
ELSEVIER Theoretical Computer Science 185 (1997) 3·· 13

Theoretical
Computer Science

Inferring a DNA sequence from erroneous copies

John Kececioglu a.I' Ming Li b,2 ' John Tromp C,•

a Department ol Computer Science. U11i1.·ersiry of Georyia. Arhens. GA 30602. USA
b Department o(Compurer Science. Unh•ersity o(Warerluo, Warerloo, Ont., Canada N2L 3GJ

c CW!, P. 0. Box 94079, 1090 GB A111s1erdwn. Ne!herlands

Abstract

We suggest a novel approach for efficiently reconstructing an original DNA sequence from
erroneous copies.

Keywords: DNA; Sequencing; Alignment; Errors; Kolmogorov complexity

1. Introduction

DNA sequencing is a key step and a major bottleneck in the Human Genome Project.
It is relatively slow and expensive C$1 per base with current techniques). Since the
human genome comprises no less than 3 billion bases, the development of faster and
cheaper sequencing methods is crucial to the project.

Certain technologies promise the ability to obtain long DNA sequences fast but with
lots of errors. In single-molecule DNA sequencing, the DNA strand is passed by a
cutter, that cuts off a single base at a time, which then flows down a microscopic tube
at high speed past an optical device. This excites the individual molecule and reads off
which type of base it is. The order in time of the bases as they flow down the tube
past the reader is hopefully the order of bases along the DNA strand. The process does
not always flow smoothly, sometimes sputtering (especially at the beginning and the
end), hence the presence of long deletions.

In this paper, we study the problem of how to reconstruct an original DNA sequence
from a small number of erroneous copies. We deal with three types of commonly
considered errors: insertion, deletion, and substitution.

We will make two simplifying assumptions:
(i) the DNA sequence is a random sequence (in the sense of being algorithmically

incompressible), and

* Corresponding author. E-mail: tromp@cwi.nl. Supported by an NSERC International Fellowship.
1 Supported in part by DIMACS.
2 Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT grant and DIMACS.

0304-3975/97/$17.00 @) 1997 - Elsevier Science B. V. All rights reserved
PII S0304-3975(97)00013-3

4 J. Kececioq/11 el al. I Theon!tirnl Compurl'r Science 185 (1997) J 13

(ii) all error types/distributions are equally likely.

Assumption (ii) is natural. Although assumption (i) is unrealistic, with some portions

of DNA being "AT-rich", others being "GC-rich" and some regions featuring long

repetitions, we expect them to behave enough like random sequences to preserve the

validity of our analysis.

We propose a method of efficiently reconstructing an original DNA sequence of

length n from logO(l l n erroneous copies, assuming the sequence itself is random and

errors are random with constant error rate 1/C.

The obvious way to handle the problem is to compare all the erroneous copies and

find the similarities that necessarily exist among them. This is commonly known as

·multiple sequence alignment'. A problem is that doing multiple sequence alignment on

a collection of k sequences by any known algorithm that guarantees optimality takes

time exponential in k, making it far too slow for practical use. Even if we could do

multiple sequence alignment efficiently, it is not dear how many sequences are needed

to converge to the real sequence. Blackwell [1] has shown that among an exponential

number of erroneous copies, the original sequence is likely to appear so frequently

that with high probability it can be identified as the sequence occurring most often.

This approach is clearly not practical because n is usually very large. from hundreds

to thousands. With our approach, we should need only a polylogarithmic number of

copies. And our algorithm converges in polynomial time, rather than the worst-case

superpolynomial time and space of multiple alignment algorithms like [4].

2. Preliminaries

We use Kolmogorov complexity as a tool here to prove some convergence properties

of our algorithm. To keep the paper self-contained, we briefly review the definition and

some properties of Kolmogorov complexity. For a complete treatment of this subject,

see [2] or the survey [3].

Consider a Turing machine C with input alphabet I:= { 0, I}. The Kolmogorov com

plexity of a string x EI:*, given y E I:*, relative to Turing machine C, is defined as

Kc(xly)=min{IPI: C(p,y)=x}.

An invariance theorem shows that for a uniPcrsa! machine U, Ku(xlv)::::; Kc(xly) +
0(I) holds for any machine C, with the constant implicit in 0(l) depending on C only.

It follows that the Kolmogorov complexity defined with respect to any two universal

machines differs by only an additive constant. We can thus fix a universal machine U

and denote Ku() simply as K(). Thus, K(xly) is the minimum number of hits in a

description from which x can be effectively reconstructed. given y. Let K(x) = K(xl/,),

where /. denotes the empty string.

By simple counting, for each n, constant c < n, and y, there are at least 211 -(2" -c - I)

distinct x's of length n with the property

K(xly):;:,n - c. (I)

J. Kececioylu et al. I Theoretical Computer Science 185 (1997) 3-13 5

We call a string x of length n random if

K(x)?::n - logn, (2)

where the logarithm is of base 2 (as throughout the paper). Sometimes, we need to
encode x in a selj~delimiting fonn i, in order to be able to decompose iy into x
and y. This we do by prefixing x with its length (in binary), and that in tum by
its length in unary, i.e. i = 1 llxllOlxlx. Thus, the self-delimiting representation i of x

requires lxl + 2 log lxl + 0(I) bits.
A DNA sequence is a word over the four-letter alphabet of bases B ={A, C, G, T}.

We can encode a letter in B by two bits. Thus, when we say a sequence over B is
Kolmogorov random, we mean the binary string encoding it is Kolmogorov random.
Assume that our original DNA sequence S is of length n bases, i.e., 211 bits. We will
assume that this string S = s 1 ••• s2n contains /1 bases, the ith base being encoded by
the two bits s2;-is2;. These two bits are treated as one unit. When we consider errors,
we either delete a base (thus 2 bits), replace a base (2 bits by some other 2 bits), or
insert a base (also 2 bits) in between bases (i.e., after even positions in S).

Let the distance between two sequences a and /3, d(rt..,/3), be the minimum alignment
score between !X and /3, where each insertion, deletion, and substitution is charged unit
cost. The distance from one sequence !X to a set of sequences A = { CJ. 1, ct2, ... , rt..m}, is
2:~~ 1 d(r:1.,ct.;). A Steiner sequence (or point) of A is a sequence ct. that minimizes the
distance from !X to the sequences in A, i.e. I:;'~ 1 d(!X, ct.;). Note, often such a Steiner
sequence is not unique.

The expression logk n means log n, base 2, to the power of k.

3. The reconstruction algorithm

In order to achieve polynomial-time complexity, we cannot align all the erroneous
sequences at the same time. The idea is to separate them into groups. In order to be
able to recognize errors one needs at least a majority of correct versions. We therefore
choose to divide in groups of three. Wherever we manage to align three erroneous
sequences properly and at most one sequence has an error, then it will get corrected.

Our algorithm is thus very simple. It repeatedly partitions the set of sequences into
groups of three which are replaced by their Steiner sequence, thereby reducing the
number of sequences by a factor of 3. In each round, it tries to reduce the error
rate almost quadratically. Convergence is then easy to analyze. Removing all errors
is equivalent to reducing the error rate to less than l/n, /1 being the length of the
original sequence. Starting from a constant l/C error rate, this takes no more than
log log n rounds, requiring 3Iog Iogn =(log n)10g 3 erroneous copies to start with. In this
paper we analyze in detail the first round and prove that under the assumed randomness
conditions, it reduces the error rate as desired. We conclude the paper with a short
discussion of the difficulties in analyzing later rounds, and present some experimental
data.

6 J. Kececioglu et al. I Theoretical Computer Science 185 (1997) 3-13

We end this section with two lemmas that will prove useful in the next section,
where we analyze a single iteration of our algorithm.

Lemma 1. The Steiner sequence of three sequences rt., ex, p is a.

Proof. Denote the Steiner sequence by s, and consider the distance d from s to
a, a, f3. By choosing s = a we find d:::;,. d (a, f3). By the triangle inequality, we have
d=2d(s,a)+d(s,{3)~d(s,a)+d(a,{3). Combined with the previous inequality, this

shows d(s, a)= 0. 0

For some function j(n)<n we often need to estimate log (f~nl).

Lemma 2. For k < n,

log G) = k(log n - log k + 0(1)).

Proof. Since (;) = fl~:01 (n - i)/(k - i), we have

(n)k (n) nk
k :::;,. k :::;,. k!'

the first inequality is true because n/k ~ (n - i)/(k - i) for k ~ n. Taking logarithms,
the left part becomes k(log n - log k). The right part becomes, using Stirling's approx
imation,

k logn - logk! =k logn - k logk + O(k).

The lemma follows. 0

4. Analysis of aligning three sequences

Let sequence S of length n be the original DNA sequence to be reconstructed.
At any position in S we allow at most one of the following 8 errors:

- the character is deleted,
- the character is replaced by one of three others,
- one of four possible characters is inserted just before it.

A collection of k errors can then be distributed in (Z) possible ways and be of gk
types. For simplicity, we ignore the possibility of multiple insertions at a single position

in S. This more general case could be handled with some extra complication as follows:
Divide the errors into two types, insertions and non-insertions. For k 1 insertions and
k2 deletions/substitutions the number of distributions can be counted as (n;,k,)(~l
Summing this over all ways of writing k = k1 + k1 gives the general distribution count.
Since using such expressions would severely complicate our analysis, we prefer to
present our proof methods in the simpler setting.

J. Kececio11lu et al. I Theoretical Computer Science 185 (1997) 3-13 7

For an error rate of I /C we assume a standard encoding of an error sequence as
log e(n) bits, where e(n) = (11"c) x gn;c.

Consider any three erroneous copies of S, denoted S1, S2, S3, with errors indicated
by say e1, e2, e3. Intuitively, at some position, if at most I copy errs, then it is possible
to correct this error by majority. If two copies err at the same position, then the error
will persist. But since the errors are random, we expect only approximately n/C2 such
error coincidences. Then, in the Steiner sequence, we expect to have only this many
errors left. Of course, since we have to do alignment of the three sequences, such a
naive analysis does not suffice.

Our strategy is to show that if errors or the alignment do not approximately follow
the above pattern then either we can compress S or we can compress e; 's.

Our main result is

Theorem 3. For any r. > 0, there exists a constant C0, such that for any C ~ C0 , and
any sufficiently larye Kolmoyorov random sequence S, given three erroneous copies
5 1, S2, S3 with Kolmoyorov random errors encoded by e1, e2, e3, our algorithm reduces
the error rate from 1/C to 1/c2-c in one iteration.

Proof. We start the proof with some supporting lemmas. Note that distance between
errors is measured along their occurrence on S.

Lemma 4. For any 1: > 0, sufficiently lar~Je C and n, and sequences as above, there
are less than h = n/c2-i: errors that are within distance d = log2 C from some other
error.

Proof. Assume, to the contrary, that there are at least h errors that are within distance
d from some other error. Then we show how to compress e1,e2,e3.

Divide the h error positions p1, ... , Ph into at most h/2 groups where consecutive
errors in a group are within distance d. The first (leftmost) error in each group is
designated group leader. By Lemma 2, we can encode the positions of the group
leaders using log(n/h) + 0(1) = (2 - i:) log C + 0(I) bits each. The other (non-leader)
positions can be encoded by log d = 2 log log C bits each, giving the distance to the
previous error and I bit indicating whether this previous error is a group leader. We
also use h log 3 bits to specify whether each error occurs in e1, ei, or e3.

The above description uses at most (in the worst case each group consists of just 2
errors)

h
-((2 - i:)logC + 2loglogC + 0(1))
2

(3)

bits to specify the exact distribution of these h errors. We want to show that this is
less than what we can save from e1, ez, e3 by excluding distribution information about
h errors. Let k =n/C. There are G) 3 possible error distributions to start with and
(3{~h) remaining possibilities given the distrjbution of any h errors. Our savings is the

8 J. Kececioglu et al. I Theoretical Computer Science 185 (1997) 3-13

Fig. l. Alignment tree.

logarithm of the ratio between these two:

(%) 3 (n ... (n-k+l))3 (3k-h)!
(3t~h) = k! (3n) ... (3n - 3k +h + 1)

((n -k + h/3) .. . (n -k + 1))3(3k - h)! >- ~~~~~~----'-~~~---~~~~
?' k!333k-h

((n-k+h/3) ... (n-k+ 1))3 2
;;:: (k ... (k-h/3+1))3 (3k-h+l)(3k-h+2)'

Hence, we save at least

(")3 k
log (; 11) ;;::hlogn~ + l -21og(3k)=hlog(C- l)+ l -21og(3n/C)

3k-h

bits, which exceeds (3) for large enough C. This implies nontrivial compression, con
tradicting the assumed randomness of ei,e2,e3. D

Call those errors that have distance more than log2 C away from other errors /one~v.
A lonely error will be corrected by our algorithm if the Steiner alignment correctly
aligns the surrounding characters in the 3 sequences, as Lemma l shows.

Fig. l shows the three erroneous sequences S1,S2,S3 and their Steiner sequence T,
which minimizes the distance to the erroneous sequences. Each S; in tum has distance
n/C to the original sequence S, as represented by the outer edges. Note that a Steiner
sequence T induces a multiple alignment of the 3 erroneous sequences, under which
the Steiner distance equals the following alignment cost measure for columns (where
a gap is considered a letter):
- 3 identical letters have 0 cost,
- 2 identical letters plus a different letter have cost 1,
- 3 different letter have cost 2.

The Steiner sequence can thus be chosen as the consensus sequence of the optimal
triple alignment using this cost measure, which is defined by choosing the majority
element in each column.

J. Kececiog/u et al. !Theoretical Computer Science 185 (1997) 3-13 9

For example, consider an original sequence "GTCT ACAGC" and three erroneous
copies, S, = "TGTCTCGC", S2 = "TGTCACGC", and S3 ='TT ATCAGAC", each hav
ing 4 errors as indicated in the following alignment:

G T C T A C A G c
T G T C T C G C

T G T C A C G C
T T A T C A G A C

The (unique) Steiner sequence is "TGTCACGC", and it induces the 3-alignment

T G T C T C G C
T G T C A C G C
T T A T C A G A C

A match is a pair of identical characters in a column of the 3-alignment. In the
example, the first column has a triple match, the 2nd none, the 3rd one, etc. Note
that the alignment of the three erroneous sequences, in combination with the cost
n/C alignments of each error sequence with the original sequence, in tum induces
an alignment of 3 copies of the original sequence S. In fact, any tree of pairwise
alignments, such as Fig. I, induces a multiple alignment of all its leaves. We call this
the S-aliynment. For our example, it is

G T c T A c A G c
G T c T A c A G c

G T c T A c A G c
An S-match is a pair of 2 characters in a column of the S-alignment. Alternatively,

an S-match can be defined as a match of 2 characters neither of which is an insertion
into the original sequence S. The example has no S-match in the l st column, one in
the 2nd, none in the 3rd, three in the 4th, etc. The 2nd column shows that the suffix
match refers to the position in S rather than the base. A barrier is a position in S
whose character fills a whole column in the S-alignment. Intuitively, this is where all
3 erroneous sequences are synchronized with respect to S. The example has only one
barrier at the final position. In addition, we consider the start and end of the whole
alignment to constitute 2 (pseudo)-barriers.

If we picture 3 copies of S above one another, then an S-match pairs two positions
in 2 copies of S. The characters in these positions can be different, if there was
a substitution in either position. With each lonely error we associate a region that
extends to the left and to the right up to, but not including, the nearest barrier. Note
that some errors will be associated with the same region, which contains all of them.
Since regions are barrier-free, most S-matches in them must pair up different positions.
This is the basis for showing that most regions must be small, i.e. consisting of only
the error position. Note that the only way for a region to be larger is to contain more
errors. Call the regions containing a lonely error and at least one other error blocks.
Blocks have size at least log2 C.

10 J. Kececiogfu et al. I Theoretical Computer Science 185 (1997) 3--13

0.25 ~---~-------------------------,
"alph2" -

0.2

0.15

0.1

0.05

3
number of iterations

Fig. 2. Alphabet size 2.

Lemma 5. Jn a 3 sequence alignment (of S1, S2, S3), less than n/C2-" lonely errors

appear in blocks.

Proof. Suppose that, on the contrary, l?:n/c2 -" lonely errors appear in blocks.
Let L be the total length of all these blocks. We have

(4)

The idea is to show that we can specify the locations of these blocks and errors to

specify L characters of S (2L bits) using a smaller number of bits; thus compressing S.

We use 3 log(log2 n) = 6 log log n bits for the id's of the 3 error codes.
By Lemma 2, we can specify the boundaries of the blocks using no more than

2/(logn/!+0(1))~2/((2-c)logC+O(l))=o(L) bits.

Also, we can specify the distribution and types of the I lonely errors appearing in

the blocks in /(log n/ l + 0(I))= o(L) bits.
Finally, there can be up to n/c2-" non-lonely errors in the blocks, whose distribution

and types takes at most (n/c2-')((2 - i:;)logC + 0(1)) bits to specify. The latter is

also o(L), by (4).
Using all this information we can easily reconstruct the missing blocks. Columns

in the S-alignments are reproduced one by one. Whenever an error occurs, we just

J. Kececioylu et al. I Theoretical Computer Science 185 (1997) 3--13 11

0.25 ,,-------,,-------,-----~----~----~---~

'alph4' -

0.2

0.15

0. 1

0.05

2 3
number ol iterations

Fig. 3. Alphabet size 4.

use a few bits to fill in the column. When no error occurs, we use the fact that

the column is no baITier and fill in the single letter deduced from one of the

S-matches.

The last two lemmas show that all errors, except for at most n/c2-1: non-lonely

errors, and at most n/c2- 1 lonely errors, get corrected. Thus, by optimality, the Steiner

sequence must have distance at most 2n/c2 -1: to the original sequence S.

5. Comments

Here we briefly consider the question of what the theorem on single iteration eITor

reduction implies about the whole process. Ideally, the computed Steiner sequences

would satisfy a condition of Kolmogorov randomness similar to the conditions we

assumed to hold for the original error sequences. One complication arising here is that

the computed sequences may not fit into our error model due to the introduction of

multiple insertion errors. Another is that our analysis requires a lower bound on C in

terms of £, which suggests it will be hard to prove error reduction below a certain

level.

12 J. Kececivqlu et al. I Tlzeuretica/ Computer Science 185 (1997) 3-13

0.25 ~---~----..------..----.,------,------,
"alph20' -

0.2

0.15

0.1

0.05

2 3
number of iterations

Fig. 4. Alphabet size 20.

6. Experimental results

In order to test our algorithm, we have perfonned the following experiments.
We generated three groups of random sequences over alphabet sizes 2, 4 (to model

DNA/RNA), and 20 (to model proteins), respectively. Within each group, we gener
ated sequences of lengths 50, 100, and 200. Much longer sequences were beyond our
computational abilities, which were limited by the use of a qubic space algorithm for
computing Steiner sequences.

Within each group, we tested sequences of each length with error rates of ~, f,,
! , and to. Figs. 2, 3, and 4 show the experimental results for these three groups,
respectively. Each curve in each of these pictures shows the average over a dozen runs
of how the error rate goes down with successive iterations, for a particular sequence
length. As the pictures show, the method converges well.

Acknowledgements

This research was initiated when the first two authors were v1s1ting DlMACS in
October 1994 during its computational biology year. We thank DIMACS for providing
the stimulating environment and the financial supports. Thanks also to Tao Jiang for

J. Ke1wio11lu er al. I 7/ieorcrirnl Comput<'I' Scienff 185 (/997) 3~13 13

discussions on this research, and the anonymous referees for corrections and suggested
improvements.

References

[l] T.W. Blackwell, Estimating consensus DNA sequences, Ph.D. Thesis. Harvard University, 1993.
[2] M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications (Springer, Berlin,

1997. 2nd Ed.).
[3 J M. Li, P. Vit<\nyi, Kolmogorov complexity and its applications, in: .I. van Lceuwen (Ed.), Handbook of

Theoretical Computer Science, vol. A, Elsevier, Amsterdam, 1990, pp. 187 ·254.
[4] D.J. Lipman, S.F. Altschul and J.D. Keccciog!u, A tool for multiple sequence alignment, Proc. National

Acad. Sci. USA 86 (1989) 4412·4415.
[5] L. Smith, The future of DNA sequencing, Science 262 (1993) 530-532.
[6] R. Stadcn, Automation of the computer handling of gel reading data produced by the shotgun method

of DNA sequencing, Nucleic Acids Res. 10(15) (1982) 4731-4751.

