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Abstract 

We suggest a novel approach for efficiently reconstructing an original DNA sequence from 
erroneous copies. 
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1. Introduction 

DNA sequencing is a key step and a major bottleneck in the Human Genome Project. 
It is relatively slow and expensive C$1 per base with current techniques). Since the 
human genome comprises no less than 3 billion bases, the development of faster and 
cheaper sequencing methods is crucial to the project. 

Certain technologies promise the ability to obtain long DNA sequences fast but with 
lots of errors. In single-molecule DNA sequencing, the DNA strand is passed by a 
cutter, that cuts off a single base at a time, which then flows down a microscopic tube 
at high speed past an optical device. This excites the individual molecule and reads off 
which type of base it is. The order in time of the bases as they flow down the tube 
past the reader is hopefully the order of bases along the DNA strand. The process does 
not always flow smoothly, sometimes sputtering (especially at the beginning and the 
end), hence the presence of long deletions. 

In this paper, we study the problem of how to reconstruct an original DNA sequence 
from a small number of erroneous copies. We deal with three types of commonly 
considered errors: insertion, deletion, and substitution. 

We will make two simplifying assumptions: 
(i) the DNA sequence is a random sequence (in the sense of being algorithmically 

incompressible), and 
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(ii) all error types/distributions are equally likely. 

Assumption (ii) is natural. Although assumption (i) is unrealistic, with some portions 

of DNA being "AT-rich", others being "GC-rich" and some regions featuring long 

repetitions, we expect them to behave enough like random sequences to preserve the 

validity of our analysis. 

We propose a method of efficiently reconstructing an original DNA sequence of 

length n from logO(l l n erroneous copies, assuming the sequence itself is random and 

errors are random with constant error rate 1/C. 

The obvious way to handle the problem is to compare all the erroneous copies and 

find the similarities that necessarily exist among them. This is commonly known as 

·multiple sequence alignment'. A problem is that doing multiple sequence alignment on 

a collection of k sequences by any known algorithm that guarantees optimality takes 

time exponential in k, making it far too slow for practical use. Even if we could do 

multiple sequence alignment efficiently, it is not dear how many sequences are needed 

to converge to the real sequence. Blackwell [ 1] has shown that among an exponential 

number of erroneous copies, the original sequence is likely to appear so frequently 

that with high probability it can be identified as the sequence occurring most often. 

This approach is clearly not practical because n is usually very large. from hundreds 

to thousands. With our approach, we should need only a polylogarithmic number of 

copies. And our algorithm converges in polynomial time, rather than the worst-case 

superpolynomial time and space of multiple alignment algorithms like [ 4]. 

2. Preliminaries 

We use Kolmogorov complexity as a tool here to prove some convergence properties 

of our algorithm. To keep the paper self-contained, we briefly review the definition and 

some properties of Kolmogorov complexity. For a complete treatment of this subject, 

see [2] or the survey [3]. 

Consider a Turing machine C with input alphabet I:= { 0, I}. The Kolmogorov com

plexity of a string x EI:*, given y E I:*, relative to Turing machine C, is defined as 

Kc(xly)=min{IPI: C(p,y)=x}. 

An invariance theorem shows that for a uniPcrsa! machine U, Ku(xlv)::::; Kc(xly) + 
0( I) holds for any machine C, with the constant implicit in 0( l) depending on C only. 

It follows that the Kolmogorov complexity defined with respect to any two universal 

machines differs by only an additive constant. We can thus fix a universal machine U 

and denote Ku() simply as K( ). Thus, K(xly) is the minimum number of hits in a 

description from which x can be effectively reconstructed. given y. Let K(x) = K(xl/,), 

where /. denotes the empty string. 

By simple counting, for each n, constant c < n, and y, there are at least 211 -( 2" -c - I ) 

distinct x's of length n with the property 

K(xly):;:,n - c. (I ) 
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We call a string x of length n random if 

K(x)?::n - logn, (2) 

where the logarithm is of base 2 (as throughout the paper). Sometimes, we need to 
encode x in a selj~delimiting fonn i, in order to be able to decompose iy into x 
and y. This we do by prefixing x with its length (in binary), and that in tum by 
its length in unary, i.e. i = 1 llxllOlxlx. Thus, the self-delimiting representation i of x 

requires lxl + 2 log lxl + 0( I) bits. 
A DNA sequence is a word over the four-letter alphabet of bases B ={A, C, G, T}. 

We can encode a letter in B by two bits. Thus, when we say a sequence over B is 
Kolmogorov random, we mean the binary string encoding it is Kolmogorov random. 
Assume that our original DNA sequence S is of length n bases, i.e., 211 bits. We will 
assume that this string S = s 1 ••• s2n contains /1 bases, the ith base being encoded by 
the two bits s2;-is2;. These two bits are treated as one unit. When we consider errors, 
we either delete a base (thus 2 bits), replace a base (2 bits by some other 2 bits), or 
insert a base (also 2 bits) in between bases (i.e., after even positions in S). 

Let the distance between two sequences a and /3, d(rt..,/3), be the minimum alignment 
score between !X and /3, where each insertion, deletion, and substitution is charged unit 
cost. The distance from one sequence !X to a set of sequences A = { CJ. 1, ct2, ... , rt..m}, is 
2:~~ 1 d(r:1.,ct.;). A Steiner sequence (or point) of A is a sequence ct. that minimizes the 
distance from !X to the sequences in A, i.e. I:;'~ 1 d(!X, ct.; ). Note, often such a Steiner 
sequence is not unique. 

The expression logk n means log n, base 2, to the power of k. 

3. The reconstruction algorithm 

In order to achieve polynomial-time complexity, we cannot align all the erroneous 
sequences at the same time. The idea is to separate them into groups. In order to be 
able to recognize errors one needs at least a majority of correct versions. We therefore 
choose to divide in groups of three. Wherever we manage to align three erroneous 
sequences properly and at most one sequence has an error, then it will get corrected. 

Our algorithm is thus very simple. It repeatedly partitions the set of sequences into 
groups of three which are replaced by their Steiner sequence, thereby reducing the 
number of sequences by a factor of 3. In each round, it tries to reduce the error 
rate almost quadratically. Convergence is then easy to analyze. Removing all errors 
is equivalent to reducing the error rate to less than l/n, /1 being the length of the 
original sequence. Starting from a constant l/C error rate, this takes no more than 
log log n rounds, requiring 3Iog Iogn =(log n )10g 3 erroneous copies to start with. In this 
paper we analyze in detail the first round and prove that under the assumed randomness 
conditions, it reduces the error rate as desired. We conclude the paper with a short 
discussion of the difficulties in analyzing later rounds, and present some experimental 
data. 
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We end this section with two lemmas that will prove useful in the next section, 
where we analyze a single iteration of our algorithm. 

Lemma 1. The Steiner sequence of three sequences rt., ex, p is a. 

Proof. Denote the Steiner sequence by s, and consider the distance d from s to 
a, a, f3. By choosing s = a we find d:::;,. d (a, f3 ). By the triangle inequality, we have 
d=2d(s,a)+d(s,{3)~d(s,a)+d(a,{3). Combined with the previous inequality, this 

shows d(s, a)= 0. 0 

For some function j(n)<n we often need to estimate log (f~nl). 

Lemma 2. For k < n, 

log G) = k(log n - log k + 0(1 )). 

Proof. Since (;) = fl~:01 (n - i)/(k - i), we have 

( n)k (n) nk 
k :::;,. k :::;,. k!' 

the first inequality is true because n/k ~ (n - i)/(k - i) for k ~ n. Taking logarithms, 
the left part becomes k(log n - log k ). The right part becomes, using Stirling's approx
imation, 

k logn - logk! =k logn - k logk + O(k). 

The lemma follows. 0 

4. Analysis of aligning three sequences 

Let sequence S of length n be the original DNA sequence to be reconstructed. 
At any position in S we allow at most one of the following 8 errors: 

- the character is deleted, 
- the character is replaced by one of three others, 
- one of four possible characters is inserted just before it. 

A collection of k errors can then be distributed in (Z) possible ways and be of gk 
types. For simplicity, we ignore the possibility of multiple insertions at a single position 

in S. This more general case could be handled with some extra complication as follows: 
Divide the errors into two types, insertions and non-insertions. For k 1 insertions and 
k2 deletions/substitutions the number of distributions can be counted as (n;,k, )(~l 
Summing this over all ways of writing k = k1 + k1 gives the general distribution count. 
Since using such expressions would severely complicate our analysis, we prefer to 
present our proof methods in the simpler setting. 
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For an error rate of I /C we assume a standard encoding of an error sequence as 
log e(n) bits, where e(n) = (11"c) x gn;c. 

Consider any three erroneous copies of S, denoted S1, S2, S3, with errors indicated 
by say e1, e2, e3. Intuitively, at some position, if at most I copy errs, then it is possible 
to correct this error by majority. If two copies err at the same position, then the error 
will persist. But since the errors are random, we expect only approximately n/C2 such 
error coincidences. Then, in the Steiner sequence, we expect to have only this many 
errors left. Of course, since we have to do alignment of the three sequences, such a 
naive analysis does not suffice. 

Our strategy is to show that if errors or the alignment do not approximately follow 
the above pattern then either we can compress S or we can compress e; 's. 

Our main result is 

Theorem 3. For any r. > 0, there exists a constant C0, such that for any C ~ C0 , and 
any sufficiently larye Kolmoyorov random sequence S, given three erroneous copies 
5 1, S2, S3 with Kolmoyorov random errors encoded by e1, e2, e3, our algorithm reduces 
the error rate from 1/C to 1/c2-c in one iteration. 

Proof. We start the proof with some supporting lemmas. Note that distance between 
errors is measured along their occurrence on S. 

Lemma 4. For any 1: > 0, sufficiently lar~Je C and n, and sequences as above, there 
are less than h = n/c2-i: errors that are within distance d = log2 C from some other 
error. 

Proof. Assume, to the contrary, that there are at least h errors that are within distance 
d from some other error. Then we show how to compress e1,e2,e3. 

Divide the h error positions p1, ... , Ph into at most h/2 groups where consecutive 
errors in a group are within distance d. The first (leftmost) error in each group is 
designated group leader. By Lemma 2, we can encode the positions of the group 
leaders using log(n/h) + 0( 1) = (2 - i:) log C + 0( I) bits each. The other (non-leader) 
positions can be encoded by log d = 2 log log C bits each, giving the distance to the 
previous error and I bit indicating whether this previous error is a group leader. We 
also use h log 3 bits to specify whether each error occurs in e1, ei, or e3. 

The above description uses at most (in the worst case each group consists of just 2 
errors) 

h 
-((2 - i:)logC + 2loglogC + 0(1)) 
2 

(3) 

bits to specify the exact distribution of these h errors. We want to show that this is 
less than what we can save from e1, ez, e3 by excluding distribution information about 
h errors. Let k =n/C. There are G) 3 possible error distributions to start with and 
( 3{~h) remaining possibilities given the distrjbution of any h errors. Our savings is the 
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Fig. l. Alignment tree. 

logarithm of the ratio between these two: 

(%) 3 (n ... (n-k+l))3 (3k-h)! 
( 3t~h) = k! (3n) ... (3n - 3k +h + 1) 

((n -k + h/3) .. . (n -k + 1))3(3k - h)! >- ~~~~~~----'-~~~---~~~~ 
?' k!333k-h 

((n-k+h/3) ... (n-k+ 1))3 2 
;;:: (k ... (k-h/3+1))3 (3k-h+l)(3k-h+2)' 

Hence, we save at least 

(")3 k 
log ( ; 11 ) ;;::hlogn~ + l -21og(3k)=hlog(C- l)+ l -21og(3n/C) 

3k-h 

bits, which exceeds (3) for large enough C. This implies nontrivial compression, con
tradicting the assumed randomness of ei,e2,e3. D 

Call those errors that have distance more than log2 C away from other errors /one~v. 
A lonely error will be corrected by our algorithm if the Steiner alignment correctly 
aligns the surrounding characters in the 3 sequences, as Lemma l shows. 

Fig. l shows the three erroneous sequences S1,S2,S3 and their Steiner sequence T, 
which minimizes the distance to the erroneous sequences. Each S; in tum has distance 
n/C to the original sequence S, as represented by the outer edges. Note that a Steiner 
sequence T induces a multiple alignment of the 3 erroneous sequences, under which 
the Steiner distance equals the following alignment cost measure for columns (where 
a gap is considered a letter): 
- 3 identical letters have 0 cost, 
- 2 identical letters plus a different letter have cost 1, 
- 3 different letter have cost 2. 

The Steiner sequence can thus be chosen as the consensus sequence of the optimal 
triple alignment using this cost measure, which is defined by choosing the majority 
element in each column. 
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For example, consider an original sequence "GTCT ACAGC" and three erroneous 
copies, S, = "TGTCTCGC", S2 = "TGTCACGC", and S3 ='TT ATCAGAC", each hav
ing 4 errors as indicated in the following alignment: 

G T C T A C A G c 
T G T C T C G C 

T G T C A C G C 
T T A T C A G A C 

The (unique) Steiner sequence is "TGTCACGC", and it induces the 3-alignment 

T G T C T C G C 
T G T C A C G C 
T T A T C A G A C 

A match is a pair of identical characters in a column of the 3-alignment. In the 
example, the first column has a triple match, the 2nd none, the 3rd one, etc. Note 
that the alignment of the three erroneous sequences, in combination with the cost 
n/C alignments of each error sequence with the original sequence, in tum induces 
an alignment of 3 copies of the original sequence S. In fact, any tree of pairwise 
alignments, such as Fig. I, induces a multiple alignment of all its leaves. We call this 
the S-aliynment. For our example, it is 

G T c T A c A G c 
G T c T A c A G c 

G T c T A c A G c 
An S-match is a pair of 2 characters in a column of the S-alignment. Alternatively, 

an S-match can be defined as a match of 2 characters neither of which is an insertion 
into the original sequence S. The example has no S-match in the l st column, one in 
the 2nd, none in the 3rd, three in the 4th, etc. The 2nd column shows that the suffix 
match refers to the position in S rather than the base. A barrier is a position in S 
whose character fills a whole column in the S-alignment. Intuitively, this is where all 
3 erroneous sequences are synchronized with respect to S. The example has only one 
barrier at the final position. In addition, we consider the start and end of the whole 
alignment to constitute 2 (pseudo )-barriers. 

If we picture 3 copies of S above one another, then an S-match pairs two positions 
in 2 copies of S. The characters in these positions can be different, if there was 
a substitution in either position. With each lonely error we associate a region that 
extends to the left and to the right up to, but not including, the nearest barrier. Note 
that some errors will be associated with the same region, which contains all of them. 
Since regions are barrier-free, most S-matches in them must pair up different positions. 
This is the basis for showing that most regions must be small, i.e. consisting of only 
the error position. Note that the only way for a region to be larger is to contain more 
errors. Call the regions containing a lonely error and at least one other error blocks. 
Blocks have size at least log2 C. 
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0.25 ~---~-------------------------, 
"alph2" -

0.2 

0.15 

0.1 

0.05 

3 
number of iterations 

Fig. 2. Alphabet size 2. 

Lemma 5. Jn a 3 sequence alignment (of S1, S2, S3 ), less than n/C2-" lonely errors 

appear in blocks. 

Proof. Suppose that, on the contrary, l?:n/c2 -" lonely errors appear in blocks. 
Let L be the total length of all these blocks. We have 

(4) 

The idea is to show that we can specify the locations of these blocks and errors to 

specify L characters of S (2L bits) using a smaller number of bits; thus compressing S. 

We use 3 log(log2 n) = 6 log log n bits for the id's of the 3 error codes. 
By Lemma 2, we can specify the boundaries of the blocks using no more than 

2/(logn/!+0(1))~2/((2-c)logC+O(l))=o(L) bits. 

Also, we can specify the distribution and types of the I lonely errors appearing in 

the blocks in /(log n/ l + 0( I))= o(L) bits. 
Finally, there can be up to n/c2-" non-lonely errors in the blocks, whose distribution 

and types takes at most (n/c2-')((2 - i:;)logC + 0(1)) bits to specify. The latter is 

also o(L ), by ( 4 ). 
Using all this information we can easily reconstruct the missing blocks. Columns 

in the S-alignments are reproduced one by one. Whenever an error occurs, we just 



J. Kececioylu et al. I Theoretical Computer Science 185 ( 1997) 3--13 11 

0.25 ,,-------,,-------,-----~----~----~---~ 

'alph4' -

0.2 

0.15 

0. 1 

0.05 

2 3 
number ol iterations 

Fig. 3. Alphabet size 4. 

use a few bits to fill in the column. When no error occurs, we use the fact that 

the column is no baITier and fill in the single letter deduced from one of the 

S-matches. 

The last two lemmas show that all errors, except for at most n/c2-1: non-lonely 

errors, and at most n/c2- 1 lonely errors, get corrected. Thus, by optimality, the Steiner 

sequence must have distance at most 2n/c2 -1: to the original sequence S. 

5. Comments 

Here we briefly consider the question of what the theorem on single iteration eITor 

reduction implies about the whole process. Ideally, the computed Steiner sequences 

would satisfy a condition of Kolmogorov randomness similar to the conditions we 

assumed to hold for the original error sequences. One complication arising here is that 

the computed sequences may not fit into our error model due to the introduction of 

multiple insertion errors. Another is that our analysis requires a lower bound on C in 

terms of £, which suggests it will be hard to prove error reduction below a certain 

level. 
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0.25 ~---~----..------..----.,------,------, 
"alph20' -

0.2 

0.15 

0.1 

0.05 

2 3 
number of iterations 

Fig. 4. Alphabet size 20. 

6. Experimental results 

In order to test our algorithm, we have perfonned the following experiments. 
We generated three groups of random sequences over alphabet sizes 2, 4 (to model 

DNA/RNA), and 20 (to model proteins), respectively. Within each group, we gener
ated sequences of lengths 50, 100, and 200. Much longer sequences were beyond our 
computational abilities, which were limited by the use of a qubic space algorithm for 
computing Steiner sequences. 

Within each group, we tested sequences of each length with error rates of ~, f,, 
! , and to. Figs. 2, 3, and 4 show the experimental results for these three groups, 
respectively. Each curve in each of these pictures shows the average over a dozen runs 
of how the error rate goes down with successive iterations, for a particular sequence 
length. As the pictures show, the method converges well. 
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