rather combinatorial point of view. It also

provides a clear and intuitive understanding about how conflicts between rules are

resolved within the different semantics. Furthermore, we extend the basic framework

developed for logic programs to the case of Default Logic by introducing the notions of

partial, deterministic and well-founded extensions for default theories. These semantics

capture different ways of reasoning with a default theory.

Keywords

Logic Programming, Semantics, Negation, Stable models, Partial Stable Models, Well-founded Semantics,

Graph Theory, Complexity, Default Logic.

1 Introduction

Humans often use patterns of reasoning that enable them to draw conclusions under incomplete

information. These conclusions are retractable since new information can invalidate them. Much

research in Nonmonotonic Reasoning has concentrated in capturing these pattern of reasoning

in a formal representation. One of the most prominent nonmonotonic reasoning formalizations

is Default Logic. One the other hand, recent developments in Logic Programming and deductive

databases have shown that negation as failure is strongly related to various nonmonotonic for­

malisms, and in particular with default logic. Thus logic programs with negation provide us a

framework for nonmonotonic reasoning.

Some recent work has dealt with the relation between some nonmonotonic formalisms and

graph-theoretic constructs. Torres shows in [Tor93a] that the stable models of logic programs

correspond to the kernels of an associated graph. This result is extended in [Tor93b], which

proves that the maximal semikemels of the same graph correspond to partial stable models.

For disjunction-free default theories, Dimopoulos and Magirou show in [DM92] that extensions

correspond to kernels in a related graph. In this paper, we further extend the forementioned

results with the introduction of an unified semantic and graph-theoretic framework for logic

programs and default theories.

We introduce the class of negative logic programs and a simple graph representation, the rule

graph. We show that the most important proposals for defining the semantics of logic programs

can be defined in terms of graph-theoretic structures in the rule graph. Stable models [GL88]

correspond to kernels, partial stable models [Prz90, SZ90] to semikemels and the well-founded

partial model [VRS88] to a special semikemel called the initial acyclic part.

We use the logic programming notion of support, which we extend to disjunction free default

theories, to show that the above equivalences can be extended to the case of disjunction-free

default theories. Aside from the theoretical interest of the above results, we believe the practical

contribution of this paper is twofold. On the one hand, the known properties of graph kernels

and semikernels can improve our understanding of logic programming and default logic. Graphs

give us an intuitive representation of the interactions between the rules and the different ways

these interactions can be resolved. Furthermore they allow us to approach the formalizations in a

way that ignores the logical meaning and concentrates on the structural properties of them. This

is particularly useful when we try to investigate complexity issues or to tackle problems like the

existence of particular semantics (stable models, extensions) and the development of algorithms.

On the other hand, the unified graph model give us a clear intuitive understanding about the

translation of the semantical constructs of logic programs into the domain of default logic. The

graph structures defined for logic programs remain meaningful in default logic. The proposed

semantics for logic programs can be naturally transferred to default logic, and allow as to resolve

various shortcomings of the initial semantics of default logic.

1

The rest of this paper is organized as follows. In Section 2, we introduce the fundamental

concepts and results from logic programming, default logic and graph theory that we use in the

rest of the paper. In Section 3, we introduce the restricted class of negative logic programs and

prove the basic results of our graph model. In Section 4, we extend the results of the previous

sections to the class of general logic programs. In Section 5, we explore some of the complexity

and algorithmic implications of the graph model. In Section 6, we show how the semantic and

graph-theoretic constructs can be transferred to the case of default logic. Finally, in Section 7,

we summarize the main contributions of this work.

2 Preliminaries

In this section we introduce the basic terminology and notation for logic programs, default theories

and directed graphs used throughout this paper. We also summarize some of the fundamental

results used in later sections.

2.1 Logic Programs and Hypotheses

A program P is a set of first order rules of the form:

where n 2:: 1, m 2:: 0, every a, is an atom, and and every /i is a literal. The literals in the body

of a rule are called subgoals. The above form of logic program differs from the standard since it

allows conjunctions in the head of rules instead of single atoms. We choose to permit conjunctions

to make a clearer connection with the default theories introduced in Section 6. Nevertheless, the

above rule form should be seen solely as a shorthand for the set of rules:

a1 +- /1 A /2 A ... A /m

a2 +- /1 A /2 1\ ... A /m

<Xn +- /1 1\ /2 1\ • • • A /m

A rule with no subgoals is considered identical to the conjunction in its head. All variables are

implicitly universally quantified. A datalog program is a program with no occurrences offunction

symbols.

If r is a rule then head(r) denotes the set of atoms in the head of r, and body(r) denotes the

set of literals in its body. If R is a set of rules then body(R) = UreR body(r) and head(R) =

UreR head(r).

Let P be a logic program. We denote by 1i(P) the Herbrand base of P and by p! the

Herbrand instantiation of P, that is, the ground program obtained by replacing the variables in

2

P by terms in its Herbrand universe in all possible ways. An assumption is a ground negative

literal in -.1f.(P), and a hypothesis is a set of assumptions. If A is a set of literals then -.A is the

set of literals corresponding to the negation of elements in A.

A hypotheses .6. enables a rule r if all negative subgoals in r are contained in .6., that is,

(body(r)- .6.) ~ 'H.(P). The set of rules n a program P enabled by a hypotheses .6. is denoted

by enabled(A, P). We extend this notation to interpretations through the following definition

enabled(!, P) = enabled(!-, P) .

2.2 Supports and Attacks

We denote by P a the ground program resulting from deleting all assumptions in a given hypothesis

.6. from the body of rules in p!, and Pt. the program resulting from deleting all rules with negative

subgoals from Pa. Since Pt. is a ground Horn program for any A, deduction can be limited to

forward application of the rules without loss of expressive power.

Definition 2.1 A hypothesis .6. is a support for an atom~ in a program P {denoted by .6. ~ ~Y
if Pt. I= ~. If e ~ 'H.(P), we write A ~ a if for all~ E e we have A ~ ~. We denote by

p

.6.- the set of atoms supported by a hypothesis .6.. Furthermore, a support .6. is minimal for ~

{denoted by A m~P ~J if no subset of A supports~.

Example 2.2 Consider the program P1 following:

t +-S

{ -.q, -.t, -.p} supports p, and there are only two minimal supports for r: { -.p} and { -.r}. Moreover,

t has no support in P1 even though there is a rule with t in its head. 0

Intuitively, a hypothesis supports an atom if the latter can be proved by applying the rules

''forward," assuming true all the negative atoms in the former. Notice that support is then a

monotonic operator. Notice also that a minimal support corresponds to the leaves of a proof tree

and therefore is finite. All conclusions supported by an assumption A are entailed by .6. U P.

However, the reciprocal of this statement is not true. For instance, in P1 above, the hypothesis

{ -.r} does not support p while P1 U { -.r} I= p.

1 Notation: We omit the superscript P from the above notation as well as other introduced later when it is

clear form the context. A min superscript over a binary relation always indicates the minimality of the left operand

(with respect to set inclusion).

3

Definition 2.3 A hypothesis A attacks another hypothesis A' in a program P (denoted by A .!:
A') if A .!: f3 for some -,13 E A'. A hypothesis A is self-consistent in a program P if it does not

attack itself

In the example above, { -,t, -,p} ~ { -,p, -,q}. The hypothesis { -,p, -,t} is self-consistent but

{ -,p, -,q, ..,t} is not since { ..,p, -,q, ..,t} !4 {q,p}.

Definition 2.4 An assumption ..,/3 is unfounded with respect to a hypothesis A if for every A'

such that A' ..-..+ f3 we have A"""'-+ A'. We denote by Up(A) the set of all unfounded assumptions

w. r. t. A in program P.

2.3 Logic Program Semantics

A (Herbrand) interpretation I for a program Pis a subset of1f.(P)u-,1f.(P) such that In-,I = 0.

We denote by I+ and I- respectively In 1f.(P) and In -.1f.(P) . We also denote by I the set

1f.(P)- (I+ U -.I-). We say that a E 1f.(P) is defined in I if a E I+ U -,I- and undefined if

a E I. An interpretation I is total if 1f.(P) = I+ U -,r, otherwise it is partial. An atom a is true

in I if a E I, false if -.a E I. An interpretation I is a partial model for a program P if P U I is

consistent. A model is a total partial model. We now define the semantical constructs explored

in this paper:

Definition 2.5 Let P be a program and A be a self-consistent hypothesis. The supported in­

terpretation of A is It. = A U A-. We say that an interpretation is supported if it is the

supported interpretation of some self-consistent hypothesis A. We say that an interpretation I is

well-founded if I is supported and I- ~ U(I-). A well-founded interpretation I is complete if

r =U(I-).

For example, in P1 of Example 2.2 the interpretation I= {p, -.q, -.t} is well-founded but not

complete since {-.q,-.t} =I- C Up
1
(I-) = {-,q,-,s,-,t}. The set {p,-,q,-,s,-.t} is a complete

well-founded interpretation.

Definition 2.6 Let P be a program and let I be a supported interpretation. We say that I is a:

Stable model: if I is total.

Partial stable model: if I is a maximal well-founded interpretation.

Deterministic (partial) model: if I is a complete well-founded interpretation and

it is contained in every partial stable model.

Well-founded (partial) model: if I is the minimal deterministic model, which co­

incides with the unique minimal complete well-founded interpretation.

4

For instance, P1 above has one stable model ({-.p,q,r,--.s,--.t}), two partial stable models

({ --.p, q, r, --.s, --.t} and {p, --.q, --.s, --.t}), and only one deterministic model, its well-founded model

({-.s,--.t}).

We now show that partial stable models and stable models are complete well-founded inter­

pretations and that stable models are nothing but total partial stable models. 2

Theorem 2. 7 Let I be a partial stable model of P. Then I is a complete well-founded interpre­

tation.

Proof: If I were not a complete well-founded interpretation then Iup(I-) would be a well-founded

interpretation strictly containing I. 0

Lemma 2.8 Let I be a stable model of P. Then I is a well-founded interpretation.

Proof: If --.{3 E r and .6. - --.{3 then .6. g; I- , because I- is self-consistent. Since .6. U -.I+ :f. 0
and I is supported, r .._.. .6.. Therefore, --.p E Up{I-) and I- ~ Up(I-). 0

Theorem 2.9 Let I be a stable model of P. Then I is a complete well-founded interpretation.

Proof: Consider any --.p inUp(I-). f3 ft I+ since otherwise I-- f3 and r would have to attack

itself because --.{3 E Up(I-). Since I is total, --.{3 E I- and therefore U(I-)p ~I-. Since I is a

well-founded interpretation, I- = Up(I-). 0

Since every stable model is total, the above theorem implies the following corollary.

Corollary 2.10 Let I be a stable model of P. Then Pis a partial stable model. 0

Finally, notice that all of the above semantical constructs define the meaning of a program

depending exclusively on the support relation that the program defines. Therefore, two programs

that define the same support relation ought to be treated as identical. This notion is captured

by the following definition.

Definition 2.11 Two logic programs, P1 and P2, are support-equivalent if for every hypothesis

.6., we have .6. !la if and only if .6. D. a.

Notice that if two programs are support-equivalent then their stable models, partial stable

models, deterministic models and well-founded models are the same for both programs.

2.4 Default Theories

In [Rei80] Default Logic was introduced in order to augment first-order logic with a set of default

assertions. In this paper we restrict ourselves to the case of propositional Default Theories. A

(propositional) default theory is a pair .6. = (W, D), where W is a finite set of propositions and

2The proof of this latter fact was originally given in [SZ90].

5

D is a finite set of default rules of the form d = a : M b1 ... M bn f w, where a, b1 , . .. , bn, w are

arbitrary propositions. Proposition a is called prerequisite ofthe ruled (denoted as Prer(d)), the

set of propositions b1, ... , bn justifications (denoted as Just(d)) and the proposition w consequent

(denoted as Cons(d)). The default rules are roughly rules of inference stating the fact that if a is

provable and b1, ... , bn are consistent, then w is also provable.

The key concept in Default Logic is that of an Extension of an extension, which is intuitively

what can consistently be believed given (W, D).

Definition 2.12 A set of propositions E is an extension of a propositional default theory ~ =
(W, D) if! E = U~0E;, where Eo= W and Ei+l = Th(E;) U {wla : Mb1 .. . Mbnfw E D, a E E;

and -.bj '1. E for all j from 1 ton}.

A default theory for which both W and the prerequisite, justifications and consequents of the

rules are conjunctions (sets) of literals is called conjunctive default theory (or disjunction-free

default theory). A theory which contains no prerequisites in its rules is called prerequisite-free.

2.5 Graphs and Kernels

A directed graph or graph3 is a pair (V, C) where V is a set and C is a subset of V x V. Elements

in V are called nodes and members of C are called edges. If e = (v1, v2) is an edge we say that e

goes from v1 to v2. If g is a graph then V(g) denotes the set of nodes in g and C(g) denotes the

set of its edges.

If g is a graph and v E V(g) we define rt(v) = {v'j(v, v') E C(g)}, and fQ"(v) = {v'l(v', v) E

C(g)}. These definitions are extended to sets of nodes through the following equations: rt(V) =

Uv E V rt (V)' and rg- (V) = Uv ev rg- (V). The subscript G will be dropped from the above notation

whenever clear from the context.

Let g = (V, C) be a graph, and V' a subset of V . We denote by C fV' the set C Cl V' x V' . The

subgraph of g induced by V', denoted by g /V', is the graph (V', C /V').

The set of nodes of a graph which have no outgoing edges is called the set of sink nodes for

the graph.

Definition 2.13 Given a directed graph (V, C), and a subset V' of V, we say that V' is:

Independent: if there are no edges between elements ofV', i.e. , ifC/V' = 0.

Dominant: if for all v E V- V' there is a v' E V' such that (v', v) E C, i.e., ifV- V'~ rt(V').

Semidominant: if for all v E V- V', such that (v , v') E C with v' E V' then there is a v" E V'

such that (v",v) E C, i.e., fQ"(V') ~ rt(V') .

3 In this paper the term graph refers exclusively to directed graphs.

6

Definition 2.14 Let g be a graph, and K- a subset of V(g). We say that K- is a kernel if

it is independent and dominant. We also say that K is a semikernel if it is independent and

semidominant.4

The following proposition follows trivially from the above definition:

Proposition 2.15 Let g be a graph. If K- is a kernel ofg then K- is a maximal semikernel of g.

0

Definition 2.16 A graph g is kernel-perfect if for every V' E V(g) we the graph g /V' has a

kernel.

Many sufficient properties for a graph to be kernel-perfect have been found. The classical

results are included in the following proposition:5

Proposition 2.17 A graph G is kernel-perfect if it satisfies any of the following properties:

1. g is acyclic. In this case the kernel is unique (von Neumann).

2. g contains no odd-length cycle (Richardson).

3. g is symmetric.

4. g is transitive. In this case all kernels have the same cardinality (Konig). Cl

Now we introduce the notion of initial acyclic part of a graph and prove that it exists and is

unique for every graph.

Definition 2.18 Let g =(V, C) be graph. We define the initial acyclic segment ofg to be a set

of independent nodes V' ~ V such that it can be well-ordered in such a way that for every v E V'

we have r-(v) ~ r+({v' E V'lv' < v}). The initial acyclic part of a graph is its maximal initial

acyclic segment. Cl

Lemma 2.19 If IS is a set of initial acyclic segments of g then IS = Usexs S is an initial

acyclic segment of g.

Proof: For any SE IS, let <s be a well-order of S that complies with Definition 2.18. Let <xs

be any well-order of IS, and letS. = min<xs{S EIS: 8 E S} for any 8 EIS. We define< in

IS such that 8 < s' if and only if Ss <xs Ss' or ifs. = s •. and 8 <s. 8
1

• It is easy to see that <

is a well-order that complies with Definition 2.18. 0

'Often symmetric to our definitions are used for kernels and semikemels (see for example (Ber73)).
5 For a more extensive review of the area see (BD90].

7

Theorem 2.20 Every graph has a unique initial acyclic part.

Proof: Notice that the empty set is an initial acyclic segment for every graph. It follows from

the previous lemma that the union of all initial acyclic segments is the unique initial acyclic part.

0

Finally we show that every acyclic segment is a semikernel.

Theorem 2.21 If IS is an initial acyclic segment of g then I is a semikernel of g.

Proof: It is an easy ordinal induction to prove that IS is an independent set. To prove semidom­

inance, notice that if V E r-(Is) then there is a v' EIS such that V E r+(v'). 0

3 Negative Logic Programs and Rule Graphs

In this section we introduce the restricted class of negative logic programs. We also introduce

the rule graph whose vertices correspond to rules and whose edges capture the notion of attack.

We show that kernels in this graph correspond to stable models while semikernels correspond to

well-founded interpretations.

Definition 3.1 A negative logic program is a logic program containing only rules of the form:

where n ~ 1, m ~ 0, and every ai and every f3i is a ground atom.

The following properties follow from the form of negative logic programs.

Theorem 3.2 Let P be a negative logic program. Then Ll !.t. a if and only if Ll enables a rule

in P such that a E head(r).

Proof: Since all rules in P have only negative subgoals, for any Ll , P't contains only one rule r'

with head(r') = head(r) and body(r') = 0 for every ruler in P such that body(r) ELl. Therefore,

P't Fa if and only if there is a ruler in P such that body(r) ~ Ll and a E head(r). 0

Corollary 3.3 Let P be a negative logic program. If Ll m~P a then there is a rule r in P such

that Ll = body(r) and a E head(r). 0

Corollary 3.4 Let P be a negative logic program. An assumption -.{3 is unfounded w.r.t . .6. if

and only if for every rule r in P such that {3 E head(r) then .6..!. body(r) . 0

Definition 3.5 Let P be a negative logic program. We say that P is reduced if, for every two

rules r1 and r2 in P:

8

The central property of reduced negative logic programs is that the bodies of rules are exactly

the minimal supports of atoms in the program.

Theorem 3.6 Let P be a reduced negative logic program. tl m~P a if and only if there is a rule

r in P such that tl = body(r) and a E head(r).

Proof: The "only if' part follows from Corollary 3.3. To prove the "if' part, consider a rule r

in P such that a E head(r) and tl = body(r). Then tl !. a. Now, if Ll' m~P a and Ll' s; Ll,

there is a rule r' such that body(r') = tl' s; tl = body(r). Condition 2 of Definition 3.5 implies

that tl = tl'. 0

Reduced negative logic programs can be seen as support-equivalent canonical forms for nega­

tive logic programs. 6 For any given negative logic program, a support-equivalent reduced negative

logic program can in fact be obtained by "reducing" the given program. The next theorem shows

that a reduced negative logic program can in fact be obtained by "reducing" a given negative

logic program.

Theorem 3. 7 Let P be a negative logic program. There is a reduced program P' such that P' is

support equivalent toP. Moreover, given P, P' can be computed in polynomial time.

Proof: Given a negative logic program P we can build a reduced negative logic program by using

the following procedure:

(1} for each r in P

if 3r' E P (body(r') = body(r)) then

remove r from P

add head(r) to head(r')

end if

end for

(2} for each r in P

for each a in head(r)

if3r' E P (a E head(r') 1\ body(r') C body(r) then

if head(r)- {a}# 0 then

remove a from head(r)

else

remove r from P

end if

end if

6We generalize this result to general logic programs in Section 4.

9

end for

end for

Loop {1} collapses rules with the same body, and therefore P satisfies Condition 1 of Definition

3.5 after the loop exit. Loop {2} removes redundant atoms and rules, and therefore the resulting

P satisfies Condition 2 of Definition 3.5. The above program can obviously be implemented in

polynomial time. 0

We now introduce a graph theoretical representation for reduced negative logic programs.

Definition 3.8 Let P be a reduced negative logic program, the rule graph of P (denoted by

ng(P)) is the directed graph (V,£), where V= {rlr E P} and£= {(r1, r2)!head(r1)n-.body(r2) #
0}.7

Following we introduce the main results of this section, linking the .semantics introduced in

the previous section to the graph theoretical structures of kernels and semikernels in the rule

graph.

Theorem 3.9 Let P be a reduced negative logic program. If I is a well-founded interpretation of

P then enabled(I, P) is a semikernel of'R.g(P).

Proof: Since r- is self-consistent, enabled(I, P) is an independent set. Now, if there is an edge

(r,r') in ng(P) with r' E enabled(I,P) then body(r) is a minimal support of an atom a such

that -.a E body(r'). Since -.a E I-, -.a is unfounded w.r.t. r- and I- ~ body(r). Therefore,

there is a rule r" in enabled(!, P) such that body(r") ~ body(r) and then (r", r) is an edge in

ng(P) . o

Theorem 3.10 Let P be a reduced negative logic program. If K is a semikernel of'R.g(P) then

lbody(K) is a well-founded interpretation of P.

Proof: Let us first prove that body(K) is not self defeating. If body(K) is self-defeating then

there is a rule r in enabled(body(K), P) such that a E head(r) and -.a E body(K). Therefore,

there is an edge from r to some rule in K. Since K is a semikernel then there is a rule r' E K

such that there is an edge (r', r) in ng(P). But this means that body(r') is a minimal attack

of an assumption -.{3 in body(r) ~ body(K). Since -.{3 E body(K), there is an r" E K such

that -.{3 E body(r"). Thus, there is an edge from r' to r", but this edge would contradict the

supposition that K is independent.
min,P

Now we have to prove that body(K) ~ Up(body(K)). Let -.{3 E body(K) and ~ ~--+ {3. Then

there is a rule r in P such that body(r) = A. Therefore, there is an edge from r to some rule

10

in K, but since K is a semikernel there is an edge from some other rule r' in K to r. Then

body(r') m~P A and body(K) ~A. Therefore -.f3 is unfounded w.r.t. body(K). 0

Theorem 3.10 is not the full reciprocal of Theorem 3.9 since there are many well-founded

interpretations that are not of the form Iiody(K)• where K is a kernel of 'R.g(P)-1• A well­

founded interpretation can contain other assumptions that are either not explicitly used in the

program or are heads of rules invalidated by the assumptions in the bodies of the rules of a

semikernel. We now combine Theorems 3.9 and 3.10 through the introduction of addition sets.8

Definition 3.11 Let P be a program and A a hypothesis. A subset T ofUp(A)-A is an addition
p p

set for A in P if(A UT)" = A-.

Lemma 3.12 Let I be any interpretation of P. Then the following statements are true:

p p

1. (I->- =body(enabled(!, P))-

2. Up(I-) = Up(body(enabled(I, P)))

Proof: Proposition 1 is trivial, since the only assumptions in 1- that can be used to apply rules

are in enabled(!, P). Proposition 2 follows from Proposition 1. 0

Theorem 3.13 An interpretation I for a program P is well-founded if and only if there is a

semikernel K in 'RQ(P) such that I= Ibody(K) UT where T is an addition set for body(K) in P.

Proof: Let us first prove the "if" part. Let K be a semikernel a of'RQ(P) and Tan addition set

for body(K) in P. Using Theorem 3.10, we have that Ibody(K) is a well-founded interpretation.

Now I= Ibody(K) UT is supported since the assumptions in T do not support any new atom.

And since T C Up(body(K)) = Up(body(K) UT) then I is well-founded.

To prove the "only if' part, consider any well-founded interpretation I . By Theorem 3.9 we know

that enabled(!- ,P) is a semikernel of'RQ(P). Now, to prove that T =I-- body(enabled(I,P))

is an addition set for body(K) in P we notice that since I is well-founded we have that T C

Up(I-) -body(enabled(I, P)). By Lemma 3.12 we have Up(r) = Up(body(enabled(I, P))),
p

so T C Up(enabled(!, P)) - body(enabled(!, P)). Lemma 3.12 also implies that (I-)- =
p

body(enabled(I, P)) Therefore T is an addition set for body(enabled(I, P)). 0

Corollary 3.14 An interpretation I for a program P is a partial stable model of P if and only if

there is a maximal semikernel K in 'RQ(P) such that I= Ibody(K) UT where T = Up(body(K))­

body(K) is the maximal addition set for body(K) in P. 0

Stable model impose stronger restrictions on the rules they enable. While rules enabled by a

well-founded interpretation have to attack only rules which can attack them, the rules enabled

11In [Tor93a, Tor93b] a different approach is used. We discuss this approach in Section 4.

11

by the stable models have to attack any other rule. The next theorem formally states the link

between stable models and kernels.

Theorem 3.15 An interpretation I for a program P is a stable model of P if and only if there

is a kernel K in 1UJ(P) such that I = Ibody(K) UT where T = Up(body(K)) - body(K) is the

maximal addition set for body(K) in P.

Proof: To prove the "if'' part, notice that since K is a kernel then it is also a maximal semikernel,

so I is a partial stable model. Furthermore, since K is a kernel, then every atom is either in the

head of an enabled rule (hence it is supported by body(K)) or all its rules are made invalid by

body(K) (hence it is unfounded w.r.t. body(K)). Therefore I is total.

To prove the "only if'' part, consider K = enabled(I, P). By the above corollary we ki;low that

K is a maximal semikernel. Since K is independent, if K is not a kernel then there is a rule

r E P- K such that r fi r:kg(P)(K). Since K is a maximal semikernel, r fi rng(P)(K). But

then the atoms in head(r) are undefined in I, which contradicts the fact that I is a (total) stable

model. D

The next two theorems demonstrate the fact that within well-founded models serious re­

strictions are imposed on the way the interactions between the rules are resolved. In particular,

well-founded models enable only rules that satisfy a non-circularity condition in their interactions,

leading to a particular (and from a combinatorial point of view, rather simple) semikernel.

Theorem 3.16 Let P be a reduced negative logic program. The interpretation I is the well­

founded model of P if and only if I = Ibody(IP) UT where IP is the initial acyclic part of

nQ(P)-1 and l' = Up(body(IP))- body(IP) is the maximal addition set for body(IP) in P.

Proof: To prove that if I= Ibody(IP) Ul' then I is the minimal complete well-founded interpreta­

tion of P, we first show that l' is an addition set for Ibody(IP)· Since JP is maximal then Vr E P,

if body(r) ~ TU body(IP) = Up(body(IP)) U body(IP), then rE IP and body(r) ~body(IP).
p p

Hence, (Up(body(IP)) U body(IP))- = body(IP)- and l' is an addition set for Ibody(IP)· Since

the initial acyclic part is a semikernel as well, from Theorem 3.13 follows that I is a well-founded

interpretation. Additionally, since T ~ I, I is complete. Moreover, every literal in T should be

included in I for I to be complete. Additionally we can prove inductively on the well-order for I P

that if literal p E body(IP) is omitted then I is not complete. Hence, I is the minimal complete

well-founded interpretation of P, that is, its well-founded model.

Let I now be the the well-founded model of P. Since I is complete then !1 ~ 1-, where l1 =
{-.bl f.Jr E P, b E head(r)} . Let R(h) = {rlr E P, body(r) ~ h}. Then head(R(h)) ~ I. Let

!2 = {-.biVr, bE head(r), 3-.p E body(r),p E head(R(I1))}. Then !2 ~Up(I) and hence l2 ~I-.

Let R(I2) = {rlr E P, body(r) ~ !1 U !2}. Then again head(R(I2)) ~I. Iterating in this way over

the ordinals we can prove that I = IU .. 1 .. = IU .. body(R ..) u (Up(IU .. body(R ..) - Ua body(Ra)).

12

r s

Figure 1: Rule graph for P2 ('Rg(P2))

But since the set Ua Ra complies with definition 2.18, it is the initial acyclic part IP for 'Rg(P)

and therefore I= Ioody(IP) U l'. 0

We recapitulate the results presented in this section by means of the following example.

Example 3.17 Let P2 be the following negative logic program

q- -.p, -.r

s- -.s

t- -.r

u- -.t

The rule graph of P2, 'Rg(P2), is depicted in the Figure 1. The semikernels of this graph are

S1 = {rl}, S2 = {r2}, Ss = {r4}, S4 = {r1. r4}, Ss = {r2, r4} (the last two are maximal).

The first three semikernels correspond to the well-founded interpretations I 1 = { -.q, -.r, p, s, t},

I2 = {-.p,-.r,q,t}, Is = {-.r,t}, respectively. None of these well-founded interpretations is

complete. The corresponding complete well-founded models are I4 = {-.q,-.r,p,s,t,-.u}, Is=

{-.p,-.r,q,t,-.u}, I6 = {-.r,t,-.u}. The first two of these complete well-founded models corre­

spond to the maximal semikernels S4 and Ss respectively and therefore are partial stable models.

Since S4 is a kernel for 'Rg(P) then 14 is a stable model as well. Finally the initial acyclic part

of'Rg(P) is the set Ss, hence the well-founded model of Pis the set 16 = {-.r, t, -.u}. 0

13

4 The Case of General Logic Programs

In this section, we extend the results introduced for negative logic programs to general logic

programs. We show that for every general logic program there is a support-equivalent reduced

negative logic program. We also show that the rule graph of the corresponding negative program

represents the support relation of the original program.

Definition 4.1 The negative equivalent of a given logic program P is the negative logic program

p- containing exactly every ruler where body(r) is a minimal support of some atom in P, and
min,P

head(r) = {al.6. .,.... a}.

Theorem 4.2 Let P be a logic program. Then p- is reduced and support-equivalent to P.

Proof: Since no two different rules have the same body in the transformed program fulfills

Condition 1 of Definition 3.5. Now, if a E head(rt) n head(r2), it is not possible that body(rt) C

body(r2) because otherwise body(r2) would not be a minimal support of a. Therefore p- is

reduced.

The fact that p- is support-equivalent to P follows directly from Theorem 3.6. 0

Theorem 4.3 If P is a datalog program, then p- is finite.

Proof: Since Pis a datalog program, then 1l(P) is finite. But p- can not contain more than

2"H{P) rules. 0

We now introduce the minimal support graph of a logic program and show that it corresponds

to the rule graph of its negative equivalent.

Definition 4.4 The minimal attack graph of a program P, denoted by MAg(P), is the directed

({ I min P } {()I min P } graph V, C), where V= .6. 3a .6. H: a and C = .6.1, .6.2 .6.1 ~ .6.2 .

Theorem 4.5 Let P be a logic program. The graph MAg(P) is isomorphic to the graph n.g(P-).

Proof: Consider the function that maps every minimal support in P into the rule with the same

body in p-. It follows trivially from the above definition that this function is an isomorphism.

0

Combining the above theorem with the results in Section 3 we have the following corollary.

Corollary 4.6 Let P be a program, and let I be an interpretation for P. The following proposi­

tions are true:

1. I is a well-founded interpretation of P if and only if there is a semikernel K in MAg(P)- 1

such that I= Ioodr~(K) UT where T is an addition set for body(K) in P.

14

2. I is a partial stable model of P if and only if there is a maximal semikernel Kin MAg(P)- 1

such that I= Ibody(K)Ul: where 1: = Up(body(K))-body(K) is an addition set for body(K)

in P.

3. I is a stable model of P if and only if there is a maximal kernel K in MAg(P)- 1 such that

I= Ibody(K) U 1: where 1: = Up(body(K))- body(K) is an addition set for body(K) in P.

4. I is the well-founded model of P if and only if I= Ibody(IP)Ul: where IP is the initial acyclic

part of MAg(P)- 1 and 1: = Up(body(IP))- body(IP) is an addition set for body(IP) in

P.O

It is well known that stable models do not exist for every program. Using the results of

Proposition 2.17 we can identify classes of programs for which the existence of a stable model is

guaranteed by some property of its minimal attack graph.

Definition 4.7 A program Pis support-stratified if MAg(P) is acyclic.

A consequence of the classical result by von Neumann is the following.

Proposition 4.8 Every support-stratified program has a unique stable model. 0

Theorem 4.9 Every locally stratified program is support-stratified.

Proof: Notice that if -.{3 belongs to a minimal support of a in P, there is a proof of a that uses a

rule with -.{3 in its body. It follows that a depends on -.{3. Therefore, if the dependency relation

has no cycles the minimal support relation can not have cycles. 0

Example 4.10 Support-stratification is in fact a strict extension of local stratification. This fact

is shown in the following example:

p-ql\r

q--.p

Notice that even though p depends on its negation, this dependency will never be used to prove p

because r can not be proved (there is no support for r). 0

Definition 4.11 A program P is odd-loop free if every cycle in MAg(P) is of even length.

Proposition 4.12 Every odd-loop free program has at least one stable model. 0

Theorem 4.13 Every structurally total program is odd-loop free.

Proof: Since there are no odd-length loops at the predicate level. If follows trivially that there

can no be any odd-length loop at the atom (support) level. 0

Proposition 4.14 Let P be a logic program. If MAg(P) is symmetric then P has at least one

stable model. 0

15

5 Complexity and Algorithms

The intractability of most of the nonmonotonic formalisms, even in very simple cases, is one of the

central problems research in the field has to address. This section is devoted in demonstrating how

graph theory can contribute in obtaining complexity results, determining cases where reasoning

is tractable, and defining new notions of approximation.

To begin with, given the intractability of determining whether a graph has a kernel ([GJ79]),

the problem of determining whether a negative logic program possesses stable models is NP­

complete.9 On the other hand semikernels, or equivalently well-founded interpretations and

partial stable models, are more easy to be found in a graph. For example every graph has a

trivial semikernel which is the empty set. Hence one may expect better computational behavior

in the case of semikernels. Furthermore since the existence of semikernels is guaranteed we need

to formulate a sightly different decision problems.

Decision problem: Instance: Let G=(N, E) be a directed graph.

Question: Is there a nontrivial semikernel SK for G?

The next theorem states that this problem is intractable.

Theorem 5.1 The above decision problem is NP-complete.

Proof: The proof is by reduction from 3-SAT. Given a formula in CNF C = {Cl> C2, ... , Cn},

Ci = Ci1 V Ci2 V Cis we construct a graph G = (N, E), like the one shown in Figure 1 as follows:

For every literal Zi (and its negation) we put a node n1 (n~ respectively) in the set N. We refer

to this set of nodes with the name L . For every clause Ci in C put a node Ci in N (we call this

set of nodes S), as well as a node Auz and a cycle of length 3 involving a distinguished node A.

The set E ·consists of the following edges:

1) A bidirectional edge, between the nodes which correspond to complementary literals.

2) For every literal Zi occurring in clause C; an edge (ni,c;).

3) From every Ci E San edge (ci,Auz).

4) The edge (Auz,A), as well as an edge (A, ni) from A to every node ni EL.

Lemma 5.2 In graph G every nontrivial semikernel (if one erists) is a kernel.

Proof: Let SK be a semikernel of the graph, SK <> {}. Assume that SK contains a set of

nodes M~ S. Then the node Aux does not belong to SK, and A can not belong to SK as well

(note that A is one of the nodes in the odd cycle). Since every node in M receives an edge from

some node in L, the set r-(M) must be covered. Assume that some of nodes in L belong to SK

and cover them. But then these nodes receive an edge form A which can not be dominated. Also

A itself can not cover these nodes since it can not belong to SK. Hence no semikernel can contain

a node from S. Hence every nontrivial semikernel must contain Aux and must not contain A.

9 The complexity results in [MT91] regarding autoepistemic logic also imply this result.

16

What a semikemel must contain is a subset of the nodes of L which must cover every node in S.

It is easy to see that such a semikernel is kernel.

Hence in G every nontrivial semikernel is a kernel. 0

n I n'
I

n'
2

Observe that every nontrivial semikernel (if one exists) implies a satisfying truth assignment

to the literals of the clauses, and vice versa. Hence every polynomial algorithm for this decision

problem would also solve the 3-SAT problem in polynomial time. 0

Lemma 5.3 The decision problem whether a negative logic program has a well-founded interpre­

tation or a partial stable model different from the empty set is NP-complete. 0

The next question we address is under which conditions an algorithm which computes kernels,

is useful in computing semikemels as well.

Definition 5.4 A graph G' = (N', E') is called the semikemel equivalent of a graph G = (N, E),

if N' =NU {n'ln EN}, and E' = E U {(n,n'),(n',n)!n E N,n' EN'- N} U {(n,,nj)lns E

N,nj EN', and ni E f 0(n,)}.

Theorem 5.5 If G' is the semikernel equivalent to G, then, if K is a kernel for G' then K- N'

is a semikernel for G. Conversely, every semikernel in G induces a kernel in G'.

17

Proof: Let K be a kernel for G'. Then the nodes in K - N' are independent and for every node

n; such that n; E r 0 (n,), n, E K- N' there is a node n1: E K- N' such that (n1:,n;) E E.

Hence K - N' is a semikernel for G.

Let K is a semikernel for G. Then see that K U {nln EN'- N, n fi r+(K)} is a kernel for G'. 0

In view of the above theorem, every algorithm which computes kernels is also capable of

computing semikernels if it is supplied with the semikemel equivalent of the graph at hand.

Clearly in the case of graphs without cycles the computation of the unique kernel, which

coincides with the maximal semikemel, is trivial. This kernel in this case captures, what most

researchers agree to be, the meaning of the associated logic program.

In cases of graphs with cycles there are two possibilities. The first is that the graph is odd­

loop free, and a kernel always exists. In this case we can perform the tie-breaking procedure

introduced in [PY92) and compute nondeterministically in polynomial time a kernel of the graph.

Furthermore as it shown in [DMP93] there is a polynomial delay algorithm10 which enumerates a

set of kernels for this class of graphs. Unfortunately this procedure is not complete, that is, there

are kernels that will not be detected by the procedure. Nevertheless this procedure may serve

as a sound but incomplete procedure for logic programs without odd cycles. It is also shown in

[DMP93] that determining whether there is another kernel for such a graph, except from those

found by this procedure is NP-complete. Finally skeptical reasoning with these graphs (i.e. the

problem whether there is a node contained in all kernels) was also proved to be intractable in

[DM92).

In the case of graphs with odd cycles there are still some possibilities to maintain the above

computational features at the cost of incompleteness. Suppose that the task is to compute the

kernels of a graph. First remove from the graph at hand the edges (or nodes) causing the odd

cycles. Compute the kernels for the new odd-cycle free graph with polynomial delay. Determine

which of these kernels are kernels for the original graph. The overall complexity is bounded by

the size of the graph and the number of the kernels in the odd-cycle-free graph. The procedure

is sound but incomplete.

We also note that if the graph is symmetric, then the set K is a kernel iff K is a mazimal

independent set for the undirected graph obtained after removing the direction from the edges in

the original graph. Every graph has at least one MIS which can be computed in polynomial time.

Furthermore there are polynomial delay procedures which computes all the MIS of a graph (see

[TIAS77), [JPY88]).

Given the intractability of computing kernels and semikemels in the general case, another

possibility is to look for approzimations to these problems. The major obstacle is, that it is not

10We say that an algorithm for generating configurations is polynomi4l del4y [JPY88] if there is only a polynomial

delay between any two configurations generated. Such algorithms may behave exponentially because of the number

of the exponentially many different configurations, but this is obviously unavoidable.

18

easy to find a measure of the approximation. Some recent attempts include the approximate

entailment of [CS92b] referring to default logic and circumscription, which extents their previous

work in [CS92a] regarding classical logic. However the graph theoretic representation offers yet

another possibility. Namely, by approximations we mean the efficient and (in cases where this

is necessary) nondeterministic computation of subsets of the maximal semikemels of the graphs,

which are, themselves, semikernels. Under this view, given a graph G, the set St is a better

approximation than S2, if S2 ~ St, where St, S2 ~SandS is a maximal semikernel for G.

6 The Case of Default Theories

Since Reiter's original definitions of default theories and their extensions, several researchers have

given different definitions especially of the notion of the extension, 11 as well as of the notion of

the default rule itself (e.g. [GLPT91]). Most of these proposals intent to rebut some of the

'original default logic shortcomings (e.g. the nonexistence of extensions, difficulties in expressing

disjunctive information e.t.c.). On the other hand a number of researchers has applied the various

semantics for logic programs, to default logic and other nonmonotonic formalisms. An early

attempt towards this direction was described in [Prz89] where the well-founded semantics were

defined for default and autoepistemic theories, based on a three-valued reconstruction of those

formalisms. More recently well-founded semantics for the same formalisms were proposed in

[BS91] and [BS92] based on an ordering for the sets of interpretations around which Gelfond­

Lifschitz operator oscillates. In [PAA92] another reformulation of default logic is presented that

satisfies some criteria defined by the authors, and which is along the lines of stable models for

extended logic programs. In [PP92] the stationary extensions are presented, an extension of the

stationary semantics for logic programs. Finally the approach of [Kak92] is closely related to the

framework developed in this section.

In this section we extent the notions defined in section 2 for logic programs to the case of

propositional default theories. This leads to several definitions of the notion of extension, which

capture different methods (or modes) of reasoning with default logic. This generalization also

links the graph theoretic results presented in the previous sections, to the case of conjunctive

default theories.

Throughout this section we refer exclusively to seminormal propositional default theories,

except if otherwise stated. In a seminormal default theory every default is of the form A :

MB A C/C, where BA C is consistent. Furthermore, the basic theory refers to the case of

conjunctive default theories where W, the prerequisite, the justification and the consequent of

the rules are conjunctions (sets) of literals. We drop this restriction later, and generalize some

of the notions to the general case of propositional default theories. Notice that in the case of

11 See [F J92] for a general framework where several invariants of defaUlt logic are examined.

19

conjunctive seminormal theories, M B 1\ C is equivalent to M B 1\ MC. Hence we can also use the

term seminormal, for theories of conjunctive defaults of the form a : Mb1 1\ ... 1\ Mbn/w, where

bi is a consistent conjunction and w ~ b1 U ... U bn.

Let .6. = (D, W) be a conjunctive default theory and let D = {d~, ... dn}· Any literal

p EJust(dl)U .. Just(dn) can be considered as an assumption. A set of assumptions is called a

hypothesis. Intuitively a hypothesis is a set of literals assumed consistent with the semantics of

the theory. A hypothesis may contain both a literal and its negation. We denote .6.Ji, where H

is a hypothesis, the propositional theory W U D' where D' is obtained by deleting from the set

Just(di) of every rule di, the justifications in H, and then deleting every rule d;, Just(d;) =f 0.
Notice that .6.Ji can be inconsistent.

A hypothesis H supports a literal er in .6. (denoted by H ~ er) if .6. if t= er and in .6. if not both

a literal and its negation occur in the heads of the rules in D' or in W. A hypothesis H attacks

another hypothesis H' in a theory .6. (denoted by H ~ H') if H ~ {3 for some -,p E H' .

An assumption {3 is unfounded with respect to a hypothesis H iffor every H' such that H' ~--+ {3

we have H--.... H'. We denote by Ua(H) the set of all unfounded assumptions w.r.t. H in a theory

.6.. We say that a set of propositions P is supported if there is a hypothesis H that supports every

proposition in P. If for such a set Pandits associated hypothesis H, ..,H = Ua(H) holds as well,

then P is a partial extension. The next theorem provides an alternative definition for the partial

extensions in the vein of [Rei80J.

Theorem 6.1 A set of propositions E is a partial extension for a propositional seminormal con­

junctive default theory .6. = (D, W) iff E = U~oEi for a sequence of sets Ei such that

Eo= Wand

Vi, i > 0 Ei = Th(Ei- 1) U { wla : Mbfw, a E Ei-1, b is consistent with E and for every bi, m

b = 1\ bi, ..,bi E BE},

where BE 12 = {PI if p fl. W and for every sequence of defaults d1, .. . ,dn E D, such that

p eCons(dn), and for every di in the sequence, Prer(d,) ~ u;:~ Cons(d;) U W, the condition

3q Elust(di) such that ..,q E E holds }.

Proof (sketch): We first show that if E is a partial extension supported by a hypothesis H,

then there is a sequence of defaults satisfying the conditions of the theorem, leading to E. First

we prove that UA(H) =BE. If bE UA(H) then either there is no sequence of defaults concluding

b, or for every such sequence there is a proposition Pi EJust(di) for some di in the sequence, such

that ..,PiE E. Then see that bE BE . Similarly if b f/. UA(H) then b f/. BE. Hence Ua(H) =BE.

For every q E E there is a sequence of defaults d1, ... , dk such that Prer(di) ~ uj =l Cons(d;), for

1 ~ i ~ k, and for every p EJust(ds) for every di inthe sequence p EH. Since Ua(H) = BE

and Ua(H) = -,H then ..,p E BE. Hence every q E E satisfies the conditions of the theorem. On

12The full notation is BE,.c. but we omit A form the subscript when we refer to exactly one theory

20

the other hand if q ~ E then q is not supported by H. This means that for every sequence of

rules providing q there is Pi EJust(di) for some d, in the sequence, such that Pi ~ H and since

BE= -.H, -.p, ~BE, and we are done.

We show now that if E is a set satisfying the conditions of the theorem then it is a partial ex­

tension. First see that E is supported by the set -.BE. We have to prove that UA(-.BE) =BE.

Assume that b E UA(-.BE)· Then either there is no sequence of defaults that concludes b, or

every such sequence is blocked by ...,BE. Then bE BE. Conversely if bE BE then again, every

sequence of defaults concluding b (if one exists) is blocked by some c E E, in other words some

literals in -.BE. Hence b E UA(...,BE), and UA(..,BE) = BE, which means that E is a partial

extension. 0

Roughly speaking, a rule can be applied only if every rule which provides the negation of a

justification of the rule is blocked by the activated rules. The consistency of the justification with

the partial extension, is necessary in order to avoid inconsistent extensions. Consider, for example,

the theory W = 0 and D = {: MB/B,M-.Bf-.B}. Then the inconsistent set E = {B,-.B, .. . },

is a partial extension, since BE = {B, -.B, .. . }.

We define the semantics of the default theory to be its maximal partial extensions. The next

example demonstrates the difference between partial extensions and Reiter's extensions.

Example 6.2 Let~= (D, W) be a default theory, where W ={A} and D ={A: MB/B,A:

M-.Bj-.B,A: MC /1. -.BjC,: ME /1. -.G /1. -.CjE,: MF /1. ..,E/F,: MG /1. -.FfG}. Theory~ has

two maximal partial extension, namely E1 = {A, -.B, C, F} and E2 = {A, B}. Notice that E1 a

Reiter-type extension as well, while E2 is not, due to the presence of the last three roles.

0

For every conjunctive default theory there is a partial extensions preserving transformation,

to a conjunctive prerequisite-free default theory.

Theorem 6.3 Let ~ be a conjunctive default theory and let ~- be the prerequisite free conjunc­

tive default theory containing exactly the roles r' with Cons(r') = {a} and Just(r') a minimal

support for a, for every literal a ECons(r), rE~- Then E is a partial extension for~ if! E is

a partial extension for ~-.

Proof {sketch): Let E be a partial extension of~ = (D, W). We show that E is an exten­

sion for ~- = (D-, W) as well, and furthermore BE,A = BE,A-. We first show the second

equality. Assume that p E BE,A· There are two case for this to happen. First there is no

sequence of defaults d1, ... , dn E D, such that p eCons(dn), and for every d, in the sequence,

Prer(do) s; u;:,~Cons(dj) U W. See that in this case there is no support for P and there will be

no rule in D- with head p hence p E BE,A-. The second possibility is that for such sequence

of default in~. there exists a q E E, -.q E Just(di) for some rule d, in the sequence. But then

21

every rule in .6.- concluding p will also contain such a proposition, hence p E BE,tl.-. Similar

arguments can be constructed for the opposite direction, hence BE,tl. = BE,tl.-.

Now assume that b E Et;.. Then there is a minimal sequence of defaults d1, ... , dn E D, which

can lead to the derivation of b from Wand if p EJust(d1) U ... UJust(dn) then -.p E BE,tl.· But

then there will be a ruled~: E D-, Just(d~.:) =Just(dl) U ... UJust(dn), with b ECons(d~,:). Since

BE,tl. = BE,tl.-, b E Et;.- as well. Also see that if a proposition b f/. Et;., then for every rule

d; E D, such that b ECons(d;) either 3p EPrer(d;),p f/. E or 3p EJust(d;), -.p f/. BE,tl.· In both

cases this means that b f/. Et;.- as well. Hence if E is an extension of .6. = (D, W) then E is an

extension of .6.- = (D-, W).

We now show the opposite direction. Suppose that E is an extension for a theory .6.-. First, using

similar to the above given arguments, we can prove again that BE,tl. = BE,tl.-. See that b E Et;.-,

in terms of the theory .6. means that there must be a sequence of defaults in d1, ... , d~,: E D such

that b ECons(d~,:) and for every p EJust(dl) U ... UJust(dn), -.p E BE,tl.· Furthermore see that

if q EPrer(di) for some di in the sequence, then q ECons(dn)· Hence b E Et;. as well. Finally

assume that b f/. E tl.-. This means either that there is no rule in D- with b as its consequent or

for every such rule there is a proposition the negation of which does not belong to BE,tl.-. Then

if b ft Et;.- then b ft Et;. as well. 0

It is important to stretch the fact that during the translation we may need to distribute the

literals of the justification over several M operators, in order to avoid inconsistent justifications.

Consider for example W ={A} and D ={A: MB/B,A: M-.B A CfC,B A C: MD/D}. The

associated prerequisite free theory is W = {A} and D' = {: MB/B,: M-.B /1. C/C,: MB /1.

M-.B AMC AD/D}.

In [DM92), Reiter's extension of a prerequisite-free conjunctive default theory were proved to

correspond to the kernels of the theory's graph. The next two theorems state the fact that partial

extensions correspond to the semikernels of the same graph.

Definition 6.4 Let .6. be a prerequisite-free conjunctive default theory, the rule graph of .6.,

denoted by ng(~), is the directed graph (V, E), where V = {r : r E ~} and E = {(r~,:, rm) : if

b eCons(r~:) and -.b eJust(rmH·

Theorem 6.5 Let~ be a prerequisite-free conjunctive default theory and ng(.6.) its rule graph.

If E is a partial extension of .6., then for the set 8 = {r :rE ng(.6.), rED, Just(r) S:; -.BE},

8 = 81 U 82 holds, where 81 is a semikernel of'Rg(.6.), and 82 is the initial acyclic part for the

graph ng(.6.)- (81 u r+(81)).

Proof (sketch): Let E be a partial extension for the prerequisite-free conjunctive default theory

.6.. We will show that for 8 = { r : Just(r) s; -.BE}' 8 = 81 u 82 holds, for 81' 82 as described

above. Since any of the sets 81, 82 can be empty and 81 U 82 is always a semikernel, it suffices

to show that 8 is a semikernel for ng(.6.), and the initial acyclic part of'Rg(.6.)- (8 u r+(8))

22

is empty. If a node ri E S is receiving an incoming edge from some other node r; in ng(.O.), this

means that there is a literal in Just(ri) the negation of which is in the consequents of r;. But

since the negation of the literal belongs to BE this means that there must be some node r1c E S,

for which (r7c,r;) E £holds. Hence S dominates all the nodes which belong to r-(s). On the

other hand since for every other rule m ft S there is always a proposition Pi EJ ust(m), Pi ft --.BE,

then the node m will receive some edges form some nodes not dominated by S, hence the initial

acyclic part of ng (.6.) - (S u r+ (S)) will be empty. o

Theorem 6.6 Let .6. be a prerequisite-free conjunctive default theory and n.g(.O.) its rule graph.

Then there is partial extension E for .6., for which -.BE= S1 U S2 U Sa, where

1. S1 = {b: b Elust(r), where either rE K, K is a semikernel of'Rg(P) or rE IP where IP

is the initial acyclic part of'Rg(.O.)- (K U r+(K))}

2. S2 = { --.b : b occurs nowhere in the consequents of the rules of .6.}.

9. Sa= {--.b: Vr, b ECons(r), rE r+(K) U r+(IP)}

Proof (sketch): The partial extension E will be the set supported by S. Hence we have to

prove that -.S = U(S). First see that every proposition b for which b ftCons(r), b is unfounded

and hence if -.bE S2 then bE U(S). Let b E S1, and b EJust(ri) for some rule ri E K. Then

if --.b ftCons(r) for some ruler E .6., --.bE U(S). Let r; E D be a rule with -.b ECons(r;). The

(r;,ri) E £.Since K is a semikernel there must be ruler~: E K, (r~:,r;) E £, Just(r~:) ESt. This

means that --.bE U(Sl), hence -.bE U(S). Let now bE St. and b EJust(ri) for some rule ri E IP .

For set IP there is well-order IP1, IP2, Then the nodes in IP1 are not receiving any edge

except form nodes dominated by K, and every I Pi, for 2 ::; i is not receiving any edge except

from nodes in r+(IPi-d· Then -.b E U(Sl), hence -.b E U(S). Finally for every proposition

bE Sa, --.bE U(S) holds. 0

I
I

I
4

Is

Figure 3

23

Example 6.7 Consider the theory .6. of the example 6.2. We first convert the theory to one

without prerequisites, obtaining in this way the theory .6.' = (IY, W), where D' = {: M B j B, :

M-.Bj-.B,: MCA-.B/C,: MEA-.GA-.CjE,: MFA-.EjF,: MGA-.F/G}. The rule graph of

this theory is depicted in figure 9.

The graph has two {maximal) semikernels K1 = {r2, r3 , r5} and K 2 = {rl} which correspond to

the two maximal partial extensions. The first is a kernel, hence, the associated partial extension

is a (Reiter) extension as well. 0

Theorem 6.1 allows us to extend the definition of the partial extensions to the general case of

default theories, in a straightforward manner.

Definition 6.8 We define a set E to be a partial extension for a default theory .6. = (D, W) iff

E = Uf:0Ei for a sequence of sets Ei such that

Eo= Wand

Vi, i > 0 Ei = Th(Ei-1) U { wla: Mb1 ... Mbnfw, a E Ei-1 and for every bi, 1 $ i $ n, bi =A bij

where bij is disjunction of literals, bi is consistent with E and -.bij E BE},

where BE= {PI if for every sequence of defaults d1, ... , dn E D, n;::: 0, such that Th(WUU.f=1

Cons(d;)) 1- p, and for every default d, in the sequence Prer(di) ~ Th(WUu~:,~Prer(d;)), the

condition 3q Elust(di) such that -.q E E holds }. 0

Even though partial extensions are a reasonable semantics for default theories, there are cases

where we would prefer to be more skeptical. We can capture this skepticism in default reasoning

by means of deterministic and well-founded extensions, which are notions developed earlier for

logic programs.

Definition 6.9 Let .6. be a default theory and let E be a set of propositions. We say that E is a:

Deterministic (partial) extension: if E is a partial extension contained in every

maximal partial extension.

Well-founded (partial) extension: if E is a minimal deterministic extension.

For the case of well-founded extensions the next theorem introduces a Reiter-type character­

ization, for general propositional theories.

Theorem. 6.10 A set E is a well-founded extension for a default theory .6. = (D, W) iff E =
Uf:oEi for a sequence of sets Ei such that

Eo= Wand

Vi, i > 0 Ei = Th(Ei-1) U { wla : Mb1 . .. Mbnfw, a E Ei-1 and for every b,, 1 $ i $ n, b, =Ab,;

where bij is a disjunction of literals, bi is consistent with E and -.bij E BE.},

where BE, ={PI if for every sequence of defaults d1, ... , dn E D such that Th(WUUj=1 Cons(d;)) 1-

24

p, and for every default di in the sequence Prer(di) s; Th(WUu;~iPrer{dj)), the condition

3q EJust(di) such that ...,q E Th(Ei-t) holds}.

Proof (sketch): First see that the set E defined above is a deterministic extension. Furthermore

any smaller set is not a partial extension, hence E is the minimal deterministic model.

On the other hand the well-founded model can be expressed as a sequence of sets Eo, E1 , ... as

defined above. D

Notice the occurrence of E in the definition of E itself. This is necessary for the general case of

theories, but in the case of seminormal theories see that the consistency check of the justification

with the well founded extension is redundant. Consider for example the theory W = {A} and

D = {A : MD/ B, A : M F / -.B}. If we omit the consistency check of the justifications against E

then we get WFE1 = {B,...,B, ... }, while with the consistency check we obtain WFE2 ={A}.

Thus, in the case of seminormal defaults, the definition is constructive and deterministic. As a

consequence the well-founded extension of a theory is unique.

Example 6.11 Let A = (D, W), where W = {A} and D = {A : M-,K /1. B/B,A : M-,C /1.

-,Bj-,C,B: MC /1.-.DjC /1.-.D, C: MD/1.-.Fj-.F,C: MF /I.E !I.G/E /I.G, C: M-.E /1.-,Gj-.E /1.

-.G,C: ME /1.-,G/I.HjH,C: M-,Hj-.H}.

Theory A has two maximal partial extensions -which are Reiter's extensions as well- namely,

E1 ={A, B, C, -.D, E, G, ...,H} and E2 ={A, B, C, -.D, -.E, -.G, -.H}. The deterministic

extensions are DE1 ={A, B, C, ...,D}, DE2 ={A, B, C, -,D, -.H}. The well-founded extension

of A is the set DE1. 0

7 Concluding Remarks

In this paper we were concerned with extending the links between three fields of research, namely

logic programming, default logic and graph theory.

Every normal logic program can be transformed to a graph and its stable, partial stable and

well-founded semantics correspond to graph-theoretic constructs, namely kernels, semikernels and

the initial acyclic part. This graph representation gives a clear understanding of how interaction

between rules can be resolved within different semantics. Furthermore we employed various results

from pure and algorithmic graph theory and obtained in this way theoretical and computational

interesting subclasses of programs.

We also presented a reconstruction of default logic based on a straightforward generalization of

the semantics developed for logic programs. The problem of the non-existence of extensions was

resolved in an intuitively appealing manner. On the other hand deterministic and well-founded

extensions provide a semantically strong background for skeptical default reasoning.

Not surprisingly, the graph structures defined for logic programs remain meaningful in the

case of default theories as well. Similar considerations are possible for the autoepistemic logic

25

and various forms of truth maintenance systems (TMS). This offers us the possibility to answer

questions regarding all these formalisms in a unified manner.

Acknowledgements The authors want to thank Pierre Duchet, Oscar Meza, Hans Jiirgen

Ohlbach, Christos Papadimitriou and Jeffrey Ullman for their useful comments.

References

[BD90]

[Ber73]

[BS91]

[BS92]

C. Berge and P. Duchet. Recent problems an results about kernels in directed graphs.

Discrete Matematics, 86:27-31, 1990.

C. Berge. Graphs and Hypergraphs. North Holland, 1973.

C. Baral and V.S. Subrahmanian. Dualities between alternative semantics for logic

programs and nonmonotonic reasoning (extended abstact). In A. Nerode, W. Marek,

and V. S. Subrahmanian, editors, Logic Programming and Nonmonotonic Reasoning:

Proc. of the 5th International Workshop, pages 69-86, Washington, D.C., 1991. MIT

Press.

C. Baral and V. S. Subrahmanian. Stable and extensions class theory for logic pro­

grams and default logics. Journal of Automated Reasoning, 8:345-366, 1992.

[CS92a] M. Cadoli and M. Schaerf. Approximate entailment. In Trends in AI: Proc. of the

f!'d Conference of the Italian Association for Artificial Intelligence, pages 68-77, 1992.

Springer Verlag LNAI 549.

[CS92b] M. Cadoli and M. Schaerf. Approximate inference in default logic and circumscription.

In Fourth International Workshop on Nonmonotonic Reasoning, Plymouth, VT, 1992.

[DM92] Y. Dimopoulos and V. Magirou. A graph-theoretic approach to default logic. To

appear in Information and Computation, 1992.

[DMP93] Y. Dimopoulos, V. Magirou, and C. Papadimitriou. On kernels, defaults and even

graphs. Technical Report MPI-I-93-226, Max-Planck-Institut fiir Informatik, 1993.

[FJ92]

[GJ79]

C. Froidevaux and Mengin J. A framework for default logics. In D. Pearce and

G. Wagner, editors, Proc. European Workshop JELIA '92, pages 154-173, Berlin, 1992.

Springer Verlag, LNCS 633.

M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory

of NP-completeness. W. H. Freeman and Company, New York, 1979.

26

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proc. Fifth International Conference and Symposium on Logic Programming, pages

107Q-1080, Cambridge, Mass., 1988. MIT Press.

[GLPT91] M. Gelfond, V. Lifschitz, H. Przymusinska, and M. Truszczynski. Disjunctive de­

faults. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the Second Int. Conf.

on Principles of Knowledge Representation and Reasoning, pages 23Q-237. Morgan

Kaufman, 1991.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all maximal inde­

pendent sets. Information Processing Letters, 27(3):119-123, 1988.

[Kak92] A. Kakas. Default reasoning via negation as failure. In G. Lakemeyer and B. Nebel,

editors, ECAI-92 Workshop on "The Theoretical Foundations of Knowledge Represen­

tation and Reasoning", 1992.

[MT91] A. Marek and M. Truszczynski. Autoepistemic logic. Journal of the ACM, 38(3):588-

619, 1991.

[PAA92] L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Default theory for well founded seman­

tics with explicit negation. In D. Pearce and G. Wagner, editors, Logics in AI: Proc. of

the European Workshop JELIA '92, pages 339-356. Springer, Berlin, Heidelberg, 1992.

[PP92]

[Prz89]

[Prz90]

[PY92]

[Rei80]

[SZ90]

H. Przymusinska and T. Przymusinski. Stationary default extensions. In Fourth

International Workshop on Nonmonotonic Reasoning, Plymouth, VT, 1992.

T. Przymusinski. Three-valued non-monotonic formalisms and logic programming. In

R. Brachman, H. Levesque, and R. Reiter, editors, Proc. First International Con­

ference on Principle of Knowledge Representation and Reasoning, pages 341-348,

Toronto, Ontario, 1989.

T. Przymusinski. Extended stable semantics for noraml and disjunctive programs. In

Proc. of the Seventh International Conference on Logic Programming, pages 459-477.

MIT Press, 1990.

C. Papadimitriou and M. Yannakakis. Tie-breaking semantics and structural totality.

In Proceedings Eleventh Symposium on Principles of Database Systems, pages 16-22,

1992.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

D. Sacca and C. Zaniolo. Stable models and non-determinism in logic programs with

negation. In Proceedings Ninth Symposium on Principles of Database Systems, pages

205-217, 1990.

27

[TIAS77) S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating

all maximal independent sets. SIAM J. Comptut., 6(3):505-517, 1977.

[Tor93a] A. Torres. Negation as failure to support. In Proceedings of the Second Workshop on

Logic Programming and Non-monotonic Reasoning, 1993. (to appear).

[Tor93b) A. Torres. A nondeterministic well-founded semantics. Submitted to PDK'93, 1993.

[VRS88) A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-founded

semantics for general logic programs. In Proceedings Seventh Symposium on Principles

of Database Systems, pages 221-230, 1988.

28

	93-2640001
	93-2640002
	93-2640003
	93-2640004
	93-2640005
	93-2640006
	93-2640007
	93-2640008
	93-2640009
	93-2640010
	93-2640011
	93-2640012
	93-2640013
	93-2640014
	93-2640015
	93-2640016
	93-2640017
	93-2640018
	93-2640019
	93-2640020
	93-2640021
	93-2640022
	93-2640023
	93-2640024
	93-2640025
	93-2640026
	93-2640027
	93-2640028
	93-2640029
	93-2640030
	93-2640031
	93-2640032
	93-2640033
	93-2640034
	93-2640035
	93-2640036
	93-2640037
	cover-hinten_93-264

